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Abstract
Motivated by Alain-Sol Sznitman’s interlacement process, we consider the set of
{0, 1}-valued processes which can be constructed in an analogous way, namely as
a union of sets coming from a Poisson process on a collection of sets. Our main
focus is to determine which processes are representable in this way. Some of our
results are as follows. (1) All positively associated Markov chains and a large class
of renewal processes are so representable. (2) Whether an average of two product
measures, with close densities, on n variables, is representable is related to the zeroes
of the polylogarithm functions. (3) Using (2), we show that a number of tree-indexed
Markov chains as well as the Ising model on Z

d , d ≥ 2, for certain parameters are
not so representable. (4) The collection of permutation invariant processes that are
representable corresponds exactly to the set of infinitely divisible random variables
on [0,∞] via a certain transformation. (5) The supercritical (low temperature) Curie-
Weiss model is not representable for large n.
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1 Introduction

Let S be a finite or countably infinite set and let ν be a σ -finite measure on P(S)\{∅}
whereP(S) is the power set of S. This generates a {0, 1}-valued process Xν = {Xν

i }i∈S
defined as follows.

We first consider the Poisson process Y ν on P(S)\{∅} with intensity measure ν

(see [13] for the definition). Note that P(S)\{∅} can be viewed as an open subset of
{0, 1}S and hence has a nice topology and Borel structure. Y ν(ω) is then a collection
{Bj } j∈I of nonempty subsets (perhaps with repetitions) of S. Note that |I | < ∞ a.s.
if ‖ν‖ := ν(P(S)\{∅}) < ∞ and that |I | = ∞ a.s. if ‖ν‖ = ∞.

Finally, we define {Xν
i }i∈S by

Xν
i =

{
1 if i ∈ ∪ j∈I B j

0 otherwise.

To see that Xν
i is a random variable, one observes that Xν

i = 1 if and only if

Y ν ∩ Si 	= ∅,

where
Si := {T ∈ P(S) : i ∈ T }

and the above is an event by definition of a Poisson process since Si is a open set in
P(S)\{∅}. Loosely speaking, Xν is obtained by taking the union of the sets arising in
the Poisson process, and identifying this with the corresponding {0, 1}-sequence.
Definition 1 We let R denote the set of all processes (Xi )i∈S which are equal (in
distribution) to Xν for some ν.

Understanding which X are inR seems to be an interesting question and will be the
main focus of this paper. We will for the most part deal with three different situations:

1. S is a finite set,
2. S is Z

d for some d ≥ 1 and ν (and hence also Xν) is translation invariant under
the natural Z

d -action on P(S)\{∅} and
3. S is infinite and ν (and hence also Xν) is invariant under all finite permutations of

P(S)\{∅}.
We give an alternative but equivalent description of this model in the case when

|S| < ∞ which has a more combinatorial flavor. Let S be a finite set and for each
nonempty subset T of S, let p(T ) ∈ [0, 1]. Now, for each ∅ 	= T ⊆ S, we inde-
pendently “choose" T with probability p(T ) ∈ [0, 1] and we let X be the union of
the “chosen" T ’s which we identify with a {0, 1}-valued process {Xi }i∈S . The cor-
respondence between this formulation and the earlier one is that p(T ) is simply the
probability that a Poisson random variable with parameter ν({T }) is nonzero.

We introduce the following natural notation. For A ⊆ S, we let

S∪
A :=

⋃
i∈A

Si
(= {T ∈ P(S) : A ∩ T 	= ∅})
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and
S∩
A :=

⋂
i∈A

Si
(= {T ∈ P(S) : A ⊆ T }).

We observe that for any A ⊆ S, we have that

P
(
Xν(A) ≡ 0

) = e−ν(S∪
A).

We now discuss a number of examples. In these examples and throughout the rest
of the paper, for p ∈ [0, 1], we will let �p denote a product measure with 1’s having
density p.

Example 1 Let a > 0, and let
ν =

∑
i∈S

aδ{i}.

Then Xν ∼ �1−e−a .

Example 2 Let a > 0, and let ν = aδS . Then Xν has distribution

(1 − e−a)δ1 + e−aδ0,

where 1 (0) is the configuration consisting of all 1’s (0’s). If S = Z
d , then this yields

a (trivial) non-ergodic process.

Example 3 Let S = Z, and let
ν =

∑
i∈Z

δ{i,i+1}.

Then Xν is the image of an i.i.d. sequence under a block (finite range) map. More

precisely, if (Yi )i∈Z ∼ �1−e−1, then Xν d= (
max(Yi ,Yi+1)

)
i∈Z

.

Example 4 Let S = Z, and let

ν =
∑

i∈Z, n≥0

anδ{i,i+n}

for some (an)n≥0.

It is easy to see (similar to Example 2) that Xν is a Bernoulli shift. This means that
there is an equivariant map, i.e., a map commuting with the shift, from an i.i.d. process
to the process in question. However, we don’t know if it is a finitary factor of an i.i.d.
sequence. Finitary means that the equivariant map above is a.s. continuous. These
concepts will play a very tiny role in this paper and not until Section 7. The Borel-
Cantelli Lemma immediately gives that Xν ≡ 1 a.s. if and only if

∑∞
n=0 an = ∞.

Example 5 Thewell-studied random interlacement process inZ
d ford ≥ 3, introduced

by Alain-Sol Sznitman, falls into this context; see [7] for the definition and some of
what is known. For those familiar with this, we actually need to massage it slightly so
that it falls into our context. In the random interlacement process, we have a Poisson
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process over random walk realizations modulo time shifts which are transient in both
forward and backward time. If we nowmap such a trajectory (modulo time shifts) to its
range and then take their union, we then obtain a process inR since the push-forward
of a Poisson process is a Poisson process. The ν in [7, Theorem 5.2] would provide
us with our ν (after pushing forward).

The random interlacement process has an intensity parameter which just corre-
sponds to scaling themeasure ν. It was in fact thismodelwhich provided themotivation
for our paper.

Example 6 The union of the discrete loops that arise in a random walk loop soup
corresponds to a process inR.

The random walk loop soup is a well studied object in relation to the Brownian
loop soup and the discrete Gaussian free field. It was introduced in [14] and is defined
in the following way: the rooted loop measure μRW assigns to each (nearest neighbor)
random walk loop in Z

2 of length 2n the measure (1/2n)4−2n and the measure ν is
given by λμRW where λ ∈ (0,∞) is an intensity parameter.

While we are limiting ourselves to countable sets, in continuous space, similar
constructions (e.g., Boolean models, Poisson cylinder models) play a crucial role in
stochastic geometry. We also want to mention that the idea of enriching a graph by
attaching a Poissonian number of independent finite subgraphs comes up naturally in
the analysis of random graphs, see for instance [3] and [4].

The paper is organized as follows. Our main focus is to determine, for a given
{0, 1}-valued process, if it belongs to R. On the way to answering this question, we
give some properties of processes in R. It is easy to show that processes in R are
positively associated. It turns out that they also have the so-called downward FKG
property (but not necessarily the FKG property), see Theorem 2.1. Also, if X is a
collection of i.i.d. {0, 1}-valued random variables, then X ∈ R. Taking S = Z,
it is natural to ask if Markov chains or renewal processes are in R. We show in
Section 3 that indeed all positively associated Markov chains are in R, and describe
the corresponding measure ν, see Theorem 3.1. On the way to this result, we give a
necessary and sufficient condition for a renewal process to be inR, see Theorem 3.3.
In Section 4, we consider processes X on {0, 1}N which are invariant under finite
permutations, and we ask if they are in R. In this section, we first prove a version of
de Finetti’s Theorem for possibly infinite measures (which turned out to be known)
that is of independent interest, see Theorem 4.1. We then show that the X ∈ R are
in one-to-one correspondence with infinitely divisible distributions on [0,∞), see
Theorem 4.2. Interesting such examples include the {0, 1}-sequences coming from
classical urn models, see Examples 16 and 17. In Section 5.1, we investigate the finite
permutation invariant case. Taking a sequence Xn ∈ {0, 1}n , n ≥ 1, such that each
Xn is permutation invariant, we show that in order to have Xn ∈ R for all n ≥ 1,
it is necessary that the arithmetic means of the Xn’s concentrate, see Theorem 5.1.
As an immediate consequence, we obtain that for temperatures less than the critical
one, the Curie-Weiss model is not in R for large n, see Theorem 5.2. We then study
finite averages ofm product measures, and we give sufficent conditions for X ∈ R for
m ≥ 2 and for X /∈ R form = 2, see Theorem 5.6 for the latter case. The proof is quite
technical, given that the statement is only about an average of two product measures,
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but Section 6 relies crucially on this result. In Section 6, we consider tree-indexed
Markov chains on infinite trees and we give conditions on the parameters such that
the process is not inR. With a similar argument, we show that the Ising model on Z

d

for d ≥ 2 is not in R for a certain range of parameters. In Section 7.2, we consider
stationary processes Xν on {0, 1}N. We give a necessary and sufficient condition on ν

such that Xν is ergodic, see Theorem 7.2, and a sufficent condition on ν such that Xν

is a Bernoulli shift, see Theorem 7.3. We end in Section 8 with some open questions.

2 Background definitions, and some first properties and examples

We begin by recalling some basic definitions.

Definition 2 A probability measure μ on {0, 1}S is said to be positively associated if
for all increasing sets A and B,

μ(A ∩ B) ≥ μ(A)μ(B).

Definition 3 A probability measure μ on {0, 1}S is said to satisfy the FKG property if
for all I ⊆ S and all {ai }i∈I with each ai ∈ {0, 1} such that μ(Xi = ai for i ∈ I ) > 0,
the conditional measure

μ(· | Xi = ai for i ∈ I )

on {0, 1}S\I is positively associated.

Definition 4 A probability measure μ on {0, 1}S is said to satisfy the downwards
FKG property if in the definition of the FKG property, we only require the positive
association of the conditional measure when each ai = 0.

Clearly the FKG property implies the downward FKG property which in turn
implies positive association. Note that while positive association and the FKG prop-
erty are unaffected by reversing 0’s and 1’s, this is not the case with the downward
FKG property.

The following result demonstrates the very different roles played by the 0’s and 1’s
for our Xν .

Theorem 2.1 For every S and ν, Xν has the downward FKG property. However, it
does not necessarily satisfy the FKG property.

Proof We begin the proof by showing that Xν has positive association for all ν’s. In
the case of finite S, it is immediate that Xν is given by increasing functions of i.i.d.
random variables and hence by Harris’ Theorem has positive association. An easy
approximation argument gives the result for general sets S.

Wenowprove the downward FKGproperty. To this end, recall thatY ν is the Poisson
process on P(S)\{∅} with intensity measure ν. When one conditions on the event that
Xν is zero on some subset A ⊆ S, one is conditioning on the event that no element

in S∪
A occurred in Y ν . The conditional distribution of Y ν then becomes Y

ν|
(S∪

A )c and
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hence the conditional distribution of Xν is still of our form and hence is positively
associated by the first part of this proof.

