
The role of knowledge-based resources in Agile Software Development
contexts

Downloaded from: https://research.chalmers.se, 2025-07-03 11:30 UTC

Citation for the original published paper (version of record):
Ouriques, R., Wnuk, K., Gorschek, T. et al (2023). The role of knowledge-based resources in Agile
Software Development contexts. Journal of Systems and Software, 197.
http://dx.doi.org/10.1016/j.jss.2022.111572

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



The Journal of Systems & Software 197 (2023) 111572

a

b

w
t
k
c
i
s

c
t
t
c
m
2
b
T
e
r

t

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

The role of knowledge-based resources in Agile Software Development
contexts✩

Raquel Ouriques a,∗, Krzysztof Wnuk a, Tony Gorschek a, Richard Berntsson Svensson b

Department of Software Engineering, Blekinge Institute of Technology, Karskrona, 37179, Sweden
Department of Computer Science and Engineering at Chalmers | University of Gothenburg, Gothenburg, 41296, Sweden

a r t i c l e i n f o

Article history:
Received 12 July 2021
Received in revised form 20 June 2022
Accepted 24 November 2022
Available online 28 November 2022

Keywords:
Knowledge-based resources
Agile software development
Grounded theory
Software development
Knowledge management

a b s t r a c t

The software value chain is knowledge-based since it is highly dependant on people. Consequently,
a lack of practice in managing knowledge as a resource may jeopardise its application in software
development. Knowledge-Based Resources (KBRs) relate to employees’ intangible knowledge that is
deemed to be valuable to a company’s competitive advantage. In this study, we apply a grounded
theory approach to examine the role of KBRs in Agile Software Development (ASD). To this aim, we
collected data from 18 practitioners from five companies. We develop the Knowledge-Push theory,
which explains how KBRs boost the need for change in ASD. Our results show that the practitioners
who participated in the study utilise, as primary strategies, task planning, resource management, and
social collaboration. These strategies are implemented through the team environment and settings
and incorporate an ability to codify and transmit knowledge. However, this process of codification is
non-systematic, which consequently introduces inefficiency in the domain of knowledge resource util-
isation, resulting in potential knowledge waste. This inefficiency can generate negative implications for
software development, including meaningless searches in databases, frustration because of recurrent
problems, the unnecessary redesign of solutions, and a lack of awareness of knowledge sources.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software-intensive companies that have adopted Agile Soft-
are Development (ASD) are engaged in continuous assimila-
ion of software changes by sharing, codifying, and transmitting
nowledge to people inside and across teams. However, ineffi-
ient utilisation of knowledge resources (for example, caused by
nsufficient codification or informal communication) results in a
ignificant knowledge and time wasted (Sedano et al., 2017).
Whilst ASD places less emphasis on the role of traditional

oordination mechanisms, for example, up-front planning and ex-
ensive documentation, this approach enjoys the necessary agility
o better respond to market changes (Strode et al., 2012). ASD
onsequently relies on self-organised teams that utilise infor-
al communication and tacit knowledge (Bjørnson and Dingsøyr,
008) that is shared in an ad hoc manner among the team mem-
ers (Cockburn and Highsmith, 2001; Rus and Lindvall, 2002).
his process may take place in both co-located and distributed
nvironments (Ghobadi and Mathiassen, 2016; Melnik and Mau-
er, 2004). Although tacit knowledge is relevant for companies

✩ Editor: Marcos Kalinowski.
∗ Corresponding author.

E-mail addresses: rou@bth.se (R. Ouriques), krw@bth.se (K. Wnuk),
go@bth.se (T. Gorschek), richard@cse.gu.se (R.B. Svensson).
ttps://doi.org/10.1016/j.jss.2022.111572
164-1212/© 2022 The Authors. Published by Elsevier Inc. This is an open access art
and crucial for innovation (Nonaka, 1994), it is only revealed
when it is applied (Grant, 1996). Such knowledge is acquired via
experience and transferred among people. This can prove to be
costly, slow, and uncertain (Kogut and Zander, 1992).

Software development is undoubtedly a knowledge-intensive
activity since it is often associated with complex and intangible
social resources that are difficult to reproduce, even though they
may lend a competitive advantage to a company (Barney, 2000;
Glazer, 1998). At the same time, the tacit knowledge that is
possessed by a group of software developers cannot be owned
by a company. Notwithstanding this, it should be appropriately
managed and utilised because it is a key resource for any software
company (Steen, 2007).

A company’s competitive strategy is substantially dependent
on how the company maximises its produced value by allocating
its resources (Barney, 2000). A Knowledge-Based Resource (KBR)
– also referred to as a knowledge resource in this study – relates
to the employees’ intangible knowledge that is valuable to a com-
pany’s competitive advantage. These resources appear as specific
skills, including technical, creative, and collaborative skills. Note
that collaborative skills are relevant to the integration and coordi-
nation of multidisciplinary teamwork (Miller and Shamsie, 1996).
For example, this skill may be realised in the ability to select
which items from the backlog a team should prioritise, taking into
account the broader context of the product’s development.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111572
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111572&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rou@bth.se
mailto:krw@bth.se
mailto:tgo@bth.se
mailto:richard@cse.gu.se
https://doi.org/10.1016/j.jss.2022.111572
http://creativecommons.org/licenses/by/4.0/


R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

a
t
a
e
c
T
c

t
b
d
O
h
f
r
a
t
l
i
1
d
a

e
a
p

a
d
K
e
i
a
t
t
c

2

b
r
t
F
f

2

2
b
i
D
o
a

Because the software value chain is knowledge-based (Rus
nd Lindvall, 2002), knowledge application in software produc-
ion might be jeopardised by a lack of practices that are aimed
t managing knowledge as a strategic resource. Therefore, it is
ssential to know how specific KBRs allow the company to enjoy a
ontinuous state of readiness to respond to the market effectively.
his is achieved by effecting internal changes and by offering
ustomer value quickly (Miller and Shamsie, 1996; Conboy, 2009).
The concept of ‘knowledge’ has been previously explored in

he Agile Software Development (ASD) literature and has thus
een recognised as relevant support for the management of
ependencies in coordination (McChesney and Gallagher, 2004;
uriques et al., 2019). However, these studies do not explain
ow knowledge constitutes a keystone for further analysis and
urther application for companies that use ASD. Although scholars
ecognise the importance of knowledge in software development
ctivities (Rus and Lindvall, 2002; Bjørnson and Dingsøyr, 2008),
here is a lack of relevant studies in the software engineering
iterature that seeks to explain the role of the knowledge resource
n ASD environments. Miller and Shamsie identified this gap in
996 and claimed that it was justified by the fact that software
evelopment is a turbulent environment, even though KBRs play
significant role in this environment.
Our present study addresses this gap in the literature by

xamining the role of knowledge-based resources in ASD. To this
im, we focus on the planning and coordination activities that
ractitioners use.
This paper contributes to the field by virtue of its being:

• An empirical investigation that identifies how KBRs are dis-
tributed in an ASD context;

• The development of the Knowledge-Push theory, which il-
lustrates how KBRs boost the need for change in ASD envi-
ronments;

• A discussion of the possible implications for future research
and potential solutions for managing the KBRs.

This paper is organised as follows: In Section 2, we present
brief background to our study and related work. Section 3
escribes the research method. In Section 4, we present the
nowledge-Push theory, along with a description of each cat-
gory that the theory relates to. In Section 5, we discuss the
mplications that our current findings have for future research,
nd we comment on the practical implications that KM gives rise
o in the context of ASD. In Section 6, we discuss the threats to
he validity of our study. Finally, in Section 7, we present our
oncluding remarks.

. Background and related work

This section contextualises our research topic by offering a
rief overview of the characteristics of ASD and its contradictions
egarding its benefits. We also provide a number of definitions of
he concept of ‘knowledge’ that we have adopted in this study.
urthermore, this section provides an overview of the theoretical
oundations of KBRs.

.1. Agile software development

Flexibility in responding to change (Williams and Cockburn,
003) is the focal point of Agile Software Development, an um-
rella term that includes several methods and frameworks that
nform software development practices (Conboy, 2009; Dybå and
ingsøyr, 2008; Beck et al., 2001; West et al., 2010). ASD pri-
ritises human factors, including the interaction between people

nd teamwork. Further, it focuses on delivering working software

2

quickly and continuously updating it when new requirements
need to be met, even late in the project (Beck et al., 2001).

Dybå and Dingsøyr (2008) have examined the ASD literature
and identified several contradictory findings regarding the bene-
fits of adopting ASD methods. In general, the benefits that were
enjoyed from the adoption of ASD practices were observed with
respect to collaboration with the customer, cost estimations, and
focus on the work. The authors also pointed out that some studies
report on benefits and improvements with regards to Extreme
Programming regarding productivity, while other scholars report
on the opposite, for example, a lack of attention to architec-
ture and design in the context of Extreme Programming. Close
examination of Pair Programming also gives rise to divergent
findings. Although some developers perceive that the adoption of
this method speeds up the development process, others perceive
it as inefficient.

In a recent study, Annosi et al. (2016) observe that the time
pressure that falls out from the implementation of the Scrum
framework has negative implications for learning and innovation.
Whilst software developers remain focused on specific tasks, this
comes at the cost of losing the broader context in which the soft-
ware product is situated Li et al. (2010) also discuss the harmful
effects that time pressure may have on a software development
project.

The ability to deal with constant change is the central idea of
ASD. Given this, we note that knowledge plays an essential role in
this regard (Rus and Lindvall, 2002). While ASD prioritises infor-
mal communication (due to the flexibility and reduced demands
for documentation in ASD), it also largely relies on knowledge
exchanged between people (Cockburn and Highsmith, 2001).

Previous literature on the subject has indicated that compa-
nies who adopt ASD rely on tacit knowledge to a large extent
(Bjørnson and Dingsøyr, 2008). Furthermore, they rely on in-
formal means of communication as they share this knowledge
between people, in both co-located and distributed ASD contexts
(Ghobadi and Mathiassen, 2016; Melnik and Maurer, 2004; Dikert
et al., 2016). Although tacit knowledge is recognised as a rele-
vant resource for companies and crucial for innovation (Nonaka,
1994), it can only be revealed when it is applied (Grant, 1996).
Such knowledge is acquired through practices and is transferred
between people, a process which can be costly, slow, and uncer-
tain when compared to the utilisation of technology to transfer
knowledge (Kogut and Zander, 1992).

