CHAL

UNIVERSITY OF TECHNOLOGY

Relax and don't Stop: Graph-aware Asynchronous SSSP

Downloaded from: https://research.chalmers.se, 2025-09-25 15:08 UTC

Citation for the original published paper (version of record):

D'antonio, M., von Geijer, K., Mai, T. et al (2025). Relax and don't Stop: Graph-aware Asynchronous
SSSP. Proceedings of the 1st Fastcode Programming Challenge Fepc 2025: 43-47.
http://dx.doi.org/10.1145/3711708.3723446

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Check for
Updates

Relax and don’t Stop: Graph-aware Asynchronous SSSP

Marco D’Antonio”
Queen’s University Belfast
Belfast, United Kingdom

Kare von Geijer*
Chalmers University of Technology
and University of Gothenburg

Thai Son Mai
Queen’s University Belfast
Belfast, United Kingdom

Gothenburg, Sweden

Philippas Tsigas

Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden

Abstract

The Parallel Single-Source Shortest Path (SSSP) problem has
been tackled through many implementations, yet no sin-
gle approach consistently outperforms others across diverse
graph structures. Moreover, most implementations require
extensive parameter tuning to reach peak performance. In
this paper, we introduce the AdaMW scheduler, which dy-
namically selects between the schedulers Wasp and Multi-
Queue. To achieve this, we use graph sampling and heuristics
to select and configure the scheduler. In contrast to common
state-of-the-art bulk-synchronous implementations, AdaMW
is fully asynchronous, thus not needing to stop for global
barriers. The resulting scheduler is highly competitive with
the best manually-tuned, state-of-the-art implementations.

CCS Concepts: - Theory of computation — Shortest
paths; -« Computing methodologies — Shared memory
algorithms; Concurrent algorithms.

Keywords: Shortest Path, Shared-memory, Asynchrony, Pri-
ority Scheduler
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1 Introduction

Single-Source Shortest Path (SSSP) is a fundamental problem
with plenty of applications [6, 13, 14, 22] and well-known
solutions in the sequential setting [5, 10, 12]. However, in
a parallel context, achieving scalable performance across
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the large variety of existing graphs is still an open challenge
with no clear winner [3]. For this reason, one of the FastCode
Programming Challenge (FCPC) tracks at PPoPP’25 was to
efficiently parallelize SSSP on a shared-memory machine
across a variety of both small-diameter and large-diameter
graphs [21]. Shared-memory implementations for SSSP have
recently garnered increased interest, as modern machines
can now completely fit large graphs in memory [9].

A common parallel implementation is A-stepping [15],
which groups vertices in buckets based on their coarsened
distance dist[u] /A, and processes each bucket in parallel
in a bulk-synchronous fashion. Compared to the traditional
Dijkstra’s algorithm [10], this approach increases parallelism
but also introduces redundant work due to vertices being
processed out of the work-efficient order.

Although A-stepping is an efficient parallel approach, its
bulk-synchronous nature imposes significant synchroniza-
tion overhead. This issue is particularly pronounced in large-
diameter graphs, such as road networks, where buckets often
contain few vertices, leading to frequent global barriers and
performance degradation [24]. To address these limitations,
alternative approaches relax the strict synchronization con-
straints while maintaining efficient parallel execution.

One such approach is Wasp [7], which builds upon coars-
ening of A-stepping but relaxes its synchronization by allow-
ing threads to process buckets asynchronously. The asyn-
chronous A-coarsening enables Wasp to perform well across
most graphs, and especially ones with uniform edge weights,
because the number of items is balanced across A-buckets.
Another approach is the MultiQueue [17, 20], a relaxed pri-
ority queue that allows highly parallel operations at the
expense of a degree of processing disorder. The MultiQueue
exhibits lower peak throughput, but performs well on large-
diameter graphs which typically expose less parallelism.
Moreover, as the MultiQueue does not use A-coarsening, it
is more resilient than Wasp to skewed edge weights, which
generate more redundant work when using bucketing.