Finally, we give an example of an Xν which does not have the FKG property. Let
S = {1, 2, 3} and ν give weight log 2 to each of {1, 2} and {2, 3}. Then Y ν is one of
the following collections of sets, each having probability 1/4.

(a) ∅,
(b)

{{1, 2}},
(c)

{{2, 3}}, and
(d)

{{1, 2}, {2, 3}}.
If we condition on x2 = 1, then we know Y ν is one of the last three each then with
conditional probability 1/3. Now, it is immediate that conditioned on x2 = 1, we have
x1 = 1 with probability 2/3, x3 = 1 with probability 2/3 and x1 = x3 = 1 with
probability 1/3, which is less than 4/9. Hence Y ν is not FKG. 
�
Remark 1 The example in the proof of Theorem2.1 also gives an example of an X ∈ R
such that X | X2 = 1 is not inR.

Remark 2 The upper invariant measure for the contact process exhibits similar behav-
ior to the above example. It is not FKG (see [15]) but it is downwards FKG (see
[1]).

Proposition 2.2 Assume ν is a translation invariant measure onP(Z)� {∅} that gives
positive weight to an infinite subset S which is not periodic. Then Xν ≡ 1 a.s.

Proof Since S is not periodic, all of its translates are distinct and have the same ν-
weight. We show Xν(0) = 1 almost surely. Since S is infinite, there are an infinite
number of translates of S containing 0 and so at least one of these will occur almost
surely. 
�

The next proposition says that the overlap property of the sets that ν charges
describes pairwise correlations in a simple way.

Proposition 2.3 Assume that X = (Xs)s∈S = Xν . Then, for any k, � ∈ S, we have

P(Xk = 0, X� = 0) = P(Xk = 0)P(X� = 0)eν(Sk∩S�).

More generally, if A and B are disjoint subsets of S, we have

P(XA ≡ 0, XB ≡ 0) = P(XA ≡ 0)P(XB ≡ 0)eν(S∪
A∩S∪

B ).

Proof We prove only the first statement. The second statement is proved in the same
way. By definition,

P(Xk = 0, X� = 0) = e−ν(Sk∪S�) = e−[ν(Sk )+ν(S�)−ν(Sk∩S�)]

= P(Xk = 0)P(X� = 0)eν(Sk∩S�).


�
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Corollary 2.4 For any S and ν, if Xν is pairwise independent, then it is an independent
process.

Proof By inclusion-exclusion, it suffices to show that for any finite A ⊆ S, one has

P(Xν
A ≡ 0) =

∏
a∈A

P(Xν
a = 0).

The assumption of pairwise independence together with Proposition 2.3 implies that
for a, b ∈ A, a 	= b, ν(Sa ∩ Sb) = 0. This yields ν(S∪

A) = ∑
a∈A ν(Sa) and hence

P(Xν
A ≡ 0) = e−ν(S∪

A) = e−∑
a∈A ν(Sa) =

∏
a∈A

P(Xν
a = 0).


�
The proof of the following useful lemma will be left to the reader.

Lemma 2.5 For any S, ν and ν′, one has that

Xν+ν′ d= max{Xν, Xν′ },

where the latter two processes are assumed to be independent.

Lemma 2.6 Given {0, 1}-valued random variables X = (Xk)k∈[n], if there is a non-
negative measure ν on P([n])\{∅} such that

P
(
X(K ) ≡ 0

) = e−ν(S∪
K ), K ⊆ [n],

then Xν d= X .

Proof If ν is nonnegative, Xν exists. Since X and Xν agree on events of the form
XK ≡ 0, they must agree on all events, and hence the desired conclusion follows. 
�
Lemma 2.7 Let X = (X1, X2, . . . , Xn) be {0, 1}-valued random variables such that
P(X ≡ 0) > 0.

Then there is a unique signed measure ν on P([n]) � {∅} that satisfies

ν
(
S∪
I

) = − log P
(
X(I ) ≡ 0

)
, I ⊆ [n] (1)

and it is given by (3).
(Note that by Lemma 2.6, if such a nonnegative measure ν exists, then X = Xν .)

Proof If a signed measure ν exists then, since n is finite, we have

ν
(
S∪
I

) =
∑

J⊆[n] : J∩I 	=∅
ν(J )
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and hence (1) is equivalent to the system of linear equations given by

∑
J⊆[n] : J∩I 	=∅

ν(J ) = − log P
(
X(I ) ≡ 0

)
, I ⊆ [n]. (2)

The desired conclusion will thus follow if we can show that this system of linear
equations always has a unique (possibly signed) solution (ν(J ))J⊆[n],J 	=∅.

To this end, we first rewrite (2) as

∑
J⊆[n]�I :

J 	=∅

ν(J ) =
∑

J⊆[n] :
J 	=∅

ν(J ) −
∑

J⊆[n] : J∩I 	=∅
ν(J )

= − log P
(
X([n]) ≡ 0

) −
(
− log P

(
X(I ) ≡ 0

))
, I ⊆ [n].

Equivalently, this becomes

∑
J⊆I :
J 	=∅

ν(J ) = − log P
(
X([n]) ≡ 0

) +
(
log P

(
X([n] � I ) ≡ 0

))
, I ⊆ [n].

By the Möbius inversion theorem, we see that this equation is equivalent to

ν(K ) =
∑
I⊆K

(−1)|K |−|I |(− log P
(
X([n]) ≡ 0

) + log P
(
X([n] � I ) ≡ 0

))

=
∑
I⊆K

(−1)|K |−|I | log P
(
X([n] � I ) ≡ 0

)
, ∅ 	= K ⊆ [n].

(3)

This concludes the proof. 
�

Lemma 2.8 Assume that X = Xν and that (Xi )i∈[n]
d= (Xσ(i))i∈[n] for some σ ∈ Sn .

Then ν = ν ◦ σ.

Proof From Lemma 2.7, we know that if X = Xν exists, then ν is unique. If X = Xν

then X = Xσ = Xν◦σ , and hence we must have ν = ν ◦ σ. 
�
The proof of the following lemma is left to the reader, the third part of whose proof

uses a simple compactness argument.

Lemma 2.9 Consider a process X = {Xs}s∈S.
(a) If X = Xν and B ⊆ S, then there is νB such that X |B = XνB . Moreover, for

any non-empty measurable subsetA ⊆ P(B), we have νB(A) = ν
({A′ ∈ P(S) :

A′ ∩ B ∈ A}).
(b) If X = Xν and B ⊆ S, then there is a measure νB,0 on P(B) � {∅} such that

X |{X(Bc) ≡ 0
} = XνB,0 . Moreover, νB,0 = ν|P(B).

(c) If there exist S1 ⊆ S2 ⊆ . . . such that S = ⋃
i Si and XSn = Xνn for some νn,

then X = Xν for some ν. (The projection of ν on to each Sn will simply be νn.)
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We first point out that when n = 2, provided we have positive association, X is
always of this form. In particular, one can check that X = Xν, where for ∅ 	= J ⊆
{1, 2} we set ν(J ) = − log

(
1 − p(J )

)
where

⎧⎪⎨
⎪⎩
p({1, 2}) = 1 − P(X1 = 0)P(X2 = 0)/P(X1 = X2 = 0)

p({1}) = 1 − (P(X1 = X2 = 0))/P(X2 = 0)

p({2}) = 1 − (P(X1 = X2 = 0))/P(X1 = 0).

Sticking with n = 2 in the nonpositively associated case, it is interesting to see
which sets the representing signed measure ν gives negative weight to.

Example 7 Let X be (1, 0) or (0, 1) each with probability (1−ε)/2 and equal to (0, 0)
or (1, 1) each with probability ε/2, where ε < 1/2. Then

P
(
X(1) = 0

) = P
(
X(2) = 0

) = 1/2 and P
(
X({1, 2}) ≡ 0

) = ε/2.

Consequently,

ν(S1 ∪ S2) = − log ε/2 = log 2 − log ε = 2ν
({1}) + ν

({1, 2})
and

ν(S1) = − log 1/2 = log 2 = ν
({1}) + ν

({1, 2})
and hence

ν
({1}) = − log ε > 0 and ν

({1, 2}) = log 2 + log ε < 0.

When we now move to n = 3, it is already the case that positive association does
not imply that X is of our form as the following example shows.

Example 8 Choose σ ∈ S3 uniformly at random, and define X = (X1, X2, X3) by
X j = 1(σ ( j) = j). Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P(X ≡ 1) = 1/6

P
(
X = (1, 1, 0)

) = P
(
X = (1, 0, 1)

) = P
(
X = (0, 1, 1)

) = 0

P
(
X = (1, 0, 0)

) = P
(
X = (0, 1, 0)

) = P
(
X = (0, 0, 1)

) = 1/6

P(X ≡ 0) = 1/3.

The random vector X defined above is known to be positively associated (see, e.g.,
[8]). On the other hand, one easily verifies that it is not of our form.

Remarks 1 (i) More generally, Fishburn, Doyle and Shepp ( [8]) proved that if we
choose σ ∈ Sn uniformly at random and define X = (X1, X2, . . . , Xn) by X j =
1(σ ( j) = j), then X is positively associated.
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(ii) Jeff Kahn ( [12]) proved the much stronger and much more difficult fact that the
above randomvector cannot be expressed as an increasing function of i.i.d. random
variables. Nikita Gladkov ( [10]) has extended this result further by showing that
the above random vector cannot be obtained as the limit of increasing functions
of i.i.d. random variables.

(iii) We will see another example later on of a positively associated process which is
not inR for n = 3; it will, in fact, be an average of two product measures.

We provide a further interesting example for n = 3 which is positively associated
but not inR.

Example 9 Let X ,Y be i.i.d. 0 or 1 each with probability 1/2. Consider (X ,Y , XY ).

This is positively associated since the vector is given by increasing functions of i.i.d.
random variables. Next, if XY = 0, then either X or Y is equal to zero. Consequently,

P(X = Y = 1 | XY = 0) = 0

and hence (X ,Y , XY ) is not downward FKG. By Theorem 2.1, we conclude that this
is not inR.

The unique signed measure ν which satisfies X = Xν is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
({1}) = ν

({2}) = log 2

ν
({3}) = ν

({1, 3}) = ν
({2, 3}) = 0

ν
({1, 2}) = log 3/4 < 0

ν
({1, 2, 3}) = log 4/3.

The next result tells us that with some additional symmetries, positive association
implies that we are Poisson generated when n = 3.

Theorem 2.10 Consider a probability measure μ on {0, 1}3 which is invariant under
permutations and interchanging 0 and 1. Then the following are equivalent.

(a) μ has positive association.
(b) μ is an increasing function of i.i.d. random variables.
(c) μ satisfies the FKG property.
(d) μ is inR.

Proof The set of measures μ as above is just a one parameter family since p1 :=
P(X ≡ 1) ≤ 1/2 determines the measure given all of the symmetries. Since (c)
implies (b) implies (a) and (d) implies (b) implies (a) in general, we need only show
that (a) implies (c) and (a) implies (d).

It is elementary to check that μ is positively associated if and only if p1 ≥ 1/8.
Under this assumption, it is easy to verify that the FKG property holds (one way to
see this is that the model is then the ferromagnetic Curie-Weiss model).

