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Let X be a smooth complex projective variety. We construct partial Okounkov bodies associated with
Hermitian big line bundles .L; �/ on X. We show that partial Okounkov bodies are universal invariants of
the singularities of �. As an application, we construct Duistermaat–Heckman measures associated with
finite-energy metrics on the Berkovich analytification of an ample line bundle.
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1 Introduction

1.1 Background

Let X be an irreducible smooth projective variety of dimension n and L be a big holomorphic line
bundle on X. Given any admissible flag X D Y0 � Y1 � � � � � Yn on X (see Definition 2.7 for the
precise definition), one can attach a natural convex body �.L/ of dimension n to L, generalizing the
classical Newton polytope construction in toric geometry. This construction was first considered by
Okounkov [47; 48] and then extended by Lazarsfeld and Mustat,ă [45] and Kaveh and Khovanskii [43].
The convex body �.L/ is known as the Okounkov body or Newton–Okounkov body associated with L
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1284 Mingchen Xia

(with respect to the given flag). We briefly recall its definition: given any nonzero s 2H0.X;Lk/, let �1.s/

be the vanishing order of s along Y1. Then s can be regarded as a section of H0.X;Lk˝OX .��1.s/Y1//.
It follows that s1 WD sjY1

is a nonzero section of Ljk
Y1
˝OX .��1.s/Y1/jY1

. We can then repeat the
same procedure with s1 and Y2 in place of s and Y1. Repeating this construction, we end up with
�.s/D .�1.s/; : : : ; �n.s// 2Nn. In fact, � extends naturally to a rank n valuation on C.X /. Consider
the semigroup

�.L/ WD f.�.s/; k/ 2 ZnC1
j k 2N; s 2 H0.X;Lk/�g:

Then �.L/ is the intersection of the closed convex cone in RnC1 generated by �.L/ with the hyperplane
f.x; 1/ j x 2Rng. A key property of �.L/ is that the Lebesgue volume of �.L/ is proportional to the
volume of the line bundle L:

(1-1) vol�.L/D
1

n!
hLn
i:

Here h � i denotes the movable intersection product in the sense of Boucksom, Demailly, Păun and
Peternell [12] and Boucksom, Favre and Jonsson [15].

In [45], Lazarsfeld and Mustat,ă showed moreover that �.L/ depends only on the numerical class of L.
Conversely, it is shown by Jow [41] that the information of all Okounkov bodies with respect to various
flags actually determines the numerical class of L. In other words, Okounkov bodies can be regarded as
universal numerical invariants of big line bundles.

This paper concerns a similar problem. Assume that L is equipped with a singular plurisubharmonic
(psh) metric �. We will construct universal invariants of the singularity type of �. We call these universal
invariants the partial Okounkov bodies of .L; �/.

1.2 Main results

Let us explain more details about the construction of partial Okounkov bodies. Recall that any admissible
flag on X induces a rank n valuation on C.X / with values in Zn. We will work more generally with
such valuations, not necessarily coming from admissible flags on X. We define a set

(1-2) �.L; �/ WD f.�.s/; k/ 2 ZnC1
j k 2N; s 2 H0.X;Lk

˝ I.k�//�g

similar to �.L/. Here I. � / denotes the multiplier ideal sheaf in the sense of Nadel. However, a key
difference here is that �.L; �/ is not a semigroup in general. Thus, the constructions in both [45] and [43]
break down. We will show that in this case, there is still a canonical construction of Okounkov bodies.

Before stating our main theorem, let us recall the definition of volume. The volume of .L; �/ is defined as

vol.L; �/ WD lim
k!1

1

kn
h0.X;Lk

˝ I.k�//:

The existence of this limit is proved in Darvas and Xia [33].

Geometry & Topology, Volume 29 (2025)



Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1285

Theorem A Let .L; �/ be as above. Assume that vol.L; �/ > 0. Then there is a convex body �.L; �/�
�.L/ associated with .L; �/ satisfying

(1-3) vol�.L; �/D vol.L; �/:

Moreover , �.L; �/ is continuous in � if
R
X .ddc�/n > 0. (Here the set of � is endowed with the dS -

pseudometric in the sense of Darvas, Di Nezza and Lu [29] and the set of convex bodies is endowed with
the Hausdorff metric.)

Define
�k WD fk

�1�.s/ 2Rn
j s 2 H0.X;Lk

˝ I.k�//�g

and let �k denote the convex hull of �k . Then

(1-4) �k !�.L; �/

with respect to the Hausdorff metric if vol.L; �/ > 0.

Observe that the last assertion actually uniquely determines �.L; �/, so �.L; �/ can be regarded as
canonically attached to the given data .X;L; �; �/.

The convex body�.L; �/ is called the partial Okounkov body of .L; �/ with respect to the given valuation.
Here the word partial refers to the fact that the partial Okounkov bodies are contained in �.L/. One
should not confuse them with the notion of Okounkov bodies with respect to partial flags.

We will also extend the definition to the case vol.L; �/ D 0 in Section 5.6, at the expense of losing
continuity in �.

Observe that (1-3) bears strong resemblance with (1-1). In fact, when � has minimal singularities,
�.L; �/D�.L/ and (1-3) just reduces to (1-1).

The second main result says that partial Okounkov bodies uniquely determine the I-singularity type of �.

Theorem B Let L be a big line bundle on X. Let � and �0 be two singular psh metrics on L with positive
volumes. Then the following are equivalent :

(1) � �I �
0.

(2) �.L; �/D�.L; �0/ for all rank n valuations on C.X / taking values in Zn.

Recall that � �I �
0 means I.k�/ D I.k�0/ for all real k > 0. This relation is studied in detail in

Darvas and Xia [32; 33]. It captures a lot of important information about the singularity of a psh metric.
Theorem B should be regarded as a metric analogue of Jow’s theorem.

As a byproduct of our proof of Theorem B, we reprove a formula computing the generic Lelong numbers
of currents of minimal singularities in c1.L/, slightly generalizing Boucksom [9, Theorem 5.4]:

Geometry & Topology, Volume 29 (2025)



1286 Mingchen Xia

Theorem 1.1 (Corollary 5.25) Let L be a big line bundle on X. Consider a current Tmin of minimal
singularity in c1.L/. Then for any prime divisor E over X, we have

(1-5) �.Tmin;E/D lim
k!1

1

k
ordE H0.X;Lk/:

Here �.Tmin;E/ denotes the generic Lelong number of Tmin along E.

As a consequence, we find a new formula computing the multiplier ideal sheaf I.Tmin/ in Corollary 5.26.

The third main result is an analogue of Witt Nyström [52]. Given any continuous metric  on L, one can
naturally construct a convex function cŒ � on Int�.L/, known as the Chebyshev transform of  . The
main property of cŒ � is that given another continuous metric  0 on L, we have

(1-6)
Z
�.L/

.cŒ �� cŒ 0�/ d�D vol. ;  0/;

where vol. ;  0/ is the relative volume as studied in Berman and Boucksom [4] and Berman, Boucksom
and Witt Nyström [6] and d� is the Lebesgue measure on Rn. In our setup, we also associate a convex
function cŒ��Œ � W Int�.L; �/!R. Moreover:

Theorem C Assume that the valuation � is induced by an admissible flag on X. Let  and  0 be two
continuous metrics on L. Then

(1-7)
Z
�.L;�/

.cŒ��Œ �� cŒ��Œ 
0�/ d�D�E�Œ��. /C E�Œ��. 

0/;

where E�
Œ��

is the partial equilibrium energy functional defined in (6-1).

Theorems A, B and C together give convex-geometric interpretations of the main results of [32; 33].
These results also provide us with a convex-geometric approach to the study of psh singularities.

As an application of our theory, we prove a generalization of Boucksom–Chen theorem (Theorem 7.9).
Recall that the Boucksom–Chen theorem [11] says that given a multiplicative filtration F on the section
ring R.X;L/, one can naturally associate a probability measure on R, known as the Duistermaat–
Heckman measure. Moreover, the Duistermaat–Heckman measure is the weak limit of a sequence of
discrete measures �k associated with the filtration F on H0.X;Lk/. We show that this construction can
be generalized to all I-model test curves, not necessarily coming from filtrations. Here we only prove the
generalized Boucksom–Chen theorem for filtrations on the full graded linear series, which suffices for
our purpose. It is, however, easy to see that the techniques apply to more general situations.

More generally, we introduce the notion of an Okounkov test curve (Definition 7.2) and generalize
Duistermaat–Heckman measures to this setting.

When L is ample, this construction allows us to associate a Radon measure DH.�/ on R with each
element � in the non-Archimedean space E1.Lan/ in the sense of Boucksom and Jonsson [17]; see
Definition 7.13. The space E1.Lan/ can be seen as the completion of the space of test configurations.

Geometry & Topology, Volume 29 (2025)
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Theorem 1.2 The Duistermaat–Heckman measure construction of test configurations as in Witt Nys-
tröm [51] admits a unique continuous extension DH W E1.Lan/!M.R/. Here M.R/ is the space of
Radon measures on R.

The Duistermaat–Heckman measure of a non-Archimedean metric is also constructed by Inoue [40] using
a different method. See Remark 7.17 for more details.

In Theorem 7.16, we will furthermore prove that DH.�/ contains a lot of interesting information of �.

In the last section, we interpret the partial Okounkov bodies in the toric setting. We prove the following
results:

Theorem 1.3 Let X be a smooth toric variety of dimension n and .L; �/ be a toric invariant Hermitian
big line bundle on X with positive volume. Fix a toric invariant admissible flag on X. Recall that upon
choosing a toric invariant rational section of L, � can be identified with a convex function �R on Rn.
Then the partial Okounkov body �.L; �/ is naturally identified with the closure of the image of r�R.

Theorem D Let .Li ; �i/ for i D 1; : : : ; n be toric invariant Hermitian big line bundles on X of positive
volumes. If the toric invariant flag .Y�/ satisfies the additional condition that Yn is not contained in the
polar locus of any �i , thenZ

X

ddc�1 ^ � � � ^ ddc�n D n! vol.�.L1; �1/; : : : ; �.Ln; �n//:

It is of interest to generalize Theorem D to the nontoric setting as well. As shown by Example 8.5, the
nontoric generalization has to involve all valuations instead of just one.

Lastly, let us mention that our generalization of the Boucksom–Chen theorem has important consequences
in Archimedean pluripotential theory as well. When applied to generalized deformation to the normal
cone in the sense of Xia [55], it gives a number of interesting equidistribution results of the jumping
numbers of multiplier ideal sheaves. As a detailed investigation would lead us too far away, we do not
include these results in this paper.

1.3 Strategy of the proofs

We will sketch the proof of these theorems.

Proof of Theorem A In general, the graded linear space

W .L; �/ WD

1M
kD0

H0.X;Lk
˝ I.k�//

is not an algebra and similarly �.L; �/ as defined in (1-2) is not a semigroup. Thus, one cannot directly
apply the theory of graded linear series or the theory of semigroups as in Lazarsfeld and Mustat,ă [45]
and Kaveh and Khovanskii [43].

A key observation here is that although �.L; �/ is not a semigroup, it is not too far away from being one.

Geometry & Topology, Volume 29 (2025)
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To make this precise, we introduce a pseudometric d on the space yS of subsets of ZnC1 lying in a suitable
strictly convex cone:

d.S;S 0/ WD lim
k!1

k�n.jSk jC jS
0
k j � 2jSk \S 0k j/:

Let � be the equivalence relation defined by d . The classical Okounkov body construction associates with
each semigroup a convex body. As we will prove later, this map factorizes through the �-equivalence
classes, and it extends continuously to an almost semigroup, namely an object in yS which can be
approximated by certain nice semigroups with respect to d .

In order to define the Okounkov body of .L; �/, we will actually show that �.L; �/ is an almost semigroup
and we could simply define

�.L; �/ WD�.�.L; �//:

The proof follows the same pattern as the proof in [33]. We proceed by approximations. We first consider
the case where � has analytic singularities. In this case, after taking a suitable resolution, we can easily
see that W .L; �/ can be approximated by graded linear series both from above and from below. In
the case of a singular � with ddc� being a Kähler current, we make use of analytic approximations
as in Demailly, Peternell and Schneider [36] and Cao [19]. More precisely, take a quasi-equisingular
approximation �j of �. Based on the convergence theorems proved in [33], we can show that �.L; �j /

converges to �.L; �/ with respect to the pseudometric d , which enables us to conclude in this case.
Finally, in the general case, a trick discovered in [29] and [33] enables us to reduce to the previous case.

Along the lines of the proof, we actually find that �.L; �/ satisfies a stronger property (1-4). This property
is essential to the proof of Theorem B; we call it the Hausdorff convergence property.

Proof of Theorem B Recall that in the classical setting, we can read information about the asymptotic
base loci of L from the Okounkov body �.L/ directly; see [21]. In our setup, the analogue says that
the Okounkov body �.L; �/ gives information about the generic Lelong numbers of �. We will prove a
qualitative version of Theorem B:

Theorem 1.4 Let E be a prime divisor over X. Let � WZ!X be a birational model of X such that E is
a divisor on Z. Take an admissible flag .Y�/ on Z with Y1 DE, then

�.�;E/D min
x2�.��L;���/

x1:

Here �.�;E/ is the generic Lelong number of � along E, defined as the minimum of the Lelong numbers
�.���;x/ for all x 2 E. The proof of Theorem 1.4 again follows the same pattern as in the proof of
Theorem A. With some efforts, we can reduce the problem to the case where � has analytic singularities
along some normal crossing Q-divisor on X and ddc� is a Kähler current. In this case, the desired result
follows from a result proved in [55].

Proofs of Theorems C and D The proofs roughly follow the same pattern as above. Namely, we first
handle the case of analytic singularities and then conclude the general case by suitable approximations.
We will not repeat the details here.

Geometry & Topology, Volume 29 (2025)
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As explained above, our approach to general psh singularities requires a number of approximations; this
motivates the study of the metric geometry of the space of psh singularity types. We prove the continuity
of mixed masses under dS -approximations:

Theorem 1.5 (Theorem 4.2) Let �i for i D 1; : : : ; n be smooth closed real .1; 1/-forms representing
big classes on a connected compact Kähler manifold X of dimension n. Let 'k

i ; 'i 2 PSH.X; �i/ for

i D 1; : : : ; n and k 2N. Assume that 'k
i

dS;�i
���! 'i for all i as k!1. Then

(1-8) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
D

Z
X

�1;'1
^ � � � ^ �n;'n

:

Here the Monge–Ampère operators are taken in the nonpluripolar sense.

This theorem and its various consequences are indispensable in all of our proofs. They are of independent
interest as well.

1.4 Structure of the paper

In Section 2, we collect a few preliminaries. In Section 3, we study the Okounkov bodies of almost
semigroups. In Section 4, we further develop the theory of dS -pseudometrics on the space of singularity
types initiated in [29]. In Section 5, we define partial Okounkov bodies associated with Hermitian
pseudoeffective line bundles and prove a number of properties. In Section 6, we define and study
Chebyshev transforms of continuous metrics. In Section 7, we generalize the theory of Boucksom–Chen
and study the non-Archimedean Duistermaat–Heckman measures. In Section 8, we give an explicit
description of partial Okounkov bodies construction in terms of the moment polytope in the toric situation.

1.5 Conventions

In this paper, Monge–Ampère operators �n
' refer to the nonpluripolar product in the sense of Boucksom,

Eyssidieux, Guedj and Zeriahi [13]. The group Zn is always endowed with the lexicographic order. A
line bundle always refers to a holomorphic line bundle. We do not distinguish a line bundle and the
associated invertible sheaf. When talking about a birational modification (resolution) � W Y ! X, we
always assume that Y is smooth and � is projective. We follow the convention that ddc

D .i=2�/@x@.
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2 Preliminaries

2.1 Hausdorff metric of convex bodies

In this section, we recall the theory of Hausdorff metrics on the set of convex bodies following
[50, Section 1.8]. Fix n 2 N. Recall that a convex body in Rn is a nonempty compact convex subset
of Rn, which may have empty interior. Let Kn denote the set of convex bodies in Rn. We will fix the
Lebesgue measure d� on Rn, normalized so that the unit cube has volume 1.

Recall the definition of the Hausdorff metric between K1;K2 2 Kn:

dn.K1;K2/ WDmax
�

sup
x12K1

inf
x22K2

jx1�x2j; sup
x22K2

inf
x12K1

jx1�x2j

�
:

We extend dn to an extended metric on Kn[f∅g by setting

dn.K;∅/D1 for all K 2 Kn:

Theorem 2.1 The metric space .Kn; dn/ is complete.

Theorem 2.2 (Blaschke selection) Every bounded sequence in Kn has a convergent subsequence.

Theorem 2.3 The Lebesgue volume vol W Kn!R�0 is continuous.

Theorem 2.4 Let Ki ;K 2 Kn for i 2N. Then Ki
dn
�!K if and only if the following conditions hold :

(1) Each point x 2K is the limit of a sequence xi 2Ki .

(2) The limit of any convergent sequence .xij /j2N with xij 2Kij lies in K, where ij is a subsequence
of 1; 2; : : : .

The proofs of all these results can be found in [50, Section 1.8].

Lemma 2.5 Let K0;K1 2 Kn. Assume that K0 �K1 and

vol K0 D vol K1 > 0:

Then K0 DK1.

Proof In fact, if K1¤K0, then K1 nK0 is a nonempty open subset of K1. As vol K1 > 0, .K1 nK0/\

Int K1 ¤∅. Thus, vol K1 > vol K0, which is a contradiction.

