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 A B S T R A C T

Rolling Contact Fatigue (RCF) cracks often initiate from the surface layer of rails, where large accumulated 
plastic deformations influence the mechanical and fatigue properties of the rail material. Additionally, changes 
in profile geometry due to both plasticity and wear result in alternating contact locations and conditions. The 
goal of this study is to investigate the importance of considering these effects when predicting surface RCF 
crack initiation in rails. We analyze their individual impact on stress and strain fields, as well as fatigue crack 
initiation, by finite element simulations of railheads subjected to a mixed traffic situation. To account for 
deformation-dependent material behavior, an anisotropic plasticity model is calibrated against experiments 
with different amounts of accumulated shear strains measured in field samples. Finally, a recently developed 
crack initiation criterion is employed that accounts for the influence of plastic deformations. Under extreme 
loading conditions, i.e., full slip with a traction coefficient of 0.4, it is shown that both deformed near-surface 
material and deformed geometry reduce the predicted RCF fatigue damage significantly, by factors of about 
5 and 30, respectively. Furthermore, not accounting for the combined effect of deformed material state and 
geometry leads to approximately 150 times larger predictions of RCF damage.
1. Introduction

In the railway industry, RCF is a major source of problems in wheels 
and rails [1,2], reducing reliability and traffic safety [3]. Simulation 
tools that accurately predict RCF defects can improve reliability and 
safety by aiding maintenance planning and can provide a better un-
derstanding of the root causes of failures. However, the complex load 
scenarios and material behavior make such simulations challenging. 
High shear stresses due to traction and cornering forces within the small 
contact area between wheel and rail induce severe plastic deformations 
in the surface layer of rails and wheels [4,5]. These deformations 
accumulate over the service life, resulting in anisotropic behavior [6]. 
The highly deformed surface layer is known as the main region for the 
initiation of head checks, a common RCF defect [7,8]. In addition, the 
shape of rail and wheel profiles changes the contact conditions and 
contact stresses [9], which can consequently affect the resistance to 
fatigue crack initiation [10]. The present study aims to further enhance 
simulation accuracy by evaluating the importance of including the 
deformation-dependent material behavior and rail profile changes in 
RCF predictions.

To experimentally investigate the mechanical and fatigue properties 
of the deformed rail surface layer, techniques such as equal channel 
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angular pressing [11], high-pressure-torsion [12,13], and predeforma-
tion [14] have been used in the literature. These studies show that the 
fatigue, fracture, and yield properties of rail steel change due to plastic 
deformations. Many models have been proposed to capture the evo-
lution of anisotropic yield surfaces from an initially isotropic material 
state, often denoted as distortional hardening, see e.g. [15–18]. When 
evaluating the performance of a material in the deformed state, the 
yield surface is often characterized experimentally and modeled with a 
fixed anisotropy, see e.g. [19,20] for applications to sheet metal.

The performance of a railhead with a deformed surface layer under 
rolling contact conditions can be evaluated using models for the predic-
tion of fatigue crack initiation. Plastic ratcheting-based models, purely 
energy-density based criteria, and approaches incorporating material 
microstructure into fatigue damage predictions represent some of the 
models and strategies developed in literature [21–24]. In addition, 
some studies adopt a critical plane search approach seeking for a 
plane with maximum fatigue damage [25–28]. For instance, in Pun 
et al. [27], the maximum Smith–Watson–Topper parameter (including 
the maximum normal stress and normal strain range [29]) on a critical 
plane was proposed as a single parameter to evaluate the initiation 
of macroscopic fatigue cracks in a railhead. Jiang and Sehitoglu [28] 
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suggested a multiaxial Low Cycle Fatigue (LCF) criterion, in which 
normal stress, as well as shear stress and strain ranges on a given plane, 
contribute to the fatigue driving force in each loading cycle. This crite-
rion considers the influence of compressive stresses on fatigue damage 
(which is found to be influential on the fatigue life of rail steels [30]), 
and it is appropriate for non-proportional loading. We extended this cri-
terion in our previous paper [31], where the fatigue damage threshold 
was assumed to be dependent on the ratcheting strain.

Several studies have examined fatigue crack initiation in rails using 
Finite Element (FE) simulations of wheel–rail rolling contact condi-
tions. Ringsberg [32] investigated the RCF crack initiation perfor-
mance of a specific rail, using the recorded traffic loading in a three-
dimensional (3D) FE model with an elastic–plastic material calibrated 
against uniaxial stress-controlled experiments and 3D moving contact 
distributions. In Pun et al. [33], the ratcheting performance of high 
strength rail steels was evaluated under rolling contact conditions, 
using a 3D FE model for a rail and a plasticity model calibrated against 
monotonic tensile tests, as well as uniaxial and biaxial cyclic loading 
experiments. A similar procedure was applied to evaluate the ratchet-
ing performance of rails in curved tracks for higher axle loads [34]. 
Franklin et al. [35] developed a two-dimensional (2D) microstructural 
model (denoted the ‘‘brick’’ model) for simulating the accumulation of 
plastic shear strains during cyclic loading in the pearlitic microstruc-
ture. Ghodrati et al. [36] adopted a 3D FE model with crystal plasticity 
to simulate the material behavior in grains and used cohesive zone 
elements at the grain boundaries to study RCF crack initiation in 
wheel–rail rolling contact conditions. Trummer et al. [23] performed 
simulations of full-scale wheel–rail test rig experiments to investigate 
the propensity of fatigue crack initiation in the railhead using a model 
that accounts for large plastic deformations in the rail surface layer 
induced by wheel–rail contact. According to this model, the distribution 
of plastic shear strain in a crack initiation layer determines whether 
wear or a combination of wear and RCF crack initiation is the dominant 
damage mechanism. Additionally, they compared the distribution of 
the specific wear parameter (calculated as the 𝑇 𝛾 parameter divided 
by the contact area) with the damage pattern observed in the test 
rig experiments. The empirical 𝑇 𝛾 approach, which is based on the 
dissipated friction energy in the contact area, partially accounts for the 
interplay between wear and RCF crack initiation [37].

These fatigue performance investigations did not, however, account 
for the long-term accumulation of plastic deformations and its influ-
ence on the material behavior. This paper aims to study the effect of 
deformed near-surface material and deformed rail profile on stress and 
strain fields, as well as the accumulation rate of plasticity and fatigue 
damage in railheads under a loading sequence of mixed traffic. While 
acknowledging that the interaction between wear and macroscopic RCF 
crack initiation may influence the maximum fatigue damage results, 
the goal of this study is to provide insight into how different material 
states and profile geometry changes affect predictions of surface RCF 
crack initiation. To achieve this, the following procedure is adopted:

• We propose a distribution of large accumulated shear strains 
in a railhead based on measured shear strains in field samples 
(Section 2).

• A small-strain plasticity model accounting for an anisotropic yield 
surface is adopted. We identify the material parameters for dif-
ferent material states using multiaxial cyclic tests under non-
proportional loading, together with pure axial and pure shear 
cyclic loading experiments, conducted after different levels of pre-
deformation. Additionally, the predictive ability of the calibrated 
material model is evaluated (Section 3).

• For wheel over-rolling simulations, four railhead cases are consid-
ered, combining either initial or deformed material with initial 
or deformed geometry. Deformed material is accounted for by 
considering spatially varying material properties in the railhead. 
This variation is based on the distribution of accumulated shear 
strains. To model the rails under mixed traffic loading, a 2D 
FE-simulation setup is employed (Section 4).
2 
Fig. 1. Measured accumulated shear strains in rail samples (data from [30]).

• A recently developed crack initiation criterion accounting for 
plastic deformations is used to investigate how the deformed 
surface layer and geometry affect fatigue damage increment (Sec-
tion 5).

• The results in terms of maximum von Mises stresses, as well as 
accumulated plasticity and fatigue damage during one loading 
sequence, are presented and discussed (Section 6).

2. Distribution of accumulated shear strains

Large shear strains accumulate heterogeneously in the railhead due 
to high wheel–rail contact stresses [4,5]. In this work, we reconstruct 
the distribution of these strains based on measured accumulated shear 
strains at the gauge corner and at the top of the rail from [30], 
corresponding to points P2 and P3 in Fig.  2. The rail samples were 
extracted from the main railway line in Sweden, between Stockholm 
and Gothenburg, after 11 and 14 years of mixed traffic loads. The 
dominant traffic on this line consists of passenger trains with axle 
loads between 15–19 tons, resulting in annual traffic of approximately 
15 ⋅ 106 tons. Fig.  1 presents the measured accumulated shear strains 
𝛾 at different depths 𝜂 for points P2 and P3, excluding the first 10 μm 
due to high measurement uncertainties. A significant increase in 𝛾 can 
be observed close to the rail surface. Moreover, the measured values 
at the gauge corner (point P2) are higher than those at the top of the 
rail (point P3), up to a depth of approximately 0.1 mm. We obtain the 
distribution of accumulated shear strain over the railhead cross-section 
by interpolating the measured data, in the 𝜉 − 𝜂 coordinate system, 
where 𝜉 is the coordinate along the rail surface starting from point P1, 
and 𝜂 is the depth below the rail surface, see Fig.  2(a). 

At points P1 and P4, the accumulated shear strains are assumed to 
be zero at all depths, and, in between, a linear interpolation scheme 
considering the measurements at points P2 and P3 is employed. Further, 
the depth of the anisotropic layer is assumed to be 0.5 mm, and outside 
this depth and also points P1 and P4 (based on typical contact regions), 
the material is considered isotropic. More details on how the closest 
point projection method is used to map a point in the railhead to the 
𝜉− 𝜂 coordinate system, and how the distribution of 𝛾 is reconstructed, 
are given in Appendix  A.