To see that (a) implies (d), one simply checks that the following ν measure works.
Letting p2 := P

(
X(1) = X(2) = 1, X(3) = 0

)
, one verifies that p2 = (1 − 2p1)/6

which is then at most 1/8.
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ν gives each of the three singletons weight log( p1+p2
p1

), each of the three doubletons

weight log( p1
2(p1+p2)2

) and the unique three element set weight log( 8(p1+p2)3

p1
). One

can check that the first and third terms are always non-negative while the second term
is non-negative if and only if p1 ≥ 1/8. 
�

Poisson representable processes have a similar flavor to the so-called divide and
color model (see [20]) but they are certainly different. In the latter model, one takes a
random partition of S (with any distribution) and then assigns all the elements in each
partition element either 1 or 0 with probability p and 1− p. This is done independently
for different clusters. We now give some examples illustrating the difference between
these concepts.

Example 10 (Example 2.17 in [20]) Consider the divide and color process X cor-
responding to the two partitions, (12, 3, 4) and (1, 2, 34) being chosen with equal
probability. Letting A = {X1 = X2 = 1} and B = {X3 = X4 = 1}, one checks
that these are increasing but negatively correlated events and hence this does not have
positive association. Consequently, X /∈ R by Theorem 2.1.

Example 11 X1, X2, X3, X4 be i.i.d. with P(X1 = 0) = 1/2. For n ∈ {1, 2, 3}, let
Yn := max(Xn, Xn+1). We first leave it to the reader to check that (Y1,Y2,Y3) is
Poisson generated by using

ν
({1, 2}) = ν

({2, 3}) = ν
({1}) = ν

({3}) = log 2.

However, we now argue that (Y1,Y2,Y3) is not a divide and color process.
To see this, note that P(Y1 = 1) = 3/4 and hence any divide and color model

would need to be made with p = 3/4. Assume (Y1,Y2,Y3) is a divide and color
model. Since Y1 and Y3 are independent, they cannot be in the same partition element.
Hence the only possible partitions are (1, 2, 3), (12, 3), (1, 23). By symmetry, these
are given masses p, (1 − p)/2, and (1 − p)/2 for some p. This implies that

P(Y1 = Y2 = Y3 = 0) = p(1/4)3 + (1 − p)(1/4)2.

Since, by definition, we have P(Y1 = Y2 = Y3 = 0) = 1/16, it follows that p = 0.
Next, note that

1/8 = P(Y1 = Y2 = 0) = 1/2(1/4) + 1/2(1/4)2 = 1/8 + 1/32,

a contradiction.

The following lemma states that the setR is closed in the set of all random vectors.

Lemma 2.11 Let S be countable and let Xn ∈ {0, 1}S be a sequence of random vectors
that converges in distribution to a random vector X ∈ {0, 1}S .

If Xn ∈ R for every n, then X ∈ R.
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Proof Assume first that |S| < ∞.

For n ≥ 1, since Xn ∈ R, there is a measure νn on P(S) � {∅} such that Xn =
Xνn . Allowing now our measures to take the value ∞, we can extract a convergent
subsequence (νn′) of (νn) converging to some ν which is allowed to take the value
∞. Now Xn′ = Xνn′ converges to both X and to Xν and hence X ∈ R. Applying
Lemma 2.9, we obtain the desired conclusion for any S. 
�

It turns out that domination frombelowbyproductmeasures for translation invariant
processes on Z

d which belong toR has a simple characterization.

Proposition 2.12 Let ν be a translation invariant measure on P(Zd) � {∅}. Then
Xν ≥ �p if and only if

ν(S∪
A) ≥ −|A| log(1 − p)

for all boxes A of the form {−n, . . . , n}d .
Proof This follows immediately from Theorem 2.1 and [16, Theorem 4.1] using the
fact that for any box A, P

(
Xν(A) ≡ 0

) = e−ν(S∪
A). 
�

3 Markov and renewal processes

In this section,we begin by proving the following result, which shows that all positively
associated Markov chains on {0, 1}Z are in R.

To simplify notation in what follows, given a stationary process X , we define

ck := P
(
X0 = 0, Xk = 0

)
, k ≥ 0,

Note that if c0 = P
(
X0 = 0

)
> 0, then by positive association, we have ck ≥ c20 > 0

for all k > 0.

Theorem 3.1 Let X be a non-trivial stationary positively associated Markov chain on
{0, 1}Z. Then X ∈ R and ν is given by

ν(K ) =
{
log c|K |−1c|K |+1

c2|K |
if K is a finite interval, and

0 otherwise.
(4)

Remark 3 We note that if X is a non-constant positively associated {0, 1}-valued
Markov chain, then its transition matrix can be written as

P =
(
p00 p01
p10 p11

)
=
(
1 − p(1 − r) p(1 − r)

pr 1 − pr

)
, (5)

for some p, r ∈ (0, 1). Here p is the probability that the Markov chain rerandomizes
(otherwise it stays fixed) and r is the probability it moves to zerowhen it rerandomizes.

Hence, as easily checked,

ck = r(1 − p)k + r2
(
1 − (1 − p)k

)
, k ≥ 0. (6)
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The proof of Theorem 3.1 will use the following lemma involving renewal pro-
cesses, which we now define.

Definition 5 Let X be non-trivial a {0, 1}-valued process on Z. We say that X is a
renewal process (with respect to 0) if there is a sequence (bn)n≥1 of non-negative real
numbers such that

∑∞
n=1 bn ≤ 1 and for any (a j ) j∈Z ∈ {0, 1}Z

P
(
min{ j ≥ 1 : Xk+ j = 0} = n | Xk = 0, (Xk−i )

∞
i=1 = (ak−i )

∞
i=1

) = bn,

for all k, n ∈ Z.

We will in addition always assume that
∑∞

n=1 bn = 1 and that the process is
stationary.

Lemma 3.2 Assume that X = Xν ∈ R for some translation invariant measure ν.

Then X is a renewal process if and only if ν is supported on finite intervals of Z.

Proof We show “only if” direction; the “if” direction is left to the reader.
Assume that X = Xν is a renewal process. Then, by Theorem 2.1, X is positively

associated, and hence

P(Xn+1 = 0 | Xn = 0) > 0 ∀n ∈ Z. (7)

Let n ∈ Z. Then, by definition, we have

e−ν(Sn+1�Sn) = P(Xn+1 = 0 | Xn = 0) > 0.

Since X is a renewal process, we also have

P(Xn+1 = 0 | Xn = 0) = P(Xn+1 = 0 | Xn = 0, Xn−1 = 0, . . . )

= e−ν(Sn+1�
⋃

j≤n S j ).

Combining the two above equations, we obtain

ν(Sn+1 � Sn) = ν(Sn+1 �

⋃
j≤n

S j ) < ∞.

In particular, this implies that for any j ≤ n, we have

ν(Sn+1 ∩ Sc
n ∩ S j ) = 0.

This implies that ν is supported on intervals.
Assume now for contradiction that ν has support on infinite intervals. Then, without

loss of generality, we can assume that

ν
({[k,∞) ∩ Z : k ∈ Z

})
> 0.
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Since X = Xν, with strictly positive probability there is k ∈ Z such that X j = 1 for
all j ≥ k, and hence X cannot be recurrent.

This concludes the proof. 
�
Proof of Theorem 3.1 Assume first that X = Xν ∈ R for some measure ν.

Since X is stationary, ν is translation invariant, and by Lemma 3.2, ν is supported
on finite intervals.

Letting k ≥ 1, it follows that

ck = P(X0 = Xk = 0) = e−ν(S∪{0,k}) = e−ν(S0)e−ν(Sk )eν(S∩{0,k}) = e−ν(S0)e−ν(S0)eν(S∩{0,k})

= c20e
ν(S∩{0,k}) = c20

∏
j>k

e( j−k)ν([ j]).

From this, it follows that

ck−1ck+1

c2k
= c20

∏
j>k−1 e

( j−(k−1))ν([ j])c20
∏

j>k+1 e
( j−(k+1))ν([ j])

c20
∏

j>k e
( j−k)ν([ j])c20

∏
j>k e

( j−k)ν([ j]) = eν([k]).

Consequently, ν is given by (4).
Using (6), it is easy to check that X being positively associated implies that the

following inequality holds.

ck−1ck+1 ≥ c2k ∀k ≥ 1. (8)

Let ν be given by (4).
Since ν is translation invariant and supported only on finite intervals, it follows

from Lemma 3.2 that Xν is a renewal process.
Next, note that for any k ≥ 0, we have, for all m ≥ k + 1,

m∑
j=k+1

( j − k) log
c j+1c j−1

c2j
= log ck − (m + 1 − k) log cm + (m − k) log cm+1

= log ck − log cm + (m − k) log
cm+1

cm
.

(9)

Using (6), one can verify that

lim
m→∞ cm = c20 and lim

m→∞m log
cm+1

cm
= 0. (10)

Letting m → ∞ in (9), we obtain

P(Xν
0 = Xν

k = 0) = c20e
∑

j>k ( j−k)ν([ j]) = c20e
log ck−log c20 = ck,

where the first equality follows as in the first display of the proof.
Since Xν and X are both renewal processes, this shows that Xν = X .
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We now state and prove a more general version of Theorem 3.1 which is valid for
all renewal processes.

Theorem 3.3 Let X be a renewal process with P(X0 = 0) > 0. Then X ∈ R if and
only if

ck−1ck+1 ≥ c2k ∀k ≥ 1. (11)

Moreover, in this case, X = Xν, where ν is the translation invariant measure given
by (4).

The proof of Theorem 3.1 already proves Theorem 3.3 if we can show that (10)
also holds in this more general setting. This is the purpose of the following lemma.

Lemma 3.4 Assume X is a renewal process with c0 > 0 such that (11) holds.
Then

(a) (ck)k≥0 is decreasing,
(b) limk→∞ ck = c20, and
(c) limk→∞ k log(ck+1/ck) = 0.

Proof (a) Since (11) holds and c0 > 0, we have ck ∈ (0, 1) for all k ≥ 0.
For any k ≥ 1, we have

ck+1ck−1

c2k
≥ 1 ⇔ ck−1

ck
≥ ck

ck+1
.

Consequently, the sequence (
ck−1
ck

)k≥1 is decreasing and converges to a limit a ∈
[0, c0/c1] as k → ∞.

We will now show that a ≥ 1. To this end, assume for contradiction that a < 1.
Then there is j ≥ 1 such that ck/ck+1 < (1 + a)/2 < 1 for all k ≥ j, and
hence ck > c j

(
2/(1 + a)

)k− j for all k ≥ j . Since c j > 0, this implies that
limk→∞ ck = ∞, contradicting that ck < 1 for all k ≥ 0. Hence we must have
a ≥ 1. Since (ck−1/ck)k≥1 is decreasing, it follows that ck−1/ck ≥ a = 1 for all
k ≥ 1, and hence (ck)k≥0 is decreasing. This completes the proof of (a).

(b) Since, by (a), (ck)k≥0 is decreasing, let c∞ denote its limit.
Let

ak := P
(
min{ j ≥ 0 : X j = 0} = k

)
, k ≥ 0.