2.2. Definition of relevant concepts relevant to ‘knowledge’

In this subsection, we describe the concepts that are used in
this study and the arguments we make regarding the concept of
‘knowledge’ that further function as the foundation for the theory
that we develop in this paper.

It is relevant to differentiate knowledge from information so
as to avoid misunderstanding and to prevent the interchangeable
use of these terms. Information merely refers to processed data
that lacks an interpretation within a specific context (Alavi and
Leidner, 2001).

The nature of knowledge has been discussed extensively
among philosophers (Grant, 1996). However, a close examination
of epistemology is not our primary purpose here. We thus assume
a somewhat straightforward definition of the concept of ‘knowl-
edge’ as ‘‘a collection of information that provides guidance [that
is] based on individual cognitive processes’’ (Alavi and Leidner,
2001; Nonaka, 1994).

Although this study considers the two most frequently cited
types of knowledge, these types of knowledge are also widely
debated, namely explicit knowledge and tacit knowledge. Explicit
knowledge is systematised in formal language (for example, in



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

m
u
k
v
s
2

o
t
e
s
t
p
m
B

k
1

2

c
p
c
a
i

k
p
t
t
i
a
s
t
S

a
a
a
H
r
s

m
r
w
u
c
r
v
S

c
(
p
t

anuals, specifications, and other documents) and in any doc-
mented format (e.g., graphics, designs, drawings). Whilst tacit
nowledge is highly personal since it is rooted in people’s actions,
alues, and routines. Consequently, it is difficult to formalise and
ystematise tacit knowledge in a formal language (Nonaka et al.,
000).
It is a challenge to manage tacit knowledge properly. Because

f this, organisations use Knowledge Management (KM) as a tool
o extract knowledge from people so that the organisation can
njoy ownership of this resource. We employ a definition that
tates that knowledge management is realised by an organisa-
ion’s work to manage the workforce’s knowledge through social
rocesses, including the application of tools and techniques to
anage the systematised knowledge (Hislop, 2013; Grant, 1996;
arney, 2000).
This knowledge management work can occur through four

nowledge processes (Alavi and Leidner, 2001; Cowan and Foray,
997):

• Creation — the combination of tacit knowledge for new
knowledge generation;

• Codification/storage — a means for systematising and stor-
ing relevant knowledge as useful information;

• Transfer/sharing — the movement of both types of knowl-
edge between people or groups; and

• Application — the use of knowledge to generate value.

.3. Knowledge-based resources

According to a resource-based view of the firm, a company’s
ompetitive strategy is significantly dependent on how the com-
any’s management team maximises the produced value by allo-
ating the company’s resources. These resources are idiosyncratic
nd thus provide an inevitable heterogeneity to the company, as
t operates within a market (Barney, 2000).

Resources that companies use can be property-based or
nowledge-based. Property-based resources are owned by a com-
any and are protected by legal rights, for example, by con-
racts and patents. Knowledge-based resources (KBRs) include
hat which is defined as the employees’ intangible knowledge that
s valuable to a company’s competitive advantage. KBRs appear
s specific skills, including technical, creative, and collaborative
kills, which, in turn, are immediately relevant to the integra-
ion and coordination of multidisciplinary teamwork (Miller and
hamsie, 1996).
The KBRs receive more attention when they are involved in

ctivities that require human interaction for production, inside
nd outside the company. For example, this may include team
nd customer collaboration (Atuahene-Gima, 1996; Sirmon and
itt, 2009). KBRs are also often used to develop property-based
esources, for example, software documentation and process de-
criptions.
Strategic management is the name of the field within which

ost studies that focus on KBRs take place. Most of the empirical
esearch in this field is focused on the industry domain level,
hile research into the lower levels, for example, the company
nit or individual departments, remains scarce. Regarding con-
eptual studies, they attempt to generalise, even though the
esources that they take into consideration may have different
alues depending on the context that is examined (Miller and
hamsie, 1996).
Previous research has provided evidence that KBRs positively

ontribute to return on sale, operating profit, and market share
Miller and Shamsie, 1996). Moreover, other studies have also
rovided evidence that KBRs enhance different types of innova-

ion that are related to (i) the coordination of activities,

3

(ii) external partnerships, (iii) business processes and methods,
and (iv) employees’ skills. KBRs are also said to contribute to
innovation with respect to service delivery methods, product
innovation, and organisational innovation (Nieves et al., 2014).

Kaya and Patton (2011) have explored the relationship be-
tween KBRs and innovation performance in different industry
domains. They analysed several knowledge-based resources, in-
cluding the staff’s technical expertise regarding management,
customer service, marketing, the generation of new ideas, and
product development. They also examined the relevance of staff
commitment to the company. The results of their study reveal
that knowledge-based resources significantly enhance innovation
performance.

Different resources contribute to the performance and com-
petitiveness of a company at different levels (Barney, 2000;
Beleska-Spasova et al., 2012). To maximise the positive impact
that these contributions can make, companies must know how
valuable these resources are, why they are scarce, and in which
circumstances they exist (Amit and Schoemaker, 1993).

Although there is evidence demonstrating that KBRs con-
tribute effectively to securing a competitive advantage from a
general perspective, each industry domain possesses diverse
KBRs. Consequently, companies are tasked to increase their com-
petitiveness in different ways.

Several roles in the domain of ASD possess relevant knowledge
that supports software development, for example

• Product owners — possess knowledge about prioritising
items from a backlog, taking into account the larger context
in which the product will be used.

• Developers — possess knowledge about how changes in
the product can be incorporated, considering the balance
between the need for fast delivery and architecture degra-
dation.

• Test lead — possess knowledge about how many manual
tests should be added and what parts of the product can be
tested automatically.

This knowledge possessed by these different roles is critical
for efficiently estimating the effort that is required to accommo-
date incoming requirements in software products. The ability to
promptly respond to and assimilate change greatly depends on
an ASD team’s ability to employ and share this (primarily tacit)
knowledge.

In 1996, Miller and Shamsie suggested that research should
focus on clarifying the impact of knowledge-based resources in
‘turbulent environments’, including the software industry (Miller
and Shamsie, 1996). However, as far as we know, knowledge-
based resources in software engineering or in ASD have not been
addressed in the literature to date.

In an industry where knowledge is the main competitive re-
source, a lack of management practices with regards to knowl-
edge may well jeopardise the application of knowledge in the
production of goods and services. In the interest of advancing
research into KBRs in the software industry, the present study
adds to our understanding of how the KBRs are distributed and
how they boost the need for change in ASD.

3. Research method

The goal of this study is to examine the role of KBRs in ASD
closely. We are particularly interested in agile practices and the
associated mechanisms that are applied to coordinate activities.

We based our Research Questions (RQ) on the findings and
identified research gaps revealed by our previous systematic lit-
erature review (Ouriques et al., 2019, 2018) and our discussions
and brainstorming sessions with three companies. Two RQs are

addressed below:



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

c
d
t
e
k

d
(

f
c
w
s
(
t
c

v
a
c
l
d
t
o
s

i
y
e
t
a
c
c

b
g

3

i
f
g
v
d

Fig. 1. Research process overview.
a
f
p
e
g

t
a
p

3

n
w
w
p
t
e
l
c
a

t
(
(
m
p

t
e
s
T
c
a
B
n
c
g
(

3

W
q
a
b

• RQ1: How are knowledge-based resources distributed in
ASD environments?

• RQ2: How do companies utilise knowledge-based resources?

To answer these questions, we investigated the planning and
oordinating activities that are used by practitioners in software
evelopment companies that have adopted ASD. We focused on
hese activities because coordination mechanisms stimulate the
mergence of conditions where people can share their specialised
nowledge with each other (Grant, 1996).
We conducted a qualitative study so as to efficiently capture

ata regarding the complex phenomena of human behaviour
Seaman, 1999; Hoda et al., 2012).

We followed the principles of Grounded Theory as a method
or theory generation (Corbin and Strauss, 1990, 2015). This in-
luded subscribing to a theory of social constructionism, a theory
hich notes that social phenomena are phenomena that are
ubject to constant change and are affected by human interaction
Bryman, 2001). Additionally, we adopted a theoretical perspec-
ive that recognises that knowledge is something that is socially
onstructed (Nonaka, 1994).
The data was collected via a series of semi-structured inter-

iews. We examined the data by using open coding (text and
udio) thereby identifying a number of relevant concepts. These
oncepts enabled us to explain the categories that were estab-
ished in the data (Seaman, 1999). The method of analysis that is
etailed by Corbin and Strauss (2015, 1990) allowed us to identify
he knowledge-based resources and come to an understanding
f the phenomena that lie behind the use of these resources in
oftware development.
Fig. 1 depicts the iterative research process that was used

n our study. Each piece of data that was collected was anal-
sed, which, in turn, gave rise to additional questions which we
xplored in the successive data collection sessions. We reached
heoretical saturation, which means that the researchers have
chieved consistency and representativeness of the generated
oncepts, and the data analysis advanced to the stage where we
ould engage in the creation of the explanatory categories.
To report on our findings, we followed the guidelines proposed

y Stol et al. (2016), which provide a framework for reporting on
rounded theory in software engineering.

.1. Phase 1 — Research design

In Phase 1, the first author created the initial version of the
nterview guide, and held discussions with the other authors to
ormulate the research questions. The questions were aimed at
athering information about knowledge resources directly rele-
ant to coordination activities, including breaking down software

evelopment tasks. m

4

It is important to note that, although an interview guide was
vailable for use, the authors did not limit themselves by slavishly
ollowing it. Instead, they allowed the practitioners to freely ex-
ress what they thought was relevant during the interviews and
ven deviate from the list of questions included in the interview
uide.
The following subsections describe the sampling of practi-

ioners, the method for data collection and execution, the data
nalysis, and the ethical aspects that we considered when we
lanned and executed this research project.