Combining the strengths of Wasp [7] and the MultiQueue [20],

we introduce the fused Adaptive MultiQueue-Wasp (AdaMW)
scheduler, which dynamically selects one of the two sched-
ulers based on the target graph. By analyzing the average
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Table 1. Graph datasets used in the experimental evaluation.
|V| is the number of vertices, |E| is the number of undirected
edges. SD and LD in Properties stand for “Small Diameter”
and “Large Diameter”. SR stands for “Skewed Random edge
weights”, UR for “Uniform Random edge weights”, RE for
“Real Edge weights”.

Abbr. Graph V] |E| Properties

LJ LiveJournal 47M 419M  SD-UR
HW  Hollywood 1.0M 551M SD-SR
ER ER 9.89M 490M SD-UR
EW  enwiki-2023 6.5M 1471 M SD - SR
GR  Grid-1k-10k 989M 196M LD-UR
GL  Geolife 246M 77.1M  LD-RE
NA  North America 86.0M 107.9M  LD-RE
SA  South America 21.8M 29.1M LD - RE

degree and a sample of the edge weights, it both selects the
appropriate scheduler and configures its parameters to en-
able suitable optimizations. AdaMW was the fastest SSSP
solver at FCPC 2025 [21], reaching a geometric average per-
formance of 150.9 MEdges/s across their selected graphs,
while in comparison, the second-best performing solution
achieved a geometric average of 52.6 MEdges/s.

In this paper, we introduce AdaMW and demonstrate its
great performance across a variety of graphs while requir-
ing minimal preprocessing for selecting and configuring the
scheduler. Preprocessing also enables us to selectively apply
optimizations based on the graph structure. Finally, our ex-
perimental evaluation shows AdaMW’s efficiency compared
to Wasp [7], A*-stepping [11], and the MultiQueue [20], each
configured with optimal A or stickiness per graph. The re-
sults show that AdaMW can achieve competitive or better
performance than the state-of-the-art over different graph
characteristics, without offline tuning of parameters.

Outline. Section 2 gives a background to the problem and
utilized schedulers. Section 3 highlights some related work
for parallel SSSP. Section 4 describes AdaMW. Section 5 con-
tains our evaluation, comparing AdaMW to Wasp, the Mul-
tiQueue, and A*-stepping. Section 6 concludes the paper.

2 Background

Given an undirected weighted graph G = (V, E, w), with
vertices v € V, edges (u,0) € E C V XV, and weights w :
E — R*,aswell asa source s € V, the SSSP problem is to find
the shortest path from s to every other reachable u € V. Our
algorithm is allowed some time for graph initialization and
minor preprocessing before it is given s and should minimize
the time to compute a correct shortest-path distance mapping
d : V — R* for all vertices. The graphs used in the evaluation
are shown in Table 1 and comprise small and large diameter
graphs, with varied edge weight distributions.

D’Antonio et al.

2.1 The Wasp Priority Scheduler

Wasp [7] is an asynchronous priority scheduler with a dis-
tributed bucketing structure and priority-aware work steal-
ing. When a thread processes an item, it is pushed into a
thread-local bucket. This alleviates the need for synchroniza-
tion between threads to manage the buckets. Threads share
work through a priority-aware work-stealing protocol. Steal-
ing is performed only if the items to be stolen have a higher
priority than locally available items. Otherwise, asynchrony
allows the thread to process local items with no barriers.

Wasp utilizes priority coarsening to discretize the number
of priority levels, defining a parameter A. Therefore, for an
efficient A-stepping implementation, A must be tuned to
each graph.

2.2 The Relaxed MultiQueue

The base MultiQueue [17] by Rihani et al. is a concurrent
relaxed priority queue, which keeps ¢ - T lock-protected
sequential priority queues (the sub-queues), where ¢ is a
constant tuning parameter and T is the number of threads.
When an item is inserted in the MultiQueue, it is uniformly
at random inserted into one of the sub-queues. To dequeue
an item, the operation randomly samples the highest priority
item from two sub-queues and then proceeds by dequeuing
from the sampled sub-queue with the highest priority item.
The rank error of a dequeue is defined as the number of items
currently in the queue which has a higher priority than the
dequeued item, and there are theoretical guarantees that it
is rather low and stable [1, 2, 20].