Let K 2 Kn be a convex body with positive volume. For ı > 0 small enough, let

Kı
WD fx 2K j d.x; @K/� ıg:

Then Kı 2 Kn for ı small enough.
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Lemma 2.6 Let K 2 Kn be a convex body with positive volume and K0 2 Kn. Assume that for some
large enough k 2 Z>0, K0 contains K\ .k�1Z/n, then K0 �Kn1=2k�1

.

Proof Let x 2Kn1=2k�1

. By assumption, the closed ball B with center x and radius n1=2k�1 is contained
in K. Observe that x can be written as a convex combination of points in B \ .k�1Z/n, which are
contained in K0 by assumption. It follows that x 2K0.

Given a sequence of convex bodies Ki (i 2N), we set

lim
i!1

Ki D

1[
iD0

\
j�i

Kj :

Suppose K is the limit of a subsequence of Ki , we have

(2-1) lim
i!1

Ki �K:

This is a simple consequence of Theorem 2.4.

2.2 Admissible flags and valuations

Let X be an irreducible normal projective variety of dimension n.

Definition 2.7 An admissible flag .Y�/ on X is a flag of subvarieties

X D Y0 � Y1 � � � � � Yn

such that Yi is irreducible of codimension i and smooth at the point Yn.

Given any admissible flag .Y�/, we can define a rank n valuation �.Y�/ W C.X /� ! Zn as in [45].
Here we consider Zn as a totally ordered abelian group with the lexicographic order. We recall the
definition: let s 2 C.X /�. Let �1.s/ D ordY1

s. After localization around Yn, we can take a local
defining equation t1 of Y1; set s1 D .s.t

1/��1.s//jY1
. Then s1 2C.Y1/. We can repeat this construction

with Y2 in place of Y1 to get �2.s/ and s2. Repeating this construction n times, we get �.Y�/.s/D �.s/D
.�1.s/; �2.s/; : : : ; �n.s// 2 Zn. It is easy to verify that � is indeed a rank n valuation.

Remark 2.8 Conversely, by a theorem of Abhyankar, any valuation of C.X / with Noetherian valuation
ring of rank n is equivalent to a valuation taking value in Zn; see [38, Chapter 0, Theorem 6.5.2]. As
shown in [23, Theorem 2.9], any such valuation is equivalent to (but not necessarily equal to) a valuation
induced by an admissible flag on a birational modification of X. Here two valuations � and �0 with value
in Zn are equivalent if one can find a matrix G of the form ICN , where N is strictly upper triangular
with integral entries, such that �0 DG�.

Geometry & Topology, Volume 29 (2025)
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2.3 Model potentials and I-model potentials

Let X be a connected compact Kähler manifold of dimension n and � be a smooth closed real .1; 1/-form
representing a .1; 1/-cohomology class Œ� �. Define V� WD supf' 2 PSH.X; �/ j ' � 0g. For any two
'; 2 PSH.X; �/, we say ' is more singular than  and write Œ'� � Œ � if there is a constant C such
that ' �  CC . When ' �  and  � ', we say that they have the same singularity type. We write
�' D � C ddc'.

Definition 2.9 Let ' 2 PSH.X; �/. Define

(2-2) C � Œ'� WD sup�
�
 2 PSH.X; �/

ˇ̌̌
Œ'�� Œ �;  � 0;

Z
X

�k
' ^ �

n�k
V�
D

Z
X

�k
 ^ �

n�k
V�

for all k

�
:

If C � Œ'�D ', we say ' is a model potential. We omit � from the notation if there is no risk of confusion.

Here and in the sequel the Monge–Ampère type operators are taken in the nonpluripolar sense [13].

Proposition 2.10 [29, Proposition 2.6] For any '2PSH.X; �/, C � Œ'� is a model potential in PSH.X; �/.
When

R
X �n

' > 0 we have
C � Œ'�D P � Œ'�;

where

(2-3) P � Œ'� WD sup� f 2 PSH.X; �/ j Œ �� Œ'�;  � 0g :

In general , we only have

(2-4) C � Œ'�D lim
�!0C

P � Œ.1� �/'C �V� �:

We omit � from the notation P � Œ'� if there is no risk of confusion.

Definition 2.11 A birational model of X is a projective birational morphism � W Y !X from a smooth
projective variety Y to X.

Recall that I.'/ denotes the multiplier ideal sheaf of a qpsh function ' on X in the sense of Nadel, namely
the coherent subsheaf of OX consisting of functions f such that jf j2 exp.�'/ is locally integrable.

Definition 2.12 Let '; be two quasi-psh functions, we say '�I  if the following equivalent conditions
are satisfied:

(1) I.k'/� I.k / for all real k > 0.

(2) I.k'/� I.k / for all integer k > 0.

(3) For any birational model � W Y !X and any y 2 Y , we have �.��';y/� �.�� ;y/.

The equivalence between (1) and (3) is just [32, Corollary 2.16]. The equivalence between (2) and (3)
follows from [32, Proposition 2.14].
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We say ' �I  if ' �I  and  �I '.

Given any ' 2 PSH.X; �/, we define

P � Œ'�I WD supf 2 PSH.X; �/ j  �I '; � 0g:

We omit � when there is no risk of confusion. We say ' is I-model if ' D P Œ'�I .

It is shown in [32, Proposition 2.18] that P Œ'�I 2 PSH.X; �/ and ' �I P Œ'�I . Moreover, P Œ'�I is always
I-model. We can also talk about the �I relation of two psh metric on L in the obvious manner.

Typical model potentials are not I-model; however, the converse is true:

Proposition 2.13 If  2 PSH.X; �/ is an I-model potential then it is model.

Proof We need to show that  �I C Œ �. Let � WZ! X be a birational modification. Let z 2Z. As
 � C Œ �CC for some constant C , it suffices to show that

�.C Œ �; z/� �. ; z/:

Here �. ; z/ denotes the Lelong number of �� at z. By (2-4) and the upper semicontinuity of Lelong
numbers (see [39, page 73, Exercise 2.7]), we find

�.C Œ �; z/� lim
�!0C

�.P Œ.1� �/ C �V� �; z/D lim
�!0C

�..1� �/ C �V� ; z/D �. ; z/:

We conclude our assertion.

2.4 Potentials with analytic singularities

Definition 2.14 A quasi-plurisubharmonic function (quasi-psh) ' on X is said to have analytic singular-
ities if for each x 2X, there is a neighborhood Ux �X of x with respect to the Euclidean topology, such
that on Ux ,

(2-5) ' D c log
� NxX

jD1

jfj j
2

�
C ;

where c 2Q�0, the fj are analytic functions on Ux , Nx 2Z>0 is an integer depending on x,  2L1.Ux/.

Definition 2.15 Let D be an effective normal crossing R-divisor on X. Let DD
P

i aiDi with Di being
prime divisors and ai 2R>0. We say that a quasi-psh function ' has analytic singularities along D if
locally, in the Euclidean topology,

' D
X

i

ai log jsi j
2
C ;

where si is a local holomorphic function defining Di ,  is a bounded function.
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In the sequel, when we talk about a normal crossing divisor, we always assume that it is effective.

Note that a potential with analytic singularities along a normal crossing Q-divisor has analytic singularities
in the sense of Definition 2.14.

For any quasi-psh function ' on X with analytic singularities, there is always a birational model � WY !X

such that ��' has analytic singularities along a normal crossing Q-divisor on Y . See [46, Lemma 2.3.19]
for example. We remind the readers that in [46], the definition of analytic singularities differs slightly
from ours: they require the remainder  to be smooth instead of just bounded. However, the proof of
[46, Lemma 2.3.19] works verbatim with our definition.

2.5 Quasi-equisingular approximations

We recall the concept of quasi-equisingular approximations in the sense of [19; 36].

Let X be a connected compact Kähler manifold of dimension n and � (resp. �i for i D 1; : : : ; n) be a
smooth real .1; 1/-form representing a pseudoeffective .1; 1/-cohomology class Œ� � (resp. Œ�i �). Take a
Kähler form ! on X.

Definition 2.16 Let ' 2 PSH.X; �/. Define a quasi-equisingular approximation to be a sequence
'j 2 PSH.X; � C �j!/ with �j ! 0 such that

(1) 'j ! ' in L1,

(2) 'j has analytic singularities,

(3) 'jC1 � 'j ,

(4) For any ı > 0, k > 0, there is j0 > 0 such that for j � j0,

I.k.1C ı/'j /� I.k'/� I.k'j /:

The existence of a quasi-equisingular approximation follows from the arguments in [19; 35; 36].

2.6 Volumes of Hermitian pseudoeffective line bundles

Let X be a smooth irreducible projective variety of dimension n.

Definition 2.17 A Hermitian pseudoeffective (psef ) line bundle on X is a pair .L; �/, where L is a
pseudoeffective line bundle on X and � is a psh metric on L.

When L is big, we say .L; �/ is a Hermitian big line bundle.

Let .L; �/ be a Hermitian psef line bundle on X. In this section, we recall the main results in [32; 33]
concerning the volume of .L; �/.
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Definition 2.18 The volume of .L; �/ is defined as

vol.L; �/ WD lim
k!1

1

kn
h0.X;Lk

˝ I.k�//:

The existence of the limit follows from [33, Theorem 1.1].

We take a smooth Hermitian metric h on L. Set � D c1.L; h/. Then we can identify � with a �-psh
function ', namely � D h exp.�'/.

Theorem 2.19 [33, Theorem 1.1] Under the above assumptions ,

vol.L; �/D
1

n!

Z
X

�n
P Œ'�I

:

We argue that vol deserves the name volume by proving that it satisfies the Brunn–Minkowski inequality.

Corollary 2.20 Let .L; �/ and .L; �0/ be two Hermitian psef line bundles on X. Then

(2-6) vol.LCL0; �C�0/1=n
� vol.L; �/1=n

C vol.L0; �0/1=n:

Proof Fix a smooth Hermitian metric h0 on L0 with � 0D c1.L
0; h0/. We identify �0 with '0 2PSH.X; � 0/.

By Theorem 2.19, (2-6) is equivalent to�Z
X

.� C � 0C ddcP �C� 0 Œ'C'0�I/
n

�1=n

�

�Z
X

�n
P� Œ'�I

�1=n

C

�Z
X

� 0n
P�
0
Œ'0�I

�1=n

:

Observe that
P �C� 0 Œ'C'0�I � P � Œ'�I CP � 0 Œ'0�I :

Thus, by the monotonicity theorem of [53], it suffices to show that�Z
X

.� C � 0C ddcP � Œ'�I C ddcP � 0 Œ'0�I/
n

�1=n

�

�Z
X

�n
P� Œ'�I

�1=n

C

�Z
X

� 0n
P�
0
Œ'0�I

�1=n

:

This follows from [28, Theorem 6.1].

2.7 Non-Archimedean pluripotential theory

In this section, we briefly recall the notion of Berkovich analytification of a smooth complex projective
variety and the pluripotential theory in the sense of Boucksom and Jonsson [17] on it.

For simplicity, we assume that X is a connected smooth projective variety of dimension n and L is an
ample line bundle on X.

The set of real valuations on C.X / trivial on C is denoted by X val. This set can be defined in the same
way for nonsmooth varieties as well.

The center of a valuation v is the scheme-theoretic point c D c.v/ of X such that v � 0 on OX ;c and
v > 0 on the maximal ideal mX ;c of OX ;c . The center exists and is unique.
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Let X an denote the Berkovich analytification X an of X with respect to the trivial valuation on C. As a set,
X an is the set of semivaluations on X, in other words, real-valued valuations v on irreducible reduced
subvarieties Y in X that is trivial on C. We call Y the support of the semivaluation v. In other words,

X an
D

a
Y

Y val:

The Berkovich space X an admits a natural topology, called the Berkovich topology and a sheaf of analytic
functions. The natural morphism of ringed spaces X an! X allows us to pullback L to an invertible
sheaf Lan on X an. See [2] for more details.

In [17], Boucksom and Jonsson developed a pluripotential theory with respect to .X an;Lan/, similar to
its complex counterpart. In particular, there is a natural notion of plurisubharmonic metrics on Lan. In
[17, Section 7.1], Boucksom and Jonsson defined the notion of energy pairings .'0; : : : ; 'n/ between
nC1 plurisubharmonic metrics '0; : : : ; 'n on Lan. One can then define the space E1.Lan/ of finite-energy
metrics as the space of plurisubharmonic functions ' on Lan such that

E.'/ WD
1

nC 1
.'; : : : ; '/ > �1:

Note that our definition of E differs from the definition of [17] by a multiple 1=V . We will explain the
relation between the non-Archimedean pluripotential theory and the complex pluripotential theory in
Section 7.4.

3 The Okounkov bodies of almost semigroups

Fix an integer n � 0. Fix a closed convex cone C �Rn �R�0 such that C \ fxnC1 D 0g D f0g. Here
xnC1 is the last coordinate of RnC1.

3.1 Generality on semigroups

Write yS.C / for the set of subsets of C \ZnC1 and S.C / for the set of subsemigroups S � C \ZnC1.
For each k 2N and S 2 yS.C /, we write

Sk WD fx 2 Zn
j .x; k/ 2 Sg:

Note that Sk is a finite set by our assumption on C .

We introduce a pseudometric on yS.C / as follows:

d.S;S 0/ WD lim
k!1

k�n.jSk jC jS
0
k j � 2j.S \S 0/k j/:

Here j � j denotes the cardinality of a finite set.

Lemma 3.1 The above-defined d is a pseudometric on yS.C /.
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Proof Only the triangle inequality needs to be argued. Take S;S 0;S 00 2 yS.C /. We claim that for any
k 2N,

jSk jC jS
0
k j � 2jSk \S 0k jC jS

00
k jC jS

0
k j � 2jS 00k \S 0k j � jSk jC jS

00
k j � 2jSk \S 00k j:

From this the triangle inequality follows. To argue the claim, we rearrange it to the form

jS 0k j � jSk \S 0k j � jS
0
k \S 00k j � jSk \S 00k j;

which is obvious.

Given S;S 0 2 yS.C /, we say S is equivalent to S 0 and write S �S 0 if d.S;S 0/D 0. This is an equivalence
relation by Lemma 3.1.

Lemma 3.2 Given S;S 0;S 00 2 yS.C /, we have

d.S \S 00;S 0\S 00/� d.S;S 0/:

In particular , if S i ;S 0i 2 yS.C / (i 2N) and S i! S , S 0i! S 0, then

S i
\S 0i! S \S 0:

Proof Observe that for any k 2N,

jSk \S 00k j � jSk \S 0k \S 00k j � jSk j � jSk \S 0k j:

The same holds if we interchange S with S 0. It follows that

jSk \S 00k jC jS
0
k \S 00k j � 2jSk \S 0k \S 00k j � jSk jC jS

0
k j � 2jSk \S 0k j:

The first assertion follows.

Next we compute

d.S i
\S 0i ;S \S 0/� d.S i

\S 0i ;S i
\S 0/C d.S i

\S 0;S \S 0/� d.S 0i ;S 0/C d.S i ;S/

and the second assertion follows.

The volume of S 2 S.C / is defined as

vol S WD lim
k!1

.ka/�n
jSkaj D lim

k!1
k�n
jSk j;

where a is a sufficiently divisible positive integer. The existence of the limit and its independence from a

both follow from the more precise result [43, Theorem 2].

Lemma 3.3 Let S;S 0 2 S.C /, then

jvol S � vol S 0j � d.S;S 0/:

Proof By definition, we have

d.S;S 0/� vol S C vol S 0� 2 vol.S \S 0/:

It follows that vol S � vol S 0 � d.S;S 0/ and vol S 0� vol S � d.S;S 0/.
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We define S.C / as the closure of S.C / in yS.C /with respect to the topology defined by the pseudometric d .
By Lemma 3.3, vol W S.C /!R admits a unique 1-Lipschitz extension to

(3-1) vol W S.C /!R:

Lemma 3.4 Suppose that S;S 0 2 S.C / and S � S 0. Then

vol S � vol S 0:

Proof Take sequences Sj and S 0j in S.C / such that Sj ! S and S 0j ! S 0. By Lemma 3.2, after
replacing Sj by Sj \S 0j , we may assume that Sj �S 0j for each j . Then our assertion follows easily.

3.2 Okounkov bodies of semigroups

Given S 2 yS.C /, we will write C.S/� C for the closed convex cone generated by S [f0g. Moreover,
for each k 2 Z>0, we define

�k.S/ WD Convfk�1x 2Rn
j x 2 Skg �Rn:

Here Conv denotes the convex hull.

Definition 3.5 Let S 0.C / be the subset of S.C / consisting of semigroups S such that S generates ZnC1

(as an abelian group).

Note that for any S 2 S 0.C /, the cone C.S/ has full dimension (ie the topological interior is nonempty).
Given a full-dimensional subcone C 0 � C , it is clear that C 0\ZnC1 2 S 0.C /.

This class behaves well under intersections:

Lemma 3.6 Let S;S 0 2 S 0.C /. Assume that vol.S \S 0/ > 0. Then S \S 0 2 S 0.C /.

The lemma obviously fails if vol.S \S 0/D 0.

Proof We first observe that the cone C.S/\C.S 0/ has full dimension since otherwise vol.S \S 0/D 0.
Take a full-dimensional subcone C 0 in C.S/\C.S 0/ such that C 0 intersects the boundary of C.S/\C.S 0/

only at 0. It follows from [43, Theorem 1] that there is an integer N > 0 such that for any x 2ZnC1\C 0

with Euclidean norm no less than N lies in S \S 0. Therefore, S \S 0 2 S 0.C /.