Fig.  2(a) illustrates the distribution of 𝛾 over the railhead cross-
section. It indicates that 𝛾 decreases from the surface to the depth and 
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Fig. 2. (a) Assumed distribution of accumulated shear strain 𝛾 over the railhead cross-
section, and (b) shear strain 𝛾 versus 𝜉 and 𝜂.

also varies in the transverse direction, which is in accordance with the 
measurements. This variation is further detailed in Fig.  2(b). At 𝜂 = 0, 
the shear strain increases up to the gauge corner of the rail before 
dropping to zero at point P4. Furthermore, there is a significant shear 
strain gradient in the first 0.1 mm below the rail surface, followed 
by a more gradual decrease in 𝛾 with increasing depth 𝜂. Note that 
the same distribution of 𝛾 has been considered in the fictitious case of 
railhead with initial geometry and deformed material. The purpose of 
considering the fictitious case is to study the individual influence of the 
deformed material. For the wheel over-rolling simulations, described 
in Section 4, we will use the distribution of 𝛾 to define anisotropy in 
the FE model of the railhead cross-section. Additionally, fatigue crack 
initiation will be affected by the 𝛾-dependent initial ratcheting strains, 
see Section 5.

3. Material modeling and calibration

In this section, the adopted plasticity model is explained first. Subse-
quently, the considered experiments for the calibration of the material 
model and the parameter identification procedure are elaborated.

3.1. Material model formulation

In the present study, we adopt a small-strain cyclic plasticity model 
with an anisotropic yield surface, based on the finite strain material 
3 
model formulation developed by Meyer and Menzel [38]. First, the 
notations used for describing the material model are presented. Second-
order tensors are written in boldface, e.g. 𝒕, while fourth-order tensors 
are written in capitalized, boldface, and upright form, e.g. 𝗧. The non-
standard open product ⊗ between two second-order tensors is defined 
as: 𝒂⊗ 𝒃 = 𝑎𝑖𝑘 𝑏𝑗𝑙 𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 ⊗ 𝒆𝑙. 𝑰 is the second-order identity tensor, 
and the fourth-order deviatoric identity tensor is 𝗜dev = 𝑰⊗𝑰 − 𝑰 ⊗ 𝑰∕3.

The total strain, 𝝐, is additively decomposed into an elastic, 𝝐e, and 
a plastic, 𝝐p, strain 
𝝐 = 𝝐e + 𝝐p (1)

Linear isotropic elasticity is assumed 

𝝈 = 𝗘e ∶ 𝝐e where 𝗘e = 2𝐺 𝗜dev +𝐾b 𝑰 ⊗ 𝑰 , 𝐾b =
𝐸 𝐺

3 (3𝐺 − 𝐸)
(2)

where 𝐺, 𝐾b, and 𝐸 are the shear, bulk, and Young’s moduli, respec-
tively. The anisotropic yield function of Hill type is formulated as

𝛷 =
√

𝝈dev
red ∶ �̂� ∶ 𝝈dev

red − 𝑌 ≤ 0 with 𝝈dev
red = 𝝈dev −

𝑁back
∑

𝑖=1
𝜷𝑖 (3)

where 𝝈dev
red  is the reduced deviatoric stress, �̂� is the fourth-order 

anisotropy tensor, 𝑌  is the isotropic hardening, and 𝜷𝑖 are the back-
stresses. Two back-stresses (𝑁back = 2) are considered in this study. We 
assume that the anisotropy tensor does not evolve from the initial state 
described by the accumulated shear strain 𝛾 defined in Section 2, see 
Section 3.5 for more details.

The evolution of the plastic strain, 𝜖p, is considered to be of asso-
ciative type 

�̇�p = �̇� 𝜕𝛷
𝜕𝝈

= �̇� 𝝂 with 𝝂 = 1

2
√

𝝈dev
red ∶ �̂� ∶ 𝝈dev

red

[

�̂� ∶ 𝝈dev
red + 𝝈dev

red ∶ �̂�
]

(4)

where �̇� is the plastic multiplier (rate of the accumulated equivalent 
plastic strain) and can be determined from the Karush–Kuhn–Tucker 
loading/unloading conditions 
𝛷 ≤ 0, �̇� ≥ 0, 𝛷 �̇� = 0 (5)

The evolution law for the isotropic hardening is chosen to be of 
Voce-type and is formulated as 

𝑌 = 𝑌0 +
2
∑

𝑖=1
𝑌∞,𝑖

[

1 − exp
(

−𝜅iso,𝑖 𝜆
)]

, 𝜆 = ∫

𝑡

0
�̇� d𝑡 (6)

with the initial yield stress 𝑌0. 𝑌∞,𝑖 and 𝜅iso,𝑖 control the saturation 
of isotropic hardening and the hardening rates, respectively. The evo-
lution of kinematic hardening follows the non-associative combined 
Armstrong–Frederick [39] and Burlet–Cailleteuad [40] law, which was 
first proposed by Delobelle et al. [41] 

�̇�𝑖 = −2
3
𝐻kin,𝑖 �̇�

[

−𝝂 + 𝝂 ∶ 𝝂 𝛿
𝜷 𝑖
𝛽∞,𝑖

+ (1 − 𝛿)
𝜷𝑖 ∶ 𝝂
𝛽∞,𝑖

𝝂
]

(7)

where 𝐻kin,𝑖 are kinematic hardening moduli, the material parameter 
𝛿 controls the amount of Armstrong–Frederick versus Burlet–Cailletaud 
type of kinematic hardening, and 𝛽∞,𝑖 are the saturation values of the 
back-stresses.

3.2. Experiments for material model calibration and validation

To obtain similar material states to those found in the surface 
layer of in-service rails, an experimental method was developed by 
Meyer et al. [30]. The details of the experimental technique have 
been explained in [30], and the setup is briefly described here. Solid 
cylindrical test bars, extracted from railheads with virgin pearlitic R260 
steel, were used for predeformation, with the dimensions shown in 
Fig.  3(a) (top). They were twisted in increments of 90◦ under constant 
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Fig. 3. (a) Dimensions of solid (top) and tubular (bottom) test bars in mm [14], (b) undeformed (top) and predeformed (bottom) solid test bars [30], (c) cylindrical coordinate 
system and dimensions for the thin-walled tubular test bars, and loading paths for non-proportional multiaxial cyclic tests with (d) 0.80% and (e) 1.12% von Mises strain amplitudes.
Table 1
Identified elastic parameters and initial back-stress components for each 
predeformation level. PD𝑥 denotes 𝑥 cycles of predeformation.
 PD𝑥 𝐸 𝐺 𝛽01,𝑧𝑧 𝛽01,𝑧𝜃  
 PD0 192.8 74.9 −4.8 −6.0 
 PD1 194.3 76.3 −72.1 −109.4 
 PD3 194.1 72.3 −73.4 −105.4 
 PD6 195.7 69.4 −49.0 −96.2 
 Unit GPa GPa MPa MPa  

compressive stress of −600 MPa, and, subsequently, both the torque and 
axial force were relaxed. In addition to the undeformed case, 1, 3, and 
6 cycles of predeformation were investigated, resulting in surface shear 
strains of 0.21, 0.60, and 1.13, respectively. These are denoted as PD0, 
PD1, PD3, and PD6 in the following.

Fig.  3(b) shows the solid test bars marked with laser-etched grids 
to visualize the surface shear strains before and after predeformation. 
To minimize the influence of the radially varying shear strain, the test 
bars were remachined to form thin-walled tubular shapes with inner 
diameter 𝑑i = 12 mm and outer diameter 𝑑o = 14, see Fig.  3(a) (bottom) 
and [14].

After remachining, the undeformed and predeformed tubular test 
bars were subjected to pure axial, pure shear, or non-proportional mul-
tiaxial cyclic loading with a 0.80% or 1.12% von Mises strain amplitude 
(𝜖avM) on the surfaces of the test bars, in different loading directions 
in 𝜖𝑧𝑧 − 𝛾𝑧𝜃 plane, see Fig.  3(c) for the definition of the coordinate 
system. The results from the pure axial or shear tests are used to 
determine the elastic material parameters, 𝐸 and 𝐺, as well as the 
initial back-stress components, 𝛽01,𝑧𝑧 and 𝛽01,𝑧𝜃 , for each predeformation 
level. Note that, we have assumed that only the first back-stress is 
influenced by the predeformation and that 𝛽01,𝑟𝑟 = 𝛽01,𝜃𝜃 = −0.5 𝛽01,𝑧𝑧, 
since 𝜷0

1 is deviatoric. The identified parameters and initial back-stress 
components are presented in Table  1.

The considered loading path in the experiments under
non-proportional loading with 𝜖avM = 0.80% is shown in Fig.  3(d). 
Each cycle of the strain-controlled experiments starts with compressive 
4 
normal strain 𝜖𝑧𝑧 and shear strain 𝛾𝑧𝜃 applied in a loading direction 
defined by the angle 𝛼: 45.0◦, 67.5◦, 112.5◦, and 135.0◦. After reaching 
a magnitude of 0.56%, 𝜖𝑧𝑧 is maintained constant, while 𝛾𝑧𝜃 gradually 
changes to the same magnitude but reversed direction. The loading 
cycle ends with the simultaneous unloading of 𝜖𝑧𝑧 and 𝛾𝑧𝜃 . These ex-
periments provide data for calibration of the adopted plasticity model, 
see Section 3.3. The number of experiments included in the calibration 
procedure is 1 for PD0 and 3 for PD1 to PD6. The number of cycles of the 
non-proportional loading tests is shown in Table  2, and it was chosen 
to ensure that fatigue damage (i.e., softening) had not yet affected 
the stress amplitudes. These experiments, which involve pulsating 
compression and alternating shear, aim to subject the predeformed test 
bars to loading conditions similar to those experienced by rail material 
during wheel–rail rolling contact.