3 Related Work

The A*-stepping and p-stepping algorithms are built around
a stepping, bulk-synchronous algorithm framework that ab-
stracts A-stepping [11]. A Lazy-Batched Priority Queue sup-
ports the framework for managing vertex distances. The
queue supports updates to record new distances and extrac-
tion of vertices with keys below a given threshold. Extracted
vertices are processed in parallel, and relaxed neighbors have
their distance updated in the queue. The framework supports
both push and pull operations for SSSP, allowing the pro-
cessing of dense frontiers efficiently [4].

The simple MultiQueue [17, 20] core has also led to the
Stealing MultiQueue [16], which integrates thread-affine
sub-queues and work stealing, as well as the Multi Bucket
Queue [23], which uses A-coarsening to speed up its sub-
queues. Additionally, a strong potential argument [1, 2] as
well as a Markov chain analysis [19] give strong guarantees
on the rank errors in the MultiQueue.

4 The AdaMW Scheduler

Building on top of Wasp [7] and the MultiQueue [20], we
develop AdaMW to get the best of both worlds. By utilizing
the allowed preprocessing period in FCPC, AdaMW analyses
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Figure 1. Performance of different A and stickiness for the schedulers. The throughput of each graph is normalized by the

largest observed throughput. A is normalized by @, where M(W) is the sampled median weight and d the average degree.

the graph structure, selecting and configuring the preferred
scheduler for that graph type.

Our experiments show that Wasp is best for graphs with
uniform weight distributions, while the MultiQueue is best
for large-diameter graphs with skewed weight distributions.
To characterize the graph structure, AdaMW samples a set of
edge weights W. In the competition, we used |W| = 100, 000.
It then estimates whether the weights are skewed or not by

looking at the ratio % where W is the average and M(W)
is the median of W. Furthermore, as small-diameter graphs
usually have a large average degree d, AdaMW selects the
underlying scheduler as follows:

Sched = {Wasp, ifd > 8or <2

M(W)
MQ,  otherwise

4.1 Estimating A in Wasp-mode

The A-coarsening used in Wasp requires the A parameter
to be carefully tuned in order to balance the trade-off be-
tween parallelism and redundant work. Since increasing A
allows for an increase in parallelism, a first-stage decision
can be made based on the graph structure. Graphs with a
large average degree d usually need smaller values of A, as
vertices have more neighbors and, therefore, expose more
parallelism. Low-degree graphs, instead, need a larger A to
increase parallelism and keep all threads busy. Therefore,
we initially set A = 1 for small-diameter graphs, while for
large-diameter graphs, we start with A = T, the number of
threads. Then, these values are scaled by the graph-specific

MW)

ratio that accounts for the weights and the degrees of

the graph, obtaining the final formula:
M (7W)
A= ’
{ MC W)
d

4.2 Configuring MultiQueue-mode

ifd> 8

otherwise

We use an optimized MultiQueue implementation by Williams
et al. [20] that utilizes 8-ary heaps as sub-queues and inser-
tion and deletion buffers to improve cache locality. Further-
more, they implement stickiness: threads return to the same
sub-queues several operations in a row, improving cache

performance at the expense of priority order [18]. We set the
number of sub-queues to twice the number of threads used,
as it has previously proven a good balance [17, 20]. Addition-
ally, we set the buffer size to 16 after trying a few different
options, seeing that it consistently performed slightly better
than the others. Configuring stickiness is the hardest part,
as we found that the optimal choice, much like A, varied for
different graphs. However, it is a bit easier to configure than
A, as it does not depend on the size of the weights, but rather
the degree distribution. In the competition, AdaMW used
stickiness = 128 for all sparse graphs with good results.

4.3 SSSP Optimizations

AdaMW uses two SSSP-specific optimizations. These are
part of the base Wasp [7], but not of the MultiQueue [20].
The first optimization is to add bidirectional relaxation [11].
When processing a vertex, before relaxing outgoing edges,
we first relax all incoming edges to possibly decrease the
tentative distance of the processed vertex. This optimization
is always enabled for high-diameter graphs, while for small-
diameter graphs, it is only used if the neighborhood fits into
an L1 cache line.

Secondly, AdaMW does not add degree-1 vertices back
into the scheduler when relaxing their incoming edge. These
vertices are leaves of the SSSP tree; hence, relaxing their
outgoing edge will not find a lower distance to any vertex.
All leaf vertices are precomputed and tracked in a bit-set.
AdaMW only uses this optimization when more than 10%
of vertices are leaves, as constantly querying the bit-set be-
comes too costly otherwise.