.1.1. Sampling of practitioners
Practitioner selection was performed by means of a conve-

ience sampling (Lavrakas, 2008) that focused on participants
hose activities were related to coordination. As we proceeded
ith our interviews, we applied a process of ‘theoretical sam-
ling’ (Corbin and Strauss, 2015). This entailed sampling practi-
ioners who held different roles and responsibilities in the differ-
nt phases of software development and at various organisational
evels. We thus ensured that different parts of the software pro-
ess were covered, and a state of theoretical saturation was
chieved.
We intentionally sampled practitioners’ roles in companies

hat (i) work with both co-located and distributed development;
ii) have software development as their primary business; and
iii) have software development as an activity that is comple-
entary to their primary business. We collected data from 18
ractitioners distributed across five companies (see Table 1).
This sampling strategy allowed us to adopt a broad perspec-

ive with regards to the different contexts where the companies
mploy agile practices. The practitioners who participated in this
tudy work for companies that are located in Sweden and Brazil.
he domain of these companies ranges from telecommunication,
onsumer electronics, mobile communication, and management
pplications. Except for two companies (one does business only in
razil and another in Sweden), all of the companies conduct busi-
ess activities in several countries. They are all classified as large
ompanies (more than 250 employees), following the OECD — Or-
anisation for Economia Co-operation and Development criteria
OECD, 2022).

.1.2. Phase 2 — Data collection
The data for this study were collected by means of interviews.
e developed a comprehensive interview guide; however, not all
uestions apply to all roles. Therefore, we asked the questions
ccording to the role of each practitioner who was interviewed,
e it product owner, scrum master, line manager, or project
anager.



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

i
t
o
t
d

a
e
w

v
g
m
t

2
a
i
p
i
s

f
r
c
T
c
a

o
i
n
f
n

3

s
s

Table 1
Description of the practitioners included in this study.
Participant Role Education background Years of

experience
Company domain Agile method Team

size

P1 Architect Computer science 7 Telecommunication SCRUM - Partially 6
P2 Program manager Computer science 17 Telecommunication SCRUM - Partially 6
P3 Design leader Computer science 8 Telecommunication SCRUM - Partially 8
P4 System manager Software engineering 18 Telecommunication SCRUM - Partially 5
P5 Product owner Software engineering 3 Telecommunication SCRUM - Partially 5
P6 Scrum master Computer science 5 Management applications SCRUM 7
P7 Software engineer Development and analysis of systems 3 Consumer electronics SCRUM - Partially 8
P8 Lead architect Computer science 21 Consumer electronics Kanban/SCRUM 11
P9 Product manager Engineering 12 Consumer electronics Kanban/SCRUM 11
P10 Developer Computer science 27 Consumer electronics Kanban/SCRUM 15
P11 Line manager Computer science 17 Consumer electronics Kanban/SCRUM 13
P12 Platform maintainer Computer science 20 Consumer electronics Kanban/SCRUM 10
P13 Senior developer Software engineering 15 Consumer electronics Kanban/SCRUM 15
P14 Senior quality engineer Software engineering 7 Consumer electronics Kanban/SCRUM 10
P15 Scrum master Software engineering 12 Telecommunication SCRUM - Partially 7
P16 Team lead Engineering 15 Mobile communication Kanban/SCRUM 6
P17 Manager Acoustics engineering 25 Mobile communication Kanban/SCRUM 6
P18 Lead engineer Computer applications 9 Mobile communication Kanban/SCRUM 6
A few practitioners presented archive documents during the
nterviews, such as internal presentations displaying the dis-
ributions of the teams, the quality framework adopted, and
rganisational schema. However, the documents served as con-
extualisation, facilitating our understanding of some of the topics
iscussed during the interviews.
To collect additional information from practitioners who had

lready been interviewed, we sent a follow-up questionnaire by
-mail. These follow-up questionnaires were adapted based on
hich further information or clarification we needed.
The interviews lasted between 30 and 60 min. Sixteen inter-

iews took place on-site, one through Skype
®
, and one interview

uide was sent by e-mail. The practitioner who responded by e-
ail was given a one-week deadline to respond to the questions

hat were applicable to the practitioner’s role at the company.
We collected the data in batches, which started in May of

018. The first five interviews were conducted on-site and were
nalysed between May and June of 2018. In this first batch of
nterviews, we rephrased the questions that the practitioners re-
ortedly misunderstood in the interview guide. In the subsequent
nterview guides, we evaluated what we could explore more
ubstantially during the forthcoming interviews.
In July of 2018 (i.e., the second round of interviews), the

irst author performed an interview over Skype
®

and sent and
eceived one interview guide by e-mail. In August, the first author
onducted seven interviews (i.e., the third round of interviews).
he data collection lasted until November of 2018, when we
onducted the fourth round of interviews. This round included
total of four interviews.
We began to reach a state of theoretical saturation for most

f the concepts used in this study during the third round of
nterviews. In the fourth round, the interviews did not bring any
ew concepts to light. However, they did confirm our previous
indings. We thus decided that we had identified a sufficient
umber of concepts to build a solid theory.

.1.3. Data storage
We stored two types of data (audio and text) in the MAXQDA

oftware that can be used for qualitative and mixed methods re-
earch.1 The software also allowed us to extract relevant concepts
directly from the data source (audio and text).

1 Available at https://www.maxqda.com.
5

3.1.4. Ethical concerns
Although our study did not process any sensitive data detailed

in the Swedish Personal Data Act (1998:204) that would require
an ethics board review, we followed the ethical considerations
specified by the Swedish Research Council (Swedish Research
Council, 2017).

Regarding the data collection process, we paid attention to
confidentiality by limiting access to the authors only and by not
disclosing the participants’ names, gender, or nationality. In the
interview guide, we avoided asking questions that could be emo-
tionally intense or cause psychological harm to the participants
(Allmark et al., 2009).

Before each interview session, the first author explained the
purpose of the research project to the participant. This informa-
tion was also stated in the informed consent form. We asked
permission to conduct audio recordings during the interviews and
explained to the participants who would have access to the data,
how we were going to use it, and for how long we would keep
the audio recordings. When we were sampling the participants,
we focused on the roles that were relevant to our research in
terms of the activities that the participants perform and how
these activities were connected to coordination. The companies
agreed to participate in the study due to their interest in the
research results. We thus avoided any economic, legal, or power
structure dependency between the authors and the participating
companies that could influence the participants’ responses or our
analysis of their responses. Based on these criteria, the companies
sampled the participants who were available to participate in an
interview during the period that we visited the companies.

Our ethical concerns regarding the data analysis included an
awareness of potential stigmatisation or harm to specific popu-
lations. In this regard, we did not consider the gender, race, or
minority status of any of the study’s participants.

3.2. Phase 3 — Data analysis phase

The data collection process and the analysis of said data were
interrelated (Corbin and Strauss, 1990). The first author con-
ducted the coding procedure in each stage of the analysis, which
was carried out after each round of interviews. The preliminary
results of the study were extensively discussed with the second
author during the entire process of data collection and analysis.

For example, after we had analysed the first five interviews,
we observed several re-occurring phenomena, thus indicating a
future category. For the subsequent round of interviews, we ob-
served new concepts but also re-occurring concepts with respect

to the concepts identified during the first round of interviews.

https://www.maxqda.com


R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

a
t

s
w
1
c
t

a
o
i
a

o
l
i

s
c
(
c
a
r
e
c

c
i
y
t

e

Fig. 2. Example of the emergence of a concept.

Several new concepts and categories appeared in the data
as we examined different company roles and industry contexts.
Previously identified concepts were also strengthened. The cate-
gories were refined several times, and the concepts adjusted after
each round of data collection and analysis. Dividing the data col-
lection process into distinct rounds enabled us to reflect upon the
data. This process of reflection contributed to the development
of our results and provided us with support with regards to our
theoretical sampling (Corbin and Strauss, 2015), for example, by
informing our choice of participants’ role that could provide more
clarification about the concepts that we thus far generated.

We provide one sample from the category Ability to systematise
nd transmit knowledge to illustrate how we moved from raw data
o the categories that we finally identified.

Open coding. In this first stage of the data analysis, we ob-
erved events, actions, and interactions in the course of the soft-
are development coordination activities (Corbin and Strauss,
990). We assigned these events, actions, and interactions with
onceptual labels. After some refinement, they became the KBRs
hat were further grouped into categories.

For example, when we identified the concept Conception of
knowledge retention structure (see Fig. 2), we observed re-

ccurring events in terms of the way that structuring knowledge
mpacted the reuse of code, an association between documents,
nd the logic that was used in describing parts of a system.
Axial coding. We identified additional concepts to Conception

f a knowledge retention structure that also captured aspects re-
ated to storing knowledge and transmitting knowledge between
ndividuals.

In the next stage of the analysis, as we reached theoretical
aturation, we grouped the associated concepts into an abstract
ategory Ability to systematise and transmit relevant knowledge
see Fig. 3), and repeated the same process for the five remaining
ategories that emerged from the data. The remaining categories
re: scenario analysis, social collaboration, task planning and
esource management, team environment and settings, and in-
fficient utilisation of the knowledge resource. We gathered the
oncepts that fall under each category in Table 2.
Phase 4 — Selective coding. After the third round of data

ollection, we began to delineate our core category by connecting
t to the categories that we had created during the ongoing anal-
sis. The core category was consolidated as soon as we reached
heoretical saturation during the fourth round of interviews.

We diagrammed the categories and their relationships with

ach other by considering the elements for theory generation

6

Fig. 3. Example of the emergence of a category.

Fig. 4. Illustration of the diagramming of the categories.

(Corbin and Strauss, 1990). Fig. 4 displays this process where
the black lines indicate the link between the theory elements
and the developed categories. This was done so as to explain a
phenomenon that addresses the following: (i) the conditions that
lead to the occurrence of the phenomenon; (ii) the circumstances
within which the phenomenon occurs; (iii) the actions/strategy
by which the phenomenon expresses, and the (iv) the conse-
quences of the phenomenon. The core category emerged through
a gradual and steady process of reflection. In this process, we
discussed the connections among the categories, and we also
made several adjustments to the theory.