Then, for any k ≥ 1, we have (due to stationarity)

c0 = P(Xk = 0) =
k∑
j=0

a j (ck− j/c0).

Since
∑∞

j=0 a j = 1, c0 > 0, and ck ↘ c∞, we obtain (b).
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(c) To this end, note that for any m ≥ 1, we have

Sm :=
m∑

k=1

k log
ck−1ck+1

c2k
= log c0 + m log cm+1 − (m + 1) log cm

= log c0 − log cm + log(cm+1/cm)m
(b)≤ log c0 − log cm + 0

↗ log c0 − log c20 = − log c0.

Since each term in the sum Sm is non-negative, Sm is increasing in m. Since
(Sm)m≥1 is increasing and bounded from above by − log c0, its limit limm→∞ Sm
exists and is bounded from above by − log c0.
Since, by (b), the limit of (cm)m≥0 also exists, and

Sm − (log c0 − log cm) = log(cm+1/cm)m,

it follows that limm→∞(cm+1/cm)m exists.
Next, note that since c0 ≥ c1 ≥ · · · ≥ c20 and

∑∞
m=1 1/m = ∞, we must have

lim infm→∞ m(cm − cm+1) = 0. Since

lim inf
m→∞ m(cm − cm+1) = 0 ⇒ lim inf

m→∞ m(1 − cm+1/cm) = 0

⇒ lim inf
m→∞ (1 − (1 − cm+1/cm))m = 1 ⇔ lim inf

m→∞ (cm+1/cm)m = 1

and limm→∞(cm+1/cm)m exists, it follows that

lim
m→∞(cm+1/cm)m = lim inf

m→∞ (cm+1/cm)m = 1.

This establishes (c), and thus completes the proof.

�

Proof of Theorem 3.3 Replacing (10) with Lemma 3.4, the proof of Theorem 3.1 gives
the desired conclusion.

Lemma3.2 tells us that for positively associatedMarkov chains, the corresponding ν

is supported on finite intervals. Interestingly, a similar result holds for Markov random
fields.

Proposition 3.5 Let X = Xν be a {0, 1}-valued process on a connected graph that
satisfies the Markov property and is such that for all finite sets A,

P
(
X(A) ≡ 0 | X(∂A) ≡ 0

)
> 0.

Let D be the set of all disconnected subsets of S, at least one of whose components is
finite. Then ν(D) = 0.
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Proof By assumption, we have for any finite set A

P
(
X(A) ≡ 0 | X(∂A) ≡ 0

) = e−ν(S∪
A�S∪

∂A) > 0.

Since X satisfies the Markov property, we also have

P
(
X(A) ≡ 0 | X(∂A) ≡ 0

) = P
(
X(A) ≡ 0 | X(Ac) ≡ 0

) = e−ν(S∪
A�S∪

Ac ) > 0.

Combining the two above equations, we obtain

ν(S∪
A � S∪

∂A) = ν(S∪
A � S∪

Ac ) < ∞

which easily yields

ν
(
(S∪

A ∩ S∪
Ac ) � S∪

∂A

) = 0.

This concludes the proof. 
�
Remark 4 With Theorem 3.1 in mind, it is natural to ask whether

1. all positively associated tree-indexed Markov chains are inR, and if
2. the Ising model on Z

d , d ≥ 2, is inR.

We answer both these questions negatively in Theorem 6.1 and Theorem 6.2.

4 Infinite permutation invariant processes

In this section,we consider (possibly infinite)measures ν on {0, 1}N which are invariant
under finite permutations and the associated processes Xν which are permutation
invariant probability measures on {0, 1}N. Also, in this section, we let �p denote the
product measure on {0, 1}S with density p and we recall de Finetti’s Theorem which
states that each {0, 1}-valued process X indexed by N which is invariant under finite
permutations is an average of product measures; i.e. there is a (unique) probability
measure μ on [0, 1] such that the distribution of X is

∫ 1

0
�p dμ(p).

We will identify X with μ.

Example 12 If X ∼ �p, i.e. if μ = δp, then X = Xν for the (infinite) measure ν

defined by

ν(A) =
{

− log(1 − p) if A = { j} for some j ∈ N

0 else.
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Example 13 For all p ∈ [0, 1], if X ∼ α�p + (1−α)�1, i.e. ifμ = αδp + (1−α)δ1,

then X = Xν for the (infinite) measure ν defined by

ν(A) =

⎧⎪⎨
⎪⎩

− log(1 − p) if A = { j} for some j ∈ N

− logα if A = N,

0 else.

Example 14 Let ν = �p. Then

Xν d=
∞∑
j=0

e−1

j ! �1−(1−p) j ,

which is a convex combination of product measures whose densities have an accumu-
lation point at one.

4.1 A de Finetti theorem for infinite measures

To begin here, we need to first understand the permutation invariant (possibly infinite)
measures ν on {0, 1}N. If we stick to probability measures, then this is the classical de
Finetti’s Theorem above. While this immediately extends to any finite measure, we
need to encompass infinite measures as well here. We proved the following infinite
version of de Finetti’s Theoremwhich is relevant for our specific context. After having
done this, we learned that this was already done (in a slightly different and even more
general setup) by Harry Crane; see [6, Theorem 2.7]. Despite the result therefore not
being new, we include our proof below since it is quite short and written using the
same language as the rest of the paper.

Theorem 4.1 (A version of de Finetti’s theorem for possibly infinite measures) Let ν

be a permutation invariant measure on P(N) � {∅}.
Assume that ν(S1) < ∞. Then there is a unique measure σ on (0, 1] and c ≥ 0

such that

ν = c
∑
i∈N

δi +
∫ 1

0
�x dσ(x) (12)

and ∫ 1

0
x dσ(x) < ∞.

Note that the assumption that ν(S1) < ∞ is needed to not have Xν ≡ 1 almost
surely.

Proof Let U := {{1}, {2}, . . . }, and for j ≥ 1, let ν j := ν|S∪[ j]�(U∪S∪[ j−1]). Note that

by assumption, for each j ≥ 1, ν j is a finite measure.
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Then we can write

ν = c
∑
i∈N

δi +
∞∑
j=1

ν j .

In particular, we have written ν as a sum of measures with disjoint supports.
Define

τ A := {1} ∪ (A + 1), A ⊆ N.

and
ν̂1(·) := ν1

(
τ ◦ ·) = ν

(
τ ◦ ·).

Then ν̂1 is permutation invariant and finite, and hence, by de Finetti’s theorem, there
is a unique finite measure m on [0, 1] such that

ν̂1
d=
∫

�x dm(x).

Note that
‖m‖ = ‖ν̂1‖ = ν

({A : min A = 1, |A| > 1}) < ∞.

For j ≥ 1, let

A j := supp(ν j ) = {A ⊆ N : |A| > 1, min A = j}.

For S ⊆ A j , we have

ν j (S) = ν(S) = ν(σ1 jS) = ν1(σ1 jS) = ν̂1
(
τ−1(σ1 jS)

)
=
∫

�x
(
τ−1(σ1 jS)

)
dm(x) =

∫
�x (S) x−1 dm(x).

Letting dσ(x) = x−1 dm(x), the desired conclusion immediately follows. 
�

4.2 Characterization in terms of infinite divisibility

We recall that a random variable Z on [0,∞) is infinitely divisible if its Laplace
transform satisfies

E[e−t Z ] = e−γ t e
∫∞
0 (e−st−1) dσ̂ (s), t ≥ 0 (13)

where γ ≥ 0, σ̂
(
(ε,∞]) is finite for all ε > 0, and

∫ 1
0 s dσ̂ (s) < ∞. Here σ̂ is called

the Levy measure of Z . The notion of an infinitely divisible distribution on [0,∞)

easily extends to the case where the probability that Z = ∞ is strictly positive. This
corresponds to the law pL(Z ′) + (1 − p)δ∞, where Z ′ is infinitely divisible.

Our main theorem completely identifies permutation invariant random vectors in
R with infinitely divisible distributions on [0,∞].
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Theorem 4.2 (a) Assume that X ∈ R satisfies X = Xν where ν is as in (12). Further,
let μ be such that X ∼ ∫ 1

0 �p dμ(p). Let ϕ : x �→ − log(1 − x) map [0, 1] to
[0,∞], and let Z = ϕ(Q) where Q ∼ μ.

Then
(i) Z is infinitely divisible, (ii) σ̂ = σ ◦ ϕ−1, and (iii) γ = ν({1}),
where σ̂ and γ are as in (13).

(b) Let Z be an infinitely divisible distribution on [0,∞]. Let ϕ−1 = φ : x �→ 1−e−x

map [0,∞] to [0, 1], and let μ = L(φ(Z)). Let X ∼ ∫ 1
0 �p dμ(p). Then

(i) X ∈ R, (ii) σ = σ̂ ◦ φ−1, and (iii) ν({1}) = γ,

where σ̂ and γ are as in (13) and X = Xν, where ν is as in (12).

Lemma 4.3 Let X ∼ ∫ 1
0 �p dμ(p). Assume that X ∈ R and let ν = c

∑
i∈N

δ{i} +∫ 1
0 �x dσ(x) be such that X = Xν .

Further, let Q ∼ μ, y0 := 1 − e−ν({1}), and (Y j ) j≥1 be a Poisson point process
with intensity σ. Then

Q
d= 1 − (1 − y0)

∏
j≥1

(1 − Y j ).

Proof Assume without loss of generality that Y1 ≥ Y2 ≥ . . .

Then, one observes that

Xν | (Y j ) j≥1 ∼ �1−(1−y0)
∏

j≥1(1−Y j ).

Since we also have Xν ∼ ∫ 1
0 �p dμ(p), it follows, since the set of permutation

invariant measures is a simplex, that

1 − (1 − y0)
∏
j≥1

(1 − Y j ) ∼ μ.

This concludes the proof. 
�

Proof of Theorem 4.2 Let y0 and (Y j ) j≥1 be as in Lemma 4.3. Then, by this lemma,
we have

Q
d= 1 − (1 − y0)

∏
j≥1

(1 − Y j ),

and hence

Z = − log(1 − Q) ∼ − log(1 − y0) −
∑
j≥1

log(1 − Y j ).
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This implies that for t ≥ 0 we have

E[e−t Z ] = E[e−t(− log(1−y0)−∑
j≥1 log(1−Y j ))] = E[et log(1−y0)+t

∑
j≥1 log(1−Y j )]

= et log(1−y0)E[et
∑

j≥1 log(1−Y j )] = et log(1−y0)e
∫ 1
0 (et log(1−y)−1) dσ(y)

= et log(1−y0)e
∫ 1
0 ((1−y)t−1) dσ(y) = et log(1−y0)e

∫∞
0 (e−st−1) d(σ◦ϕ−1)(s),

(14)

where we use Campbell’s formula in the third to last equality.
This concludes the proof of (a).
To see that (b) holds, let ν be defined by

ν :=
∑
j∈N

γ δ{ j} +
∫ 1

0
�x d(σ̂ ◦ φ−1)(x).

Let X ′ := Xν . Then, by construction, X ′ ∈ R. We will now show that X
d= X ′.