Fig.  3(e) shows the loading path used in the non-proportional 
loading experiments with 𝜖avM = 1.12%. In these tests, 𝜖𝑧𝑧 is first applied 
up to a magnitude of 0.8%, after which it is held constant, while 𝛾𝑧𝜃 is 
introduced. Once 𝛾𝑧𝜃 reaches a magnitude of 1.36%, it reverses to an 
equal magnitude in the opposite direction. Finally, both 𝜖𝑧𝑧 and 𝛾𝑧𝜃 are 
reduced to zero at the end of the loading cycle. These experiments are 
used as validation data to assess the predictive ability of the adopted 
plasticity model. This procedure includes 1 experiment for PD0 and 1 
for PD6.

The only non-zero stress components are assumed to be 𝜎𝑧𝑧 and 𝜎𝑧𝜃 . 
The mean values of the stresses over the wall thickness, �̄�𝑧𝑧 and �̄�𝑧𝜃 , are 
computed as in [14] 

�̄�𝑧𝑧 =
4𝐹a

𝜋
(

𝑑2o − 𝑑2i
) (8)

�̄�𝑧𝜃 = 16 𝑇
𝜋
(

𝑑2o − 𝑑2i
) (

𝑑o + 𝑑i
) (9)

where 𝐹a and 𝑇  are the applied axial force and torque, and 𝑑o, as well 
as 𝑑i, are shown in Fig.  3(c). The rotation 𝜑 over the gauge length 
𝐿g=12 mm and the axial strain 𝜖𝑧𝑧 were measured by an extensome-
ter [14]. It is assumed that the shear strains 𝜖𝑟𝑧 and 𝜖𝑟𝜃 are zero, and 
the mean shear strain over the wall thickness is computed as 

𝛾 = 2𝜖𝑧𝜃 =
𝜑
(

𝑑o + 𝑑i
)

(10)

4𝐿g
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Fig. 4. Calibrated stress–strain response for the axial direction: (a) cycle 1 and (b) cycle 100, and for the shear direction: (c) cycle 1 and (d) cycle 100. The experiments were 
performed with 𝜖avM = 0.80%. Exp. and Sim. denote the experimental and simulation results, respectively. The loading angle, 𝛼, is 135◦, and PD𝑥 refers to x cycles of predeformation.
Table 2
Information about the non-proportional multiaxial cyclic 
loading tests with 𝜖avM = 0.80%. PD𝑥 denotes 𝑥 cycles of 
predeformation.
PD𝑥 Loading angle, 𝛼 [◦] 𝑁f

PD0 135.0 1021
PD1 45.0 900
PD1 112.5 2108
PD1 135.0 1250
PD3 45.0 915
PD3 112.5 660
PD3 135.0 669
PD6 67.5 871
PD6 112.5 1055
PD6 135.0 722

Some results from the non-proportional loading experiments are 
illustrated in Figs.  4(a)–4(d) and 5(a)–5(d). In Figs.  4(a) and 4(c), 
both axial and shear responses in cycle 1 show that higher levels of 
predeformation result in an increase in the hardening slope, which is 
particularly noticeable when comparing PD0 and PD1. However, the 
effect diminishes with more predeformation. After one loading cycle, 
the residual normal stresses become similar, while the difference in the 
shear stress between predeformation levels remains more pronounced. 
A similar trend can be observed when considering the axial and shear 
responses in cycle 100 in Figs.  4(b) and 4(d), although the differences 
5 
between predeformation levels are less noticeable. Moreover, material 
softening becomes apparent after 100 cycles, especially in the axial 
response of the predeformed cases, see Fig.  4(b). Similar trends are 
observed in the experiments under non-proportional loading with 𝜖avM =
1.12% (Figs.  5(a)–5(d)).

3.3. Material model calibration

This section presents the procedure to identify the remaining 10 
material parameters of the adopted plasticity model for each prede-
formation level based on the cyclic non-proportional multiaxial ex-
periments with 𝜖avM = 0.80% (Fig.  3(d)). The objective function for 
each predeformation level that we minimize using the gradient-free, 
Nelder–Mead simplex algorithm [42], employing matmodfit [43,44], 
is formulated as 

𝐸obj =
𝑁exp
∑

𝑘=1
𝐸𝑘,obj with 𝐸𝑘,obj =

𝑁
∑

𝑖=1

1
𝑡end − 𝑡start

𝑀
∑

𝑗=1

(

𝑆 𝑖
sim(𝑡𝑗 ) − 𝑆 𝑖

exp(𝑡𝑗 )
)2

𝛥𝑡𝑗

(11)

where 𝐸𝑘,obj is the objective function for each experiment 𝑘, 𝑆 𝑖
exp(𝑡𝑗 ) and 

𝑆 𝑖
sim(𝑡𝑗 ) are the stress values from the experiments and simulations at 
time step 𝑡𝑗 , 𝑀 is the total number of time steps, and 𝑁 is the number 
of measurement channels (here 𝑁 = 2 for axial and torsional channels).
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Fig. 5. Validation of the stress–strain response for the axial direction: (a) cycle 1 and (b) cycle 100, and for the shear direction: (c) cycle 1 and (d) cycle 100. The experiments 
were performed with 𝜖avM = 1.12%. Exp. and Sim. denote the experimental and simulation results, respectively. PD𝑥 refers to x cycles of predeformation.
We use a step-wise calibration approach. It starts by considering 
only the first 30 loading cycles. Among 200 initial guesses generated 
by the Latin Hypercube sampling method, 50 parameter sets with the 
lowest 𝐸obj are selected as initial guesses for the optimizer, and the 20 
optimized parameter sets with the lowest 𝐸obj are selected as initial 
guesses in the second step. 50 loading cycles are considered in the 
second step of optimization, and the 10 best-optimized parameter sets 
are passed to the next step. In the third step, these 10 parameter sets 
are used as initial guesses when considering 500 loading cycles, and 
then, the 8 parameter sets with the lowest 𝐸obj are selected. These 
8 parameter sets are used as initial guesses in the final step, where 
all loading cycles are included in the optimization procedure, and the 
parameter set with the lowest 𝐸obj is finally selected. The identified 
parameters are listed in Table  3 for each level of predeformation. The 
goal of this step-wise calibration approach has been to find a global 
optimum for each predeformation level, but, due to the non-convex 
objective function, it cannot be guaranteed. The identified material 
parameters for each predeformation level will be used in Section 4 in 
order to consider the deformed surface layer in the railhead, whose 
material properties vary with spatial position.

By examining the experimental and calibrated simulation results 
in Figs.  4(a) and 4(c) for cycle 1, it can be seen that the experi-
mentally observed larger hardening for higher predeformation levels 
is captured by the material model. The difference between the resid-
ual normal stresses in the simulations across different predeformation 
6 
Table 3
Identified material model parameters for each predeformation level. PD𝑥 denotes 𝑥
cycles of predeformation.
 PD𝑥 𝑌0 𝑘iso,1 𝑌∞,1 𝑘iso,2 𝑌∞,2 𝛿 𝐻kin,1 𝛽∞,1 𝐻kin,2 𝛽∞,2  
 PD0 419 600 −120 981 45 0.88 3.2  19 104 0.32 
 PD1 435 446 −451 468 372 0.54 13.0  69 231 0.43 
 PD3 559 681 −516 1293 298 0.64 6.7  43 272 0.53 
 PD6 501 22 −225 382 57 0.67 12.9 1374 414 0.55 
 Unit MPa – MPa – MPa – GPa GPa GPa GPa  

levels is larger compared to those in the experiments in contrast to 
the residual shear stresses. Considering the simulated axial response in 
cycle 100, the maximum 𝜎𝑧𝑧 for all predeformation levels is slightly 
underestimated. This is more apparent in the shear response. Despite 
the differences, the overall agreement between the experiments and 
simulations is reasonable, considering the complexity of the experimen-
tal loading (non-proportional multiaxial loading) and the inclusion of 
many loading cycles in the optimization procedure.

3.4. Material model validation

After the calibration of the material parameters explained in Sec-
tion 3.3, we use the identified material parameters in order to predict 
the stress–strain response of the multiaxial non-proportional cyclic tests 
with 𝜖a = 1.12%, see Fig.  3(e) in Section 3.2. The predicted shear and 
vM



N. Talebi et al. Wear 578–579 (2025) 206173 
axial stress–strain responses for cycles 1 and 100 are shown in Fig. 
5. The overall stress–strain behavior for both PD0 and PD6 has been 
predicted by the calibrated plasticity model, with a closer agreement to 
the experimental results for the undeformed material (PD0) than for the 
material predeformed by 6 cycles (PD6). Considering the fact that 𝜖avM
in these data is different from that in the calibration data, the predicted 
axial and shear stress–strain responses for both predeformation levels 
are reasonable.