In our research, the core category did not emerge from the
existing categories. According to the originators of the method,
this is quite a possible occurrence (Corbin and Strauss, 1990). We
observed that there is a predominant theme emerged during the
data collection. Furthermore, this included the development of
the categories that referred to constant changes to the product
that motivated the continual need for the adaptation of processes
and the application of new or existing knowledge. In this case,
we needed a more abstract concept to explain the central phe-
nomenon and to explicitly state the relationship between all of
the categories that we identified (Frigg and Hartmann, 2018). This
overarching concept was Need for change.

In the later stages of the selective coding, we consulted the
literature to investigate the (potential) connections between the



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

a
c
v
t
t
o
W
c

s

Table 2
Skills that fall under each category.

Causal conditions Actions/Strategy

Scenario analysis Social collaboration Task planning and resource management

- ability to absorb changes that originate
from the market

- Socialisation processes - perspective of the product

- combination of technical capability
with market vision

- sharing becomes priority - product awareness

- knowing how the current technology
should evolve

- personally characteristics - comprehension of the implications of change
during the software development

- balance between business and
technical skills

- flat communication - strategies to handle task planning that take
dependencies into consideration

- evaluate the business value in the
short term versus long term

- collaborative culture routine - company’s accumulated experience

- understand customer value - cognitive processes for combining knowledge - how to distribute human resources
appropriately

- readiness to absorb changes - level of control in activities that involve knowledge creation
- ability to conduct cognitive processes
- achieve particular goals when they are established

- joint effort for coordinating the transfer of technical
knowledge

Intervening conditions

Team environment and settings Ability to systematise and transmit knowledge Inefficient utilisation of knowledge-based resources

- perspective of knowledge diversity - identify what knowledge to keep in a systematic way - meaningless search in a database
- combination of interpersonal skills - experience transfer - frustration because of recurrent problems

- coexist and interact with different
personalities

- recognising relevant knowledge - redesign solutions

- understanding of the cognitive
processes

- perceive what produced knowledge could assist other
employees

- knowledge loss

- management insight to apply suitable
practices

- balancing time allocation to systematise the knowledge and
the time pressure for delivery

- employee’s knowledge gets attention mainly
during a staff turnover

- team’s learning awareness - matching knowledge needs to the available knowledge - disconnection from external environment

- knowledge’s nature (tacit or explicit)
directs the learning of the strategies
that will be adopted by the teams

- spreading the awareness of existing knowledge - unawareness of knowledge sources

- knowing what others know - perception of a living document - waste substantial time
- representing knowledge efficiently in an artefact
- conception of a knowledge retention structure
- ability to integrate tool and coordination skills
- how architectural knowledge is disseminated
generated categories with previous research. In this process, we
related our research findings to the existing literature to vali-
date our theory (see Section 3.3), to strengthen our understand-
ing of each category, and to support our discussion (detailed in
Section 5).

3.3. Theory evaluation

Corbin and Strauss (1990) established the criteria for evalu-
ting qualitative research methods. They proposed two criteria
lassifications: one for the research process and the steps in-
olved in this process (coding, memo, sampling), and another for
he empirical basis of research findings. We addressed the criteria
hat are relevant to the research process by detailing each phase
f the research design in the above (Corbin and Strauss, 1990).
e complemented this validation by following the guidelines for

onducting Grounded Theory as proposed by Stol et al. (2016).
We evaluated the empirical basis of our findings by means of

even criteria (Corbin and Strauss, 1990):

• Criterion 1: Are concepts generated? Yes. We identified con-
cepts that were grounded in the collected data.

• Criterion 2: Are the concepts systematically related? The way

in which concepts are related to each other can be used

7

to evaluate the robustness of the theory generated. We
addressed this criterion through the narrative we present
based on the data in each category. In turn, this shows how
the concepts systematically relate to each other in the same
category.

• Criterion 3 and Criterion 4: 3 — Are there many conceptual
linkages, and are the categories well developed? Do they have
conceptual density? 4 — Is there much variation built into the
theory? The categories are dense in terms of both the num-
ber of concepts and their relationships with each other. For
example, the Task planning and resource management and So-
cial collaboration categories act as action/strategy. The causal
condition (Scenario analysis) and its concepts represent the
events that lead to the occurrence of the phenomenon.

• Criterion 5: Are the broader conditions that affect the phe-
nomenon under study built into its explanation? We took
the broader conditions into account, specifically in the Sce-
nario analysis category, which is the causal condition. This
is explained by means of the concept of how the external
environment affects the phenomenon.

• Criterion 6: Has ‘‘process’’ been taken into account? ‘‘Process’’
refers to the movement of action/interactions in response to
prevailing conditions. We described how the condition (rep-
resented by one category) that gives rise to the phenomenon



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572
Fig. 5. The Knowledge-push Theory.
occurs through the action/strategy (represented by a pair of
action/strategy categories).

• Criterion 7: Do the theoretical findings seem significant, and
to what extent? The significance of the findings is described
in terms of two main features: (i) the potential that the
findings have to stimulate further studies and (ii) how the
findings offer up a valuable explanation of the phenomenon
under investigation. We gathered potential further research
in Section 5.1. Furthermore, we consider that the theory that
we present in this paper offers a valuable explanation of the
phenomenon as a result of the application of a systematic
process for conducting grounded theory.

To supplement the validation of the empirical findings pre-
sented in this paper, we mapped the categories that we identified
to the existing literature. (The mapping is presented in more
detail in Section 5.1).

4. Findings

In this section, we present and discuss the results of this study.
First, we describe the theory that we created and each category
that is treated by this theory in detail. In Section 5, we discuss
our findings.

We gather our results in the Knowledge-Push Theory. The
findings comprise the specific skills which represent the set of
KBRs (detailed in Table 2) that are highlighted in italics and
classified across five distinct categories except for the category
Inefficient utilisation of knowledge-based resources, which rep-
resent complications that may arise from the mismanagement of
knowledge-based resources:

• Scenario analysis
• Team environment and settings
• Ability to systematise and transmit knowledge
• Inefficient utilisation of knowledge-based resources
• Social collaboration
• Task planning and resource management

4.1. The Knowledge-Push theory

Fig. 5 depicts the theory that we developed in this study. The
connections between the categories and the main phenomenon
are clearly indicated. The categories are represented by identifiers
(e.g., C1) which are discussed in more detail in the following sub-
sections. The KBRs are distributed in ASD environments through
five categories that comprise our knowledge-push theory (RQ1).
The theory generation is informed by the explanatory elements
of the phenomenon, as specified by Corbin and Strauss (1990):
8

• The Phenomenon is expressed by the Need for Change.
• Causal conditions the events which lead to the occurrence of

the phenomenon that is expressed by the scenario analysis
(C1).

• The Context is limited to software development companies
that adopt agile practices or partially agile practices in their
development activities.

• The Intervening conditions that explain the circumstances
within which the Need for change occurs are represented
by the categories: Team environment and setting (C2), The
ability to systematise and transmit knowledge (C3), and The
inefficient utilisation of knowledge-based resources (C4)

• The Actions/strategy by which the phenomenon is expressed
are social collaboration (C6) and task planning and resource
management (C5).

• The Consequence is the continuous assimilation of software
changes through the application of KBRs.

From a high-level perspective of the phenomenon, our
Knowledge-push theory reveals how KBRs boost the Need for
Change in ASD. Changes that are made in the software product,
for example, requirements changes that lead to feature changes,
motivate the constant need to adapt previous planning and to
apply new or existing knowledge by sharing, systematising, and
transmitting knowledge to practitioners within and between
teams.

The Scenario analysis (C1) determines, based on its KBRs, how
a company responds to market changes and explores new op-
portunities. The primary strategies adopted by the practitioners
are expressed through Task planning and resource management
(C5) and Social collaboration (C6). The phenomenon occurs un-
der the following circumstances – The intervening conditions
by which these strategies occur are – Team environment and
settings (C2), The ability to codify and transmit knowledge (C3),
and The inefficient utilisation of knowledge resources (C4). Com-
panies manage to use a certain level of their knowledge resources
and consequently generate continuous assimilation of changes.
However, poor codification and informal communication may
result in significant knowledge waste.

The KBRs may be assigned different levels of importance. As
we discussed earlier, even though two companies might have the
same resources (both physical and intangible), the difference be-
tween them can be ascribed to their intangible resources and how
each company deploys such resources (Barney, 2000). Therefore,
agile practices are dependent on KBRs to the extent to which how
critical these resources are. How critical they actually are will
vary based on the potential impact of the KBRs on the efficiency of
coordination within the company. We summarised the utilisation
of the KBRs (RQ2) in Table 3.



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

t
o

4

t
c
n
d
t

s
o
y

a
t
h

Table 3
The utilisation of the knowledge-based resources (RQ2).
Theory elements Categories How do companies utilise knowledge-based resources?

Causal conditions Scenario analysis To examine external variables that can affect the company, for example, a market fluctuation
that demands adapting to respond to changes.

Intervening
conditions

Team environment and settings To understand how to set up agile teams that potentially create a favourable environment for
knowledge sharing and collaboration - facilitating adapting to changes.

Ability to systematise and
transmit knowledge

To support identifying what knowledge a company should store in artefacts, its format and
which tools should be utilised.

Actions/strategy Social collaboration To enhance social relations that can result in effective software teams and trusting
environments to share and solve complex problems associated with software development.

Task planning and resource
management

To perceive the changes and their ramifications through the product development as its
required adjustments to tasks and resources accordingly.
b
e
n
t
w
d
c

4

v
t
m
r

4

r
t
s
e
i

e
o
s
c
t
g
i

t
w
a
t
t
c
m
i
y
j
t
r

4.2. Causal conditions

The causal conditions section describes the concepts that boost
he Need for Change, which is the scenario analysis category in
ur Knowledge-push theory.

.2.1. Scenario analysis — C1
The Scenario Analysis category displays practitioners’ ability

o logically examine external scenarios that might affect their
urrent business model or might highlight new business opportu-
ities. It boosts the need for change by expanding the analysis of
iverse situations through the company’s ability to absorb changes
hat originate from the market and the analysis of the impact of
upcoming requirements.