We recall the following definition from [43].

Definition 3.7 Given S 2 S 0.C /, its Okounkov body is defined as

�.S/ WD fx 2Rn
j .x; 1/ 2 C.S/g:
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Theorem 3.8 For each S 2 S 0.C /, we have

(3-2) vol S D lim
k!1

k�n
jSk j D vol�.S/ > 0:

Moreover , as k!1,

(3-3) �k.S/
dn
�!�.S/:

This is essentially proved in [52, Lemma 4.8], which itself follows from a theorem of Khovanskii [44].
We remind the readers that (3-2) fails for a general W 2 S.C /; see [43, Theorem 2].

Proof The equalities (3-2) follow from the general theorem [43, Theorem 2].

It remains to prove (3-3). By the argument of [52, Lemma 4.8], for any compact set K � Int�.S/, there
is k0 > 0 such that for any k � k0, ˛ 2K\ .k�1Z/n implies that ˛ 2�k.S/.

In particular, taking K D�.S/ı for any ı > 0 and applying Lemma 2.6, we find

dn.�.S/;�k.S//� n1=2k�1
C ı

when k is large enough. This implies (3-3).

Corollary 3.9 Let S;S 0 2 S 0.C /. Assume that vol.S \S 0/ > 0. Then we have

d.S;S 0/D vol S C vol S 0� 2 vol.S \S 0/:

Proof This is a direct consequence of Lemma 3.6 and (3-2).

Lemma 3.10 Given S 2 S 0.C /, we have S � Reg.S/.

Recall that the regularization Reg.S/ of S is defined as C.S/\ZnC1.

Proof Since S and Reg.S/ have the same Okounkov body, we have vol S D vol Reg.S/ by Theorem 3.8.
By Corollary 3.9 again,

d.Reg.S/;S/D vol Reg.S/� vol S D 0:

Lemma 3.11 Let S;S 0 2 S 0.C /. Assume that d.S;S 0/D 0, then �.S/D�.S 0/.

Proof Observe that vol.S \S 0/ > 0, as otherwise

d.S;S 0/� vol S C vol S 0 > 0;

which is a contradiction.

It follows from Lemma 3.6 that S\S 02S 0.C /. It suffices to show that�.S/D�.S\S 0/. In fact, suppose
that this holds, since vol�.S 0/D vol S 0 D vol S D vol�.S/, the inclusion �.S 0/��.S \S 0/D�.S/

is an equality.
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By Lemma 3.2, we can therefore replace S 0 by S\S 0 and assume that S�S 0. Then clearly�.S/��.S 0/.
By (3-2),

vol�.S/D vol�.S 0/:

Thus, �.S/D�.S 0/ by Lemma 2.5.

Lemma 3.12 Suppose that S i 2 S 0.C / is a decreasing sequence such that

lim
i!1

vol S i > 0:

Then there is S 2 S 0.C / such that S i! S .

In general, one cannot simply take S D
T

i S i . For example, consider the sequence S i DS1\fxnC1� ig.

Proof By Lemma 3.10, we may replace S i by its regularization and assume that S i D C.S i/\ZnC1.
We define

S D

� 1\
iD1

C.S i/

�
\ZnC1:

Since
T1

iD1 C.S i/ is a full-dimensional cone by assumption, we have S 2 S 0.C /. By Corollary 3.9 and
Theorem 3.8, we can compute the distance

d.S;S i/D vol S i
� vol S D vol�.S i/� vol�.S/;

which tends to 0 by construction.

3.3 Okounkov bodies of almost semigroups

Definition 3.13 We define S 0.C />0 as elements in the closure of S 0.C / in yS.C / with positive volume.
An element in S 0.C />0 is called an almost semigroup in C .

Recall that the volume here is defined in (3-1).

Our goal is to prove the following theorem:

Theorem 3.14 The Okounkov body map � W S 0.C /! Kn, as defined in Definition 3.7, admits a unique
continuous extension

(3-4) � W S 0.C />0! Kn:

Moreover , for any S 2 S 0.C />0, we have

(3-5) vol S D vol�.S/:

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (3-5) follows easily from
Theorem 3.8 and Theorem 2.3 by continuity. It remains to argue the existence of the continuous extension.
We first construct an extension and prove its continuity.
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Step 1 We construct the desired map (3-4). Let S 2 S 0.C />0. We wish to construct a convex body
�.S/ 2 Kn.

Let S i 2 S 0.C / be a sequence that converges to S such that

d.S i ;S iC1/� 2�i :

For each i; j � 0, we introduce
S i;j
D S i

\S iC1
� � � \S iCj :

Then, by Lemma 3.2,
d.S i;j ;S i;jC1/� 2�i�j :

Take i0 > 0 large enough that, for i � i0, vol S i > 2�1 vol S and 22�i < vol S and hence

vol S i
� vol S i;j

� d.S i;0;S i;1/C d.S i;1;S i;2/C � � �C d.S i;j�1;S i;j /� 21�i :

It follows that vol S i;j > 2�1 vol S�21�i > 0 whenever i � i0. In particular, by Lemma 3.6, S i;j 2S 0.C /
for i � i0.

By Lemma 3.12, for i � i0, there exists T i 2 S 0.C / such that S i;j ! T i as j !1. Moreover,

d.T i ;S/D lim
j!1

d.S i;j ;S/� lim
j!1

d.S i;j ;S i/C d.S i ;S/� 21�i
C d.S i ;S/:

Therefore, T i! S . We then define

�.S/ WD

1[
iDi0

�.T i/:

In other words, we have defined
�.S/ WD lim

i!1

�.S i/:

This is an honest limit: if � is the limit of a subsequence of �.S i/, then �.S/�� by (2-1). Comparing
the volumes, we find that equality holds. So by Theorem 2.2,

(3-6) �.S/D lim
i!1

�.S i/:

Next we claim that �.S/ as defined above does not depend on the choice of the sequence S i . In fact,
suppose that S 0i 2 S 0.C / is another sequence satisfying the same conditions as S i . The same holds for
Ri WD S iC1\S 0iC1. It follows that

lim
i!1

�.Ri/� lim
i!1

�.S i/:

Comparing the volumes, we find that equality holds. The same is true with S 0i in place of S i . So we
conclude that �.S/ as in (3-6) does not depend on the choices we made.

Step 2 It remains to prove the continuity of � defined in Step 1. Suppose that S i 2 S 0.C />0 is a
sequence with limit S 2 S 0.C />0. We want to show that

(3-7) �.S i/
dn
�!�.S/:
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We first reduce to the case where S i 2 S 0.C /. By (3-6), for each i , we can choose T i 2 S 0.C / such that
d.S i ;T i/ < 2�i and dn.�.S

i/;�.T i// < 2�i . If we have shown �.T i/
dn
�!�.S/, then (3-7) follows

immediately.

Next we reduce to the case where d.S i ;S iC1/ � 2�i . In fact, thanks to Theorem 2.2, in order to
prove (3-7), it suffices to show that each subsequence of �.S i/ admits a subsequence that converges
to �.S/. Hence, we easily reduce to the required case.

After these reductions, (3-7) is nothing but (3-6).

Corollary 3.15 Suppose that S;S 0 2 S 0.C />0 with S � S 0, then

(3-8) �.S/��.S 0/:

Proof Let Sj ;S 0j 2 S 0.C / be elements such that Sj ! S and S 0j ! S 0. Then it follows from
Lemma 3.2 that Sj \S 0j ! S . Since vol is continuous, for large j , Sj \S 0j has positive volume and
hence lies in S 0.C / by Lemma 3.6. We may therefore replace Sj by Sj \S 0j and assume that Sj � S 0j .
Hence (3-8) follows from the continuity of � proved in Theorem 3.14.

Remark 3.16 As the readers can easily verify, the construction of � is independent of the choice of C in
the following sense: Suppose that C 0 is another cone satisfying the same assumptions as C and C 0 � C ,
then the Okounkov body map � W S 0.C 0/>0! Kn is an extension of the corresponding map (3-4). We
will constantly use this fact without further explanations.

4 The metric on the space of singularity types

Let X be a connected compact Kähler manifold of dimension n and � (resp. �i for i D 1; : : : ; n) be a
smooth real .1; 1/-form representing a big .1; 1/-cohomology class Œ� � (resp. Œ�i �). Let ! be a Kähler
form on X.

In this section, we develop further the metric geometry on the space of singularity types of quasi-psh
functions, initiated in [29] and studied further in [32].

As explained in [29, Section 3], one can introduce a pseudometric dS on the set of singularity types of
functions in PSH.X; �/. In particular, dS lifts to a pseudometric on PSH.X; �/ as well. We do not recall
the precise definition, as the following double inequality from [29, Proposition 3.5] will be enough for us.
For any '; 2 PSH.X; �/ we have

(4-1) dS .';  /�

nX
iD0

�
2

Z
X

� i
maxf'; g ^ �

n�i
V�
�

Z
X

� i
' ^ �

n�i
V�
�

Z
X

� i
 ^ �

n�i
V�

�
� C0dS .';  /;

where C0 > 1 is a constant depending only on n. In addition, dS .';  /D 0 if and only if

C Œ'�D C Œ �:

When there is a risk of confusion, we write dS;� instead of dS .
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Lemma 4.1 Let 'i 2 PSH.X; �i/ for i D 1; : : : ; n. ThenZ
X

�1;'1
^ � � � ^ �n;'n

D

Z
X

�1;C Œ'1� ^ � � � ^ �n;C Œ'n�:

Proof From the definition (2-2), we have Œu� � ŒC Œu��, the � direction is obvious. For the reverse
direction, recall that C Œ'i �D lim�!0C P Œ.1� �/'i C �V�i

�. Thus, for � 2 .0; 1/,Z
X

�1;C Œ'1� ^ � � � ^ �n;C Œ'n� � .1� �/
n

Z
X

�1;'1
^ � � � ^ �n;'n

:

Letting �! 0C, we conclude.

Theorem 4.2 Let 'k
i ; 'i 2PSH.X; �i/ for i D 1; : : : ; n and k 2N. Assume that 'k

i

dS;�i���!'i as k!1.
Then

(4-2) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
D

Z
X

�1;'1
^ � � � ^ �n;'n

:

Proof By Lemma 4.1 and [29, Theorem 3.3], we may assume that 'k
i and 'k are model potentials.

Step 1 We assume that there is a constant ı > 0 such that for all i and k,Z
X

�n

i;'k
i

> ı:

In order to show (4-2), it suffices to prove that any subsequence of
R
X �1;'k

1
^� � �^�n;'k

n
has a converging

subsequence with limit
R
X �1;'1

^ � � � ^ �n;'n
. Thus, by [29, Theorem 5.6], we may assume that for each

fixed i , 'k
i is either increasing or decreasing. We may assume that for i � i0, the sequence is decreasing

and for i > i0, the sequence is increasing.

Recall that in (4-2) the � inequality always holds [26, Theorem 2.3], it suffices to prove

(4-3) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
�

Z
X

�1;'1
^ � � � ^ �n;'n

:

By Witt Nyström’s monotonicity theorem [53; 26], in order to prove (4-3), we may assume that for j > i0,
the sequences 'k

j are constant. Thus, we are reduced to the case where for all i , the 'k
i are decreasing.

In this case, for each i we may take an increasing sequence bk
i > 1, tending to1, such that

.bk
i /

n

Z
X

�n
i;'i

> ..bk
i /

n
� 1/

Z
X

�n

i;'k
i

:

Let  k
i be the maximal �i-psh function such that

.bk
i /
�1 k

i C .1� .b
k
i /
�1/'k

i � 'i ;

whose existence is guaranteed by [29, Lemma 4.3].
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Then by Witt Nyström’s monotonicity theorem [53; 26] again,
nY

iD1

.1� .bk
i /
�1/

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
�

Z
X

�1;'1
^ � � � ^ �n;'n

:

Letting k!1, we conclude (4-3).

Step 2 Now we deal with the general case.

We claim that if t 2 .0; 1�, then .1� t/'k
i C tV�i

dS
�! .1� t/'i C tV�i

as k!1 for each i . From this
and Step 1, we find that for ti 2 .0; 1�,

lim
k!1

Z
X

�1;.1�t1/'
k
1
Ct1V�1

^ � � � ^ �n;.1�tn/'
k
nCtnV�n

D

Z
X

�1;.1�t1/'1Ct1V�1
^ � � � ^ �n;.1�tn/'nCtnV�n

:

Thus, (4-2) follows, after letting ti& 0.

It remains to prove the claim. For simplicity, we suppress the i indices momentarily. We need to argue that

2

Z
X

�
j

maxf.1�t/'kCtV� ;.1�t/'CtV� g
^ �

n�j
V�
�

Z
X

�
j

.1�t/'kCtV�
^ �

n�j
V�
�

Z
X

�
j

.1�t/'CtV�
^ �

n�j
V�
! 0:

Note that the above expression is a linear combination of terms of the following type:

2

Z
X

�r
maxf'k ;'g

^ �n�r
V�
�

Z
X

�r
'k ^ �

n�r
V�
�

Z
X

�r
'k ^ �

n�r
V�

:

Thanks to (4-1), all these expressions tend to 0 as k!1 since 'k dS
�! ', which proves our claim.

Corollary 4.3 Let 'k ; ' 2 PSH.X; �/ for k 2N. Let ! be a Kähler form on X. Assume that 'k dS;�
��! '.

Then 'k dS;�C!
����! '.

Proof It suffices to show that for each j D 0; : : : ; n, we have

2

Z
X

.�C!/
j

maxf'k ;'g
^ .�C!/

n�j
V�C!

�

Z
X

.�C!/
j

'k ^ .�C!/
n�j
V�C!

�

Z
X

.�C!/j' ^ .�C!/
n�j
V�C!

! 0

as k!1. Note that this quantity is a linear combination of terms of the form

2

Z
X

�r
maxf'k ;'g

^!j�r
^ .�C!/

n�j
V�C!

�

Z
X

�r
'k ^!

j�r
^ .�C!/

n�j
V�C!

�

Z
X

�r
' ^!

j�r
^ .�C!/

n�j
V�C!

;

where r D 0; : : : ; j . By Theorem 4.2, it suffices to show that maxf'; 'kg
dS
�! '. But this follows from

[29, Proposition 3.5].

Corollary 4.4 Let ' 2 PSH.X; �/ be an I-model potential of positive mass. Let ! be a Kähler form
on X. Then P �C! Œ'� is I-model.

Proof By [33, Theorem 3.8], we may take a sequence 'j with analytic singularities such that 'j dS;�
��! '.

Then 'j dS;�C!
����! ' by Corollary 4.3. Thus, P �C! Œ'� is I-model.
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Corollary 4.5 Let 'j ; ' 2 PSH.X; �1/ and  j ;  2 PSH.X; �2/ for j 2N. Assume that 'j
dS;�1
���! ',

 j
dS;�2
���!  . Then

'j
C j dS;�1C�2

�����! 'C :

Proof Let � D �1C �2. It suffices to show that for each r D 0; : : : ; n,

2

Z
X

�r
maxf'jC j ;'C g ^ �

n�r
V�
�

Z
X

�r
'jC j

^ �n�r
V�
�

Z
X

�r
'C ^ �

n�r
V�
! 0:

Observe that
maxf'j

C j ; 'C g �maxf'j ; 'gCmaxf j ;  g:

Thus, it suffices to show that

2

Z
X

�r
maxf'j ;'gCmaxf j ; g ^ �

n�r
V�
�

Z
X

�r
'jC j

^ �n�r
V�
�

Z
X

�r
'C ^ �

n�r
V�
! 0:

The left-hand side is a linear combination of

2

Z
X

�a
1;maxf'j ;'g ^ �

r�a
2;maxf j ; g ^ �

n�r
V�
�

Z
X

�a
1;'j
^ �r�a

2; j
^ �n�r

V�
�

Z
X

�a
1;' ^ �

r�a
2; ^ �

n�r
V�

with aD 0; : : : ; r . Observe that maxf'j ; 'g
dS
�! ' and maxf j ;  g

dS
�! by [29, Proposition 3.5], each

term tends to 0 by Theorem 4.2.

Finally, we prove the continuity of P Œ � �I .

Theorem 4.6 The map PSH.X; �/>0! PSH.X; �/>0 given by ' 7! P Œ'�I is continuous with respect
to the dS -pseudometric.

Here PSH.X; �/>0 denotes the subset of PSH.X; �/ consisting of ' with
R
X �n

' > 0.

Proof Let 'i ; ' 2 PSH.X; �/>0, with 'i
dS
�! '. We want to show that

(4-4) P Œ'i �I
dS
�! P Œ'�I :

We may assume that the 'i and ' are all model potentials by [29, Theorem 3.3]. By [29, Theorem 5.6],
we may assume that 'i is either increasing or decreasing. These cases follow from [32, Lemma 2.21] and
[29, Proposition 4.8, Lemma 4.1].

5 Partial Okounkov bodies

Let X be an irreducible smooth complex projective variety of dimension n and L be a big line bundle
on X. Take a singular psh metric � on L. We assume that vol.L; �/ > 0. Let h be a smooth Hermitian
metric on L. Let � D c1.L; h/. Then we can identify � with a function ' 2 PSH.X; �/. We will use
interchangeably the notations .�; '/ and .L; �/.
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For each k � 0,

Wk.�; '/ WD H0.X;Lk
˝ I.k'// and W .�; '/ WD

1M
kD0

Wk.�; '/:

We omit .�; '/ from our notations when there is no risk of confusion. Observe that Wk.�; '/¤ 0 when
k is large enough, as follows from Theorem 2.19.