3.5. FE simulations of predeformation tests

As stated in Section 3.1, in the present paper, we assume that there 
is no evolution of anisotropy from its initial state, during the non-
proportional multiaxial cyclic tests (see Section 3.2) and during the 
over-rolling simulations (see Section 4). We perform FE simulations of 
the predeformation tests to obtain the initial anisotropy tensors, �̂�, for 
different predeformation levels. The simulations are conducted in the 
commercial FE code Abaqus [45] using 8-node quadratic axisymmetric 
elements with reduced integration and additional degrees of freedom 
for twist (referred to as CGAX8R in Abaqus). The finite strain material 
model formulation from Meyer and Menzel [38] with the model param-
eters from [31] is used in these simulations. It uses the yield criterion

𝛷M =
√

[

𝑴 −𝑴k
]

∶ �̂�M ∶
[

𝑴 −𝑴k
]

− 𝑌 (12)

where 𝑴 and 𝑴k are the Mandel stress and the sum of the back-
stresses, respectively. The Mandel stress is defined as
𝑴 = det(𝑭 )

[

𝑭 e]T 𝝈
[

𝑭 e]−T, where 𝑭  and 𝑭 e are the deformation 
gradient and the elastic deformation gradient. Due to plastic incom-
pressibility, det(𝑭 ) ≈ 1, and we obtain the equivalent anisotropy tensor 
�̂� on the current configuration as 
�̂� =

[

[

𝑭 e] ⊗
[

𝑭 e]−T
]

∶ �̂�M ∶
[

[

𝑭 e]T ⊗
[

𝑭 e]−1
]

(13)

which is used in Eq.  (3).
The anisotropy tensor, �̂�M, is extracted for PD1, PD3, and PD6, at 

the locations where the test data during the cyclic tests were collected. 
Specifically, using the mesh size 0.3 mm, the results have been extracted 
at 𝑟 = 6.52 mm and 𝑧 = 0.07 mm for the PD1 tests, at 𝑟 = 6.57 mm and 
𝑧 = 0.07 mm for the PD3 tests, and at 𝑟 = 6.52 mm and 𝑧 = 0.06 mm
for the PD6 tests, respectively. More details of the material model for 
the FE simulations of the predeformation tests and its parameter values 
can be found in Meyer and Menzel [38] and Talebi et al. [31].

4. Over-rolling simulations

In this section, we discuss how the deformed material is introduced 
into an FE model of a railhead, how the FE model is defined, and what 
traffic loading the FE model is subjected to.

4.1. Anisotropy in railhead cross-section

We introduce predeformation in the railhead cross-section using 
the anisotropy tensors, �̂�, and the identified material parameters for 
different predeformation levels (see Tables  1 and 3), characterized by 
certain amounts of surface shear strain, together with the distribution of 
accumulated shear strains (see Section 2). Thereby, for a given 𝛾 at an 
integration point in the railhead cross-section, the material parameters 
and anisotropy tensor have been determined using linear interpolation 
between the values from PD0 to PD6. Furthermore, if 𝛾 exceeds 1.13, 
corresponding to PD6, the parameters are set to those of PD6. Note that, 
the components of the initial back-stress, 𝜷0

1, and the anisotropy tensor, 
�̂�, need to be transformed from the local coordinate system 𝜉−𝜂 to the 
global coordinate system 𝑥− 𝑦, see Fig.  6. This is done using the angle 
𝜃 and the coordinate transformation matrix 𝑄

𝑄 =
⎡

⎢

⎢

cos(𝜃) sin(𝜃) 0
sin(𝜃) − cos(𝜃) 0

⎤

⎥

⎥

(14)

⎣ 0 0 −1⎦
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Fig. 6. Schematic illustration of coordinate transformation in the railhead cross-section.

By using index notations, the transformations can be written as 
[

𝜷0
1
]

𝑖𝑗 = 𝑄T
𝑖𝑘′

[

𝜷0
1
]

𝑘′𝑙′ 𝑄𝑙′𝑗
and

[

�̂�
]

𝑖𝑗𝑘𝑙
= 𝑄T

𝑖𝑚′ 𝑄
T
𝑗𝑛′

[

�̂�
]

𝑚′𝑛′𝑜′𝑝′
𝑄

𝑜′𝑘
𝑄

𝑝′𝑙

(15)

where [𝜷0
1
]

𝑘′𝑙′  and 
[

�̂�
]

𝑚′𝑛′𝑜′𝑝′
 are the components in the 𝜉−𝜂 coordinate 

system, whereas [𝜷0
1
]

𝑖𝑗 and 
[

�̂�
]

𝑖𝑗𝑘𝑙
 are the components in the 𝑥 − 𝑦

coordinate system.

4.2. Rail finite element model

To capture the gradients in the material properties near the rail sur-
face, a very fine mesh is required. Therefore, to have a computationally 
efficient FE-simulation setup for modeling the rail during train wheel 
over-rollings, a 2D Generalized Plane Strain (GPS) model developed 
by Andersson et al. [46] is employed. The simulation methodology 
is explained in detail in [46] and is briefly described below. More-
over, these FE simulations are conducted in the commercial software 
Abaqus [45] using 6-node quadratic triangular GPS elements, referred 
to as CPEG6 in Abaqus. Further details regarding the generalized plane 
strain elements can be found in the Abaqus theory manual [45], Section 
‘‘Generalized plane strain elements’’. The 50E3 rail profile is used in 
accordance with the measurements of the accumulated shear strains, 
see Section 2.

In the implementation of the 2D GPS model, the 2D cross-section 
has a constant curvature with respect to the out-of-plane direction and 
lies between two rigid bounding planes, as illustrated in Fig.  7(a). 
These planes are capable of translating axially (𝛥𝑧) and rotating around 
the 𝑥- and 𝑦-axes (𝛥𝛼, 𝛥𝛽, respectively) relative to each other about a 
predefined pivot point in the plane (𝑥0, 𝑦0). Hence, the displacement in 
the 𝑧 direction can be written as 
𝑢𝑧(𝑥, 𝑦) = 𝛥𝑧 + 𝛥𝛼 (𝑦 − 𝑦0) − 𝛥𝛽 (𝑥 − 𝑥0) (16)

Consequently, the normal strain in the 𝑧-direction, which can be de-
scribed as the strain in a curved out-of-plane element fiber between 
the two bounding planes, varies linearly with respect to the in-plane 
position, cf. [45]. Furthermore, the out-of-plane bending and axial 
stiffnesses of the rail are accounted for by assigning axial and bending 
stiffnesses to the translational and rotational degrees of freedom of the 
bounding planes. The out-of-plane stiffnesses are tuned to match those 
of a full-scale 3D FE model and have also been validated against a bar 
and the Euler–Bernoulli beam model.

In order for the 2D over-rolling simulation to replicate a Hertzian 
contact pressure distribution traversing longitudinally on the rail sur-
face in a 3D space, the element thicknesses of the 2D GPS model 
have been scaled [47]. This scaling is tuned such that the variation of 
the maximum von Mises for each over-rolling, plotted along a stress 
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Fig. 7. (a) Schematic illustration of the 2D GPS model assumptions. The green lines are rigid bounding planes surrounding the rail cross-section. (b) FE element thickness scaling 
factors in the 2D GPS model following [47]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
path from the center of the rail foot to the contact position in the 
2D GPS model, mimics that of the 3D model. In this procedure, a 
piecewise linear scaling profile of the thicknesses of FE elements is 
used, with the scaling factor being a function of the distance from 
the element integration point to the center of the Hertzian contact 
pressure distribution. The element thickness scaling factors for the 
railhead with initial geometry are illustrated in Fig.  7(b) using the load 
parameters from the first wheel over-rolling. The scaling procedure is 
further described in C. It should be noted that only transverse traction 
can be applied to the rail FE model.

It has been demonstrated that the 2D GPS model can reproduce the 
results of the full-scale 3D model with good accuracy and a noticeable 
reduction in the computational time [46]. Based on [47], we have 
computed that the maximum computational error in the longitudinal 
(out-of-plane) stress component is less than 10% and that the com-
putational time is reduced to approximately 5% of the 3D model’s 
runtime. The material model presented in Section 3.1, which uses the 
implicit backward Euler time discretization scheme, together with the 
scaling factor function, is implemented as a user-defined subroutine in 
Abaqus, and the FE models are generated using Python scripts through 
the Abaqus scripting interface [45].