Our study observed that competitive market conditions influ-
ence the agile practices that companies adopt and/or customise.
Competing companies need to speed up their development pro-
cesses and offer faster release cycles. This entails the adoption
of faster development and shortened deadlines in response to
customers’ demands. One interview participant (P2), a program
manager, stated that ‘‘the customer is starting to use it and
starting to give us requirements, so these customers are putting
heavy pressure on us. In the early days, it was easier; we had
more freedom to develop at our own pace. Now the customer
puts strain also on the agile way of working because as soon as
you have a customer that signs a contract, he expects somethings
to a certain date, and therefore, as soon you do that kind of
agreement, you kind of destroy the whole agile flow’’.

Companies that are market leaders in terms of their innovative
products or their ability to operate in less competitive markets
have longer release cycles. Longer release cycles allow such com-
panies to focus on product steadiness and long-term features. In
this sense, the agile way of working is customised to cope with
more flexibility with regard to innovation than dealing with the
pressure to deliver.

The changes, in general, are primarily related to the con-
tinuous addition of new requirements. However, their selection
requires a combination of technical capability with market vision if
one is to predict the future of the products, as remarked by P9:
‘‘I came from the client-side. I used to program in one of these
systems, and I think that knowledge helped me. I know how to
view the product from the outside and how they want to utilise
the product. What trends do we see?’’

In addition, since the companies continuously implement new
requirements, knowing how the current technology should evolve to
upport changes becomes a priority, as stated by P8: ‘‘That’s one
f our roles, to try to see where we are supposed to be in a few
ears on the technical support level’’.
Practitioners need to know how to balance between business

nd technical skills if they are to achieve a sufficient rationale for
he decisions that they make. In this regard, P2 commented: ‘‘I

ave managed two programs until now, so I am quite new in

9

the management kind of area, and it has been quite interesting
for me to think about how my technical skills help me in this
role’’. Practitioners can apply these skills to evaluate the business
value in the short term versus long term, but also as they con-
sider and understand customer value in the context of prioritising
requirements, issues, and bug fixes.

Comprehending the implications of the changes that are made
also influences the readiness to absorb changes, as pointed out
y P5: ‘‘The collaborative work also applies to the layers, for
xample, managers. They all work with the same backlog and
eed to work together and make a decision on what they need
o focus on, which committing to a sprint plan would not work
ell. They need the flexibility to diverge on the path they take
ue to maintenance and testing. They need to focus and fix before
ontinuing towards the goal’’.

.3. Intervening conditions

This subsection displays the three categories that are inter-
ening conditions to the phenomenon explored in our theory:
eam environment and setting, ability to systematise and trans-
it knowledge, and inefficient utilisation of knowledge-based

esources.

.3.1. Team environment and settings — C2
This category refers to a software development team’s envi-

onment with respect to the practitioner’s knowledge and atti-
ude. By gathering different perspectives together for problem-
olving and performing tasks, this category provides a favourable
nvironment for the phenomenon. Moreover, it facilitates locat-
ng knowledge sources.

The perspective of knowledge diversity contributes to the co-
xistence of different ideas. The goal is to entertain a variety
f perspectives that can converge to give rise to new ones, re-
ulting in new knowledge (Nonaka, 1994). Regarding this, P8
ommented: ‘‘I’ve been here quite a while, and there are prac-
itioners that are here for two or three years, and I really want a
roup that is diverse in that sense and has different backgrounds
n what they did’’.

The convergence towards new knowledge within and across
eams is moderated by the combination of interpersonal skills
here practitioners not only communicate with each other but
lso coexist and interact with different personalities. There are
wo important aspects to take into consideration regarding this:
he practitioner’s behaviour towards the understanding of the
ognitive processes for combining diverse knowledge, and the
anagement insight to apply suitable practices to stimulate social-

sation. As remarked by P11: ‘‘If you are an extrovert person and
ou say a lot, it is important that you talk the right things and not
ust talk. We have more introverts, and that is alright. You need
o know what their strengths are so that I can use them in the
ight context’’.



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

d
e
I
a
o
P
p
p
i
p
d
a
a

l
p
(
a
t
i
p
c
t
p

s
t
i
H
d
m

4

w
s
a
o
c
s
t

t
h
i
i
p
y
n
t
b
t
t
t
m
a
a
o
t
t

i
c
c
P

r
e

A particular team’s environment can either facilitate or hin-
er the systematisation of unrevealed knowledge: a fact which
nables companies to take ownership of the knowledge resource.
n domains where skilled practitioners are required to perform
n activity with a specific type of knowledge, the systematisation
f said knowledge becomes even more critical. On this subject,
5 commented: ‘‘We will have a person leaving, he will be on
arental leave for a very long time and probably. So, he will
robably not coming back to our team again. He documents his
deas and thoughts on how to proceed and so on. We had another
erson leaving before who did a lot of security work. He sat
own and documented a lot of that. We went through his patches
nd looked at that together to make sure we were not missing
nything’’.
The continuous assimilation of changes often relies on a team’s

earning awareness, which positively impacts the expansion of the
ractitioners’ knowledge in agile teams. The knowledge’s nature
tacit or explicit) directs the learning of the strategies that will be
dopted by the teams. The more complex the knowledge is in
erms of externalisation, particularly tacit knowledge, the higher
s the tendency to adopt more socialisation among the team’s
articipants. This may take the form of workshops or building
ommunities for discussions. Prototyping is also a way of testing
he combination of knowledge that has originated from cognitive
rocesses and formal learning programs.
Finally, knowing what others know is a key element to con-

ider when forming teams and collaborating within and between
eams. When teams are collocated, knowing what others know
s facilitated by the constant interaction between practitioners.
owever, in larger organisations, for example, with distributed
evelopment, knowing what each individual’s competencies are
ight be challenging but essential at the same time.

.3.2. Ability to systematise and transmit knowledge — C3
This category relates to the practitioner’s ability to recognise

hat knowledge (tacit knowledge and/or explicit knowledge)
hould be systematised into artefacts and how this should be
chieved. This category also includes the ability to integrate co-
rdination skills with tools. It offers conditions to the need for
hange by allowing teams and stakeholders to access relevant and
tructured knowledge when they need it without losing much
ime in the search process.

The different roles on different organisational levels recognise
hat to identify what knowledge to keep in a systematic way is
ighly relevant. However, it is acknowledged that it is challenging
n agile contexts, where informal communication dominates. To
llustrate this concept, we present two important quotes from
ractitioners: (I) P8 reported: ‘‘There is always a problem when
ou have new people or when you make something completely
ew that doesn’t fit your way of working. That isn’t easy to map
o the common knowledge. We started to see that there might
e a problem now that we are expanding geographically. We see
hat we need to change, but we need to know what is important
o be in formal documentation and process’’. (II) P3: ‘‘There is this
hinking, not only in this company, that I write my code and I did
y job. However, in a large organisation, it is difficult to maintain
product without documentation. One team develops the code,
nd another team tests it. Then a different team from the first
ne needs to investigate it two or three times more to start to fix
he problem because they need first to understand what the first
eam has done, due to the bad documentation’’.

To a large extent, knowledge is shared, created, and applied
n daily routines. Flexibility in communication, together with a
ollaborative environment, promotes the experience transfer by
ombining practitioners’ experience and backgrounds. Quoting
11: ‘‘[...] in fixing the teams, I am looking at ages, experienced
10
people. I try to hire new people to learn from the older peo-
ple’’. The experience transfer promotes learning and knowledge
creation by combining different expertise and experiences.

However, practitioners frequently struggle with recognising
elevant knowledge for two main reasons: First, difficulties may be
ncountered as they perceive what produced knowledge could assist

other employees. Second, practitioners may find it challenging
balancing time allocation to systematise the knowledge and the time
pressure for delivery. Regarding this issue, respondent P1 stated:
‘‘We really haven’t that culture at all, we have tried to document
stuff, but we are so decentralised that if we introduce something
it has to cause less friction, and if there is no immediate benefit
on it, it would not fly’’.

To ensure that practitioners within and between teams do not
waste time looking for existing knowledge, one should establish
procedures for matching knowledge needs to the available knowl-
edge. However, we notice that this is still an open issue in the
companies that we interviewed, together with the challenge of
spreading the awareness of existing knowledge.

Further to the above, systematised knowledge calls for the
perception of a living document to keep knowledge updated, as
indicated by P3: ‘‘Each team will document a part of the code so
when new people come they know what that part is about, and
have the idea that you do the documentation and that’s it. It is a
living document’’ Nevertheless, retaining this knowledge involves
representing knowledge efficiently in an artefact. This is facilitated
by a conception of a knowledge retention structure, so it can be
reused and represented in an uncomplicated way, as remarked
on by P14: ‘‘Everything is relevant in some way, but it has to be
in a structured way’’.

Although there are several tools available for managing soft-
ware development knowledge and the accomplishment of tasks,
the ability to integrate tool and coordination skills works as a
backdrop for breaking down backlog items and disposing of them
coherently within the tools, as P1 clarified: ‘‘The product owner,
he is very detailed, very structured, so it is very easy to know
what they are doing, they have a very good planning in the
‘project management tool’. It is very visible, and they are also very
good at understanding the big picture and the value they would
be adding by solving this’’.

In addition, this ability can also be associated with how ar-
chitectural knowledge is disseminated. Practitioners rely on the
overall design systematised in a formal language and distributed
in the company. However, it might be misinterpreted by teams
and cause mistakes, as pointed out by P18: ‘‘It is quite easy
to misinterpret the architecture in software development. The
architects define the architecture, and they rely on the team to
do what is designed’’.

4.3.3. Inefficient utilisation of knowledge-based resources — C4
Software companies achieve continuous assimilation of

changes by using agile coordination mechanisms. However, the
use of knowledge-based resources often remains an inefficient
process. Even though there is an existing awareness of the rel-
evance of knowledge systematisation, practitioners frequently
face difficulties in recognising what knowledge to codify into an
artefact in daily activities and when they should do so.

In combination with these challenges, practitioners also some-
times codify irrelevant knowledge. This practice occurs mainly
through software and databases, which are the most frequently
used technologies for codification in software companies. The
result of this codification of irrelevant knowledge is a meaningless
search in a database which is not updated and is not entirely
trusted by its users. In this regard, P16 reported that: ‘‘[m]ost of
the time, you get 2000 results and go through, you search. The
first 200 items are outdated, and below that is misinterpreted, so
not really the right one’’.