To see this, letμ′ be the deFinettimeasure of X ′, Q′ ∼ μ′, and Z ′ := − log(1−Q′).
Let Q ∼ μ and Z := − log(1 − Q). Since the set of permutation invariant measures

is a simplex, it suffices to show that μ = μ′, or equivalently, that Z d= Z ′.
Using (14) with Z replaced by Z ′, we obtain E[e−t Z ] = E[e−t Z ′ ] for all t ≥ 0.

Hence Z
d= Z ′. This concludes the proof of (b).

The following result is a direct consequence of Theorem 4.2.

Corollary 4.4 Let m ≥ 2, 0 ≤ p1 < · · · < pm ≤ 1 and α1, . . . , αm ∈ (0, 1) be such
that

∑m
i=1 αi = 1. Let X = (X j ) j∈N ∼ ∑m

i=1 αi�pi . Then X ∈ R if and only if
m = 2 and pm = 1.

Proof We have X ∼ ∫ 1
0 �p dμ(p), where μ has finite support. Since the only finitely

supported infinitely divisible random variables with no support at ∞ are constant, the
desired conclusion follows from Theorem 4.2. 
�

4.3 Examples

Example 15 Let σ be the Lebesgue measure on [0, 1]. Further, let ν = ∫ 1
0 �x dσ(x),

and let μ be such that Xν ∼ ∫
�p dμ(p). Then, by Theorem 4.2(a), for Q ∼ μ we

have that − log(1 − Q) is infinitely divisible with γ = 0 and

dσ̂ (x) = e−x dσ(x) = e−x dx .

On the other hand, assume that μ is of the form

μ ∼ e−1δ0 + (1 − e−1)

∫ 1

0
�p f (p) dp,

for some “nice” probability density function f .
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Let (Yi )i≥1 be a Poisson point process with intensity σ, letU1,U2, · · · ∼ unif(0, 1)
be i.i.d., and let Q ∼ μ. Then, using Lemma 4.3, for t > 0, we have

P(Q ≤ t) = P
(
1 −

∏
i≥1

(1 − Yi ) ≤ t
) = P

(
1 − t ≤

∏
i≥1

(1 − Yi )
)

=
∞∑
k=0

e−1

k! P
(
1 − t ≤

k∏
i=1

(1 −Ui )
) =

∞∑
k=0

e−1

k! P
(
1 − t ≤

k∏
i=1

Ui
)

= 1 −
∞∑
k=1

e−1

k! P
( k∏
i=1

Ui < 1 − t
) = 1 −

∞∑
k=1

e−1

k!
∫ 1−t

0

(− log u)k−1

(k − 1)! du.

Taking derivatives of both sides, we obtain

f (t) = d

dt
P(Q ≤ t) = e−1

∞∑
k=1

(− log(1 − t))k−1

k!(k − 1)! = e−1
J1
(
2
√− log(1 − t)

)
√− log(1 − t)

,

where J1 is the Bessel function of the first kind with order 1.

Example 16 Let μ be the uniform measure on [0, 1] and let X ∼ ∫ 1
0 �p dμ(p). Let

Q ∼ μ and let Z := − log(1 − Q). Then

P(Z ≤ t) = P(− log(1 − Q) ≤ t) = P(Q ≤ 1 − e−t ) = 1 − e−t ,

and hence Z has density f (t) = e−t . Since the exponential distribution is infinitely
divisible, it follows from Theorem 4.2(b) that X ∈ R. Note that it is well known
and easily checked that the exponential distribution with parameter 1 corresponds to
γ = 0 and dσ̂ (t) = e−t/t dt in (13). Again using Theorem 4.2(b), we further obtain
in (12),

dσ(x) = e−(− log(1−x))/(− log(1 − x)) · 1

1 − x
dx = 1

− log(1 − x)
dx (15)

and
ν({1}) = 0.

Example 17 Letμ be aBeta-distributionwith parametersα, β ∈ (0,∞) (i.e. letμ have
density xα−1(1 − x)β−1B(α, β)−1) and let Q ∼ μ. Then − log(1 − Q) is infinitely
divisible (see e.g. [21, Example VI.12.21]) with γ = 0 and Levy measure

dσ̂ (t) = e−βt (1 − e−αt )

t(1 − e−t )
dt .

Hence, by Theorem 4.2(b), X ∼ ∫ 1
0 �p dμ(p) is inR. Moreover, we get

dσ(x) = dσ̂ (− log(1 − x)) · 1

1 − x
= (1 − x)β−1(1 − (1 − x)α)

−x log(1 − x)
dx
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and ν
({1}) = 0. We recover Example 16 by letting α = β = 1.

5 Finite permutation invariant processes

5.1 The CurieWeiss model and a finite permutation invariant result

In this section, we state and prove a theorem in the finite permutation invariant setting,
which we then use to show that the supercritical Curie Weiss model is not in R for
large n.

Theorem 5.1 For each n ≥ 1, let Xn ∈ {0, 1}n be permutation invariant. Let X̄n :=(
Xn(1) + . . . Xn(n)

)
/n. Assume that there is c ∈ (0, 1), such that

lim
n→∞ P(X̄n ≥ c) = 0 (16)

and that Xn ∈ R for each n ≥ 1.
Then

lim
n→∞Var(X̄n) = 0. (17)

Proof Let δ ∈ (0, 1), and letSδ be the set of all subsets of [n]with at least δn elements.
Let νn ≥ 0 be such that X = Xνn (such a νn exists since Xn ∈ R).
We will first show that limn→∞ νn(Sδ) = 0. To this end, let c ∈ (0, 1) be such

that (16) holds and choose k such that (1− δ)k < 1−c
2 . We now condition on the event

Ek,n that the Poisson random variable corresponding to the number of sets chosen from
Sδ for the nth system is at least k. Note that

P(Ek,n) =
∞∑

�=k

e−νn(Sδ)νn(Sδ)�

�! .

One easily sees that for each i ∈ [n],

P
(
Xn(i) = 1 | Ek,n

) ≥ 1 − (1 − δ)k ≥ 1 + c

2
.

Applying Markov’s inequality conditioned on Ek,n , we get

P
(
X̄n ≥ c | Ek,n

) = 1 − P
( n∑
i=1

(
1 − Xn(i)

)
> (1 − c)n | Ek,n

)

≥ 1 − E
[∑n

i=1

(
1 − Xn(i)

) | Ek,n
]

(1 − c)n
≥ 1 − (1 − c)n/2

(1 − c)n
= 1/2.
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From this, it follows that

P(X̄n ≥ c) ≥ P(Ek,n)
2

.

Using (16), we obtain
lim
n→∞ P(Ek,n) = 0

which implies that limn→∞ νn(Sδ) = 0.
Now note that, by symmetry, we can write

νn(S1) = νn({1}) +
n∑
j=2

νn([ j])
(
n − 1

j − 1

)
and νn(S∩[2]) =

n∑
j=2

νn([ j])
(
n − 2

j − 2

)
,

and hence,

νn(S1) ≥
n∑
j=2

νn([ j])
(
n − 1

j − 1

)
=

n∑
j=2

νn([ j])
(
n − 2

j − 2

)
n − 1

j − 1
≥

δn∑
j=2

νn([ j])
(
n − 2

j − 2

)
n − 1

j − 1

≥ n − 1

δn

δn∑
j=2

νn([ j])
(
n − 2

j − 2

)
≥ n − 1

δn
νn(S∩[2] � Sδ).

Since limn→∞ νn(Sδ) = 0 for any δ ∈ (0, 1) and lim supn→∞ νn(S1) < ∞ by (16),
it follows that limn→∞ νn(S∩[2]) = 0.

Now note that

E[X̄n] = E
[
Xn(1)

] = 1 − e−νn(S1)

and that

E[X̄2
n] = n−2

E

[( n∑
i=1

Xn(i)
)2] = n−2

(
nE[Xn(1)

2] + n(n − 1)E
[
Xn(1)Xn(2)

])

= n−2(nE
[
Xn(1)

] + n(n − 1)E
[
Xn(1)Xn(2)

])
= n−2

(
nE[Xn(1)] + n(n − 1)

((
1 − e−νn(S∩[2])

) + e−νn(S∩[2])
(
1 − e−(νn(S1)−νn(S∩[2]))

)2))

= n−1
E[Xn(1)] + (1 − n−1)

(
1 − 2e−νn(S1) + e−2νn(S1)+νn(S∩[2])

)
= n−1

E[Xn(1)] + (1 − n−1)
(
(1 − e−νn(S1))2 − e−2νn(S1)(1 − eνn(S∩[2]))

)
.

Combining these equations, we obtain

Var(X̄n) = n−1
E[Xn(1)] − n−1((1 − e−νn(S1))2 − e−2νn(S1)(1 − eνn(S∩[2]))

)
− e−2νn(S1)(1 − eνn(S∩[2])).

Since, limn→∞ νn(S∩[2]) = 0, the desired conclusion immediately follows. 
�
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Throughout this section,we letμJ ,n be theCurie-Weissmodel on [n]withparameter
J = β/n, so that

μJ ,n(σ ) = Z−1
J ,ne

J
∑

i< j σiσ j , σ ∈ {−1, 1}n .

In other words, we let μJ ,n be the Ising model with inverse temperature J on the
complete graph with vertices labeled by [n].

It is well known that there is βc ∈ (0,∞) and (cβ) such that if σ ∼ μn,J then σ̄

concentrates at 0 ± cβ as n → ∞, where

1. cβ = 0 if β ≤ βc.

2. 0 < cβ < 1 if β > βc.

Theorem 5.2 Let μJ ,n be the Curie-Weiss model on [n] with parameter J = β/n,

and let Xn ∈ {0, 1}n be the corresponding {0, 1}-valued random vector where we
have identified −1 with 0. If β > βc and n is sufficiently large, then the Curie-Weiss
model is not inR.

Proof Applying Theorem 5.1, the desired conclusion immediately follows. 
�

5.2 Finite averages of product measures

In Corollary 4.4, we considered finite averages of product measures, and showed that
these were not inR except in very few special cases.

In this setting, given X /∈ R, there is an N ≥ 3 such that X([n]) ∈ R for n < N
and X([n]) /∈ R for n ≥ N .

The reason for the “3” is that any average of product measures X is positively
associated and hence by the discussion after Lemma 2.9, X([2]) is always inR.

Our averages of product measures have precisely 2m − 1 parameters. The next
theorem says that we can reduce it to 2m − 2 parameters. This might not seem like a
giant improvement, but when m = 2, we then have only two parameters. This is the
case which we will analyze in most detail and we can then visualize the phase diagram
reasonably well since it is just two-dimensional.

In this theorem, we use the following notation. Given x = (x1, x2, . . . , xm) such
that 1 = x1 > x2 > · · · > xm ≥ 0, q ∈ (0, 1], and ααα = (α1, . . . , αm) ∈ (0, 1)m such
that

∑m
i=1 αi = 1, we let

Xq,x,ααα ∼
m∑
i=1

αi�1−qxi .

Using this particular form for the product measures is advantageous since, as stated
in the following theorem, being representable turns out to be independent of q.