4.3. Representative traffic load sequence

The over-rolling simulation setup that we adopt in this study uses 
some parts of the iterative simulation methodology proposed by Skryp-
nyk et al. [48] to predict the long-term evolution of the rail profile. 
8 
In short, the methodology starts from multibody dynamics simula-
tions, providing information about the contact positions and wheel–rail 
contact forces. Subsequently, the contact patch sizes and maximum 
contact pressure are computed based on the Hertzian-based metamodel 
developed by Skrypnyk et al. [49], which accounts for plasticity in the 
rail material. We use the simulation methodology and traffic situation 
from Ansin et al. [50] on 50E3 rail profiles with initial and deformed 
geometries. The load sequence consists of 348 wheel passages, based on 
the traffic situations in a circular curve with a radius of 1974 m, located 
at the west mainline in Sweden between Nyckelsjön and Sparreholmen. 
The contact positions and wheel–rail contact forces, obtained from 
the multibody dynamics simulations, are extracted from the high rail, 
as the gauge corner of a high rail is the region of interest for the 
initiation of head checks, cf. [2]. For the railhead with initial geometry, 
32 wheel passages have 2-point contact, and 10 cases have excessive 
contact patch sizes, resulting in 370 considered contact loadings. The 
corresponding numbers for the deformed geometry are 63 cases of 2-
point contact and 24 cases of excessive contact patch sizes, resulting 
in 387 contact loadings. The reason for not considering the contact 
loadings with excessive contact patch sizes is that they gave unrealistic 
contact loading locations (outside the cross-section), and that they do 
not make a significant contribution to the plastic deformations. The 
load sequence represents the variation of passenger vehicles (with axle 
loads ranging from 11.7 to 21.0 tonnes), wheel profiles (279 different 
measured geometries), and vehicle speeds. The rail material at the 
measurement location was steel grade R260 [50].
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Fig. 8. Railhead geometry for the 50E3 rail profile with the (a) initial and (b) deformed geometries, along with the corresponding distribution of contact points in the railheads 
with the (c) initial and (d) deformed geometries. The region between the red dashed lines in each sub-figure denotes the contact zones. The reader is referred to Fig.  7(a) for the 
location of the coordinate system in the rail cross-section.
Fig.  8 shows the range of contact positions on the railheads for 
both the initial and deformed geometries, as well as their number of 
occurrences. For the initial geometry, wheel–rail contacts most often 
occur within a narrow 3 mm band, ranging from −83 mm to −80 mm. 
For the geometrically deformed railhead, the majority of contacts are 
distributed between −71 mm and -62 mm. This paper assumes full 
slip condition with a traction coefficient of 0.4, resulting in propor-
tional traction distribution relative to contact pressure distribution. 
The resulting stresses, accumulated plasticity, and fatigue damage after 
one load sequence applied to the rail FE model will be presented and 
discussed in Section 6.

5. Fatigue crack initiation criterion

In order to investigate the effect of deformed material and geometry 
on the fatigue performance of a railhead subjected to traffic loading, 
we apply a recently developed crack initiation criterion, see Talebi 
et al. [31]. The criterion is a modified version of the multiaxial low 
cycle fatigue criterion proposed by Jiang and Sehitoglu [28], which is 
based on the critical plane search approach. On a given plane defined 
by the normal 𝒏, the fatigue driving force, 𝐹𝑃 , in one loading cycle is 
quantified as 

𝐹𝑃 = 𝛥𝜖
2

𝜎max + 𝐽 𝛥𝛾 𝛥𝜏 (17)

where 𝛥𝜖 is the normal strain range, 𝜎max is the maximum normal stress, 
𝛥𝛾 is the shear strain range, 𝛥𝜏 is the shear stress range, and 𝐽 is a 
fatigue parameter defining the importance of shear contribution to 𝐹𝑃 . 
At a given material point, the critical plane is detected, where 𝐹𝑃  is 
maximum, i.e., max 𝐹𝑃 .
𝒏
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In the modified Jiang–Sehitoglu criterion [31], the increase in 
resistance to fatigue crack initiation induced by predeformation is ac-
counted for by allowing the dependence of the fatigue damage thresh-
old, 𝐹𝑃0, on the ratcheting strain, 𝜖r . Accordingly, 𝐹𝑃 0 is introduced 
as a nonlinear function of ratcheting strain and is formulated as 

𝐹𝑃 0
(

𝜖r
)

= 𝐹𝑃∞ −
(

𝐹𝑃∞ − 𝐹𝑃0
)

exp
(−𝜖r

𝜅

)

(18)

where 𝐹𝑃0 is the fatigue damage threshold for undeformed material, 
𝐹𝑃∞ is the saturation value of the threshold, and 𝜅 controls how 
fast the threshold asymptotically approaches the saturation value with 
increasing deformation. The initial ratcheting strain, 𝜖r , in the railhead 
with near-surface deformed material is chosen to depend on the ac-
cumulated shear strain, 𝛾. Accordingly, 𝜖r is obtained through linear 
interpolation of the simulation results from the predeformation tests. 
This procedure is similar to the method we use to obtain the material 
parameters and anisotropy tensors at each integration point in the 
railhead cross-section, as described in Section 4.1. The ratcheting strain 
in each predeformation simulation is computed as 

𝜖r =
𝑁cycle
∑

𝑖=1

(

d𝜖vM
d𝑁

)

𝑖
=

𝑁cycle
∑

𝑖=1

(
√

2
3

(

|

|

|

𝝐dev(𝑡end)
|

|

|

− |

|

|

𝝐dev(𝑡start )
|

|

|

)

)

𝑖

(19)

where 𝑁cycle represents the number of cycles, d𝜖vM∕d𝑁 the von Mises 
strain increment per loading cycle, and 𝝐dev(𝑡start ) as well as 𝝐dev(𝑡end) the 
deviatoric strain tensors at the start and at the end of each loading cycle 
𝑖. The fatigue damage increment in each loading cycle is computed as 

d𝐷f ,𝑖

d𝑁
=

⎛

⎜

⎜

⎜

⟨

max𝒏 𝐹𝑃 − 𝐹𝑃 0

⟩

𝐶0

⎞

⎟

⎟

⎟

𝑚

(20)
⎝ ⎠
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Fig. 9. Distributions of maximum von Mises stresses.
Table 4
Fatigue parameters for the modified Jiang–Sehitoglu criterion, from [31].
𝑚 [-] 𝐶0 [MPa] 𝐽 [-] 𝐹𝑃0 [MPa] 𝐹𝑃∞ [MPa] 103𝜅 [-]
2.03 98.7 0.23 0.62 2.03 9.5

where 𝑚 and 𝐶0 are fatigue parameters, and ⟨∙⟩ denotes the Macaulay 
bracket. In [31], the fatigue parameters for this criterion were iden-
tified for R260 pearlitic steel. Predeformation tests, proportional mul-
tiaxial LCF experiments combined with predeformation, and uniaxial 
high cycle fatigue tests provided calibration data. The identified fatigue 
parameter values are presented in Table  4.

It should be noted that, for accurate predictions of RCF crack initi-
ation in wheel–rail contact conditions, a complete criterion accounting 
for the complex interaction between severe plastic deformations, wear, 
and RCF crack initiation is required. However, understanding the influ-
ential factors contributing to RCF damage is an essential a priori step 
for developing an accurate criterion. As will be shown in Section 6.2, 
neglecting the deformed material state and profile geometry changes 
leads to a significant overestimation of RCF damage.

6. Results and discussions

In this section, we present the results from the over-rolling simula-
tions, focusing on the distribution of maximum von Mises stresses as 
well as accumulated plasticity, and results from RCF fatigue damage 
predictions in railheads. In particular, we discuss individual effects of 
deformed near-surface material and deformed geometry on the pre-
dictions. Following the methodology in Section 4, we have performed 
FE simulations of wheel over-rollings for four distinct railhead cases: 
(1) initial geometry with initial material (the baseline), (2) initial 
geometry with inhomogeneously deformed (anisotropic) material, (3) 
deformed geometry with initial material, and (4) deformed geometry 
with deformed material. The fictitious cases (2) and (3) are included 
to evaluate the influence of material state and rail profile geometry 
changes individually, before analyzing their combined effects in case 
(4). Initial geometry and material refer to a nominal rail profile and 
homogeneous virgin (isotropic) material, respectively.
10 
6.1. Influence of material state and geometry on stress field and accumu-
lated plasticity

Fig.  9 illustrates the distributions of the maximum von Mises stress, 
𝜎vMmax, for all considered railheads and wheel passages. The results 
indicate that railheads with deformed material experience higher 𝜎vMmax
compared to those with initial material. Specifically, the maximum 
𝜎vMmax increases by 27% and 16% for the railheads with initial and 
deformed geometries, respectively. The mean values of 𝜎vMmax are 803 
MPa and 776 MPa for the geometrically initial and deformed railheads 
with deformed material, while they are 633 MPa and 632 MPa for 
the corresponding railheads with the initial material. The observed 
significant difference between the initial and deformed material states 
highlights the importance of accounting for the deformed material in 
the mechanical analyses of rails. In contrast, deformed geometry re-
duces the number of wheel passages, inducing high 𝜎vMmax. For instance, 
in the geometrically deformed railhead with deformed material, 12% of 
wheel passages result in 𝜎vMmax higher than 900 MPa, compared to 36% 
for the corresponding railhead with initial geometry.

Fig.  10(a) presents accumulated plasticity in the initial geometry 
after the load sequence for both initial and deformed material states. 
When considering the deformed material, the maximum accumulated 
plasticity, 𝜆, after the load sequence, decreases from 4.57 to 1.30. 
This implies that the deformed material decreases the accumulation 
rate of plasticity, even though it experiences higher 𝜎vMmax during the 
wheel passages. This stems from the increased hardening slope in pre-
deformed material states, leading to higher stresses for smaller plastic 
strains, see, e.g., Figs.  4(a) and 4(c). Similarly, Fig.  10(b) shows that 
the maximum 𝜆 decreases from 1.50 in the initial material to 0.48 in 
the deformed material when accounting for the deformed geometry. 
Since the railheads have been subjected to the mixed traffic situation 
described in Section 4.3, where the wheel profiles have not deformed 
with the rails, and to severe loading conditions, i.e., full slip with a 
traction coefficient of 0.4, plasticity can still occur in the railheads with 
highly deformed material. The impact of geometry on accumulated 
plasticity is also evident from the reduction in the maximum 𝜆 when 
transitioning from the initial to deformed geometry. For instance, the 
maximum 𝜆 decreases from 1.30 to 0.48 in the deformed material. This 
reduction is attributed to the lower frequency of load cases causing 
high 𝜎vM  in the deformed geometry compared to the initial geometry, 
max
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Fig. 10. Per-sequence accumulated plasticity for railheads with (a) initial and (b) deformed geometry, considering initial and deformed materials. The depth of the deformed layer 
is assumed to be 0.5 mm, as indicated by the dashed lines.
as previously discussed. A comparison between the baseline and the 
geometrically deformed railhead with deformed material shows that 
the combined changes in material state and geometry noticeably reduce 
the maximum 𝜆, by a factor of about 10.