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

a
a
N
o
t
s
c
p
H

i
i
k
o
t
i
t

a
i
l
n
c
i
f
t
b
o
b
f

t
f
b
m
g

i
e
p

s
e
2
i
a
d
s

4

C
a

4

c
o
N
e
s
u
w
s
p

t
w
o
c
i

p
c
a
a
‘
j
b
a

e
i
t
t
d
t
c
a
w

d
i
c
n
t
g
p
S
p

i
p
f
T
r
p

r
a
p
t
h
o
p
a
d
p
t
t

4

g
a
v
e

d
w
c

Being committed to fast delivery through iterations may bring
bout increased inefficiencies in terms of KM in coordination
ctivities, giving rise to frustration because of recurrent problems.
ote that this category refers to problems that were entirely
r partially solved previously. The practitioners whom we in-
erviewed mentioned that, in several cases, they would redesign
olutions. For example, note what P17 remarked on this: ‘‘Of
ourse, it happens[...]you can search what others have done in the
ast, but we have a database that there are thousands of issues.
ow do you search in the database?’’
One important factor that frequently results in knowledge loss

s the fact that an employee’s knowledge gets attention mainly dur-
ng a staff turnover. In this case, employees with specific technical
nowledge, for example, in the domains of security or streaming,
ccasionally are requested to codify ‘‘what they know’’ in relation
o a particular topic in a short time. In this process, knowledge
s partially lost, thereby affecting the other employees’ learning
ime.

Inefficiency in the management of the knowledge resource
lso affects the competitive positioning of a software company
n a market. In particular, when software companies are market
eaders or closely compete with the leaders, the inefficient coordi-
ation of requirements engineering activities might motivate the
ompany’s disconnection from external environment. This scenario
s usually characterised by an unawareness of knowledge sources
or eliciting new requirements through cognitive processes. Note
he remark made by P9: ‘‘Sometimes it is very hard to see what
usiness value this brings, short term versus long term. There are
ne or two layers between the functionality I add to the actual
usiness and selling, so it is quite hard to know. I go with my gut
eeling a lot’’.

Finally, using the different coordination mechanisms and ac-
ivities within ASD, companies waste substantial time searching
or relevant knowledge that might be already codified or known
y their employees. In this regard, P3 commented: ‘‘The docu-
entation is poor, each team keeps their repository, and things
et worse when you go to other departments’’.
Rus and Lindvall (2002) argue that KM could prevent and mit-

gate risks in software development companies related to knowl-
dge loss, a lack of knowledge, performing re-work and solving
roblems that have already been solved, and staff turnover.
Inefficiencies related to the management of knowledge re-

ources have been examined previously in the literature (Melo
t al., 2013; Izquierdo-Cortazar et al., 2009; Ersoy and Mahdy,
015; Sedano et al., 2017), but our findings also reveal additional
nefficiencies, including the redesign of solutions due to an un-
wareness of knowledge sources. In Section 5, we expand on this
iscussion by providing a number of potential implications that
tem from these inefficiencies.

.4. Actions/strategy

This subsection describes the categories by which the Need for
hange is expressed: task planning and resource management,
nd social collaboration.

.4.1. Task planning and resource management — C5
This category refers to the employees’ understanding of (i)

hange, (ii) the ramification that their actions may have through-
ut the task planning process, and (iii) available resources. The
eed for Change expresses through this category by practition-
rs’ coordination actions, taking the product’s complexity in its
urrounding ecosystem into account. The perspective of the prod-
ct is a knowledge-based resource that allows teams to reduce
aste. In this context, waste refers to unnecessary code and time
pent on fixing problems introduced to the software development
roject by losing the perspective of the product.
11
Lacking product awareness is a phenomenon that several prac-
itioners face, as reported by P6: ‘‘In this project, it is common
hen focusing on specific features, the developers lose the idea
f the product and end up developing unnecessary code that will
ost more time on refactoring. People do not stop to analyse what
s being done’’.

When new requirements are incorporated into the product,
ractitioners must possess comprehension of the implications of
hange during the software development if they are to verify how
new requirement (change) impacts the development, testing,
nd deployment time of the software product. As P1 remarked:
‘There are technical aspects for features that we introduce that I
oin to study what would be changed to the product, what would
e adding to the product, how would it impact the deployment
nd of course the tests. It is quite a lot, actually’’.
To increase their understanding of the product, companies

stablish strategies to handle task planning that take dependencies
nto consideration. We observed that the companies included in
his study made changes to their agile practices when they noted
he appearance of several dependencies. These included depen-
encies related to product growth and distribution with other
eams or sites. P13 observed: ‘‘When the project was mainly con-
erning us, it worked quite well. But as soon we got dependencies,
nd project managers had different priorities, it didn’t work quite
ell. That’s one of the reasons why we switched to Kanban’’.
One strategy that can be implemented to deal with depen-

encies is to plan the tasks that need to be completed through
terations and prioritise tasks in each iteration. In this regard, P2
ommented: ‘‘There are maybe five departments, and all of them
eed to do a piece of work for this to be complete. And, therefore,
his department needs to go first, then this one, these two can
o in parallel, and then I can do my work. So, there is a lot of
lanning to this to be done in that way — dependency planning.
o, this goes through several iterations, I can say. That’s how we
lan our work’’.
Systemic reasoning with regards to software products is re-

nforced by the company’s accumulated experience. Experienced
ractitioners can support coordination (as described by P2 above,
or example) by possessing broad knowledge about the product.
hese experienced engineers often take on decision-intensive
oles, for example, by being responsible for lead architecture,
roject management, and software quality.
Establishing a team requires expertise from managers with

espect to how to distribute human resources appropriately. Man-
gers should allocate practitioners to a team to fit the teams’
urpose but also take into account their knowledge of the product
hey are tasked to produce. With respect to the allocation of
uman resources, P2 commented: ‘‘It is actually a combination
f all the departments. Therefore, you need some teams that we
ut together that have connections with all other departments
nd have forced departments to act because sometimes these
epartments might think this is not our problem, this is their
roblem. Our performance is fine [referring to the practitioner’s
eam’s performance], yes, but if you put them together [all of the
eams], the performance is poor’’.

.4.2. Social collaboration — C6
This category refers to practitioners’ social skills as they en-

age in information and knowledge exchange and networking
ctivities. This category manifests the need for change by pro-
iding sociable and trusting environments where practitioners
xperience effective guidance for their working routines.
Socialisation processes play an essential role within a software

evelopment team by shaping the practitioners’ behaviour in a
ay that promotes improvements in their communication. Social
ollaboration does not entail that introverts are converted into



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

e
c
t

w
t
r
p
m
c

g
p
i
d
p
p
c
a
h
a
i

m
t
b
I
m
i
b
w
a
r

w
f
m
c
p

5

t
g
t
c
c

5
s

a
i
s
e

r
K
S
t
v
c
p
c

xtroverts. Instead, it addresses how one can manage social pro-
esses where sharing becomes priority taking into consideration
he practitioners’ personally characteristics.

Companies that adopt ASD benefit from flat communication,
hich enhances a collaborative culture routine. At the same time,
he hierarchical structure found in different departments and
oles does not undermine the potential for communication among
ractitioners. As stated by P14: ‘‘You can talk to managers and
anagers of managers like normal people discussing things, you
an discuss with people on other levels’’.
Flexibility of communication within and between teams trig-

ers cognitive processes for combining knowledge from different
eople and roles. This knowledge can be used to deal with the
mplications of change. Regarding this, P14 commented: ‘‘When
iscussing something, maybe two people who do not know the
roblem, when they discuss things together, then they solve the
roblem’’. In addition, the awareness of the cognitive process for
ombining knowledge is associated with the level of control in
ctivities that involve knowledge creation. At higher levels, this may
inder creativity, as noted by P16: ‘‘It will stop creativity if you
re too formal, it should be a bit loose, but not too loose because
t will not gain anything good’’.

Meetings can also trigger cognitive processes in an agile com-
unity. The ability to conduct cognitive processesmay drive people

o achieve particular goals when they are established, for example,
y combining different perspectives when decisions are made.
n this regard, P2 commented: ‘‘My personal hate is re-occurring
eetings. If I had a choice, I would cancel all re-occurring meet-

ngs and forbid them because 90% are a waste of time and could
e handled in a better way through direct communication or
hatever. Of course, there are meetings that when issues arise,
nd it is simply the best way to put everybody in the meeting
oom, bash their heads together, and the issue is solved’’.

When systems from different companies need to be integrated
ith each other (from partners or a customer), a joint effort

or coordinating the transfer of technical knowledge goes beyond
erely breaking down the work to be done. In this scenario,
ollaboration aims at solving issues together through cognitive
rocesses that stimulate knowledge creation and its application.

. Discussion

This section discusses in Section 5.1 how our findings relate
o and add to the existing literature on KBRs and software en-
ineering. In Section 5.2, we also provide a discussion on how
o consider knowledge as a resource in an industrial context,
onnecting the results of our study to a collection of practices that
an optimise the utilisation of this resource.

.1. Connections with existing literature and implications for re-
earch

Our work expands on previous research on KBRs by providing
n increased understanding of the identification and role of KBRs
n ASD. Our findings also confirm the results of several previous
tudies (Miller and Shamsie, 1996; Kaya and Patton, 2011; Nieves
t al., 2014).
In periods of stability, companies benefit from property-based

esources. However, in changing and unpredictable environments,
BRs have contributed to increased profits and sales (Miller and
hamsie, 1996). The category scenario analysis (C1) highlights
he importance of KBRs in dealing with a company’s external
ariables. Our study suggests that KBRs contribute to improved
oordination when they are used to make adaptations to current
rocesses and to grasp new opportunities in response to market

hanges. In the software engineering literature, we identified

12
several different aspects of external scenarios that affect the
initial stages of software development activities. These aspects
include: software product management (Kittlaus and Fricker,
2017; MacCormack and Verganti, 2003), requirements engineer-
ing (Karlsson et al., 2007; Hall et al., 2002; Curtis et al., 1988),
and market-driven software development (Gorschek et al., 2012).
However, although these areas relate closely to our category,
the existing literature on software engineering does not ex-
plore how practitioners can benefit from KBRs in a changing
environment such as ASD. Further studies exploring the initial
stages of software development could consider these findings.
For example, market-driven companies (Gorschek et al., 2012)
could incorporate their practitioners’ technical capability with re-
gards to their market vision skills to the requirements elicitation
phase and then measure the improvements that derive from such
incorporation of technical ability.