Theorem 5.3 Let n ≥ 2. Let x = (x1, x2, . . . , xm) be such that 1 = x1 > x2 > · · · >

xm ≥ 0, q ∈ (0, 1], and ααα = (α1, . . . , αm) ∈ (0, 1)m be such that
∑m

i=1 αi = 1.
Then Xq,x,ααα([n]) ∈ R if and only if Xq ′,x,ααα([n]) ∈ R for all q ′ ∈ (0, 1].
The proof of Theorem 5.3 will use the following lemma.
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Lemma 5.4 Let n ≥ 2.
Let x = (x1, x2, . . . , xm) be such that 1 = x1 > x2 > · · · > xm ≥ 0, q ∈ (0, 1],

and ααα = (α1, . . . , αm) ∈ (0, 1)m be such that
∑m

i=1 αi = 1.
Let νn be the unique signed measure corresponding to Xq,x,ααα([n]). Then, for � ∈

[n],

νn
([�]) =

�∑
j=0

(−1)�− j
(

�

j

)
log

m∑
i=1

αi (qxi )
n− j (18)

⎧⎨
⎩− log q + log

∑m
i=1 αi x

n−1
i∑m

i=1 αi xni
if � = 1∑�

j=0(−1)�− j
(
�
j

)
log

∑m
i=1 αi x

n− j
i if � ∈ {2, 3, . . . , n}.

(19)

Moreover, νn({1}) ≥ − log q and νn([2]) ≥ 0.

Proof For j ∈ [n], we have

P
(
X
([n] � [ j]) ≡ 0

) =
m∑
i=1

αi (qxi )
n− j .

Using (3), we obtain (18). From this, noting that
∑�

j=0(−1)�− j
(
�
j

)
(n− j) log q = 0

if � ≥ 2, we obtain (19).
From this, using theCauchy-Schwarz inequality for the second inequality,we obtain

νn
({1}) = − log q + log

∑m
i=1 αi x

n−1
i∑m

i=1 αi xni
≥ − log q,

and

νn({1, 2}) = log

∑m
i=1 αi x

n−2
i

∑m
i=1 αi xni

(
∑m

i=1 αi x
n−1
i )2

≥ 0.


�
Proof of Theorem 5.3 Assume that Xq,x,ααα([n]) ∈ R. Then there is a measure ν on
P([n]) � {∅} such that Xq,x,ααα([n]) = Xν .

Let ν′ be the unique signed measure corresponding to Xq ′,x,ααα.

Let A ⊆ [n] satisfy |A| > 1. By Lemma 5.4, we then have that ν(A) = ν′(A), and
hence, since ν is a non-negative measure it follows that ν′(A) ≥ 0.

Finally, we note that, again by Lemma 5.4, we have ν′({1}) ≥ − log q ′ ≥ 0. Hence
ν′ is a non-negative measure, implying that Xq ′,x,ααα([n]) ∈ R. This concludes the
proof. 
�

The following proposition begins to give information about the phase diagram for
when X([n]) ∈ R by explaining what happens when α1 is sufficiently close to zero or
one or when x2 is sufficiently close to zero (see Figure 1). (Recall that by Theorem 5.3,
for any n, X([n]) being inR is independent of q.)
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Proposition 5.5 Let x = (x1, x2, . . . , xm) be such that 1 = x1 > x2 > · · · > xm ≥ 0,
q ∈ (0, 1], and ααα = (α1, . . . , αm) ∈ (0, 1)m be such that

∑m
i=1 αi = 1. Let X ∼∑m

i=1 αi�1−qxi and n ≥ 3.

(a) If m ≥ 2, then X([n]) ∈ R if x2 is sufficiently close to 0 (depending on α1).
(b) If m ≥ 2, then X([n]) ∈ R if α1 is sufficiently close to 1.
(c) If m = 2, then X([n]) /∈ R if x2 > 0 and α1 is sufficiently close to 0 (depending

on x2 and n). (This is not true in general for m ≥ 3.)

Proof Assume first that x2 = 0. In this case, one verifies that

νn
([k]) =

⎧⎪⎨
⎪⎩

− log q if k = 1

− logα1 if k = n

0 otherwise,

and hence X([n]) ∈ R.

In the rest of the proof, we therefore assume that x2 > 0.
We first show that (a) holds.
To this end, assume that x2 is small enough so that α−1

1

∑m
i=2 αi xi < 1. Then,

using (19), a Taylor expansion, and the assumption that
∑m

i=1 αi = 1, we obtain that,
for any k ∈ {2, 3, . . . , n},

νn
([k]) =

min(k,n−1)∑
j=0

(−1)k− j
(
k

j

)
log

(
α1 +

m∑
i=2

αi x
n− j
i

)

=
min(k,n−1)∑

j=0

(−1)k− j
(
k

j

)(
logα1 +

∞∑
�=1

(−1)�+1

�

(
α−1
1

m∑
i=2

αi x
n− j
i

)�)

=
{

α−1
1

∑m
i=2 αi x

n−k
i + O(xn−k+1

2 ) if k ∈ {2, 3, . . . , n − 1}
− logα1 + O(x2) if k = n.

Finally, we note that by Lemma 5.4, νn({1}) ≥ − log q. From this (a) immediately
follows.

We now show that (b) holds. To this end, assume that α1 is close enough to 1 to
ensure that α−1

1

∑m
i=2 αi xi < 1. Then, for k ∈ {2, 3, . . . , n}, as above, it follows that

for α1 → 1,

νn
([k]) =

min(k,n−1)∑
j=0

(−1)k− j
(
k

j

)(
logα1 +

∞∑
�=1

(−1)�+1

�

(
α−1
1

m∑
i=2

αi x
n− j
i

)�)

= α−1
1

m∑
i=2

αi x
n−k
i (1 − xi )

k + O((1 − α1)
2).

The last equality, when k = n, uses the observation that logα1 + α−1
1 (1 − α1) =

O((1 − α1)
2).

123



M. Forsström et al.

Since νn({1}) ≥ − log q by Lemma 5.4, it follows that X([n]) ∈ R when α1 is
close to 1. This concludes the proof of (b).

We now show that (c) holds. To this end, assume that m = 2, and that α1 is close
enough to 0 to ensure that α1 < (1 − α1)xn2 . Then, for k ∈ {2, 3, . . . , n}, by (19) and
a Taylor expansion, it follows that for α1 → 0,

νn
([k]) =

k∑
j=0

(−1)k− j
(
k

j

)
log

(
α1 + α2x

n− j
2

)

=
k∑
j=0

(−1)k− j
(
k

j

)(
log(α2x

n− j
2 ) +

∞∑
�=1

(−1)�+1

�

(
α1/(α2x

n− j
2 )

)�)

=
k∑
j=0

(−1)k− j
(
k

j

)(
log(α2x

n− j
2 ) + α1/(α2x

n− j
2 )

) + O(α2
1).

Noting that

k∑
j=0

(−1)k− j
(
k

j

)
logα2 = 0 =

k∑
j=0

(−1)k− j
(
k

j

)
(n − j) log x2,

it follows that

νn
([k]) = (−1)k

α1

1 − α1
x−n
2 (1 − x2)

k + O(α2
1).

This concludes the proof of (c). 
�
The case where m = 2 and x2 is taken to be close to 1 (corresponding to two

product measures having similar densities) is the most intriguing and undergoes a
phase transition in α1 where the critical value corresponds to the largest negative zero
of the so-called polylogarithm function as we will see in the following theorem. In
addition, this result will later be used to show that certain positively associated tree-
indexed Markov chains, as well as the Ising model with certain parameters, are not in
R.

In this result, wewill use Lis to denote the polylogarithm functionwith index s ∈ R,

defined for z ∈ C with |z| < 1 by

Lis(z) :=
∞∑
k=1

zk

ks

and extended to all z ∈ C (except for poles) by analytic continuation. When s is a
negative integer the function Lis(z) is a rational function.

The following properties of the polylogarithm functions are standard and easy to
show (see also Fig. 2).
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Fig. 1 In the figures above, we draw the regions where νn([k]) < 0 as a function of (our only parameters)
x2 (on the y-axis) and α1 (on the x-axis) for m = 2, n = 3, 4, 5, and k ∈ {3, . . . , n}. The curves along the
x-axis are the polylogarithm functions which appear in Theorem 5.6(a)

(1) For all x ∈ R and j ∈ Z, we have Li′j (x) = Li j−1(x)/x .

(2) For all n ≥ 2, Li1−n has exactly n distinct non-positive roots r (n)
1 = 0 > r (n)

2 >

· · · > r (n)
n = −∞ which satisfy the interlacement property

0 = r (n+1)
1 = r (n)

1 > r (n+1)
2 > r (n)

2 > · · · > r (n+1)
n > r (n)

n = r (n+1)
n+1 = −∞.

(3) For all n ≥ 2, Li1−n(x) < 0 for all x ∈ (r (n)
2 , 0).

(4) For all n ≥ 3, Li1−n(x) > 0 for all x ∈ (r (n)
3 , r (n)

2 ). Hence, for any n ≥ 4, since

r (n−1)
2 ∈ (r (n)

3 , r (n)
2 ), we have Li1−n(r

(n−1)
2 ) > 0.
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(5) limn→∞ r (n)
2 = 0.

One verifies that r (3)
2 = −1, r (4)

2 = √
3 − 2, and r (5)

2 = 2
√
6 − 5.

In the next theorem, we describe what happens when m = 2 and x2 is close to 1.

Theorem 5.6 Let x = (x1, x2) be such that 1 = x1 > x2 ≥ 0, q ∈ (0, 1], and
ααα = (α1, α2) ∈ (0, 1)2 be such that α1 + α2 = 1. Let X ∼ α1�1−qx1 + α2�1−qx2
and n ≥ 3. (Recall that by Theorem 5.3, for any n, X([n]) being inR is independent
of q.)

(a) Let k ∈ {3, . . . , n}.
• If Li1−k

(−α−1
1 (1 − α1)

)
< 0, then νn

([k]) > 0 for x2 sufficiently close to 1.
• If Li1−k

(−α−1
1 (1 − α1)

)
> 0, then νn

([k]) < 0 for x2 sufficiently close to 1.
(If Li1−k(−α1(1 − α1)) = 0, then the sign of νn([k]) depends on which zero of
Li1−k one is considering.)

(b) α1 ≥ 1/(1 − r (n)
2 ) if and only if X([n]) ∈ R for x2 sufficiently close to 1 (see

Figure 1).

Proof We first show that (a) holds.
In this case, by (18)

νn([k]) =
k∑
j=0

(−1)k− j
(
k

j

)
log

(
α1 + (1 − α1)x

n− j
2

)

=
k∑
j=0

(−1)k− j
(
k

j

)
log

(
1 + α−1

1 (1 − α1)x
n− j
2

)

= (−1)k+1
k∑
j=0

(−1) j
(
k

j

)
Li1

(−α−1(1 − α1)x
n− j
2

)
.

One verifies that for any � ∈ {0, 1, . . . , k + 1}, we have

k∑
j=0

(−1) j
(
k

j

)
(n − j)� =

⎧⎪⎨
⎪⎩
0 if � < k

k! if � = k

(n − k/2)(k + 1)! if � = k + 1.