Fix a rank n valuation � WC.X /�! Zn. We will write

��;k.�; '/D fk
�1�.s/ j s 2Wk.�; '/

�
g for k � 1;

��.�; '/D f.�.s/; k/ j k 2N; s 2Wk.�; '/
�
g:

In [45], Lazarsfeld and Mustat,ă only considered the case where � is induced by an admissible flag, but
thanks to Remark 2.8, their results can be easily extended to the current setup. We will use these results
without further comments.

5.1 Construction of partial Okounkov bodies

Our goal in this section is to show that ��.�; '/ 2 S 0.��.L//>0, namely it is an almost semigroup. Then
we shall define

(5-1) ��.�; '/ WD�.��.�; '//

using the theory of Okounkov bodies of almost semigroups developed in Section 3.3. Moreover, we have

(5-2) vol��.�; '/D
1

n!

Z
X

�n
P Œ'�I

:

5.1.1 The case of analytic singularities Assume that ' has analytic singularities and �' is a Kähler
current.

For any rational � � 0, we define

(5-3) W �
k DW �

k .�; '/ WD fs 2 H0.X;Lk/ j jsj2
hk e�k.1��/' is boundedg:

Then W � WD
L1

kD0 W �
k

has the property that

(5-4) ��.W
�/ WD f.�.s/; k/ j k 2N; s 2W

�;�
k
g 2 S 0.��.L//:

To see this, we may assume that ' has analytic singularities along a Q-divisor E. Then (5-4) follows
from the fact that L� .1� �/E is big, proved in [55, Lemma 2.4]; cf [45, Lemma 2.2].

For any � 2Q>0, we have that

(5-5) W 0
k �Wk �W �

k

for k large enough depending on �. The first inclusion is of course trivial. The second inclusion is widely
known among experts. A detailed proof can be found in [33, Remark 2.9].
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Let � WY !X be a resolution such that ��' has analytic singularities along a normal crossing Q-divisor E.
Then we have a natural identification for sufficiently divisible k,

W �
k Š H0.Y; ��Lk

˝OY .�.1� �/kE//:

On the other hand,
W 0

k Š H0.Y; ��Lk
˝OY .�kE//� H0.Y; ��Lk/:

We compute the volumes

(5-6) vol��.W �/D
1

n!

Z
X

�n
.1��/' and vol��.W 0/D

1

n!

Z
X

�n
' :

It follows that ��.W �/! ��.W
0/ and ��.�; '/ is equivalent to ��.W 0/. In particular, we get that

��.�; '/ 2 S 0.��.L//>0, (5-1) makes sense and (5-2) holds.

Remark 5.1 It follows from the proof that if W 0.�; '/ is defined as in (5-3) and (5-4):

W 0
k .�; '/ WD fs 2 H0.X;Lk/ j jsj2

hk e�k' is boundedg;

then

(5-7) �.��.W
0.�; '///D��.�; '/:

If we assume furthermore that ��' has analytic singularity along some normal crossing Q-divisor E

on Y , then ��.�; '/ is just the translation of ��.��L�E/ by �.E/.

5.1.2 The case of Kähler currents Now assume that �' is Kähler current. Let 'j 2 PSH.X; �/ be a
quasi-equisingular approximation of '. Then 'j dS

�! P Œ'�I by [33, Proposition 3.3].

In this case, we claim that

(5-8) ��.�; '
j /! ��.�; '/:

In fact, by Theorem 2.19, we have

d.��.�; '
j /; ��.�; '//D lim

k!1
k�n

�
h0.X;Lk

˝ I.k'j //� h0.X;Lk
˝ I.k'//

�
D lim

k!1
k�nh0.X;Lk

˝ I.k'j //� lim
k!1

k�nh0.X;Lk
˝ I.k'//

D
1

n!

Z
X

�n
'j
�

1

n!

Z
X

�n
P Œ'�I

:

Letting j !1, we conclude (5-8) by Theorem 4.2.

Thus, ��.�; '/ 2 S 0.��.L//>0 and (5-1) makes sense. By Theorem 3.14, we find that

��.�; '/D

1\
jD0

��.�; '
j /:

In particular, (5-2) holds.
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5.1.3 General case Now we consider general ' with the assumption that
R
X �n

P Œ'�I
>0. We may replace

' with P Œ'�I and then assume that the nonpluripolar mass of ' is positive. Take a potential 2PSH.X; �/
such that  � ' and � is a Kähler current. The existence of  is proved in [33, Proposition 3.6]. For
each � 2Q\ .0; 1�, let '� D .1� �/'C � . Then we have W .�; '�/�W .�; '/. By (5-2),

vol��.�; '�/D
1

n!

Z
X

�n
P Œ'��I

:

We claim that
��.�; '�/! ��.�; '/:

In fact, this follows from the simple computation

d
�
��.�; '�/; ��.�; '/

�
D lim

k!1
k�n

�
h0.X;Lk

˝ I.k'//� h0.X;Lk
˝ I.k'�//

�
D lim

k!1
k�nh0.X;Lk

˝ I.k'//� lim
k!1

k�nh0.X;Lk
˝ I.k'�//

D
1

n!

Z
X

�n
' �

1

n!

Z
X

�n
P Œ'��I

:

By [33, Proposition 2.7], as � decreases to 0, P Œ'� �I increases to P Œ'�I D ' a.e., which implies the
dS -convergence by [29, Lemma 4.1]. Therefore, the right-hand side of the above equation converges to 0

by Theorem 4.2. Our claim is proved. It follows that ��.�; '/ 2 S 0.��.L//>0 and (5-1) makes sense.
By Theorem 3.14,

��.�; '/D
[
�>0

��.�; '�/:

It remains to verify (5-2):

vol��.�; '/D
1

n!
lim
�!0C

Z
X

�n
P Œ'��I

D
1

n!

Z
X

�n
P Œ'�I

:

Definition 5.2 Assume that ' 2PSH.X; �/, where
R
X �n

P Œ'�I
> 0. We call��.�; '/ the partial Okounkov

body of .L; �/ or of .�; '/ with respect to �. When � is induced by an admissible flag .Y�/ on X (see
Definition 2.7), we also say that ��.�; '/ the partial Okounkov body of .L; �/ or of .�; '/ with respect
to .Y�/. In this case, we also write �Y� instead of �� .

We use interchangeably the notations ��.�; '/ and ��.L; �/. When there is no risk of confusion, we
write � instead of �� or �Y� .

Remark 5.3 We have assumed X to be smooth only for simplicity. All of our constructions work equally
well when X is normal or merely unibranch, based on the pluripotential theory in these settings developed
in [54].

Remark 5.4 In the transcendental setting, a theory of Okounkov bodies was recently established in [31]
based on the work of [37]. The proof of the volume identity of transcendental Okounkov bodies relies on
the technique of partial Okounkov bodies developed in this paper. The transcendental analogue of the
partial Okounkov bodies is constructed in a forthcoming joint paper with T Darvas.
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5.2 Basic properties of partial Okounkov bodies

We first show that �.�; '/ does not depend on the explicit choices of L, h and ', it just depends on ddc�.

Lemma 5.5 Let L0 be another big line bundle on X. Let h0 be a smooth Hermitian metric on L0 with
c1.L; h/D c1.L

0; h0/. Then �.�; '/ defined with respect to .L; h/ is the same as the one defined with
respect to .L0; h0/.

Proof From our construction, we may assume that �' is a Kähler current and ' has analytic singularities.
After taking a birational resolution, it suffices to deal with the case where ' has analytic singularities along
normal crossing Q-divisors E. By rescaling, we may also assume that E is a divisor. By Remark 5.1, we
further reduce to the case without the singular potential �.

In this case, the assertion is proved in [45, Proposition 4.1].

Lemma 5.6 Let h0 be another smooth Hermitian metric on L. Set � 0 D c1.L; h
0/. Write ddcf D � � � 0.

Let '0 D 'Cf 2 PSH.X; � 0/. Then

(5-9) �.�; '/D�.� 0; '0/:

Proof This is obvious as W .�; '/DW .� 0; '0/.

Corollary 5.7 The partial Okounkov body �.L; �/ depends only on ddc�, not on the explicit choices
of L, � and h.

Thanks to this result, given a closed positive .1; 1/-current T 2 c1.L/ on X with
R
X T n > 0, we can

define �.T / as �.�; '/ if T D � C ddc' for some ' 2 PSH.X; �/.

Proof This is a direct consequence of Lemmas 5.5 and 5.6.

Let PSH.X; �/>0 denote the subset of PSH.X; �/ consisting of potentials ' such that
R
X �n

' > 0.

Proposition 5.8 Let '; 2 PSH.X; �/>0. Assume that ' �I  . Then

(5-10) �.�; '/��.�;  /:

In particular , as by definition , �.�;V� /D�.L/, we have

�.�; '/��.L/:

Proof This follows from Corollary 3.15.

Theorem 5.9 The Okounkov body map

�.�; � / W .PSH.X; �/>0; dS /! .Kn; dn/

is continuous.
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Remark 5.10 On the other hand, it is of interest to understand the dependence of �.�; � / on � as well.
For some preliminary results and anticipations in the usual Okounkov body setting, see [1]. In particular,
see [1, Conjecture 10.1] for a concrete continuity conjecture.

Proof Let 'j ! ' be a dS -convergent sequence in PSH.X; �/>0. We want to show that

(5-11) �.�; 'j /
dn
�!�.�; '/:

By Proposition 5.8 and [29, Theorem 3.3], we may assume that all the 'j and ' are model potentials.
By Theorem 2.2 and [29, Theorem 5.6], we may assume that 'j is either decreasing or increasing. By
Theorem 4.6, we may further assume that the 'j are I-model. In both cases, we claim that ��.�; 'j /!

��.�; '/. In fact, we can compute their distance as

d
�
��.�; 'j /; ��.�; '/

�
D lim

k!1
k�n
jh0.X;Lk

˝I.k'j //�h0.X;Lk
˝I.k'//j D 1

n!

ˇ̌̌̌Z
X

�n
'j
�

Z
X

�n
'

ˇ̌̌̌
;

where we applied Theorem 2.19 at the last step. Then Theorem 4.2 implies our claim. Hence, (5-11)
follows from Theorem 3.14.

Although W .�; '/ and ��.�; '/ are not birationally invariant, we could still show that the Okounkov
body is.

Proposition 5.11 Let � W Y !X be a birational resolution. Let .L; �/ be a Hermitian big line bundle
on X with positive volume. Then

�.��L; ���/D�.L; �/:

Here we are using the same valuation � on the function field C.Y /DC.X / of Y .

Proof By Definition 2.12(3), P� Œ � �I commutes with birational pullbacks, we may assume that ' is
I-model. By [33, Theorem 3.8], we can find a sequence 'j 2 PSH.X; �/ with analytic singularities such
that 'j dS

�! '. It follows from (4-1) that ��'j dS
�! ��'. By Theorem 5.9, we may then reduce to the

case where ' has analytic singularities. In this case, up to replacing Y by a further sequences of blowups,
we may assume that ��' has analytic singularities along a normal crossing Q-divisor D. It suffices to
apply Remark 5.1.

Next we prove the Brunn–Minkowski inequality.

Proposition 5.12 Let .L; �/, .L0; �0/ be Hermitian big line bundles on X of positive volumes. Then

.vol�.LCL0; �C�0//1=n
� .vol�.L; �//1=n

C .vol�.L0; �0//1=n:

Proof This follows from Corollary 2.20.
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Proposition 5.13 Let .L0; �0/ be another Hermitian big line bundle on X with positive volume. Then

�.L; �/C�.L0; �0/��.L˝L0; �˝�0/:

Proof Take a smooth metric h0 on L0, and let � 0 D c1.L
0; h0/. We identify �0 with '0 2 PSH.X; � 0/.

Then we need to show

(5-12) �.�; '/C�.� 0; '0/��.� C � 0; 'C'0/:

By [33, Theorem 3.8], we can find 'j 2 PSH.X; �/ and '0j 2 PSH.X; � 0/ such that

(1) 'j and '0j both have analytic singularities and have positive masses,

(2) 'j dS
�! ' and '0j dS

�! '0.

Then 'j C '0j 2 PSH.X; � C � 0/ and 'j C '0j
dS
�! ' C '0 by Corollary 4.5. Thus, by Theorem 5.9,

we may assume that ' and  both have analytic singularities. Taking a birational resolution, we may
further assume that they have analytic singularities along some normal crossing divisors. By Remark 5.1,
we reduce to the case without singularities, in which case the result is well-known; see for example
[45, Proof of Corollary 4.12].

Theorem 5.14 Let '; 2 PSH.X; �/>0. Then for any t 2 .0; 1/,

(5-13) �.�; t'C .1� t/ /� t�.�; '/C .1� t/�.�;  /:

Proof We may assume that t is rational as a consequence of Theorem 5.9. Similarly, by [33, Theorem 3.8],
we could reduce to the case where both ' and  have analytic singularities. Taking a resolution, we may
assume that ' (resp.  ) has analytic singularities along a normal crossing Q-divisor E (resp. E0). In this
case, let N > 0 be an integer such that N t is an integer. Then for any s 2W 0

k
.�; '/ and r 2W 0

k
.�;  /,

we have
.st r1�t /N 2W 0

N k.�; t'C .1� t/ /:

By Theorem 3.8, (5-13) follows.

Proposition 5.15 For any integer a> 0,

�.a�; a'/D a�.�; '/:

Proof By Theorem 5.9, it suffices to treat the case where ' has analytic singularities. Taking a birational
resolution, we may assume that ' has analytic singularities along a normal crossing Q-divisor E. By
Remark 5.1, we reduce to the case without the singularity ', which is already proved in [45].

In particular, if T is a closed positive .1; 1/-current on X with
R
X T n > 0 and such that the cohomology

class of T lies in the Néron–Severi group with rational coefficients, then we can define�.T / as a�1�.aT /

for a sufficiently divisible positive integer a.
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We also need the following perturbation. Let A be an ample line bundle on X. Fix a smooth Hermitian
metric hA on A such that ! WD c1.A; hA/ is a Kähler form on X. Then for any ı 2Q>0, we can define

�.� C ı!; '/ WD�.� C ı!C ddc'/D C�1�.C� CCı!;C'/;

where C 2N>0 is any integer so that Cı 2N.

Proposition 5.16 Under the above assumptions , as ı 2Q>0 decreases to 0, �.� C ı!; '/ is decreasing
under inclusion with Hausdorff limit �.�; '/.

Proof Let 0� ı < ı0 be two rational numbers. Take C 2N>0 divisible enough, so that Cı and Cı0 are
both integers. Then by Proposition 5.13,

�.C� CCı!;C'/��.C� CCı0!;C'/:

It follows that
�.� C ı!; '/��.� C ı0!; '/:

On the other hand,

vol�.� C ı!; '/D
1

n!

Z
X

.� C ı!/n
P�Cı! Œ'�I

D
1

n!

Z
X

.� C ı!/n
P� Œ'�I

;

where we applied Corollary 4.4. As ı! 0C, the right-hand side converges to

vol�.�; '/D
1

n!

Z
X

�n
P� Œ'�I

:

It follows that
�.�; '/D

\
ı2Q>0

�.� C ı!; '/:

5.3 The Hausdorff convergence property of partial Okounkov bodies

For each k 2 Z>0, we introduce

�k.�; '/ WD Convfk�1�.f / j f 2 H0.X;Lk
˝ I.k'//�g �Rn:

Here Conv denotes the convex hull. The convex hull is a polytope if it is nonempty by [45, Lemma 1.4].
For large enough �k.�; '/ is nonempty thanks to Theorem 2.19.

For later use, we introduce a twisted version as well. If T is a holomorphic line bundle on X, we introduce

�k;T .�; '/ WD Convfk�1�.f / j f 2 H0.X;T ˝Lk
˝ I.k'//�g �Rn:

We also write
�k;T .L/ WD Convfk�1�.f / j f 2 H0.X;T ˝Lk/�g �Rn;

�k.L/ WD Convfk�1�.f / j f 2 H0.X;Lk/�g �Rn:

We write I1.'/D I1.�/ for the ideal sheaf on X locally consisting of holomorphic functions f such
that jf j� is locally bounded.
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The main result is the following:

Theorem 5.17 (Hausdorff convergence property) Let T be a holomorphic line bundle on X. As k!1,
we have �k;T .�; '/

dn
�!�.�; '/.

Although we are only interested in the untwisted case, the proof given below requires twisted case.

We first extend Theorem 3.8 to the twisted case.

Proposition 5.18 For any holomorphic line bundle T on X,

�k;T .L/
dn
�!�.L/ as k!1:

Proof As L is big, we can take k0 2 Z>0 so that

(1) T �1˝Lk0 admits a nonzero global holomorphic section s0,

(2) T ˝Lk0 admits a nonzero global holomorphic section s1.

Then for k 2 Z>k0
, we have injective linear maps

H0.X;Lk�k0/
�s1
��! H0.X;T ˝Lk/

�s0
��! H0.X;LkCk0/:

It follows that

.k � k0/�k�k0
.L/C �.s1/� k�k;T .L/� .kC k0/�kCk0

.L/� �.s0/:

By Theorem 3.8, we conclude.