6.2. Influence of material state and geometry on the accumulation rate of 
fatigue damage

In this section, we have analyzed the influence of deformed near-
surface material and deformed geometry on fatigue damage growth 
after the load sequence  considering the previously described four 
railhead cases. In these analyses, we have implicitly accounted for wear 
through the geometrically deformed rail profile, which is based on 
measurements in [30]. Then, during the limited number of considered 
over-rollings (i.e., 348 wheel passages), we neglect the interaction 
between wear and surface RCF crack initiation. The deformed material 
is accounted for in the fatigue criterion via the spatially varying initial 
ratcheting strains. This variation is governed by the distribution of 
accumulated shear strains, as explained in Section 5.
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The predicted fatigue damage growth after the load sequence for 
the railheads with initial geometry is presented in Fig.  11(a), where 
the zoomed-in views focus on the region between 𝑥 = −83 mm and 
𝑥 = −76 mm. Accordingly, the maximum accumulated damage, 𝐷f , in 
these railheads occurs where the wheel–rail contacts most often take 
place, see Section 4.3. The maximum 𝐷f  in the deformed material is 
0.18, approximately 5 times lower than the value of 0.94 observed 
in the initial material. Consideration of an extreme loading condition, 
i.e., full slip with a high traction coefficient of 0.4, explains the reason 
for obtaining such high 𝐷f  values, especially in the railhead with 
initial material and geometry. Further, this severe loading condition, 
together with the mixed traffic situation, motivates why fatigue damage 
can still occur in the highly deformed material. The results indicate 
that the deformed near-surface material reduces the fatigue damage 
accumulation rate. Franklin et al. [51] also found that using a work-
hardened coating layer on the rail surface can improve the fatigue 
resistance of UIC 900 A rail steel, based on twin disk experiments and 
field measurements.
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Fig. 11. Per-sequence damage growth for railheads with (a) initial and (b) deformed geometry, considering initial and deformed materials. The depth of the deformed layer is 
assumed to be 0.5 mm, as indicated by the dashed lines.
Referring to the geometrically deformed railheads in Fig.  11(b), the 
fatigue damage fields are shown for the interval between 𝑥 = −70 mm
and 𝑥 = −64 mm, indicating that the maximum 𝐷f  occurs in the re-
gion most frequently subjected to the wheel–rail contacts. Comparable 
observations can be made to those seen in the railheads with initial 
geometry regarding the influence of deformed material. Conversely, for 
the same material states, the transition from the initial geometry to the 
deformed one drastically reduces the maximum 𝐷f . This can also be 
due to the fact that the deformed geometries less frequently experience 
higher 𝜎vMmax compared to the initial geometries. Although the deformed 
geometry helps reduce the maximum 𝐷f , achieving optimal rail profile 
designs requires considering multiple factors to improve resistance to 
RCF damage [52]. Another important finding is that, when considering 
both deformed material and deformed geometry, the maximum 𝐷f  is 
reduced by a factor of approximately 150 compared to the baseline.

It can be observed that the spatial damage gradient is very large 
for all the studied cases and that high accumulated damage values are 
only obtained very close to the surface. This is illustrated in Fig.  12. 
Moreover, the location of the maximum 𝐷f  does not coincide with that 
of the maximum 𝜆, especially in the railheads with the initial geometry. 
12 
This shows the difference between the crack initiation criteria based 
on the maximum accumulated equivalent plastic strain, e.g. [21], and 
the one adopted in this paper (or the Jiang–Sehitoglu criterion [28]). 
The former criteria do not account for the beneficial influence of large 
compressive stresses, which are applied by a wheel rolling over a rail.

We also considered a lower traction coefficient of 0.3 for a rail-
head with initial material and geometry. The maximum accumulated 
damage per loading cycle still occurred at the surface, but with the 
noticeably lower value of 0.0049. Reducing the traction coefficient 
further not only decreases the maximum accumulated damage but also 
shifts it from the surface to the subsurface [36]. Nevertheless, we limit 
the scope of the paper to predictions of surface RCF crack initiation 
by using a high traction coefficient and investigate the influence of 
material state and rail profile geometry. It would be interesting to 
compare the fatigue damage results with those from a full-scale wheel–
rail test rig experiment. However, we have instead chosen to study 
the case of a mixed traffic situation (which is difficult to simulate in 
a test rig experiment). As described in Section 4, the load sequence 
representing the mixed traffic consists of different wheel geometries, 
load amplitudes, and vehicle speeds. 
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Fig. 12. Variation of accumulated damage with depth for railheads with (a) initial material and geometry and (b) deformed material and geometry. The dashed lines show the 

corresponding depth to each predeformation level [30].
7. Concluding remarks

In this contribution, we have investigated the influence of deformed 
near-surface material and deformed geometry on the mechanical and 
fatigue crack initiation behavior of a railhead subjected to a sequence 
of mixed traffic loading. An anisotropic plasticity model has been 
calibrated against experimental data with different amounts of accu-
mulated shear strains, corresponding to different depths in the railhead. 
The identified material parameters have been used to consider spatially 
varying properties in the railhead. This variation is governed by the 
accumulated shear strain distribution, obtained from measurements in 
rail field samples. We have performed wheel over-rolling simulations 
for four railhead cases, combining either initial or deformed material 
with initial or deformed geometry. Finally, for RCF damage predic-
tions, a recently developed crack initiation criterion accounting for the 
deformed material state has been employed.

Under full slip condition with a traction coefficient of 0.4, the 
results showed larger maximum von Mises stresses in the railheads with 
deformed material compared to those with initial material. Moreover, 
the deformed geometries reduced the frequency of load cases, inducing 
higher maximum von Mises stresses. The maximum accumulated plas-
ticity after the considered load sequence was noticeably lower in the 
deformed and hardened material compared to the initial material. A 
similar observation applies to the railheads with deformed geometries. 
It was shown that the combined effect of deformed material and 
deformed geometry significantly decreases the maximum accumulated 
plasticity compared to the railhead with initial material and geometry.

Fatigue crack initiation analyses revealed that deformed
near-surface material significantly reduces the rate of fatigue damage 
accumulation. The influence of deformed geometry in lowering the 
maximum accumulated damage was found to be more pronounced. 
Moreover, the results showed that neglecting the combined effect of 
deformed material and geometry leads to drastic overestimation of RCF 
damage. These findings show the importance of accounting for highly 
deformed near-surface material and rail profile geometry changes when 
predicting RCF damage.
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Appendix A. Closest point projection method

This section presents the adopted method to obtain the distribution 
of the accumulated shear strain 𝛾 in a railhead cross-section (see Fig. 
2(a)). As stated in Section 2, at points P1 and P4, the accumulated shear 
strain 𝛾 is assumed to be zero at any depth 𝜂 within the layer with 
deformed material, while, at points P2 and P3, we have the measured 𝛾
at certain depths, see Fig.  A.13. This divides the railhead cross-section 
into three regions: 𝑅1, 𝑅2, and 𝑅3. For a given integration point 𝒙s, 
the closest main node 𝒙c and its left and right neighbors, 𝒙l and 𝒙r
respectively, on the main surface (i.e., rail surface), are identified first. 

http://www.chalmers.se/charmec
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Fig. A.13. Definitions used to obtain the distribution of 𝛾 over the railhead cross-section.
Then, the closest point projection of 𝒙s onto the main surface, 𝒙m(𝜉), is 
formulated as 
𝒙m(𝜉) = 𝒙c + 𝜉l

(

𝒙l − 𝒙c
)

+ 𝜉r
(

𝒙r − 𝒙c
)

with

𝜉r = max

(

0.0,

(

𝒙s − 𝒙c
)

⋅
(

𝒙r − 𝒙c
)

‖𝒙r − 𝒙c‖2

)

𝜉l = max

(

0.0,

(

𝒙s − 𝒙c
)

⋅
(

𝒙l − 𝒙c
)

‖𝒙l − 𝒙c‖2

)

(A.1)

The gap function, 𝑔s, and the depth coordinate of the integration point, 
𝜂s, are computed as 
𝑔s =

(

𝒙m(𝜉) − 𝒙s
)

⋅ �̂� (𝜉), 𝜂s = |𝑔s| (A.2)

where the normal vector to the master surface �̂� (𝜉) is given by 

�̂� (𝜉) =
𝒙m(𝜉) − 𝒙s

‖𝒙m(𝜉) − 𝒙s‖
(A.3)

In the next step, whether 𝒙m(𝜉) is on the left (l) or right (r) side of 
𝒙c, 𝜉s is calculated through a linear interpolation scheme as follows 

𝜉s = 𝜉c +
(

𝜉𝑖 − 𝜉c
) ‖𝒙m (𝜉) − 𝒙c‖

‖𝒙𝑖 − 𝒙c‖
, 𝑖 = l or r (A.4)

where 𝜉c is the corresponding coordinate of 𝒙c in the 𝜉 − 𝜂 coordinate 
system. Further, it is assumed that the shear strain 𝛾s at the integration 
point 𝒙s follows a linear interpolation scheme and is computed as 

𝛾s(𝜉s, 𝜂s) = 𝛾P𝑗 (𝜂s) +
(

𝛾P𝑗+1 (𝜂s) − 𝛾P𝑗 (𝜂s)
) 𝜉s − 𝜉P𝑗
𝜉P𝑗+1 − 𝜉P𝑗

, 𝑗 = 1, 2, or 3 (A.5)

The index 𝑗 refers to each region, R𝑗 , depending on the value of 𝜉s, 
and the subscript P𝑗 refers to the location of the measured accumulated 
shear strains that should be used for the linear interpolation. Similarly, 
𝛾P𝑗  is calculated at 𝜂s by linear interpolation based on the measured 
shear strains at different depths at the location P𝑗 .