Combining these observations and Property (1) of the polylogarithm functions, we
obtain

d�

dx�
2

νn([k])|x2=1

=

⎧⎪⎪⎨
⎪⎪⎩
0 if � < k,

k!(−1)k+1 Li1−k
(−α−1

1 (1 − α1)
)

if � = k,
(k+1)!(−1)k+1

2

(
(2n − k)Li−k

(−α−1
1 (1 − α1)

) − k Li1−k
(−α−1

1 (1 − α1)
))

if � = k + 1.
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(We will not need the case � = k + 1 for (a), but we will need it for (b) and hence
include it here.) Using a Taylor expansion of νn([k]) around x2 = 1, it follows that
νn([k]) < 0 for x2 near 1 if

0 >
dk

dxk2
νn([k])

∣∣
x2=1(−1)k = −k!Li1−k

(−α−1
1 (1 − α1)

)
.

Hence, if
Li1−k

(−α−1
1 (1 − α1)

)
> 0,

then νn([k]) < 0 for x2 near 1.
Analogously, if

Li1−k
(−α−1

1 (1 − α1)
)

< 0,

then νn([k]) > 0 for x2 near 1. This completes the proof of (a).
We now show that (b) holds.
Note that α1 < 1/(1 − r (n)

2 ) ⇔ −α−1
1 (1 − α1) < r (n)

2 = r (n)
2 .

If α1 > 1/(1 − r (n)
2 ), then Li1−k(−α1(1 − α1)) < 0 for all k ∈ {2, 3, . . . , n}, and

so, by (a), we have νn([k]) > 0 for x2 close to 1 for all k ∈ {1, 2, . . . , n}. Hence
X([n]) ∈ R for x2 close to 1.

Conversely, if α1 < 1/(1 − r (n)
2 ), then there is at least one k ∈ {3, 4, . . . , n} such

that −α−1
1 (1 − α1) ∈ (r (k)

3 , r (k)
2 ), and hence Li1−k(−α1(1 − α1)) > 0. For this k,

by (a), we have νn([k]) < 0 for x2 close to 1, and hence X([n]) /∈ R for x2 close to 1.
Finally, ifα1 = 1/(1−r (n)

2 ), then by the above,we have that νn([k]) > 0 for x2 close
to 1 for all k ∈ {1, 2, . . . , n − 1}. Noting that for this α1, we have Li1−n(−α−1

1 (1 −
α1)) = 0 and Li−n

(−α−1
1 (1−α1)

)
> 0, and sowe obtain νn([n]) > 0 for x2 close to 1

by using a Taylor expansion of νn([n]) around x2 = 1 of degree n+1 and Property (4)
of the polylogarithm functions. Hence X([n]) ∈ R for x2 close to 1 . Finally, if
α1 = 1/(1 − r (n)

2 ), then by the above, we have that νn([k]) > 0 for x2 close to 1 for
all k ∈ {1, 2, . . . , n − 1}. Noting that for this α1, we have Li1−n(−α−1

1 (1− α1)) = 0
and Li−n

(−α−1
1 (1 − α1)

)
> 0, and so we obtain νn([n]) > 0 for x2 close to 1 by

using a Taylor expansion of νn([n]) around x2 = 1 of degree n + 1 and Property (4)
of the polylogarithm functions. Hence X([n]) ∈ R for x2 close to 1. Finally, if α1 =
1/(1 − r (n)

2 ), then by the above, we have that νn([k]) > 0 for x2 close to 1 for all
k ∈ {1, 2, . . . , n−1}. Noting that for this α1, we have Li1−n(−α−1

1 (1−α1)) = 0 and
Li−n

(−α−1
1 (1 − α1)

)
> 0, and so we obtain νn([n]) > 0 for x2 close to 1 by using

a Taylor expansion of νn([n]) around x2 = 1 of degree n + 1 and Property (4) of the
polylogarithm functions. Hence X([n]) ∈ R for x2 close to 1.

This concludes the proof of (b). 
�

6 Tree-indexedMarkov chains and the Isingmodel

In this section, we apply results from the previous section to obtain results for tree-
indexed Markov chains and the Ising model on Z

d , d ≥ 2.
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Fig. 2 “In the above figure, we draw Li1−k (−α−1
1 (1 − α1)) for k = 2, 3, 4, 5, 6, 7 and α1 ∈ (0, 1).

Using Theorem 5.6, one verifies that when n = 3, 4, 5, 6, 7 we get the following thresholds in α1 for

getting X([n]) ∈ R when x2 is close to one: 1
2 , 1

2 + 1
2
√
3
, 1
2 + 1√

6
, 1
2 + 1

2

√√
105+15
30 , 1

2 + 1
2

√√
15+10
15

(approximately equal to 0.5, 0.788675, 0.908248, 0.958684, 0.98085 respectively)

Given a tree T and parameters p, r ∈ (0, 1),we construct a reversible tree-indexed
{0, 1}-valued Markov chain X indexed by V (T ) sequentially as follows. First, fix
any root o of the tree and let Xo ∼ rδ0 + (1 − r)δ1. In the following steps, for any
vertex j ∈ V (T ) that is adjacent to some vertex i ∈ V (T ) which has already been

determined, we let X j
d= (1− p)δXi + p(rδ0+(1−r)δ1), independently of everything

else.

Theorem 6.1 Let d ≥ 3 and let T be a tree where some vertex o has at least d infinite
disjoint paths emanating from it. Let X p,r be the positively associated tree-indexed
Markov chain on T where p and r as in Remark 3 belong to (0, 1).

If r < 1/(1 − r (d)
2 ), where r (d)

2 is as in the paragraph before Theorem 5.6, then
X p,r /∈ R.

Note that since r (d)
2 approaches 0 as d → ∞, we have that for any r ∈ (0, 1), there

is some d such that X p,r /∈ R for all p ∈ (0, 1).

Proof For k ≥ 1, let Lk = {�(k)
1 , �

(k)
2 , . . . , �

(k)
d } be a set of vertices in T such that for

each j ∈ [d],
(i) dist(�(k)

j , o) = k, and

(ii) the paths between o and �
(k)
j , j ∈ [d], are disjoint.

Note that conditioned on X p,r
o , the random variables X p,r

�
(k)
1

, . . . , X p,r

�
(k)
d

are independent

and identically distributed. Moreover, if we let

⎧⎨
⎩
p(k)
0 := P(X p,r

�
(k)
1

= 1 | X p,r
o = 0)

p(k)
1 := P(X p,r

�
(k)
1

= 1 | X p,r
o = 1),
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then

X |Lk ∼ P(Xo = 0)�
p(k)
0

+ P(Xo = 1)�
p(k)
1

.

Note that p(k)
0 < p(k)

1 and that

lim
k→∞

1 − p(k)
1

1 − p(k)
0

= 1.

Using Theorem 5.6(b), it follows that for r < 1
1−r (d)

2

and for any sufficiently large k,

X |Lk /∈ R, and hence, by Lemma 2.9(a), X /∈ R. 
�
Remark 5 Interestingly, we can show that if the tree T consists of one vertex with three
infinite rays emanating from the vertex, then, for r close enough to 1, one has that for
all p ∈ (0, 1), the Markov chain indexed by T belongs toR. In light of Theorem 6.1,
this tree therefore exhibits a phase transition in r , which we do not believe holds for
the binary tree. This will be elaborated on and extended in future work.

In fact, one can check that for the tree T with four vertices and three leaves, the
set of (p, r) for which the tree-indexed Markov chain on T is not inR is a non-trivial
subset of (0, 1)2.

Theorem 6.2 Let X be the Ising model on Z
d , d ≥ 2, (identifying −1 with 0), and

coupling constant J > 0. Then, if

e2d J

e2d J + e−2d J ≤ 1

1 − r (2d)
2

where r (2d)
2 is as in the paragraph before Theorem 5.6, we have that X /∈ R.

Proof Let o := (0, 0, . . . , 0) and for k ≥ 1, let

Lk := {(±k, 0, . . . , 0), (0,±k, 0, . . . , 0), . . . , (0, 0, . . . , 0,±k)}.

Next, let Ck consist of o and the 2d direct paths from o to the points in Lk and finally,
let X (k) be the restriction of X conditioned to be zero on the set Z

2\Ck, to Ck . Then,
conditioned on X (k)

o the random variables {X (k)
� }�∈Lk are independent and identically

distributed.
Moreover, if we, for � ∈ Lk , let{
p(k)
0 := P(X (k)

� = 1 | X (k)
o = 0) = P

(
X� = 1 | Xo = 0, X(Z2\Ck) ≡ 0

)
p(k)
1 := P(X (k)

� = 1 | X (k)
o = 1) = P

(
X� = 1 | Xo = 1, X(Z2\Ck) ≡ 0

)
then

X (k)|Lk ∼ P(X (k)
o = 0)�

p(k)
0

+ P(X (k)
o = 1)�

p(k)
1

.
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Note that since J > 0, for every k ≥ 1, p(k)
0 	= p(k)

1 , and moreover

lim
k→∞

1 − p(k)
1

1 − p(k)
0

= 1.

Finally, observe that P(X (k)
o = 0) ≤ e2d J

e2d J+e−2d J . Using Theorem 5.6(b), it follows

that for any sufficiently large k, X (k)|Lk /∈ R, and hence, by Lemma 2.9(a) and (b),
X /∈ R. 
�

Remark 6 For d = 2, if we look at the critical value Jc = 1/2 log(1 + √
2) =

0.440687, one has that e4Jc
e4Jc+e−4Jc > 3+√

3
6 = 1

1−r (4)
2

and hence the above theorem

is only applicable within a subset of the subcritical regime (although we have no
suspicions whatsoever that the conclusion fails somewhere). For higher dimensions,
it is known that Jc(d) � 1

d as d → ∞ and since r (2d)
2 goes to 0 as d → ∞, we

can conclude that for all sufficiently high dimensions, the above theorem rules out
being inR throughout the subcritical regime and partly into the supercritical regime.
The above result can with small modifications be extended to the Ising model with an
external field.

7 The stationary case

In this section, we consider the stationary case and hence any ν that we are considering
will be assumed to be translation invariant.

After having obtained the results in this section, we learned from Nachi Avraham-
Re’em and Michael Björklund that most of the results in this section follow from
known results in the theory of so-called Poisson suspensions, an area within ergodic
theory and primarily within infinite measure ergodic theory. See for example [17, 18].
Since this section is only four pages, we decided to leave it as is, providing fairly direct
proofs of the results stated, in the spirit of the rest of the paper, rather than introducing
the notion of a Poisson suspension and refer to the relevant theorems in the literature.
For example, while Theorem 7.3 would follow from the known and easy result that
“Poisson suspensions of dissipative systems are Bernoulli”, the proof here gives an
easy factor map from an i.i.d. process to our system.

We begin by giving both sufficient and necessary conditions on ν for Xν to be
ergodic. For simplicity, we stick to one-dimensional processes.

We start with the simplest necessary condition as a warm-up.