Lemma 5.19 Let T be a holomorphic line bundle on X. Assume that ' has analytic singularities and
�' is a Kähler current. Then as k!1,

�k;T .�; '/
dn
�!�.�; '/:

Proof Up to replacing X by a birational model and twisting T accordingly, we may assume that ' has
analytic singularities along a normal crossing Q-divisor D; cf Proposition 5.11. Take � 2 .0; 1/\Q. In
this case, as in (5-5), for large enough k 2 Z>0 we have

H0.X;T ˝Lk
˝ I1.k'//� H0.X;T ˝Lk

˝ I.k'//� H0.X;T ˝Lk
˝ I1.k.1� �/'//:

Take an integer N 2 Z>0 so that ND is a divisor and N� is an integer.

Let�0 be the limit of a subsequence of .�k;T .�; '//k , say the sequence defined by the indices k1; k2; : : : .
We want to show that �0 D�.�; '/.

There exists t 2 f0; 1; : : : ;N � 1g such that ki � t modulo N for infinitely many i , up to replacing ki by
a subsequence, we may assume that ki � t modulo N for all i . Write ki DNgi C t . Then

H0.X;T ˝L�NCt
˝LN.giC1/

˝ I1.N.gi C 1/'//� H0.X;T ˝Lki ˝ I.ki'//

� H0.X;T ˝Lt
˝LNgi ˝ I1.giN.1� �/'//:
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So

.gi C 1/�giC1;T˝L�NCt .NL�ND/CN.gi C 1/�.D/

� .Ngi C t/�k;T .�; '/� gi�gi ;T˝Lt .NL�N.1� �/D/CNgi.1� �/�.D/:

Letting i !1, by Proposition 5.18,

�.L�D/C �.D/��0 ��.L� .1� �/D/C .1� �/�.D/:

Letting �! 0C, we find that
�.L�D/C �.D/D�0:

It follows from Theorem 2.2 that

�k;T .�; '/
dn
�!�.L�D/C �.D/D�.�; '/ as k!1:

Lemma 5.20 Assume that �' is a Kähler current. Then as ˇ! 0C with ˇ 2Q, we have

�..1�ˇ/�; '/!�.�; '/:

Proof By Proposition 5.13, we have

�..1�ˇ/�; '/Cˇ�.L/��.�; '/:

In particular, if �0 is a limit of a subsequence of .�..1�ˇ/�; '//ˇ, then

�0 ��.�; '/:

But

vol�0 D lim
ˇ!0C

�..1�ˇ/�; '/D lim
ˇ!0C

Z
X

..1�ˇ/� C ddcP .1�ˇ/� Œ'�I/
n
D

Z
X

.� C ddcP � Œ'�I/
n;

where the last step follows easily from [56, Theorem 0.6]. It follows that �0 D�.�; '/. We conclude by
Theorem 2.2.

Proof of Theorem 5.17 Fix a Kähler form ! � � on X.

Step 1 We first handle the case where �' is a Kähler current, say �' � ˇ0! for some ˇ0 2 .0; 1/.

Take a decreasing quasi-equisingular approximation 'j of '. Up to replacing ˇ0 by ˇ0=2, we may assume
that �'j � ˇ0! for all j � 1.

Let �0 be a limit of a subsequence of .�k;T .�; '//k . Let us say the indices of the subsequence are
k1 < k2 < � � � . By Theorem 2.2, it suffices to show that �0 D�.�; '/.

As Œ'�� Œ'j � for each j � 1, we have �0 ��.�; 'j / by Lemma 5.19. Letting j !1, we find

�0 ��.�; '/:

In particular, it suffices to prove that

vol�0 � vol�.�; '/:
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Take ˇ 2 .0; ˇ0/\Q. Write ˇ D p=q with p; q 2 Z>0. Observe that for any j � 1,

�'j � ˇ! � ˇ�:

Namely, 'j 2PSH.X; .1�ˇ/�/. Similarly, '2PSH.X; .1�ˇ/�/. By Lemma 5.20, it suffices to argue that

(5-14) vol�0 � vol�..1�ˇ/�; '/:

For this purpose, we are free to replace the ki by a subsequence, so we may assume that ki � a modulo q

for all i � 1, where a 2 f0; 1; : : : ; q� 1g. We write ki D giqC a. Observe that for each i � 1,

H0.X;T ˝Lki ˝ I.ki'//� H0.X;T ˝L�qCa
˝Lgi qCq

˝ I..giqC q/'//:

Up to replacing T by T ˝L�qCa, we may therefore assume that aD 0.

By [33, Lemma 4.2], we can find k 0 2Z>0 such that for all k � k 0, there is a vˇ;k 2 PSH.X; �/ such that

(1) P Œ'�I � .1�ˇ/'k Cˇvˇ;k ,

(2) vˇ;k has positive mass.

Fix k � k 0. It suffices to show that

(5-15) �..1�ˇ/�; 'k/C v
0
��0

for some v0 2Rn. In fact, if this is true, we have

vol�0 � vol�..1�ˇ/�; 'k/:

Letting k!1 and applying Theorem 5.9, we conclude (5-14).

It remains to prove (5-15). We will fix k � k 0. Let � W Y ! X be a log resolution of the singularities
of 'k . By the proof of [33, Proposition 4.3], there is j0 D j0.ˇ; k/ 2 Z>0 such that for any j � j0, we
can find a nonzero section sj 2 H0.Y; ��Lpj ˝ I.jp��vˇ;k// such that we get an injective linear map

H0.Y; ��T ˝KY=X ˝�
�L.q�p/j

˝ I.j q��'k//
�sj
��! H0.X;T ˝Ljq

˝ I.j q'//:

In particular, when j D ki for some i large enough, we then find

�ki ;��T˝KY=X
..1�ˇ/q���; q��'k/C .ki/

�1�.ski
/� q�ki ;T .�; '/:

We observe that .ki/
�1�.ski

/ is bounded as both convex bodies appearing in this equation are bounded
when i varies. Then by Lemma 5.19, there is a vector v0 2Rn such that

�..1�ˇ/���; ��'k/C v
0
��0:

By Proposition 5.11, we find (5-15).

Step 2 Next we handle the general case.

Let �0 be the limit of a subsequence of .�k;T .�; '//k , say the subsequence with indices k1 < k2 < � � � .
By Theorem 2.2, it suffices to prove that �0 D�.�; '/.
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Take  2 PSH.X; �/ such that

(1) � is a Kähler current,

(2)  � '.

The existence of  is proved in [33, Proposition 3.6].

Then for any � 2Q\ .0; 1/,

�k;T .�; '/��k;T .�; .1� �/'C � /

for all k. It follows from Step 1 that

�0 ��.�; .1� �/'C � /:

Letting �! 0 and applying Theorem 5.9, we have �0 ��.�; '/. It remains to establish that

(5-16) vol�0 � vol�.�; '/:

For this purpose, we are free to replace k1 < k2 < � � � by a subsequence. Fix q > 0, we may then assume
that ki � a modulo q for all i � 1 for some a 2 f0; 1; : : : ; q� 1g. We write ki D giqC a. Observe that

H0.X;T ˝Lki ˝ I.ki'//� H0.X;T ˝La
˝Lgi q

˝ I.giq'//:

Up to replacing T by T ˝La, we may assume that aD 0.

Take a very ample line bundle H on X and fix a Kähler form ! 2 c1.H /, and take a nonzero section
s 2 H0.X;H /.

We have an injective linear map

H0.X;T ˝Ljq
˝ I.j q'//

�sj
�! H0.X;T ˝H j

˝Ljq
˝ I.j q'//

for each j � 1. In particular, for each i � 1,

ki�ki ;T .q�; q'/C ki�.s/� ki�ki ;T .!C q�; q'/:

Letting i !1, by Step 1, we have

q�0C �.s/��.!C q�; q'/:

So

vol�0 � vol�.q�1!C �; '/D

Z
X

.q�1!C � C ddcPq�1!C� Œ'�I/
n:

By Corollary 4.4,

vol�0 �
Z

X

.q�1!C � C ddcP � Œ'�I/
n:

Letting q!1, we conclude (5-16).
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Theorem 5.21 The Okounkov body �.L; �/ is independent of the choice of a very general flag in a
family of admissible flags.

Proof By Theorem 5.17, it suffices to show that �k.W .�; '// is independent of the choice of a very
general flag. For this purpose, we may assume that k D 1.

Let T be an irreducible component of the moduli space of admissible flags. Let

X �T D Y0 � � � � � Yn

be the universal flag. The Hermitian line bundle .L; �/ pulls back to .L; ˆ/ on X � T . We denote
quantities at the fiber at t 2 T by a subindex t .

We claim that for each � 2Nn, there is a proper Zariski closed set †� T , so that

dim H0.Xt ;Lt ˝ I.�t //
��

are constants for t 2 T n†, where H0.Xt ;Lt ˝I.�t //
�� is the space of sections in H0.Xt ;Lt ˝I.�t //

with valuations no less than � .

Let L�� be the coherent subsheaf of L introduced in [45, Remark 1.6]. After possibly shrinking T , we
may guarantee that L�� ˝ I.ˆ/ is flat over T . By further shrinking T , we may guarantee that

t 7! dim H0
�
Xt ; .L�� ˝ I.ˆ//jXt

�
is constant. Observe that

.L�� ˝ I.ˆ//jXt
ŠL��t ˝ I.�/:

Thus, our claim follows.

From this claim, it follows that the images of �k.W .L; �// are independent of the choice of a very
general flag .Y�/ as [45, Proof of Theorem 5.1]. Thus, �.W .L; �// is independent of the choice of a
very general flag.

5.4 Recover Lelong numbers from partial Okounkov bodies

Lemma 5.22 Let ' 2 PSH.X; �/ be such that �' is a Kähler current. Let 'j be a quasi-equisingular
approximation of '. Then �.'j ;E/! �.';E/ for any prime divisor E over X.

This result is essentially [55, Lemma 2.2], proved under slightly different assumptions. We reproduce the
argument for the convenience of the readers.

Proof Fix k 2Z>0, ı 2Q>0, take j0 > 0, so that when j > j0, I..1C ı/k'j /� I.k'/. When j > j0,
we get

1

k
ordE.I.k'//�

1

k
ordE.I..1C ı/k'j //:

By Fekete’s lemma,

�.'j ;E/D sup
k2Z>0

1

k
ordE.I.k'j //:
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So
1

k
ordE.I.k'//� .1C ı/�.'j ;E/:

Take sup with respect to k 2 Z>0, we get

�.';E/� .1C ı/�.'j ;E/:

Letting j !1 and then ı! 0C, we get

�.';E/� lim
j!1

�.'j ;E/:

The reverse inequality is trivial.

Theorem 5.23 Let E be a prime divisor on X. Let .Y�/ be an admissible flag with E D Y1. Then

(5-17) �.';E/D min
x2�.�;'/

x1:

Here x1 denotes the first component of x. The generic Lelong number �.';E/ means the minimum of
�.';x/ for various x 2E.

Proof We first reduce to the case where �' is a Kähler current. Let  � ', � is a Kähler current. Then
by (5-17) applied to '� WD .1� �/'C � , we have

�.'�;E/D min
x2�.�;'�/

x1:

Letting �! 0C using Theorem 5.9, we conclude (5-17).

Similarly, taking a quasi-equisingular approximation of ' and applying Lemma 5.22, we easily reduce
to the case where ' also has analytic singularities. Replacing X by a birational model, we may assume
that ' has analytic singularities along a simple normal crossing Q-divisor F . Perturbing L by an ample
Q-line bundle by Proposition 5.16, we may assume that �' is a Kähler current. Finally, by rescaling, we
may assume that F is a divisor and L is a line bundle and L�F is ample by [55, Lemma 2.4]. In fact,
since �' is a Kähler current, the same holds for �' � �!, where ! is a Hodge form lying in c1.A/ for
some ample line bundle A on X and � > 0 is a small enough rational number. By [55, Lemma 2.4], we
deduce that L�F � �A is nef and big and hence L�F is ample.

By Theorem 5.17, we know that

min
x2�.�;'/

x1 D lim
k!1

min
x2�k.�;'/

x1:

By definition,
min

x2�k.�;'/
x1 D k�1 ordE H0.X;Lk

˝ I.k'//:

It remains to show that

(5-18) lim
k!1

k�1 ordE H0.X;Lk
˝ I.k'//D lim

k!1
k�1 ordE I.k'/:
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The � direction is trivial, we prove the converse. Observe that

H0.X;Lk
˝ I.k'//D H0.X;Lk

˝OX .�kF //; I.k'/DO.�kF /:

As L�F is ample, for large enough k, we have

ordE H0.X;Lk
˝OX .�kF //D ordE.kF /:

Thus, (5-18) is clear.

Corollary 5.24 Let '; 2 PSH.X; �/>0. If

�.���; ��'/��.���; �� /

for all birational models � W Y !X and all admissible flags on Y, then ' �I  .

Proof In view of Theorem 5.23, the assumption implies the following: for any prime divisor E over X,
we have �.';E/ � �. ;E/. This implies ' �I  : take a birational model � W Y ! X and y 2 Y, we
need to show that �.��';y/� �.�� ;y/. Let E be the exceptional divisor of the blowup of Y at fyg.
As explained in [8, Corollaire 1.1.8], we have �.��';y/ D �.';E/ and �.�� ;y/ D �. ;E/. Our
assertion follows.

In particular, Theorem B is proved. This corollary is similar to [41]. It suggests that �.�; '/ is a universal
invariant of the singularities of '.

Corollary 5.24 has a reminiscence of [14]: in order to understand plurisubharmonic singularities, we need
to consider all birational models of our variety at the same time.

Theorem 5.23 can be regarded as a generalization of the following (slightly generalized form of the)
classical result proved by Boucksom; see [9, Theorem 5.4].

Corollary 5.25 Let E be a prime divisor over X. Then

(5-19) �.V� ;E/D lim
k!1

1

k
ordE H0.X;Lk/:

Proof This follows from Theorem 5.23 and the fact that �.�;V� /D�.L/.

We write
ordE kLk WD lim

k!1

1

k
ordE H0.X;Lk/:

Corollary 5.26 We have

I.V� /D ff 2OX j 9 � > 0 such that ordE.f /� .1C �/ ordE kLk�AX .E/8 primes E over X g;

where AX .E/ is the log discrepancy of E over X.

Proof This follows from [10, Corollary 10.17] and Corollary 5.25.

Geometry & Topology, Volume 29 (2025)



1320 Mingchen Xia

5.5 Okounkov bodies induced by filtrations

Assume that L is ample.

Definition 5.27 A multiplicative filtration on R.X;L/ is a decreasing, left continuous, multiplicative
R-filtration F � on the ring R.X;L/, which is linearly bounded in the sense that there is C > 0 such that

F�k�H0.X;Lk/D H0.X;Lk/ and Fk�H0.X;Lk/D 0 when � > C:

A multiplicative filtration F is called a multiplicative Z-filtration if F� DF b�c for any � 2R.

A multiplicative Z-filtration F is called finitely generated if the bigraded algebraM
�2Z;k2Z�0

F�H0.X;Lk/

is finitely generated over C.

Let F � be a multiplicative filtration on R.X;L/. Then we can associate a test curve  � as in [49; 55]:

(5-20)  � WD sup�
k2Z>0

k�1 sup�
˚
log jsj2

hk

ˇ̌
s 2Fk�H0.X;Lk/; sup

X

jsjhk � 1
	
:

Here sup� denotes the upper-semicontinuous regularized supremum. By [32, Theorem 3.11],  � is
I-model or �1 for each � 2R.

Theorem 5.28 Let F � be a finitely generated multiplicative Z-filtration on R.X;L/. Let  � be the test
curve associated with F . For any � < �C,

�

� 1M
kD0

Fk�H0.X;Lk/

�
D�.�;  � /:

Proof Observe that Fk�H0.X;Lk/� H0.X;Lk ˝ I.k � // for any k 2N. Thus, by Corollary 3.15,

�

� 1M
kD0

Fk�H0.X;Lk/

�
��.�;  � /:

On the other hand, the two sides have the same volume by [55, Lemma 4.5]. Thus, equality holds.

5.6 Limit partial Okounkov bodies

Let ' 2 PSH.X; �/, not necessarily of positive volume. Take an ample effective divisor H on X and a
Kähler form ! 2 c1.H /. Then we just set

�.�; '/ WD
\

�2Q>0

�.� C �!; '/:

Clearly, this definition does not depend on the choice of H and !. As in [22], we cannot expect
�.�; '/ to be continuous along decreasing sequences of '. Note that Theorem 5.23, Corollary 5.24 and
Proposition 5.8 extend to this setup without changes.

Geometry & Topology, Volume 29 (2025)



Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1321

Conjecture 5.29 Under the above assumptions ,

dim�.�; '/D nd.�; '/:

For the definition of the analytic numerical dimension nd.�; '/, we refer to [19, Definition 4].

We expect this conjecture to follow from the arguments in [22] together with the numerical criterion of [19].

6 Chebyshev transform

Let X be an irreducible smooth complex projective variety of dimension n and L be a big line bundle
on X. Let h be a fixed smooth Hermitian metric on L and � D c1.L; h/. Consider a singular positive
Hermitian metric � on L corresponding to ' 2 PSH.X; �/. Assume that

R
X �n

P Œ'�I
> 0.

Let v 2 C 0.X / corresponding to a continuous metric he�v=2 on L. We do not distinguish v and he�v=2.
Fix a valuation � D .�1; : : : ; �n/ W C.X /�! Zn of rank n. Assume that � is defined by an admissible
flag .Y�/ on X.

The whole section is devoted to the proof of Theorem C. Our results are direct extensions of the results of
Witt Nyström [52]. The latter is motivated by [57].