Previous research has shown that human interaction inten-
sifies product innovation and organisational innovation through
the generation of new ideas. Efficiency can also be improved by
sharing knowledge, and skills (Nieves et al., 2014). Our findings,
more specifically the categories social collaboration (C6) and team
environment and settings(C2) relate to previous research in this
area. ASD team structure influences creating a network environ-
ment, where social relations are a primary channel along which
tacit knowledge can be shared. Good social relations can also be
used to predict the effectiveness of software teams (Ryan and
O’Connor, 2013; Ouriques et al., 2019; Bjørnson and Dingsøyr,
2008; Rus and Lindvall, 2002; Bradley and Hebert, 1997). Good
social relations rely on heterogeneity in terms of knowledge
diversity and interpersonal skills to effectively solve complex
problems, which is undoubtedly part of the software develop-
ment process (Bradley and Hebert, 1997). In this context, we
should mention that behavioural software engineering is a recent
but growing field. The areas that are explored in this field are
closely related to the concepts that we have described in this cat-
egory, including group thinking and team composition (Lenberg
et al., 2014, 2015; Soomro et al., 2016).

Encouraging collective thinking can be viewed as an alterna-
tive to triggering the cognitive processes for combining knowl-
edge (Nonaka et al., 1996). As people share and consolidate
knowledge, part of this knowledge remains tacit, whilst part
becomes a property-based resource through codification prac-
tices. Agile teams utilise several Information and Communication
Technologies (ICTs) for this purpose. However, it is not made
clear in the literature how knowledge is effectively employed in
the codification processes (Ouriques et al., 2019; Dorairaj et al.,
2012; Chau and Maurer, 2004; Karlsen et al., 2011; Kuusinen
et al., 2017). In the category ability to systematise and transmit
knowledge (C3), we explore this gap by identifying several KBRs
that can be used to support coordination activities. They are
represented by skills that are related to understanding what
knowledge one should store and also to understanding the extent
to which knowledge should be codified, be it entirely physical,
digital, or a mix of both media (Carstensen and Sørensen, 1996;
Sørensen and Lundh-Snis, 2001; Dingsøyr and Royrvik, 2003; Ed-
ward Steinmueller, 2000; Datta and Acar, 2010). Future empirical
investigations in this domain should focus on how a balance
between socialisation and codification practices can be taken into
account. It should also be possible to verify how the complexity of
increased dependency between geographically distributed teams
affects this balance. Finally, it is also relevant to know how this
complexity affects the cost of codification practices.

Although the category of task planning and resource manage-
ment (C5) is a new contribution to the literature on KBRs, it
has been subject to no small amount of attention in the general
software engineering literature. The absence of a holistic per-
spective of the product and the associated business model is a



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

c
f
u
a
2
t
d
c
i
d
i
w
p
d
c
a
f
K
w

5

s
c
n
i
e

p
f
v
p
A
e
m

t
s
i
t

t
t
a
w

b
t
t
b

a
l
e
s
q
a

r
a
m
k
(

t
m
W

ommon issue that ASD faces due to extensive focus on delivering
eatures rapidly at the end of the development sprint and the
biquitous presence of time pressure (Li et al., 2010; Käpyaho
nd Kauppinen, 2015; Budwig et al., 2009; Begel and Nagappan,
007). Borrego et al. (2019) argue that poor design documenta-
ion results in the loss of architectural knowledge, which they
efine as knowledge vaporisation. Our findings offer additional
larification concerning how KBRs support a broader understand-
ng and diffusion of the product. Diffusion can be achieved in
ifferent ways, for example, by formal visualisation techniques
n ICTs could be more effective in distributed teams since this
ould increase the probability of reaching a larger number of
eople, while on the other hand, informal interpretations that
evelopers make in co-located teams could cost less and also
ould be effective (Paredes et al., 2014). Because KBRs might
ffect a company’s performance (Beleska-Spasova et al., 2012),
urther empirical work is required to examine the efficiency of
BRs that are aimed at verifying how much knowledge has been
asted or is absent in crucial moments.

.2. Practical implications for KM in ASD

Although the concept of ‘knowledge’ has been discussed in
everal software engineering studies, there remains only a weak
onnection between the management of this resource and coordi-
ating activities in ASD. At present, there is a lack of research that
s focused on how to apply knowledge as a resource (Ouriques
t al., 2019).
From the strategic management point of view, the main im-

lication of the above is the impossibility of assessing KM ef-
ectiveness. For example, ‘product awareness’ (see 4.4.1) is a
aluable knowledge resource. Its mismanagement may have im-
lications with respect to writing unnecessary code. Most often,
SD focuses on this aspect informally and relies on the individual
mployee’s perception of an event. Note that different employees
ay well not share the same insights.
An alternative to verifying the extent knowledge contributes

o generating business value by addressing mismanagement is-
ues is to incorporate KM practices into ASD coordination activ-
ties. This will enable one to develop strategies that can be used
o analyse the application of resources (Ouriques et al., 2018).

Knowledge management practices should be developed with
he aim of achieving a purpose. Furthermore, they need organisa-
ional support and stimuli (Santos et al., 2015). Leadership plays
fundamental role in stimulating and creating an environment
here knowledge can be efficaciously managed.
Similar to property-based resources, knowledge also needs to

e managed so as to ensure that its application is effective. In
his respect, an informed leadership team can guide companies
o actively and dynamically apply knowledge in their daily work
y creating the appropriate conditions (Nonaka et al., 2000).
Although ASD employs somewhat flat hierarchical structures

nd emphasises shared responsibility within the teams, distinct
eadership roles exist in different methods and frameworks (for
xample, product owners and scrum masters). Besides agile-
pecific roles, typical roles found in software companies are also
ualified roles, including line managers, project managers, and
rchitects.
The presence of middle managers and alternative leadership

oles can enable the synchronisation of knowledge goals within
n entire company (Nonaka et al., 2000). Proper leadership can
ediate processes at each company level by aiming to enhance
nowledge creation, storage, sharing/transfer, and application
Ouriques et al., 2019).

We suggest two complementary strategies with respect to
he management of knowledge in ASD contexts, namely (i) the
apping of knowledge sources and (ii) knowledge codification.
e summarise these strategies in Fig. 6.
13
Fig. 6. Recommendations for managing knowledge.

5.2.1. Knowledge codification
The codification of knowledge in ASD involves different levels

of formality, which are guided by the company’s documentation
strategies and policies. Note that most documentation currently
focuses on documenting feature specifications, tests, changes,
problems, and solutions.

Besides the company’s codification policy, most teams make
a record of what they believe is relevant in repositories. Formal
artefacts are commonly recorded in software that the company
provides. Artefacts that are adopted informally are selected by the
team themselves, for example, in the form of Wikis. However, a
lack of precise knowledge structure and guidance may result in
wasted time and a resultant economic waste. Several practition-
ers (P1, P3, P9, P14, P16) agreed on the importance of recording
knowledge in some form or another to attend to the needs of
different types of users and applications. Notwithstanding this,
we currently lack the expertise in how this may be best achieved.

Developers in software development teams perceive the cod-
ification process as a distraction. Stettina et al. (2012) found that
codification activities were given to the least qualified developer,
while the rest of the team focused on what they thought was
important, i.e., writing code. The time pressure impacts people’s
behaviour, forcing them to focus on very specific features. Con-
sequently, they often pay less attention to seemingly peripheral
– but not less important – tasks. The result of this behaviour
can contribute to documentation debt (Dybå and Dingsøyr, 2008;
Annosi et al., 2016; Tom et al., 2013).

In contrast, one study has indicated that decision processes
that are related to the cost estimation of future projects may
be based on a series of miscalculations due to a lack of codified
knowledge. Apparently, this is predominantly the case in the
requirements engineering phase (Saito et al., 2018).

Whilst knowledge codification can be costly when appropri-
ately planned and implemented, it can positively affect innova-
tion, economic growth, and knowledge creation (Aurum et al.,
2008; Cohendet and Edward Steinmueller, 2000).

Cohendet and Edward Steinmueller (2000) explain that the
use of information and communication technologies (ICT) signifi-
cantly reduces the cost of knowledge codification and also facili-
tates the dissemination of this knowledge. Additionally, informa-
tion and communication technologies are of use in transforming
knowledge application into routines.

Agile teams who employ ICTs to codify and share knowledge
should pay attention to the following three points:

• Match codified knowledge to people’s knowledge needs. Teams
work on different items at different development phases,
which is characteristic of a complex environment where

several knowledge sources and several potential users are



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

c
b
W
a

c
t
t
k

5

F
d
a

p
o
s
k
c
o

t
m
t
m
p
t

k
c
l

(
d
p
T
e
A

o
k
m
t
c
1

o
h
t

T
T
s
d
p
p
p
d

present. Thus, the point of matching codified knowledge to
people’s knowledge needs includes the contexts in which
the knowledge should be accessible, whom. Furthermore,
the design and the usage of ICTs should be viewed as a
source of guidance to relevant job-related knowledge (Hen-
driks, 1999).

• Knowledge structure. This point relates to the form of the
knowledge when it is codified into an artefact and how it
affects the usability and applicability of the knowledge by
the user. According to Hall (2006), two main aspects are
critical to knowing how to codify knowledge. These are (i)
understanding why people need certain knowledge and (ii)
knowing how it might be applied.

• Knowledge update. To ensure that the knowledge matches
the intended user’s needs, one must regularly update previ-
ously codified knowledge (Lai, 2007). The assimilation and
accommodation of change is an ongoing process in ASD and
thus creates different knowledge needs.

It is important to note that one should not assume that codifi-
ation is a synonym for ICT. The existence of knowledge that has
een codified into artefacts does not guarantee its applicability.
hether knowledge is applied or not depends on a range of social

nd cognitive aspects.
Notwithstanding the above, it is likely that an appropriate

odification process that is aligned with the effective use of
he knowledge (Alavi and Leidner, 2001) can result in reduced
ime wasted and reduced deployment delays by speeding up the
nowledge retrieval process.