Proposition 7.1 Assume that ν is finite and not the zero measure. Then Xν is not
ergodic.

Proof This follows immediately from the fact that P(Xν ≡ 0) = e−‖ν‖ ∈ (0, 1). 
�
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Remark 7 If we let μk be the law of max{Y 1,Y 2, . . . ,Y k} for k ≥ 1 and μ0 the Dirac
measure on the sequence consisting only of 0’s, the distribution of Xν is given by

∞∑
k=0

‖ν‖ke−‖ν‖

k! μk .

If Y is ergodic, then the above will often, but not always, yield the ergodic decompo-
sition of Xν . Reasons why it does not in general are

(1) if Y ≡ 1 a.s., then (and only then) μ1 = μk for all k ≥ 1, and
(2) it is possible thatμk is not ergodic and must be further decomposed but this cannot

happen if Y is weak-mixing.

The next theorem strengthens Proposition 7.1 and provides two equivalent condi-
tions for ergodicity. Before stating the theorem, we define

Z :=
{
η ∈ {0, 1}Z : lim

n→∞

∑n−1
k=0 ηk

n
= 0

}
.

In other words,Z consists of the configurations with zero density. It is immediate that
Z is a translation invariant set.

Theorem 7.2 Assume that P(Xν ≡ 1) < 1, or equivalently, that ν(S0) < ∞.
Then the following are equivalent.

(i) ν cannot be expressed as ν1 + ν2 where ν1 and ν2 are translation invariant and ν2
is a nonzero finite measure

(ii) ν(Zc) = 0
(iii) Xν is ergodic.

Proof (iii) implies (i).
Assume that ν = ν1 + ν2 where ν1 and ν2 are translation invariant and ν2 is a

nonzero finite measure.
By Lemma 2.5, if we let Xν1 and Xν2 be independent, then Xν and max{Xν1 , Xν2}

have the same distribution.
Since ν2 is a finite measure, Xν2 ≡ 0 with positive probability, and hence the

density of Xν is the same as the density of Xν1 with positive probability. Since ν2 is
nonzero, Xν2 has a positive density with positive probability and since Xν1 and Xν2 are
independent and P(Xν1 ≡ 1) < 1, the density of Xν is strictly larger than the density
of Xν1 with positive probability. Together this implies that Xν cannot be ergodic.

(i) implies (ii).
It suffices to show that for any δ > 0,

ν
({

η ∈ {0, 1}Z : lim sup
n→∞

∑n−1
k=0 ηk

n
≥ δ

}) = 0.
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To do this, we will show that ν(Aδ) = 0 where

Aδ := {
η ∈ {0, 1}Z : lim inf

n→∞

∑n−1
k=0 ηk

n
≥ δ

}
, δ > 0

and then apply [19, Theorem 2] to conclude the previous statement.
Using Fatou’s Lemma, we get

δν(Aδ) ≤
∫

lim inf
n→∞

∑n−1
k=0 ηk

n
dν|Aδ ≤ lim inf

n→∞

∫ ∑n−1
k=0 ηk

n
dν|Aδ = ν|Aδ (S0) < ∞.

Hence ν(Aδ) < ∞, and so, by assumption,we can conclude that ν(Aδ) = 0 as follows.
Since Aδ is translation invariant, we can write ν = ν|Aδ + (ν − ν|Aδ ) where the two
summands are translation invariant. Using the assumption (i), the desired conclusion
follows.

(ii) implies (iii).
We first show that

lim
n→∞

1

n

n−1∑
k=0

P
(
Xν
0 = Xν

k = 0
) = P

(
Xν
0 = 0

)2
. (20)

By the first statement in Proposition 2.3, this is equivalent to showing that

lim
n→∞ P

(
Xν
0 = 0

)2 · 1
n

n−1∑
k=0

(eν(S0∩Sk ) − 1) = 0.

Since P(Xν ≡ 1) < 1, we have

sup
k

ν(S0 ∩ Sk) ≤ ν(S0) < ∞,

and hence there exists c > 0 so that for all n ∈ N we have

1

n

n−1∑
k=0

(eν(S0∩Sk ) − 1) ≤ c

n

n−1∑
k=0

ν(S0 ∩ Sk) = c
∫

1S0

1

n

n−1∑
k=0

1Sk dν (21)

By our key assumption, the random sum 1
n

∑n−1
k=0 1Sk approaches 0 ν-a.e. Since

ν(S0) < ∞ we can now apply the Bounded Convergence Theorem to conclude that
the right hand side of (21) approaches 0 as n → ∞. This shows that (20) holds.

From here, there are two ways to complete the proof. One quick way to do this is
that one can observe that Lemma 2.5 implies that Xν is max-infinitely divisible (see
[11] for the definition) and then apply Theorem 1.2 from this latter reference.

However, one can proceed directly as follows. Let S1 and S2 be two finite subsets
of Z. Let A be the event that Xν(S1) ≡ 0 and B be the event that Xν(S2) ≡ 0.
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One can show, analogously to the first step, that

lim
n→∞

1

n

n−1∑
k=0

P(A ∩ T−k B) = P(A)P(B) (22)

where T−k is a k - step left shift. One does this by applying the full statement of
Proposition 2.3 and then easily modifying the argument above.

Using inclusion-exclusion, one can conclude (22) for any cylinder sets A and B.

This yields the ergodicity. 
�
Remark 8 It is easy to see that for positively associated processes, ergodicity implies
weak-mixing. Alternatively, this is stated in [11, Theorem 1.2] formax-infinitely divis-
ible processes. In addition, by [11, Theorem 1.1], to prove mixing, it suffices to prove
decaying pairwise correlations which amounts to showing that limn→∞ ν(S∩{0,n}) = 0.

We next give a sufficient condition on ν which yields much stronger ergodic behav-
ior.

Theorem 7.3 Assume that
ν is such that ν-a.e. S ∈ P(Z) has a smallest element. Then Xν is a Bernoulli Shift;

i.e. it is a factor of i.i.d.’s.

Proof Let Tk be the set of subsets whose smallest element is k. Then ν is concentrated
on

⋃
Tk and by translation invariance, the sets Tk are disjoint and all have the same

ν-measure.
For the rest of the proof, the three cases ν(Tk) = ∞, ν(Tk) = 0, and ν(Tk) ∈ (0,∞)

will be treated separetedly.

Case 1: Assume that ν(Tk) = ∞ for some (and hence all) k.
In this case, it is easy to see that Xν ≡ 1 a.s., and hence we are done.

Case 2: Assume that ν(Tk) = 0 for some (and hence all) k.
In this case, ν is the zero measure and Xν ≡ 0 a.s. and hence, we are

done.
Case 3: Assume that ν(Tk) ∈ (0,∞) for some (and hence all) k.

We will represent Xν as a translation invariant function of random
variables {Un}n∈Z, each uniform on the unit interval [0, 1] as follows. For
each k, we can use Uk to generate a Poisson point process Pk on Tk with
intensity measure νTk . Then, letting Xn = 1 if and only if n ∈ ∪k≤nPk ,
we have that X has the same distribution as Xν and we are done.


�
Remarks 2 1. If there is a uniform bound on the radius of the subsets where ν is

supported, then the above of course holds and the map is a block map.
2. If there is a uniform bound only on the sizes of the subsets where ν is supported

(a weaker assumption), then the above of course holds but this is not necessarily
a block map. In fact, if there is not a uniform bound on the radius of the subsets
where ν is supported, then the above map is not finitary.
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3. Much of the above extends to Z
d .

Theorem 7.4 Assume for Z
d that ν is supported on sets S for which there exists

(k1, . . . , kd) so that i j ≥ k j for each j for all (i1, . . . , id) ∈ S. Then Xν is a Bernoulli
Shift; i.e. it is a factor of i.i.d.s. In particular, if ν is supported on finite sets, then Xν

is a Bernoulli Shift.

Remark 9 The assumption loosely says that ν is concentrated on sets which are con-
tained inside of a “north-east” quadrant.

Proof of Theorem 7.4 We only outline the proof since it requires only minor modifi-
cations of the previous proof. We also only do this for d = 2. Let Tk1,k2 be the set of
subsets Z

d where i1 ≥ k1 and i2 ≥ k2 for all (i1, i2) ∈ S and (k1, k2) is maximal with
respect to the lexographic order with this property. We only deal with the non-trivial
case where ν(Tk1,k2) ∈ (0,∞). We will represent X as a translation invariant function
of random variables {Uk1,k2}, uniform on the interval [0, 1]. For each (k1, k2), we can
use {Uk1,k2} to generate a Poisson point process on Tk1,k2 . Then one proceeds as in the
1-dimensional case.

In view of the results in this section, it becomes clear that, from an ergodic theoretic
point of view, the most interesting case is when ν is supported on infinite zero density
sets. This is analogous to what happened when one studied divide and color models
in [20].

The following provides us with such an example.

Example 18 Let X be the random interlacements process onZ
3.Then, by construction,

X = Xν, where ν is the corresponding measure with support on the set of all simple
random walks trajectories, transient in both directions, in Z

3, and with the property
that the mass assigned to the set of all simple random walks that intersects a given
finite set is finite and non-zero. Let ν′ be ν restricted to the x-axis. Since a random
walk on Z

2 is recurrent, ν′ is supported on infinite 0 density sets. Letting X ′ be the
restriction of X to the x-axis, we of course have X ′ = Xν′

. By Theorem 7.2, X ′ is
ergodic. In fact, in [5], the full interlacement process X was shown to be a Bernoulli
shift which implies that X ′ is also a Bernoulli shift.

8 Questions

In this section, we collect a few interesting and natural questions about Poisson rep-
resentable processes.

Q1 Is the subcritical (high temperature) Curie-Weiss model inR for large n?
Q2 Is the Ising model in Z

d for J > 0 always not inR?
Q3 Is there any nontrivial tree-indexed Markov chain on an infinite regular tree

(other than Z) that is inR?
Q4 Take i.i.d. bond percolation on Z

d , d > 1, p > pc. Take X(v) = 1 if v belongs
to the infinite component and 0 otherwise. Is X ∈ R? Note, it is known (see
[1]) that the law of X is downward FKG. If X = Xν for some ν, it is easy to
see that ν must then be supported on sets that have no finite components.
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Q5 Is the upper invariant measure for the contact process in R? It is known to be
downwards FKG.

Q6 Given ν, can the behavior of Xcν depend in an essential way on c? This is clearly
a fairly vague question; one example where one sees this kind of phenomenon
is in the percolation properties of the interlacement process.

Q7 We have seen that if ν = ∑
i∈Z,n≥1 anδi,i+n with

∑
an < ∞, then Xν is a

factor of i.i.d.’s. Is Xν in fact a finitary factor of i.i.d.’s?
Q8 Related to Proposition 2.12, what can one say concerning the class of product

measures which dominate Xν for a translation invariant measure ν on P(Zd) �

{∅}?

Remark 10 Since the submission of thismanuscript, some of the questions listed above
have been partially answered. In particular, in [2], it was shown that for some parameter
choices, the contact process is not in R, thus partially answering Q5, and in [9], tree
indexed Markov processes were studied in more detail to partially answer Q3 in the
negative.
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