6.1 Equilibrium energy

Let E1.X; � IP Œ'�I/ denote the set of  2 PSH.X; �/ such that  and P Œ'�I have the same singularity
types.

Let E�
Œ'�
W E1.X; � IP Œ'�I/!R be the relative Monge–Ampère energy:

E�
Œ'�. / WD

1

nC 1

nX
iD0

Z
X

. �P Œ'�I/ �
i
 ^ �

n�i
P Œ'�I

:

Define the equilibrium energy E�
Œ'�
W C 0.X /!R:

(6-1) E�Œ'�.v/ WDE�
Œ'�.P Œ'�I.v//:

Here
P Œ'�I.v/D sup�f� 2 PSH.X; �/ j �� v; ��I 'g:

Note that this definition is different from the energy defined in [33], so we choose a different notation.

Theorem 6.1 The Gateaux differential of E�
Œ'�

at v 2 C 0.X / is given by �n
P Œ'�I.v/

. In other words , for

any f 2 C 0.X /,

(6-2) d
dt

ˇ̌̌
tD0

E�Œ'�.vC tf /D

Z
X

f �n
P Œ'�I.v/

:

Proof This is not exactly [33, Proposition 5.10] because we are using P Œ � �I projections instead of P Œ � �

projections, but the proofs are identical.
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The metric he�v=2 induces an L1-type norm k � kL1.kv/ on H0.X;Lk ˝ I.k'//:

kskL1.kv/ WD sup
X

jsjhk e�kv=2:

In particular, det k � kL1.kv/ is a Hermitian metric on det H0.X;Lk ˝ I.k'//.

Theorem 6.2 Let v; v0 2 C 0.X /. Then

(6-3) lim
k!1

n!

knC1
log
�

det k � kL1.kv/
det k � kL1.kv0/

�
D E�Œ'�.v/� E�Œ'�.v

0/:

Remark 6.3 When ' D V� , the left-hand side of (6-3) is known as the relative volume between the two
metrics he�v=2 and he�v

0=2. They are studied in detail in [6].

This theorem partially generalizes [4, Theorem A]. We remind the readers that our conventions of
multiplier ideal sheaves are different from those in [4] and [6], which explains the difference between our
coefficients and theirs.

For the definition of the Bernstein–Markov property, see [4, Definition 2.3].

Proof We may assume that v0 D 0. Let � be a smooth volume form on X. Then recall that � satisfies the
Bernstein–Markov property with respect to tv for all t 2 Œ0; 1�; see [4, Theorem 2.4]. We may replace the
L1-norm on the left-hand side with the L2.�/-norm by [33, Lemma 6.5]. We recall the definition of the
partial Bergman kernel:

Bk
tv;';�.x/ WD sup

�
jsj2

hk e�kv.x/
ˇ̌̌ Z

X

jsj2
hk e�tv

� 1; s 2 H0.X;Lk
˝ I.k'//

�
;

ˇk
tv;';� WD

n!

kn
Bk

tv;';� d�;

where k 2 Z>0.

By [33, Theorem 1.2],
ˇk

tv;';�*�n
PX Œ'�I.tv/

as k!1 for all t 2 Œ0; 1�. By the dominated convergence theorem,

lim
k!1

Z 1

0

Z
X

v ˇk
tv;';� dt D

Z 1

0

Z
X

v �n
PX Œ'�I.tv/

dt;

and (6-3) follows.

Proposition 6.4 Let '2PSH.X; �/ such that �' is a Kähler current. Let .'j /j2N be a quasi-equisingular
approximation of '. Then

(6-4) lim
j!1

E�
Œ'j �

.v/D E�Œ'�.v/:
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Proof By Theorem 6.1, for j 2N,

E�
Œ'j �

.v/D

Z 1

0

Z
X

v �n
P Œ'j �I.tv/

dt and E�Œ'�.v/D
Z 1

0

Z
X

v �n
P Œ'�I.tv/

dt:

It follows from [33, Proposition 3.3] and [26, Theorem 1.2] that as j !1,

�n
P Œ'j �I.tv/

*�n
P Œ'�I.tv/

:

By the dominated convergence theorem, (6-4) follows.

Proposition 6.5 Let '; 2 PSH.X; �/. Assume that  � '. Set '� D .1� �/'C � for any � 2 Œ0; 1�.
Then

(6-5) lim
�!0C

E�Œ'��.v/D E�Œ'�.v/:

Proof The proof is similar to that of Proposition 6.4. We just replace [33, Proposition 3.3] by
[33, Proposition 2.7].

We finally recall a technical lemma.

Lemma 6.6 [52, Corollary 3.4] Let C �RnC1 be an open convex cone. Let F be a subadditive function
on C \ZnC1 defined outside a compact set. Then for any sequence ˛k 2 C \ZnC1 tending to infinity
such that ˛k=j˛k j converges to some point p 2 C . Then the limit

cŒF �.p/ WD lim
k!1

F.˛k/

j˛k j

exists and depends only on p and F . Moreover , cŒF � is a convex function on C \fxnC1 D 1g.

Here j˛k j denotes the absolute value of the last component of ˛k .

Recall that a real-valued function F defined on a semigroup � is said to be subadditive if for any x;y 2� ,
F.xCy/� F.x/CF.y/.

6.2 The case of analytic singularities

Assume that ' has analytic singularities.

Let � WY !X be a resolution such that ��' has analytic singularity along a normal crossing Q-divisor E.
We define as before

W 0
k D H0.Y; ��Lk

˝OY .�kE//� H0.X;Lk/:

Fix a 2 �k.W
0/. Let p be the center of � on X. Let zD .z1; : : : ; zn/ be a regular sequence in OX ;p such

that .Yi/x is the zero locus of z1; : : : ; zi . Fix a local trivialization of L near p. Define

Aa
k WD fs 2W 0

k j �.s/� ka; s D zka
C higher-order terms near pg:
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Define
F Œv�.ka; k/D inf

s2Aa;k

log jsjL1.kv/:

Recall the following two lemmas proved in [52, Lemmas 5.3 and 5.4].

Lemma 6.7 F Œv� is subadditive on �.W 0/.

Lemma 6.8 There is a C > 0 such that for any .ka; k/ 2 �.W 0/,

F Œv�.ka; k/� C j.ka; k/j:

Proof It suffices to apply [52, Lemma 5.4].

Let cŒ'�Œv� W Int�.�; '/!R be the convex function cŒF Œv�� defined by Lemma 6.6.

Theorem 6.9 We have Z
�.W .�;'//

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

Proof The proof follows verbatim from that of [52, Theorem 6.2], taking into account Theorem 6.2.

Observe that

(6-6) sup
Int�.W .�;'//

jcŒ'�Œv�� cŒ'�Œ0�j �
1
2
kvkC 0.X /:

The following result is obvious:

Lemma 6.10 Let '; '0 2 PSH.X; �/ be potentials with analytic singularities. If Œ'�� Œ'0�, then

cŒ'�Œv�� cŒ'0�Œv�

when restricted to Int�.�; '/.

6.3 The case of Kähler currents

Assume that �' is a Kähler current. Let 'j be a quasi-equisingular approximation of '. Then cŒ'j �Œv�

restricted to Int�.W .�; '// is an increasing sequence. Thus, we can define cŒ'�Œv� W Int�.�; '/!R[f1g

by
cŒ'�Œv� WD lim

j!1
cŒ'j �Œv�:

Lemma 6.11 Let s 2Wk.�; '/, locally written as zka plus higher-order terms near p. Then

cŒ'�Œv�.a/� k�1 log kskL1.kv/:

Proof This follows from the corresponding result for the 'j .
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By convexity, cŒ'�Œv� takes finite values.

It follows that (6-6) still holds in this case. By the dominated convergence theorem, Proposition 6.4 and
the previous case we find Z

�.�;'/

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

It follows from Lemma 6.10 that our definition of cŒ'�.v/ is independent of the choice of 'j .

Lemma 6.12 Let '; '0 2 PSH.X; �/ be potentials such that �' and �'0 are both Kähler currents. If
Œ'��I Œ'

0�, then

cŒ'�Œv�� cŒ'0�Œv�

when restricted to Int�.�; '/.

Proof This follows from Lemma 6.10.

6.4 General case

Let ' 2 PSH.X; �/ such that
R
X �n

P Œ'�I
> 0. We may replace ' with P Œ'�I and therefore assume that the

nonpluripolar mass of ' is positive.

Let � 2 PSH.X; �/ be a potential so that �� is a Kähler current and � � '. The existence of such � is
guaranteed by [33, Proposition 3.6]. Define '� WD .1� �/'C ��. Then we define

cŒ'�Œv� W Int�.�; '/!R[f�1g; cŒ'�Œv� WD lim
�!0C

cŒ'��Œv�:

This is a decreasing limit by Lemma 6.12. On the other hand, cŒ'�Œv�� cŒV� �Œv�, the latter is finite by [52].
Thus, cŒ'�Œv� is real-valued. Inequality (6-6) extends to this situation. By the dominated convergence
theorem and Proposition 6.5 again,Z

�.�;'/

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

We do not know if cŒ'�Œv� is independent of the choice of �.

7 A generalization of Boucksom–Chen theorem

In this section, let X be an irreducible smooth projective variety of dimension n. Let L be a big line
bundle on X. Take a smooth Hermitian metric h on L with � D c1.L; h/.

Fix a rank n valuation � WC.X /�! Zn.
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7.1 The theory of test curves

Let V D hLni.

Definition 7.1 We define a test curve (of finite energy) with respect to .X; �/ to be a map  D  � WR!
PSH.X; �/[f�1g such that

(1)  � is concave in � ,

(2)  � is a model potential or �1 for any � ,

(3)  is usc as a function in the R-variable,

(4) lim�!�1  � D V� in L1,

(5)  � D�1 for � large enough,

(6)  satisfies

(7-1) E. �/ WD �CV C

Z �C

�1

�Z
X

�n
 �
�V

�
d� > �1:

Here �C WD inff� 2 R j  � D �1g. The set of test curves of finite energy with respect to .X; �/ is
denoted by T C1.X; �/. We say  is normalized if �C D 0. The test curve is called bounded if  � D V�

for � small enough. Let �� WD supf� 2 R j  � D V�g in this case. The set of bounded test curves is
denoted by T C1.X; �/.

We say a test curve is I-model if  � is I-model for each � < �C. The set of I-model test curves is denoted
by T C1

I.X; �/.

7.2 Okounkov test curves

Let � 2 Kn. Assume that V D n! vol�> 0.

Definition 7.2 An Okounkov test curve relative to � is an assignment .�� /���C for �C 2R such that:

(1) �� is a decreasing assignment of convex bodies in Rn for � � �C.

(2) �� converges to � as � !�1 with respect to the Hausdorff metric (cf Section 2.1).

(3) �� is concave in the � variable.

(4) The energy is finite:

E.��/ WD �CV CV

Z �C

�1

�
n!

V
vol�� � 1

�
d� > �1:

(5) Continuity holds at �C:
��C D

\
�<�C

�� :

Proposition 7.3 Any Okounkov test curve .�� /���C relative to � is continuous for � < �C.
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Proof We first claim that vol�� 0 > 0 for all � 0 < �C. By condition (2) and Theorem 2.3, we know
that vol�� 00 > 0 when � 00 is small enough. Fix one such � 00. Any � 0 < �C can be written as a convex
combination of �C and � 00, thus �� 0 has positive volume by condition (3).

Next we claim that vol�� is continuous for � <�C. In fact, by condition (3) and the Minkowski inequality,
we know that log vol�� is concave for � < �C. The continuity follows.

Next we show that
�� D

\
� 0<�

�� 0 :

The � direction is obvious. By the continuity of the volume, both sides have the same volume and the
volume is positive, hence, equality holds by Lemma 2.5.

Similarly, we have
�� D

[
� 0>�

�� 0 :

The continuity of �� at � < �C is proved.

Definition 7.4 A test function on � is a function F W�! Œ�1;1/ such that:

(1) F is concave.

(2) F is finite on Int�.

(3) F is usc.

(4) The energy is finite:

(7-2) E.F / WD n!

Z
�

F d� > �1:

Let �C D sup� F . Then

(7-3) E.F /D �CV CV

Z �C

�1

�
n!

V
volfF � �g� 1

�
d�:

Let �� be an Okounkov test curve relative to �. We define the Legendre transform of �� as

GŒ��� W�! Œ�1;1/; a 7! supf� < �C j a 2��g:

Conversely, a test function F on �, set �C D sup� F . We define the inverse Legendre transform of F as

�ŒF � W .�1; �C�! Kn; �ŒF �� D fF � �g:

Theorem 7.5 The Legendre transform and inverse Legendre transform are inverse to each other , defining
a bijection between the set of Okounkov test curves relative to � and test functions on �. Moreover , if
�� is an Okounkov test curve relative to �, then

(7-4) E.��/D E .GŒ���/ :

Proof Let �� be an Okounkov test curve relative to �. We prove that GŒ��� is a test function on �.
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Firstly GŒ��� is concave by condition (1) and condition (3) in Definition 7.2. More precisely, take a; b 2�.
We want to prove that for any t 2 .0; 1/,

(7-5) GŒ���.taC .1� t/b/� tGŒ���.a/C .1� t/GŒ���.b/:

There is nothing to prove if GŒ���.a/ or GŒ���.b/ is �1. So we assume that both are finite. Take � > 0,
then a 2�GŒ���.a/�� and b 2�GŒ���.b/��. Thus,

taC .1� t/b 2 t�GŒ���.a/��C .1� t/�GŒ���.b/�� ��tGŒ���.a/C.1�t/GŒ���.b/��:

We deduce that
GŒ���.taC .1� t/b/� tGŒ���.a/C .1� t/GŒ���.b/� �:

Since � > 0 is arbitrary, (7-5) follows.

Next GŒ��� is finite on Int� by condition (2). In fact, as�� is increasing and converges to� as �!�1,
we have

�D
[
�

�� :

Hence, by [50, Theorem 1.1.15] and the assumption that vol�> 0,
S
� �� contains Int�.

Thirdly, we show that GŒ��� is usc. Let ai 2� with ai! a 2�. Define �i DGŒ���.ai/. Let � D limi �i .
We need to show that

(7-6) GŒ���.a/� �:

There is nothing to prove if � D�1. We assume that it is not this case. Up to subtracting a subsequence
we may assume that �i ! � . In particular, we can assume that �i ¤ �1 for all i . Fix � > 0, then
ai 2��i�� . Observe that ��i��

dn
�!���� . By Theorem 2.4 it follows that a 2���� . Thus, (7-6) follows

since � > 0 is arbitrary.

Finally, (7-4) follows from (7-3), and it follows that E.GŒ���/ > �1.

Conversely, if F W�! Œ�1;1/ is a test function on �. Let �ŒF � be the inverse Legendre transform
of F . Then one can similarly show that �ŒF � is an Okounkov test curve.

Firstly, for each � < �C WD sup� F , �ŒF �.�/ is a convex body as F is concave and usc. Moreover, �ŒF ��
is clearly decreasing in � . Hence, �ŒF ��C is also a convex body.

Secondly, for each a 2 �, we can write a D limi ai with ai 2 Int�. By assumption, F is finite at ai .
Thus,

a 2 fF > �1g D
[
�

�ŒF �� :

By Theorem 2.4, �ŒF ��
dn
�!� as � !�1.

Thirdly, �ŒF � is concave. To see, take �; � 0 � �C, we need to prove that for any t 2 .0; 1/,

(7-7) �ŒF �t�C.1�t/� 0 � t�ŒF �� C .1� t/�ŒF �� 0 :
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Let a 2�ŒF �� and b 2�ŒF �� 0 . We have F.a/� � and F.b/� � 0. F is concave, so F.taC .1� t/b/�

t� C .1� t/� 0. Thus,
taC .1� t/b 2�ŒF �t�C.1�t/� 0

and (7-7) follows.

Fourthly, (7-2) follows immediately from (7-3).

Finally, we show that �ŒF �� is continuous at �C. This amounts to

fF � �Cg D
\
�<�C

fF � �g;

which is obvious.

To see that these two operations are inverse to each other, observe that by definition for any Okounkov
test curve ��, any a 2� and any � � �C, one has GŒ���.a/� � if and only if a 2���� for any � > 0.
By Proposition 7.3, this happens if and only if a 2�� , that is,

fGŒ���� �g D�� :

Conversely, for any test function F W�! Œ�1;1/, any � � �C, by definition,

fF � �g D�ŒF �� :

Definition 7.6 Let �� be an Okounkov test curve relative to �. We define the Duistermaat–Heckman
measure DH.��/ as

DH.��/ WDGŒ����.d�/:

It is a Radon measure on R.

Observe that

(7-8)
Z

R
DH.��/D vol�:

7.3 Boucksom–Chen theorem

Let  � 2 T C1
I.X; �/. Let �C D inff� 2R j  � D�1g.

Lemma 7.7 The curve

�Œ ��� WD

�
�.�;  � / if � < �C;T
� 0<�C �Œ ��� 0 if � D �C;

is an Okounkov test curve relative to �.L/. Moreover ,

(7-9) E. �/D E.�Œ ���/:

Proof We verify the conditions in Definition 7.2. condition (1) follows from Proposition 5.8. Condition (2)
follows from the fact that

lim
�!�1

vol�� D vol�:
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Condition (3) follows from Theorem 5.14 and Proposition 5.8. Condition (4) is a translation of (7-1).
Condition (5) is obvious.

Finally, (7-9) follows from (7-1) and (1-3).