5 Evaluation

We evaluate AdaMW, Wasp [7], the MultiQueue' [20], and
A*-stepping® [11] - a representative from state-of-the-art —
on the graphs from FCPC, presented in Table 1. All exper-
iments are run on a dual-socket AMD EPYC 7713 proces-
sor with 64 cores per socket, simultaneous multi-threading
disabled, 1TB DRAM, and 4 NUMA nodes per socket. The
implementations are compiled using gcc-14.1.0 and C++20

https://github.com/marvinwilliams/multiqueue
Zhttps://github.com/ucrparlay/Parallel-SSSP
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Figure 2. Scalability analysis of the different schedulers. Two graphs per typology are shown for space reasons.

Table 2. Precomputation time for scheduler selection and
parameter tuning per graph. % SSSP is the percentage rel-
ative to the average SSSP execution time. The last column
shows the average and geometric mean across all graphs.

LJ HW ER EwW GR GL NA SA  mean
Time [s] 0.014 0.012 0.012 0.012 0.013 0.016 0.067 0.025 0.021
% SSSP 12.441 10.833 3.043 7.903 12.092 6.363 12.024 11.740 8.776

with the -03 and -march=native compilation options. All
experiments used numactl -i all to interleave the memory
allocations across NUMA nodes.

Since Wasp and A*-stepping use A-coarsening, in our eval-
uation we tune A by sampling powers of 2, as common in
literature [8, 11]. For the MultiQueue, we tune the sticki-
ness value, while the other parameters are the same as used
in AdaMW. We tune A and the stickiness for each thread
configuration in the evaluation.

To highlight the difficulty of selecting the correct con-
figuration parameters, Figure 1 shows their impact on the
different schedulers at 128 threads. The preprocessing time
for AdaMW is not considered in these plots. The optimal con-
figuration choice varies greatly between graphs. Especially
A is rather sensitive to bad configurations while configur-
ing the stickiness is slightly more forgiving. Interestingly,
the optimal choice of A is distinctly different between Wasp
and A*-stepping, even though serving the same purpose in
both schedulers. One can verify that AdaMW’s choice of
stickiness = 27 for the MultiQueue is suitable for the sparse
graphs. Conversely, AdaMW’s use of normalized A = 1 for
small-diameter graphs and A = T for large-diameter graphs
can also be verified. An exception is the Geolife graph, which
has skewed weights; AdaMW chooses the MultiQueue sched-
uler for this graph.

Table 2 reports the preprocessing time AdaMW requires
to configure its schedulers. The weight sampling and leaves
optimization bound this time to O(|V| + |W|), and in FCPC,
AdaMW currently utilizes the allowed preprocessing budget.
However, this time can be further reduced, for example, by
sampling a smaller W. This highlights that one can avoid
tuning A for each graph with low impact on performance.

Figure 2 shows the strong scaling performance of the
implementations. AdaMW performs well across all thread

I AdaMW [ Wasp [ MQ B A*-stepping

10°

108

Throughput [edges/s]

HW ER EW GR GL NA SA
Graph

Figure 3. Scheduler throughput with 128 threads.

U

counts, despite only using heuristics for its configurations,
unlike the others, which use the optimal choice. The through-
put of Wasp is reduced while using both sockets for the
Hollywood graph, letting the MultiQueue overtake it at 128
threads. This behavior is reproducible, but we could not
determine why it only happens for the Hollywood graph.
Finally, the performance of the schedulers at scale is shown
in Figure 3. For all evaluated graphs, AdaMW is always close
to the optimal. On the GeoLife, North America, and South
America graphs, it is even better than all optimally tuned
schedulers, thanks to the optimizations from Section 4.3.

6 Conclusion

AdaMW combines the strengths of the asynchronous Wasp
and MultiQueue schedulers, dynamically adapting to differ-
ent graph structures to maximize performance. Moreover, it
demonstrates that a graph sampling heuristic can be used
to tune critical parameters, achieving performance on par
with the optimal scheduler configuration. This approach
addresses a critical challenge in many schedulers — balanc-
ing adaptability and efficiency without requiring exhaustive
parameter tuning.
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