Appendix B. Anisotropy tensors �̂� for different predeformation 
levels

This section presents the anisotropy tensors, �̂�, for the four pre-
deformation levels, PD0, PD1, PD3, and PD6, obtained from the FE 
simulations of the predeformation tests, see Section 3.5.

• PD0

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

1.00 −0.50 −0.50 0.00 0.00 0.00
−0.50 1.00 −0.50 0.00 0.00 0.00
−0.50 −0.50 1.00 0.00 0.00 0.00
0.00 0.00 0.00 1.50 0.00 0.00
0.00 0.00 0.00 0.00 1.50 0.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎣ 0.00 0.00 0.00 0.00 0.00 1.50 ⎦
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• PD1

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.83 −0.53 −1.30 0.00 0.00 −0.06
−0.53 1.06 −0.53 0.00 0.00 0.11
−1.30 −0.53 1.83 0.00 0.00 −0.05
0.00 0.00 0.00 3.12 0.00 0.00
0.00 0.00 0.00 0.00 3.12 0.00

−0.06 0.11 −0.05 0.00 0.00 3.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

• PD3

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.87 −0.56 −1.30 0.00 0.00 −0.12
−0.56 1.13 −0.56 0.00 0.00 0.15
−1.30 −0.56 1.87 0.00 0.00 −0.03
0.00 0.00 0.00 3.18 0.00 0.00
0.00 0.00 0.00 0.00 3.18 0.00

−0.12 0.15 −0.03 0.00 0.00 2.94

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

• PD6

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.88 −0.62 −1.26 0.00 0.00 −0.17
−0.62 1.20 −0.58 0.00 0.00 0.16
−1.26 −0.58 1.85 0.00 0.00 0.02
0.00 0.00 0.00 3.19 0.00 0.00
0.00 0.00 0.00 0.00 3.19 0.00

−0.17 0.16 0.02 0.00 0.00 2.87

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Appendix C. Element thickness scaling factors for 2D GPS model

To obtain equivalent maximum von Mises stress distributions in 
the 2D and 3D FE simulations of train wheel roll-overs, the 2D GPS 
model uses scaling of the individual element thicknesses. The scaling 
is performed using a nominal 60E1 rail profile. A piecewise function 
𝑆(𝑟), which gives different formulas for each simulated wheel passage 
based on the distance 𝑟 from the center of the Hertzian contact pressure 
distribution is employed. The horizontal component of the distance 𝑟
is normalized by the contact semi-axis 𝑏 in the transverse direction, 
while the vertical component is normalized by the semi-axis 𝑎 in the 
rail longitudinal direction. Moreover, the scaling factor 𝑆(𝑟) is defined 
as a linear interpolation between two values, 𝑆  and 𝑆 , for distance 
𝑖 𝑖+1
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Table C.5
Values for distance limits 𝛿𝑖 and scaling factors 𝑆𝑖 of the 2D 
GPS model roll-over FE element thickness scaling procedure.

𝑖 1 2 3 4

𝛿𝑖 0.5 2.0 4.0 5.0
𝑆𝑖 1.0 2.0 5.0 40.0

limits 𝛿𝑖 and 𝛿𝑖+1 as follows: 

𝑆(𝑟) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑆4, if 𝑟 > 𝛿4
𝑆3(𝛿4 − 𝑟) + 𝑆4(𝑟 − 𝛿3)

𝛿4 − 𝛿3
, if 𝛿3 < 𝑟 ≤ 𝛿4

𝑆2(𝛿3 − 𝑟) + 𝑆3(𝑟 − 𝛿2)
𝛿3 − 𝛿2

, if 𝛿2 < 𝑟 ≤ 𝛿3

𝑆1(𝛿2 − 𝑟) + 𝑆2(𝑟 − 𝛿1)
𝛿2 − 𝛿1

, if 𝛿1 < 𝑟 ≤ 𝛿2

𝑆1, if 𝑟 ≤ 𝛿1

(C.1)

The scaling factors, 𝑆𝑖, and corresponding distance limits 𝛿𝑖 are 
manually fitted based on stress path comparisons between the 3D 
and 2D roll-over simulations for the maximum von Mises stress of 
each over-rolling. The scaling factors, 𝑆𝑖, and distance limits 𝛿𝑖, are 
presented in Table  C.5.

Data availability

Data will be made available on request.

References

[1] E.E. Magel, Rolling contact fatigue: A comprehensive review, Tech. Rep., US 
Department of Transportation, Federal Railroad Administration, 2011, 132 p.

[2] A. Ekberg, B. Åkesson, E. Kabo, Wheel/rail rolling contact fatigue – probe, 
predict, prevent, Wear 314 (1) (2014) 2–12.

[3] E.E. Magel, P. Mutton, A. Ekberg, A. Kapoor, Rolling contact fatigue, wear and 
broken rail derailments, Wear 366–367 (2016) 249–257.

[4] F.A. Alwahdi, A. Kapoor, F.J. Franklin, Subsurface microstructural analysis and 
mechanical properties of pearlitic rail steels in service, Wear 302 (1–2) (2013) 
1453–1460.

[5] D. Benoît, B. Salima, R. Marion, Multiscale characterization of head check 
initiation on rails under rolling contact fatigue: Mechanical and microstructure 
analysis, Wear 366–367 (2016) 383–391.

[6] B. Dylewski, M. Risbet, S. Bouvier, The tridimensional gradient of microstructure 
in worn rails – experimental characterization of plastic deformation accumulated 
by RCF, Wear 392–393 (2017) 50–59.

[7] D.F. Cannon, K. Edel, S.L. Grassie, K. Sawley, Rail defects: an overview, Fatigue 
Fract. Eng. Mater. Struct. 26 (10) (2003) 865–886.

[8] D.I. Fletcher, F.J. Franklin, A. Kapoor, Rail surface fatigue and wear, in: 
Wheel-Rail Interface Handbook, Woodhead Publishing Limited, 2009, pp. 
280–310.

[9] S. Iwnicki, Handbook of Railway Vehicle Dynamics, CRC Press, 2006.
[10] R. Smallwood, J.C. Sinclair, K.J. Sawley, An optimization technique to minimize 

rail contact stresses, Wear 144 (1–2) (1991) 373–384.
[11] F. Wetscher, R. Stock, R. Pippan, Changes in the mechanical properties of a 

pearlitic steel due to large shear deformation, Mater. Sci. Eng. A 445–446 (2007) 
237–243.

[12] T. Leitner, A. Hohenwarter, R. Pippan, Anisotropy in fracture and fatigue 
resistance of pearlitic steels and its effect on the crack path, Int. J. Fatigue 
124 (2019) 528–536.

[13] A. Hohenwarter, A. Taylor, R. Stock, R. Pippan, Effect of large shear deformations 
on the fracture behavior of a fully pearlitic steel, Met. Mater. Trans. A Phys. Met. 
Mater. Sci. 42 (2011) 1609–1618.

[14] K.A. Meyer, M. Ekh, J. Ahlström, Anisotropic yield surfaces after large shear 
deformations in pearlitic steel, Eur. J. Mech. A Solids 82 (2020) 103977.

[15] H.P. Feigenbaum, Y.F. Dafalias, Simple model for directional distortional hard-
ening in metal plasticity within thermodynamics, J. Eng. Mech. 134 (9) (2008) 
730–738.
15 
[16] M.P. Pietryga, I.N. Vladimirov, S. Reese, A finite deformation model for evolving 
flow anisotropy with distortional hardening including experimental validation, 
Mech. Mater. 44 (2012) 163–173.

[17] N. Larijani, G. Johansson, M. Ekh, Hybrid micro-macromechanical modeling of 
anisotropy evolution in pearlitic steel, Eur. J. Mech. / A Solids 38 (2013) 38–47.

[18] B. Shi, A. Bartels, J. Mosler, On the thermodynamically consistent modeling of 
distortional hardening: A novel generalized framework, Int. J. Plast. 63 (2014) 
170–182.

[19] D. Banabic, T. Kuwabara, T. Balan, D. Comsa, D. Julean, Non-quadratic yield 
criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. 
Sci. 45 (5) (2003) 797–811.

[20] F. Barlat, H. Aretz, J. Yoon, M. Karabin, J. Brem, R. Dick, Linear 
transfomation-based anisotropic yield functions, Int. J. Plast. 21 (5) (2005) 
1009–1039.

[21] A. Kapoor, A re-evaluation of the life to rupture of ductile metals by cyclic plastic 
strain, Fatigue Fract. Eng. Mater. Struct. 17 (2) (1994) 201–219.

[22] K. Golos, F. Ellyin, A total strain energy density theory for cumulative fatigue 
damage, J. Press. Vessel. Technol. Trans. ASME 110 (1) (1988) 36–41.