Definition 7.8 Let  � 2 T C1
I.X; �/. Define the Duistermaat–Heckman measure of  � as

DH. �/ WD DH.�Œ ���/:

We write
GŒ ��DGŒ�Œ ���:

Then
DH. �/DGŒ ���.d�/:

Now consider the (not necessarily multiplicative) filtration

Fk
� H0.X;Lk/ WD

�
H0.X;Lk ˝ I.k � // if � < �C;

0 if � � �C:

Let ej .H0.X;Lk/;Fk/ be the jumping numbers of Fk listed in decreasing order. In other words,

ej .H0.X;Lk/;Fk/ WD supf� 2R j dim Fk
� H0.X;Lk/� j g:

Let

�k WD
1

kn

h0.X ;Lk/X
jD1

ıej .H0.X ;Lk/;Fk/:

Theorem 7.9 Let  � 2 T C1
I.X; �/. Then as k!1, the measure �k converges weakly to DH. �/.

As explained in [49; 32; 55], T C1
I.X; �/ is the completion of the space of filtrations, so this theorem

indeed generalizes [11, Theorem A], in the case of full-graded linear series.

Proof It suffices to show the convergence holds as distributions. By our definition, �k is the distributional
derivative of the function

hk.�/ WD

�
k�nh0.X;Lk ˝ I.k � // if � < �C;

0 if � � �C:

On the other hand, DH. �/ is the distributional derivative of h.�/ WD volfGŒ�Œ ���� � �g D vol�� by
the Fubini–Tonelli theorem.

By Theorem 2.19, hk.�/ ! h.�/ for all � ¤ �C. By the dominated convergence theorem hk ! h

in L1
loc.R/. Hence, �k * DH. �/.

Corollary 7.10 For any  � 2 T C1
I.X; �/. The Duistermaat–Heckman measure DH. �/ is independent

of the choice of the valuation �.
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7.4 Applications to non-Archimedean geometry

Assume that L is ample and � is a Kähler form. We write ! D � instead.

Finite-energy geodesic rays Let E1.X; !/ denote the space of !-psh functions with finite energy:

E1.X; !/ WD

�
' 2 PSH.X; !/

ˇ̌̌ Z
X

!n
' D

Z
X

!n;

Z
X

j'j!n
' <1

�
:

See [24] for a detailed introduction. Recall that E1.X; !/ admits a natural metric d1: for '; 2 E1.X; !/,
given by

d1.';  / WD E.'/CE. /� 2E.' ^ /:

Here
' ^ WD sup f� 2 PSH.X; !/ j �� '; ��  g :

In [27, Theorem 2.10], Darvas, Di Nezza and Lu proved that ' ^  2 E1.X; !/. They proved in
[25, Section 3] that d1 is indeed a metric. The Monge–Ampère energy functional E W E1.X; !/!R is
defined as

E.'/D
1

nC 1

nX
iD0

Z
X

' !i
' ^!

n�i :

In this case, let R1.X; !/ denote the set of geodesic rays in E1.X; !/ emanating from 0. For a detailed
study of R1.X; !/, we refer to [30]. Here we only recall the definition of the metric on R1.X; !/. Given
`; `0 2R1.X; !/, we define

d1.`; `
0/ WD lim

t!1

1

t
d1.`t ; `

0
t /:

By [20, Corollary 5.5], t 7! d1.`t ; `
0
t / is convex, guaranteeing the existence of the limit. It is shown

in [30] that .R1.X; !/; d1/ is a complete metric space.

The following notion is introduced in [54]:

Definition 7.11 A rooftop metric space is a triple .E; d;^/: .E; d/ is a metric space and ^WE�E!E

is an associative, commutative binary operator on E satisfying

d.a^ c; b ^ c/� d.a; b/ for any a; b; c 2E:

For `; `0 2R1.X; !/, define `^ `0 as the greatest geodesic in R1.X; !/ that lies below both ` and `0. It
is shown in [54, Theorem 7.6] that ^ is well-defined and .R1.X; !/; d1;^/ is a complete rooftop metric
space.

The energy functional E WR1.X; !/!R is defined as

E.`/ WD E.`1/:
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Recall that we have the following two maps: Given any ` 2R1.X; !/, its inverse Legendre transform is
defined as

ỳ
� WD inf

t�0
.`t � t�/:

Conversely, given any  � 2 T C1.X; !/, we define its Legendre transform by

{ t WD sup
�2R

. � C t�/:

They are inverse to each other, as proved in [32, Theorem 3.7].

Non-Archimedean pluripotential theory Let X an be the Berkovich analytification of X with respect
to the trivial valuation on X and Lan be the analytification of L. See Section 2.7 for a brief introduction.
In the same section, we also recalled the definition of the space E1.Lan/ of non-Archimedean psh metrics
on Lan with finite energy and the energy functional E W E1.Lan/!R.

Next we briefly explain the relation between the non-Archimedean pluripotential theory and the complex
pluripotential theory. Firstly, given a geodesic ray ` 2R1.X; !/, one can associate a non-Archimedean
potential `an 2 E1.Lan/ as in [5, Definition 4.2, Theorem 6.2]. The construction of `an requires the notion
of Gauss extension of valuations, as explained in [5, Section 3.1]. The map

R1.X; !/! E1.Lan/

is surjective but not injective. It admits a canonical section

� W E1.Lan/ ,!R1.X; !/

sending � 2 E1.Lan/ to the maximal element ` 2 E1.Lan/ with `an D �. See [5, Theorem 6.6].

The geodesics lying in the image of � are known as maximal geodesic rays or approximable geodesic rays.
Moreover,

(7-10) E.�.˛//D E.˛/

for any ˛ 2 E1.Lan/; see [5, Corollary 6.7].

Maximal geodesic rays are closely related to test curves:

Theorem 7.12 The Legendre transform is a bijection from T C1
I.X; !/ (resp. T C1.X; !/) to �.E1.Lan//

(resp. R1.X; !/); the inverse is given by the inverse Legendre transform. Further , for any �2T C1.X; !/,

(7-11) E. �/D E. { /:

This is one of the main theorems of [32, Theorems 3.7 and 3.17]. It is based on the previous work [49; 25].
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Duistermaat–Heckman measures The space E1.Lan/ is closely related to the theory of test configura-
tions. For the latter, we refer to [16, Section 2] for a brief introduction. Recall that two test configurations
.X ;L/ and .X 0;L0/ of .X;L/ are said to be equivalent if they can be dominated by a common test
configuration; see [16, Definition 6.1]. There is a natural injection from the set of equivalence classes of
test configurations to E1.Lan/. Moreover, this injection has dense image and E1.Lan/ is the d1-completion
of the space of test configurations (modulo the equivalence relation). These results are explained in detail
in [32, Section 3.2].

Given a test configuration .X ;L/, Witt Nyström [51] constructed a naturally defined Radon measure
DH.X ;L/ on R, called the Duistermaat–Heckman measure. See [16, Section 3.2] for more details. It is
not hard to see from the definition that DH.X ;L/ depends only on the equivalence class of .X ;L/.

In the sequel, we will define the Duistermaat–Heckman measure of an element in E1.Lan/. As the space
E1.Lan/ is the completion of the space of test configurations (modulo the equivalence relation), our
definition can be seen as an extension of Witt Nyström’s results [51].

Definition 7.13 For any ˛ 2 E1.Lan/, define the Duistermaat–Heckman measure of ˛ as

DH.˛/ WD DH.b�.˛//:

We get a map DH W E1.Lan/!M.R/. Here M.R/ denotes the space of Radon measures on R.

For the proof of the next theorem, we need to recall several basic constructions of test curves.

The space T C1.X; !/ is a rooftop metric space. Its rooftop structures .d1;^/ are induced from the
corresponding structures on R1.X; !/.

Corollary 7.14 Let  �; '�; �� 2 T C1.X; !/.

(1) The rooftop operator on T C1.X; !/ is given by

(7-12) . ^'/� D  � ^'� :

It is the maximal element in T C1.X; !/ that lies below both  � and '�. In particular ,

(7-13) d1.. ^ �/�; .' ^ �/�/� d1. �; '�/:

(2) The metric on T C1.X; !/ is given by

(7-14) d1. �; '�/ WD E. �/CE.'�/� 2E.. ^'/�/:

Proof (1) Note that (7-13) is part of our definition of a rooftop structure.

Observe that the bijection T C1.X; !/!R1.X; !/ is order-preserving. In order to prove our claim, it
suffices to show that .' ^ /� defined by (7-12) is indeed in T C1.X; !/, which is obvious.

(2) This follows simply from (1) and (7-11).
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If '�;  � 2 T C1
I.X; !/, then . ^ '/� 2 T C1

I.X; !/ as well. This follows from the simple observation
that the rooftop of two I-model potentials is still I-model. Now the d1 metric on T C1.X; !/ restricts to
a metric d1 on T C1

I.X; !/. The rooftop structure also restricts to a rooftop structure on T C1
I.X; !/.

We need the following constructions on test curves:

(1) Increasing limit Let  ˛
�
2 T C1.X; !/ be an increasing net. Assume that �C

 ˛
is bounded from

above. Define
z � WD C

�
sup�
˛
 ˛�
�
:

Let �C D inff� j z � D�1g. We define

 � D

�
z � if � ¤ �C;
lim�!�C� z � if � ¤ �C:

It is easy to verify that  � 2 T C1.X; !/.

(2) Decreasing limit Let  ˛
�
2 T C1.X; !/ be an increasing net and �� 2 T C1.X; !/. Assume that

 ˛
�
� �� for all ˛. Define

.inf /� WD inf
˛
 ˛� :

Then if .inf /� is not identically �1, then .inf /� 2 T C1.X; !/.

(3) Max Let '�;  � 2 T C1.X; !/. There is the smallest test curve .' _ /� 2 T C1.X; !/ such that
.' _ /� � '� and .' _ /� �  �. In fact, we could simply define

.' _ /� WD inff�� j �� 2 T C1.X; !/; �� � '�; �� �  �g:

In terms of the Legendre transform, .' _ /{ is the minimal geodesic ray lying above both {' and { . We
observe that

(7-15) d1.'�;  �/� d1.'�; .' _ /�/C d1. �; .' _ /�/� C0d1.'�;  �/

for some C0.n/ > 0. See [29, Proposition 2.15] for the proof of the latter inequality. Moreover, if
�� 2 T C1.X; !/ and if '� �  �, then

(7-16) d1..' _ �/�; . _ �/�/� d1.'�;  �/:

This follows from the corresponding inequality of geodesic rays, which in turn follows from Proposition
4.12 of [54] (Proposition 6.8 in the arXiv version).

We observe that the operator _ is associative and commutative; hence, we could also define  1
�
_� � �_ k

�

in the obvious way.

Lemma 7.15 Let  j
�
;  � 2 T C1.X; !/. Assume that one of the following conditions holds:

(1)  j
�

is increasing and  � is the increasing limit of  j
�

.

(2)  j
�

is decreasing and  � D .inf /�.

Then  j
�

d1
�!  �.
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Proof We assume that condition (2) holds; the other case is similar. First observe that �C
 j
! �C

 
. It

suffices to observe that

d1. 
j
�
;  �/D .�

C

 j
� �C

 
/

Z
X

!n
C

Z 1
�1

�Z
X

!n

 
j
�

�

Z
X

!n
 �

�
d�:

The assertion is a simple consequence of dominated convergence theorem.

Theorem 7.16 The map DH W E1.Lan/!M.R/ is continuous.

For any ˛ 2 E1.Lan/, Z
R

x dDH.˛/.x/D E.˛/;(7-17) Z
R

DH.˛/D
1

n!
.Ln/:(7-18)

Proof We first prove the continuity of DH.

By the dominated convergence theorem, it suffices to show that GŒ ��.x/ depends continuously on  �
for almost all x 2 Int�.L/. To be more precise, let  j

�
2 T C1

I.X; !/ be a sequence converging to  �.
We want to show that

GŒ j
�
�.x/!GŒ ��.x/

for almost all x 2 Int�.L/. We will reduce to the case where  j
�

is either increasing or decreasing. In
these cases, it suffices to show that GŒ j

�
�!GŒ �� in L1. By (7-4) and (7-9), this amounts to showing

that E. j
�
/! E. �/. The latter follows from Lemma 7.15.

In order to make the reduction, we will prove that after passing to a subsequence, there exists an increasing
sequence 'j

�
2 T C1

I.X; !/ and a decreasing sequence �j
�
2 T C1

I.X; !/ such that 'j
�
�  j

�
� �j

�
and

'j
�

d1
�!  �, �j

�

d1
�!  �. In fact, we can relax the requirement to 'j

�
; �j
�
2 T C1.X; !/, not necessarily

I-model. Then it suffices to replace both test curves by their pointwise I-projections, which satisfy the
same conditions by [32, Theorem 3.18].

Up to subtracting a subsequence, we may assume that for all j ,

d1. 
j
�
;  �/� 2�j :

For k � j � 0, we set
�j ;k
�
WD  j

�
_ � � � _ k

�
2 T C1.X; !/:

Let �j
�
2 T C1.X; !/ be the increasing limit of �j ;k

�
as k!1. We then have

d1.�
j ;k
�
;  �/�d1. �; . _ 

j /�/C d1.. _ 
j /�; . _ 

j
_ jC1/�/C � � �

C d1.. _ 
j
_ � � � _ k�1/�; . _ 

j
_ � � � _ k/�/

�d1. �; . _ 
j /�/C � � �C d1. �; . _ 

k/�/

�C0

kX
iDj

d1. �;  
i
�
/� C021�j :
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Here the second inequality follows from (7-16), the third inequality follows from (7-15). Then by
Lemma 7.15, we find that d1.�

j
�
;  �/� C 21�j . Thus, �j

�

d1
�!  �.

Similarly, for k � j � 0, let
'j ;k
�
WD  j

�
^ � � � ^ k

�
2 T C1.X; !/:

The same argument as above shows that for k � j � 0, d1.'
j ;k
�
;  �/� 21�j . Let

 j
� WD inf

k�j
'j ;k
� :

By the monotone convergence theorem,  j 2 T C1.X; !/. Thus, by Lemma 7.15, d1.'
j
�
;  �/� 21�j .

Next we prove (7-17). Let ˛ 2 E1.Lan/. Let  � be the test curve corresponding to ˛. We need to computeZ
R

x DH.˛/.x/D
Z
�.L/

GŒ �� d�:

By (7-3), (7-4) and (7-9), the right-hand side is just E. �/, which is equal to E.˛/ by (7-10) and (7-11).

Finally, (7-18) follows from (7-8).

Remark 7.17 On the subspace HNA, the Duistermaat–Heckman measure is the same as the one defined
in [16, Section 3.2]. This follows from Theorem 5.28 and [11, Theorem A]. On the other hand, in
[40, Definition 3.56], Inoue defined the Duistermaat–Heckman measure for a general non-Archimedean
metric on Lan. As explained in [40, Remark 1.4], his definition agrees with ours for metrics in E1.Lan/.

8 Toric setting

This section is devoted to a toric interpretation of the partial Okounkov body construction.

8.1 Technical lemmata

Lemma 8.1 Let ˛; ˇ1; : : : ; ˇm 2 Zn. Let � be the convex polytope generated by ˇ1; : : : ; ˇm. Then the
following are equivalent :

(1) The function

(8-1) jz˛j2
� mX

iD1

jzˇi j
2

��1

is bounded on C�n.

(2) ˛ 2�.

Proof (2) D) (1) Write ˛ D
P

i tiˇi , where ti 2 Œ0; 1� and
P

i ti D 1. Then

jz˛j2
� mX

iD1

jzˇi j
2

��1

D

Y
i

jzˇi j
2ti

� mX
iD1

jzˇi j
2

��1

�

Y
i

X
j

jz ǰ j
2ti

� mX
iD1

jzˇi j
2

��1

� 1:
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(1) D) (2) Assume that ˛ 62�. Let H be a hyperplane that separates ˛ and �. Say H is defined by
a1x1C � � �C anxn D C . Set

z.t/ WD .ta1 ; : : : ; tan/:

Then clearly (8-1) evaluated at z.t/ is not bounded.

Lemma 8.2 Let ˇ1; : : : ; ˇm 2Nn and ˇ 2Rn. Then the following are equivalent :

(1) log
Pm

iD1 ex�ˇi � .x; ˇ/ is bounded from below.

(2) ˇ is in the convex hull of the ˇi .

Proof The proof follows the same pattern as Lemma 8.1.

8.2 Toric Okounkov bodies

Let X be an n-dimensional smooth projective toric variety, corresponding to a smooth complete fan † in
NR ŠRn. Let N be the lattice in NR, whose dual is the character lattice M . Let T WDN ˝Z C� be the
corresponding torus. Define MR D N _R . Given any T -invariant divisor D on X, let PD �MR be the
polyhedron associated with D.

Let D1; : : : ;Ds be the class of prime T -invariant divisors on X, each corresponding to a ray �i in †.
Let vi be the primitive generator of �i . Any T -invariant admissible flag Y� has the following form after
renumbering the Di :

Yi DD1\ � � � \Di :

Now the vi induce an isomorphism ˆ WM ! Zn, u 7! ..u; vi//i . Let ˆR WMR!Rn be the extension
of � to MR and � be the cone generated by the vi . Let U� be the corresponding orbit of T . Given any
T -invariant line bundle, there is a unique T -invariant divisor D with DjU� D 0 such that OX .D/DL.

It is shown in [45, Proposition 6.1] that

(8-2) �k.L/DˆR ..kPD/\M /

for sufficiently divisible k. We will omit ˆR from out notations from now on.

Let Tc be the compact torus in T . Next consider a Tc-invariant metric � on L. An unpublished result of
Yi Yao says that in the toric setting, two invariant potentials �0 and �00 are I-equivalent if and only if
r�0R.R

n/Dr�00R.R
n/. In other words, in the toric setting, for the invariant potentials, the P Œ � �-envelope

is the same as the P Œ � �I-envelope. In particular,

vol.L; �/D
1

n!

Z
X

.ddc�/n

always holds, without having to take the P Œ � �I-envelope. For the proof of a more general result, we refer
to [7, Theorem 3.13, Proposition 3.11].
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Let U0 be the maximal orbit of T . The basis .vi/ allows us to identify U0 D C�n. We denote the
coordinates on C�n by .z1; : : : ; zn/, zi D xiC iyi . Fix a T -invariant section s0 of L on U0 corresponding
to D. Then we can identify � with a Tc-invariant function on U0. Given the identification U0 D C�n,
� can be identified with a convex function �R WR

n!R such that r�R�PD . We let PD;� be the closure
of the image of r�. By [3, Lemma 2.5], PD;� corresponds to the closure of

QD;� WD fy 2MR j �.x/� .x;y/ is bounded from belowg :

We will be more explicit at this point. Assume that

� D log
aX

iD1

jsi j
2
CO.1/;

where si 2 H0.X;L/. Let ˇi be the lattice points in PD corresponding to si . In this case, QD;� is just
the convex polytope generated by the ˇi by Lemma 8.2.

Consider ˛ 2M \PD . It corresponds to a Laurent polynomial z˛ on C�n. Observe that ˛ 2QD;� if
and only if jz˛j2e�� is bounded from above. This is just a reformulation of Lemma 8.1.

Thus, we find

(8-3) �k.W
0.L; �//D .kQD;�/\M

when k is sufficiently divisible. Hence, �.L; �/� PD;� . Comparing the volumes, we find that equality
holds.

Next we deal with Tc-invariant � such that ddc� is a Kähler current. Let �j be an equivariant quasi-
equisingular approximation of � constructed as in [34, Corollary 13.23]. Then by definition,

�.L; �/D
\
j

�.L; �j /:

On the other hand,
PD;� �

\
j

PD;�j :

Hence, PD;� ��.L; �/. On the other hand, the volume of both sides agree, so they are indeed equal
thanks to the assumption that � has analytic singularities.

In general, if � is Tc-invariant and has positive volume. Let  � � be a potential with ddc being a
Kähler current. We may guarantee that  is Tc-invariant. Then by definition, if we set ��D .1��/�C� ,
then

�.L; �/D
[

�2.0;1/

�.L; ��/;

while
PD;� �

\
�

PD;P Œ���I :

Thus, �.L; �/� PD;� . Comparing the volumes, we find that these convex bodies are equal.
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Theorem 8.3 Let � be a Tc-invariant psh metric on L with positive volume. Then

�.L; �/D PD;�

under the identification ˆR as above.

8.3 Mixed volumes of line bundles

Let X and T be as in Section 8.2.

Lemma 8.4 Let L1; : : : ;Ln be big and nef T -invariant line bundles on X. Assume that the flag is
T -invariant. Then

(8-4)
1

n!
.L1; : : : ;Ln/D vol.�.L1/; : : : ; �.Ln//:

Here vol denotes the mixed volume functional. We refer to [50, Section 5.1] for the precise definition.

As pointed out by Rémi Reboulet, this result is already proved in [18, Proposition 3.4.3].

Proof Step 1 We first assume that all the Li are ample.

In this case, we know that for any ti 2N for i D 1; : : : ; n,

�

� nX
iD1

tiLi

�
D

nX
iD1

ti�.Li/

by [42, Theorem 3.1]. Hence,

vol�
� nX

iD1

tiLi

�
D

X
˛2Nn;j˛jDn

�n

˛

�
t˛ vol

�
�.L1/

˛1 ; : : : ; �.Ln/
˛n
�
:

On the other hand, by (1-3),

vol�
� nX

iD1

tiLi

�
D

1

n!

X
˛2Nn;j˛jDn

�n

˛

�
t˛.L

˛1

1
; : : : ;L˛n

n /:

Comparing the coefficients, we find (8-4).

Step 2 General case.

The results of Step 1 generalize immediately to ample Q-divisors. Hence, the nef case follows from a
simple perturbation argument.

The following example is due to Chen Jiang.

Example 8.5 If the flag is not toric invariant, Lemma 8.4 fails. For example, consider X D P1 �P1,
L1DO.1; 2/ and L2DO.2; 1/. Take a flag X D Y0 � Y1 � Y2 with Y1 being the diagonal. In this case,
(8-4) fails.
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�1

1

2

3

0

Figure 1: Okounkov body.

In this case, .L1;L2/D 5. By a simple computation using [45, Theorem 6.4], we find �.L1/D�.L2/

is the trapezoid shown in Figure 1. In particular,

vol.�.L1/;�.L2//D 2<
5

2!
:

For simplicity, we call .L; �/ a T -invariant Hermitian big line bundle on X if .T; �/ is a Hermitian big
line bundle on X, L is T -invariant and � is Tc-invariant.

Corollary 8.6 Let .Li ; �i/ for i D 1; : : : ; n be T -invariant Hermitian big line bundles on X with positive
volumes. If the T -invariant flag satisfies that Yn is not contained in any of the polar loci of the �i , then

(8-5)
1

n!

Z
X

ddc�1 ^ � � � ^ ddc�n D vol
�
�.L1; �1/; : : : ; �.Ln; �n/

�
:

Proof According to Proposition 5.16, by perturbing Li , we may assume that each ddc�i is a Kähler
current.

Observe that both sides of (8-5) are continuous under dS -approximations of �i : the left-hand side follows
from Theorem 4.2 and the right-hand side follows from Theorem 5.9.

Hence, by [33, Lemma 3.7], we may assume that each �i has analytic singularities. Taking a birational
resolution, we may assume that �i has analytic singularities along normal crossing Q-divisor Ei . By
Remark 5.1, we reduce to the situation of Lemma 8.4.

We have finished the proof of Theorem D.

Corollary 8.7 Let L1; : : : ;Ln be big T -invariant line bundles on X. Assume that the flag .Y�/ is
T -invariant and Yn is not contained in the non-Kähler locus of any c1.Li/. Then

(8-6)
1

n!
hL1; : : : ;Lni D vol

�
�.L1/; : : : ; �.Ln/

�
:

Here h � i denotes the movable intersection in the sense of [12; 15].

Proof It suffices to apply Corollary 8.6 to the case where �i has minimal singularities.
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Finally, we propose the following conjecture concerning the mixed volume of partial Okounkov bodies in
the nontoric setting:

Conjecture 8.8 Let .Li ; �i/ for i D 1; : : : ; n be Hermitian big line bundles on X (not necessarily a toric
variety) with positive volumes. Then

(8-7)
1

n!

Z
X

ddc�1 ^ � � � ^ ddc�n D sup
�

vol
�
��.L1; �1/; : : : ; ��.Ln; �n/

�
;

where � runs over all rank n valuations C.X /�! Zn.

To the best of the author’s knowledge, this conjecture is open even when the �i have minimal singularities.
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[12] S Boucksom, J-P Demailly, M Păun, T Peternell, The pseudo-effective cone of a compact Kähler manifold
and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013) 201–248 MR Zbl

[13] S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Monge–Ampère equations in big cohomology classes,
Acta Math. 205 (2010) 199–262 MR Zbl

[14] S Boucksom, C Favre, M Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math.
Sci. 44 (2008) 449–494 MR Zbl

Geometry & Topology, Volume 29 (2025)

http://msp.org/idx/arx/2208.06237
https://doi.org/10.1090/surv/033
http://msp.org/idx/mr/1070709
http://msp.org/idx/zbl/0715.14013
https://doi.org/10.5802/afst.1386
https://doi.org/10.5802/afst.1386
http://msp.org/idx/mr/3137248
http://msp.org/idx/zbl/1283.58013
https://doi.org/10.1007/s00222-010-0248-9
http://msp.org/idx/mr/2657428
http://msp.org/idx/zbl/1208.32020
https://doi.org/10.1090/jams/964
http://msp.org/idx/mr/4334189
http://msp.org/idx/zbl/1487.32141
https://doi.org/10.1007/s11511-011-0067-x
https://doi.org/10.1007/s11511-011-0067-x
http://msp.org/idx/mr/2863909
http://msp.org/idx/zbl/1241.32030
https://doi.org/10.4171/dm/x36
https://doi.org/10.4171/dm/x36
http://msp.org/idx/mr/4574244
http://msp.org/idx/zbl/1520.14010
http://msp.org/idx/arx/math/0204336
http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf
https://doi.org/10.1112/S0010437X11005355
http://msp.org/idx/mr/2822867
http://msp.org/idx/zbl/1231.14020
https://doi.org/10.1090/S1056-3911-2012-00574-8
https://doi.org/10.1090/S1056-3911-2012-00574-8
http://msp.org/idx/mr/3019449
http://msp.org/idx/zbl/1267.32017
https://doi.org/10.1007/s11511-010-0054-7
http://msp.org/idx/mr/2746347
http://msp.org/idx/zbl/1213.32025
https://doi.org/10.2977/prims/1210167334
http://msp.org/idx/mr/2426355
http://msp.org/idx/zbl/1146.32017


1342 Mingchen Xia

[15] S Boucksom, C Favre, M Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J.
Algebraic Geom. 18 (2009) 279–308 MR Zbl

[16] S Boucksom, T Hisamoto, M Jonsson, Uniform K-stability, Duistermaat–Heckman measures and singu-
larities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743–841 MR Zbl

[17] S Boucksom, M Jonsson, Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse
Math. 31 (2022) 647–836 MR Zbl

[18] J I Burgos Gil, P Philippon, M Sombra, Arithmetic geometry of toric varieties: metrics, measures and
heights, Astérisque 360, Soc. Math. France, Paris (2014) MR Zbl

[19] J Cao, Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler
manifolds, Compos. Math. 150 (2014) 1869–1902 MR Zbl

[20] X Chen, J Cheng, On the constant scalar curvature Kähler metrics, III: General automorphism group,
preprint (2018) arXiv 1801.05907

[21] S R Choi, Y Hyun, J Park, J Won, Asymptotic base loci via Okounkov bodies, Adv. Math. 323 (2018)
784–810 MR Zbl

[22] S R Choi, Y Hyun, J Park, J Won, Okounkov bodies associated to pseudoeffective divisors, J. Lond. Math.
Soc. 97 (2018) 170–195 MR Zbl

[23] C Ciliberto, M Farnik, A Küronya, V Lozovanu, J Roé, C Shramov, Newton–Okounkov bodies sprouting
on the valuative tree, Rend. Circ. Mat. Palermo 66 (2017) 161–194 MR Zbl

[24] T Darvas, Geometric pluripotential theory on Kähler manifolds, from “Advances in complex geometry”
(Y A Rubinstein, B Shiffman, editors), Contemp. Math. 735, Amer. Math. Soc., Providence, RI (2019)
1–104 MR Zbl

[25] T Darvas, E Di Nezza, C H Lu, L1 metric geometry of big cohomology classes, Ann. Inst. Fourier
(Grenoble) 68 (2018) 3053–3086 MR Zbl

[26] T Darvas, E Di Nezza, C H Lu, Monotonicity of nonpluripolar products and complex Monge–Ampère
equations with prescribed singularity, Anal. PDE 11 (2018) 2049–2087 MR Zbl

[27] T Darvas, E Di Nezza, C H Lu, On the singularity type of full mass currents in big cohomology classes,
Compos. Math. 154 (2018) 380–409 MR Zbl

[28] T Darvas, E Di Nezza, C H Lu, Log-concavity of volume and complex Monge–Ampère equations with
prescribed singularity, Math. Ann. 379 (2021) 95–132 MR Zbl

[29] T Darvas, E Di Nezza, H-C Lu, The metric geometry of singularity types, J. Reine Angew. Math. 771
(2021) 137–170 MR Zbl

[30] T Darvas, C H Lu, Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom.
Topol. 24 (2020) 1907–1967 MR Zbl

[31] T Darvas, R Reboulet, D Witt Nyström, M Xia, K Zhang, Transcendental Okounkov bodies, preprint
(2023) arXiv 2309.07584

[32] T Darvas, M Xia, The closures of test configurations and algebraic singularity types, Adv. Math. 397
(2022) art. id. 108198 MR Zbl

[33] T Darvas, M Xia, The volume of pseudoeffective line bundles and partial equilibrium, Geom. Topol. 28
(2024) 1957–1993 MR Zbl

Geometry & Topology, Volume 29 (2025)

https://doi.org/10.1090/S1056-3911-08-00490-6
http://msp.org/idx/mr/2475816
http://msp.org/idx/zbl/1162.14003
https://doi.org/10.5802/aif.3096
https://doi.org/10.5802/aif.3096
http://msp.org/idx/mr/3669511
http://msp.org/idx/zbl/1391.14090
https://doi.org/10.5802/afst.170
http://msp.org/idx/mr/4452253
http://msp.org/idx/zbl/1523.32036
http://numdam.org/item/AST_2014__360__R1_0/
http://numdam.org/item/AST_2014__360__R1_0/
http://msp.org/idx/mr/3222615
http://msp.org/idx/zbl/1311.14050
https://doi.org/10.1112/S0010437X14007398
https://doi.org/10.1112/S0010437X14007398
http://msp.org/idx/mr/3279260
http://msp.org/idx/zbl/1323.32012
http://msp.org/idx/arx/1801.05907
https://doi.org/10.1016/j.aim.2017.11.007
http://msp.org/idx/mr/3725891
http://msp.org/idx/zbl/1386.14034
https://doi.org/10.1112/jlms.12107
http://msp.org/idx/mr/3789843
http://msp.org/idx/zbl/1390.14026
https://doi.org/10.1007/s12215-016-0285-3
https://doi.org/10.1007/s12215-016-0285-3
http://msp.org/idx/mr/3694973
http://msp.org/idx/zbl/1386.14035
https://doi.org/10.1090/conm/735/14822
http://msp.org/idx/mr/3996485
http://msp.org/idx/zbl/1439.32061
https://doi.org/10.5802/aif.3236
http://msp.org/idx/mr/3959105
http://msp.org/idx/zbl/1505.53081
https://doi.org/10.2140/apde.2018.11.2049
https://doi.org/10.2140/apde.2018.11.2049
http://msp.org/idx/mr/3812864
http://msp.org/idx/zbl/1396.32011
https://doi.org/10.1112/S0010437X1700759X
http://msp.org/idx/mr/3738831
http://msp.org/idx/zbl/1398.32042
https://doi.org/10.1007/s00208-019-01936-y
https://doi.org/10.1007/s00208-019-01936-y
http://msp.org/idx/mr/4211083
http://msp.org/idx/zbl/1460.32087
https://doi.org/10.1515/crelle-2020-0019
http://msp.org/idx/mr/4234098
http://msp.org/idx/zbl/1503.32029
https://doi.org/10.2140/gt.2020.24.1907
http://msp.org/idx/mr/4173924
http://msp.org/idx/zbl/1479.32011
http://msp.org/idx/arx/2309.07584
https://doi.org/10.1016/j.aim.2022.108198
http://msp.org/idx/mr/4366232
http://msp.org/idx/zbl/1487.32132
https://doi.org/10.2140/gt.2024.28.1957
http://msp.org/idx/mr/4777706
http://msp.org/idx/zbl/1551.32048


Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1343

[34] J-P Demailly, Analytic methods in algebraic geometry, Surv. Modern Math. 1, International, Somerville,
MA (2012) MR Zbl

[35] J-P Demailly, On the cohomology of pseudoeffective line bundles, from “Complex geometry and dynamics”
(J E Fornæss, M Irgens, E F Wold, editors), Abel Symp. 10, Springer (2015) 51–99 MR Zbl

[36] J-P Demailly, T Peternell, M Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Int.
J. Math. 12 (2001) 689–741 MR Zbl

[37] Y Deng, Transcendental Morse inequality and generalized Okounkov bodies, Algebr. Geom. 4 (2017)
177–202 MR Zbl

[38] K Fujiwara, F Kato, Foundations of rigid geometry, I, Eur. Math. Soc., Zürich (2018) MR Zbl

[39] V Guedj, A Zeriahi, Degenerate complex Monge–Ampère equations, EMS Tracts Math. 26, Eur. Math.
Soc., Zürich (2017) Zbl

[40] E Inoue, Entropies in �-framework of canonical metrics and K-stability, II: Non-Archimedean aspect:
non-Archimedean �-entropy and �K-semistability, preprint (2022) arXiv 2202.12168

[41] S-Y Jow, Okounkov bodies and restricted volumes along very general curves, Adv. Math. 223 (2010)
1356–1371 MR Zbl

[42] K Kaveh, Note on cohomology rings of spherical varieties and volume polynomial, J. Lie Theory 21 (2011)
263–283 MR Zbl

[43] K Kaveh, A G Khovanskii, Newton–Okounkov bodies, semigroups of integral points, graded algebras and
intersection theory, Ann. of Math. 176 (2012) 925–978 MR Zbl

[44] A G Khovanskii, Newton polyhedron, Hilbert polynomial and sums of finite sets, Funktsional. Anal. i
Prilozhen. 26 (1992) 57–63 MR Zbl In Russian; translated in Funct. Anal. Appl. 26 (1992) 276–281
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