[23] G. Trummer, C. Marte, P. Dietmaier, C. Sommitsch, K. Six, Modeling surface 
rolling contact fatigue crack initiation taking severe plastic shear deformation 
into account, Wear 352–353 (2016) 136–145.

[24] M. Ghodrati, M. Ahmadian, R. Mirzaeifar, Modeling of rolling contact fatigue in 
rails at the microstructural level, Wear 406–407 (2018) 205–217.

[25] M.W. Brown, K.J. Miller, A theory for fatigue failure under multiaxial 
stress-strain conditions, Proc. Inst. Mech. Eng. 187 (1) (1973) 745–755.

[26] A. Ince, G. Glinka, A generalized fatigue damage parameter for multiaxial fatigue 
life prediction under proportional and non-proportional loadings, Int. J. Fatigue 
62 (2014) 34–41.

[27] C.L. Pun, Q. Kan, P.J. Mutton, G. Kang, W. Yan, A single parameter to evaluate 
stress state in rail head for rolling contact fatigue analysis, Fatigue Fract. Eng. 
Mater. Struct. 37 (8) (2014) 909–919.

[28] Y. Jiang, H. Sehitoglu, A model for rolling contact failure, Wear 224 (1) (1999) 
38–49.

[29] P. Smith, K.N., Topper, T.H., Watson, A stress-strain function for the fatigue of 
metals (stress-strain function for metal fatigue including mean stress effect), J. 
Mater. 5 (1970) 767–778.

[30] K.A. Meyer, D. Nikas, J. Ahlström, Microstructure and mechanical properties of 
the running band in a pearlitic rail steel: Comparison between biaxially deformed 
steel and field samples, Wear 396–397 (2018) 12–21.

[31] N. Talebi, J. Ahlström, M. Ekh, K.A. Meyer, Evaluations and enhancements of 
fatigue crack initiation criteria for steels subjected to large shear deformations, 
Int. J. Fatigue 182 (2024) 108227.

[32] J.W. Ringsberg, Life prediction of rolling contact fatigue crack initiation, Int. J. 
Fatigue 23 (7) (2001) 575–586.

[33] C. Lun, Q. Kan, P.J. Mutton, G. Kang, W. Yan, An efficient computational 
approach to evaluate the ratcheting performance of rail steels under cyclic rolling 
contact in service, Int. J. Mech. Sci. 101–102 (2015) 214–226.

[34] H. Su, C.L. Pun, P. Mutton, Q. Kan, W. Yan, Numerical study on the ratcheting 
performance of heavy haul rails in curved tracks, Wear 436–437 (2019) 203026.

[35] F.J. Franklin, J.E. Garnham, D.I. Fletcher, C.L. Davis, A. Kapoor, Modelling 
rail steel microstructure and its effect on crack initiation, Wear 265 (2008) 
1332–1341.

[36] M. Ghodrati, M. Ahmadian, R. Mirzaeifar, Three-dimensional study of rolling 
contact fatigue using crystal plasticity and cohesive zone method, Int. J. Fatigue 
128 (2019) 105208.

[37] M. Burstow, Whole Life Rail Model Application and Development–Continued 
Development of a Rolling Contact Fatigue Damage Parameter, Technical Report, 
Rail Standards and Safety Board, 2004.

[38] K.A. Meyer, A. Menzel, A distortional hardening model for finite plasticity, Int. 
J. Solids Struct. 232 (2021) 111055.

[39] P.J. Armstrong, C.O. Frederick, et al., A mathematical representation of the 
multiaxial Bauschinger effect, vol. 731, Berkeley Nuclear Laboratories Berkeley, 
CA, 1966.

[40] H. Burlet, G. Cailletaud, Numerical techniques for cyclic plasticity at variable 
temperature, Eng. Comput. 3 (2) (1986) 143–153.

[41] P. Delobelle, P. Robinet, L. Bocher, Experimental study and phenomenological 
modelization of ratchet under uniaxial and biaxial loading on an austenitic 
stainless steel, Int. J. Plast. 11 (4) (1995) 295–330.

[42] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 
7 (4) (1965) 308–313.

[43] K.A. Meyer, Matmodfit, 2019, https://github.com/KnutAM/matmodfi.
[44] K.A. Meyer, M. Ekh, J. Ahlström, Material model calibration against axial-torsion-

pressure experiments accounting for the non-uniform stress distribution, Finite 
Elem. Anal. Des. 163 (2019) 1–13.

http://refhub.elsevier.com/S0043-1648(25)00442-9/sb1
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb1
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb1
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb2
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb2
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb2
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb3
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb3
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb3
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb4
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb4
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb4
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb4
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb4
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb5
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb5
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb5
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb5
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb5
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb6
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb6
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb6
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb6
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb6
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb7
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb7
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb7
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb8
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb8
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb8
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb8
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb8
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb9
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb10
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb10
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb10
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb11
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb11
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb11
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb11
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb11
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb12
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb12
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb12
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb12
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb12
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb13
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb13
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb13
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb13
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb13
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb14
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb14
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb14
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb15
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb15
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb15
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb15
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb15
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb16
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb16
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb16
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb16
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb16
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb17
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb17
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb17
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb18
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb18
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb18
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb18
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb18
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb19
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb19
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb19
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb19
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb19
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb20
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb20
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb20
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb20
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb20
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb21
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb21
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb21
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb22
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb22
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb22
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb23
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb23
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb23
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb23
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb23
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb24
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb24
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb24
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb25
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb25
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb25
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb26
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb26
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb26
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb26
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb26
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb27
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb27
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb27
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb27
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb27
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb28
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb28
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb28
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb29
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb29
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb29
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb29
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb29
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb30
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb30
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb30
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb30
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb30
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb31
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb31
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb31
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb31
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb31
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb32
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb32
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb32
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb33
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb33
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb33
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb33
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb33
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb34
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb34
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb34
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb35
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb35
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb35
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb35
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb35
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb36
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb36
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb36
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb36
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb36
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb37
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb37
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb37
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb37
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb37
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb38
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb38
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb38
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb39
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb39
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb39
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb39
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb39
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb40
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb40
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb40
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb41
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb41
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb41
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb41
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb41
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb42
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb42
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb42
https://github.com/KnutAM/matmodfi
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb44
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb44
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb44
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb44
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb44


N. Talebi et al. Wear 578–579 (2025) 206173 
[45] Dassault Systèmes Simulia Corp., Abaqus Analysis User’s Manual, two thousand 
twenty two th, Providence, Rhode Island, USA, 2022, Available from Dassault 
Systèmes.

[46] B. Andersson, M. Ekh, B.L. Josefson, Computationally efficient simulation 
methodology for railway repair welding: Cyclic plasticity, phase transformations 
and multi-phase homogenization, J. Therm. Stresses 47 (2) (2024) 164–188.

[47] B. Andersson, E. Steyn, M. Ekh, L. Josefson, Simulation-based assessment of 
railhead repair welding process parameters, Weld. World 69 (1) (2025) 177–197.

[48] R. Skrypnyk, M. Ekh, J.C. Nielsen, B.A. Pålsson, Prediction of plastic deformation 
and wear in railway crossings – comparing the performance of two rail steel 
grades, Wear 428–429 (2019) 302–314.

[49] R. Skrypnyk, J.C. Nielsen, M. Ekh, B.A. Pålsson, Metamodelling of wheel–rail 
normal contact in railway crossings with elasto-plastic material behaviour, Eng. 
Comput. 35 (2019) 139–155.
16 
[50] C. Ansin, B.A. Pålsson, M. Ekh, F. Larsson, R. Larsson, Simulation and field 
measurements of the long-term rail surface damage due to plasticity, wear and 
surface rolling contact fatigue cracks in a curve, in: CM 2022 - 12th International 
Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Conference 
Proceedings, 2022, pp. 591–601.

[51] F.J. Franklin, G.J. Weeda, A. Kapoor, E.J. Hiensch, Rolling contact fatigue 
and wear behaviour of the infrastar two-material rail, Wear 258 (7–8) (2005) 
1048–1054.

[52] E.E. Magel, J. Kalousek, Designing and assessing wheel/rail profiles for improved 
rolling contact fatigue and wear performance, Proc. Inst. Mech. Eng. Part F: J. 
Rail Rapid Transit 231 (7) (2017) 805–818.

http://refhub.elsevier.com/S0043-1648(25)00442-9/sb45
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb45
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb45
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb45
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb45
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb46
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb46
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb46
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb46
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb46
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb47
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb47
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb47
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb48
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb48
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb48
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb48
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb48
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb49
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb49
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb49
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb49
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb49
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb50
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb51
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb51
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb51
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb51
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb51
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb52
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb52
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb52
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb52
http://refhub.elsevier.com/S0043-1648(25)00442-9/sb52

	Influence of a highly deformed surface layer on RCF predictions for rails in service
	Introduction
	Distribution of accumulated shear strains
	Material modeling and calibration
	Material model formulation
	Experiments for material model calibration and validation
	Material model calibration
	Material model validation
	FE simulations of predeformation tests

	Over-rolling simulations
	Anisotropy in railhead cross-section
	Rail finite element model
	Representative traffic load sequence

	Fatigue crack initiation criterion
	Results and discussions
	Influence of material state and geometry on stress field and accumulated plasticity
	Influence of material state and geometry on the accumulation rate of fatigue damage

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Closest point projection method
	Appendix B. Anisotropy tensors hat C for different predeformation levels
	Appendix C. Element thickness scaling factors for 2D GPS model
	Data availability
	References