.2.2. Knowledge sources
Knowledge has different levels, sources, and associated goals.

or example, these may include high-level goals and strategic
irections, specific requirements, or a specific source code (Rus
nd Lindvall, 2002).
From the KM perspective, most ASD companies fail to adopt

ractices that specifically aimed at identifying knowledge needs
r at satisfying particular knowledge needs by using knowledge
ources. As discussed in the previous section (see 5.2.1), most
nowledge codification activities are guided by company poli-
ies that result in minimal product documentation that is often
utdated.
Except for the knowledge that is codified in the artefacts,

he identification of knowledge needs in ASD contexts is usually
ade via informal communication between people either inside

he software development team or between teams. Note that
ost developers tend to communicate with a limited number of
eople whom they already know. However, they might not find
he sources that they need to acquire knowledge.

From this inconsistency between the knowledge needs and
nowledge sources, two scenarios emerge: (i) practitioners have
onfidence in the knowledge that is stored in artefacts and (ii) a
ack of awareness of the knowledge that is possessed by others.

Several practitioners who were interviewed for this study
P14, P17, P18) mentioned they prefer not to consult their
atabases as a knowledge source in their search for similar
roblems/solutions because they are too large and outdated.
his happens because a recipient’s behaviour towards a knowl-
dge source is directly influenced by how reliable the source is
ndrews and Delahaye (2000) and Szulanski et al. (2004).
Reliability (or perceived reliability) also affects the degree

f cooperation that takes place between people as sources of
nowledge. The more reliable the source is considered to be, the
ore cooperation takes place. This is due to the notion of ‘recep-

iveness’ (Dirks and Ferrin, 2001). A high degree of receptiveness
an lead to reduced knowledge exchange costs (Currall and Judge,
995).
14
A second implication relates to a lack of awareness of the
knowledge that other people possess. In small companies with
co-located teams, the competencies of the team members are
usually well known. In such contexts, it is easier to find knowl-
edge sources that meet knowledge needs. However, in contexts
where the number of teams and employees do not allow this type
of close connection between people, the time that is spent on
solving problems might increase, and, in extreme cases, the cost
may supersede that of the cost of acquisition of external sources
of knowledge.

In all of the companies included in this study, despite the fact
that they employ line managers or similar, team members are
often unaware of their colleagues’ knowledge or competencies
with respect to their day-to-day work. Another point made by P2
during the data collection phase of this study is that by knowing
what the others know, one is more likely to more precisely plan
resources since one is more likely to be aware of the ‘‘workload
capacity’’ of each individual in the team.

This analysis is supported by Rus and Lindvall (2002), who
identify five knowledge areas in software engineering that are
critical to achieving business goals. These knowledge areas are:
(i) knowledge of new technologies, (ii) domain knowledge, (iii)
knowledge of internal practices and policies, (iv) knowing who
knows what, and (v) collaboration for sharing knowledge.

Knowledge mapping is an essential step in managing knowl-
edge sources (Soliman and Spooner, 2000). This includes identi-
fying relevant sources of knowledge that can be used to bridge
knowledge gaps between people at a company. This mapping
can be executed by external knowledge sources, such as new
technologies and market trends, and then deployed internally to
identify who knows what and where knowledge is missing.

6. Threats to validity

In this section, we discuss a number of threats that the validity
of our study is faced with. In this context, we have followed the
guidelines recommended by Wohlin et al. (2012), who classify
such threats as being external, internal, conclusion, or construct
threats.

External validity relates to the possibility of generalising the
results of the study in settings that lie outside the original study’s
settings. Even though we interviewed 18 practitioners from five
different companies, we are aware that this sample is not repre-
sentative of the entire software industry. Notwithstanding this,
we aim to achieve a certain level of analytical generalisation
(Flyvbjerg, 2006) by providing rich contextual information and a
close discussion of our findings.

Our strategy to further mitigate external validity threats was
to contact companies that develop software that is combined
with hardware and companies that produce software only as their
main product. In addition, we also selected companies that oper-
ate in different domains. We believe that this strategy of combin-
ing domains, product type, and market conditions supports the
generalisation of the results of our study.

The internal validity of this study relates to our awareness
f other factors that might affect the casual relationship that we
ave investigated. Our study is exploratory rather than confirma-
ory, which minimises some internal validity threats.

We recognise that the fact that each step of the Grounded
heory relies on the researcher’s subjectivity is a validity threat.
o diminish this threat, we followed the systematic process de-
cribed by the Grounded Theory (Corbin and Strauss, 1990). The
esign phase of this study was an interactive process. The authors
articipated in commenting on and adjusting the study’s research
roposal and the data collection instrument. In the data collection
hase, the first author conducted the interviews that were further
iscussed with the second author (see Section 3).



R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

t
I
t
t
t
c
w
a
w

o
a
t
t
e

t
r
i
c
m
f
m
S
a
p
t

t
w
p
p
s
b
u
t
n
g
m

7

w
o
s
r
i

T
i
i
n
n
w
w

p
c
t
p
e
i
p
i

m
r
o

t
r
c
o
s
t
n

b
b
p
f
a
s

C

g
d
I
S
a

D

c
t

A

b
P

A

o

R

A

A

A

A

A

A

A

The conclusion validity threats to this study are related to fac-
ors that might interfere with our drawing accurate conclusions.
n our study, we recognise that a potential lack of consistency in
he concepts during the data collection was a threat. To mitigate
his threat, we decided to collect the data in batches. By adopting
his strategy, we executed the coding after each round of the data
ollection phase and compared our coding to the concepts that
e had identified previously. This approach allowed us to achieve
certain degree of consistency with respect to the concepts that
e identified throughout the analysis (see Section 3).
Although Grounded Theory provides ways for validating the-

ry generation (see Section 3), we provided each category with
synthesis discussion, including how the existing literature has

reated the concepts that originated from our analysis. In the syn-
hesis section, we discuss similarities and contrasts in software
ngineering and other areas of the relevant literature.
With regards to construct validity, we discussed possible

hreats that may lie between the research setting and the theo-
etical construct that we explore in this paper. One threat that we
dentified was the inadequate pre-operational explication of the
onstructs from different areas, including ‘knowledge manage-
ent’. To reduce this threat, during the interviews, we refrained

rom using the specific terminology related to KM since such ter-
inology was not common knowledge for the practitioners (see
upplementary Material A). We applied the terminology in our
nalysis, of course. For example, when we use knowledge diversity
erspectives, we refer to people with different backgrounds inside
he team.

To avoid mono-operation (Wohlin et al., 2012) bias, we in-
erviewed a wide range of people who held different roles and
orked with different agile methods. Concerning evaluation ap-
rehension, before the interviews started, we explained to the
ractitioners that they would be anonymised and that the re-
ults of the interviews would be combined so that it would not
e possible to associate any information with any one partic-
lar practitioner. In addition, we explained to the practitioners
hat, since the study was an exploratory study, our goal was
ot to evaluate their knowledge management but, instead, our
oal was to come to some understanding of how the knowledge
anagement took place.

. Conclusions

Knowledge is recognised as a significant resource for soft-
are development. However, a lack of understanding of how
ne should manage knowledge can hinder its effective use in a
oftware development context. We examined knowledge from a
esource-based perspective, which gave us insight into how this
ntangible resource is relevant to ASD contexts.

By following the systematic process outlined in Grounded
heory, we identified a number of KBRs in their different forms,
ncluding specific skills. These KBRs were then gathered together
nto the Knowledge-Push Theory. This theory provides an expla-
ation of how practitioners use the identified KBRs to boost the
eed for change in ASD. The explanatory potential of the theory
as validated through a comparison between the categories that
e established and the existing literature on this topic.
The results of our study show that, as primary strategies,

ractitioners use task planning, resource management, and so-
ial collaboration. These strategies are implemented through the
eam environment and settings and are made manifest in the
ractitioners’ ability to codify and transmit knowledge. How-
ver, this process is non-systematic, which brings inefficiency
nto the domain of knowledge resource utilisation, resulting in
otential knowledge waste. This process can generate negative
mplications to the course of software development, including
15
eaningless searches in databases, frustration because of recur-
ent problems, the unnecessary redesign of solutions, and a lack
f awareness of knowledge sources.
To employ the theory presented here, practitioners must note

hat, similar to any other type of resource, knowledge-based
esources enjoy different levels of importance for each software
ompany. As a starting point, we suggest that practitioners pri-
ritise critical KBRs and develop strategies to manage these. The
trategies that are ultimately selected could be thought of in
erms of the main implications that we describe in Section 5.2:
amely, knowledge codification and knowledge sources.
Regarding future research, we suggest that two main issues

e explored. The first relates to the definition of metrics that can
e used to evaluate the outcomes in both the codification and
ersonalisation of KM strategies. The second issue is related to
inding a balance between (A) informal rules for communication
nd (B) strict rules for communication and codification and how
uch a balance may affect the agile flow?

RediT authorship contribution statement

Raquel Ouriques: Conceptualization, Methodology, Investi-
ation, Resources, Data curation, Validation, Writing – original
raft, Writing – review & editing, Visualization. Krzysztof Wnuk:
nvestigation, Writing – original draft, Writing – review & editing,
upervision. Tony Gorschek: Supervision, Reviewing, Funding
cquisition. Richard Berntsson Svensson: Writing – reviewing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgement

We would like to acknowledge that this work was supported
y the KKS foundation, Sweden through the S.E.R.T. Research
rofile project at Blekinge Institute of Technology.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jss.2022.111572.

eferences

lavi, M., Leidner, D.E., 2001. Knowledge management and knowledge man-
agement systems: Conceptual foundations and research issues. MIS Q. 25,
107–136.

llmark, P., Boote, J., Chambers, E., Clarke, A., McDonnell, A., Thompson, A.,
Tod, A.M., 2009. Ethical issues in the use of in-depth interviews: Literature
review and discussion. Res. Ethics 5 (2), 48–54. http://dx.doi.org/10.1177/
174701610900500203.

mit, R., Schoemaker, P.J.H., 1993. Strategic assets and organizational rent.
Strateg. Manag. J. 14 (1), 33–46. http://dx.doi.org/10.1002/smj.4250140105.

ndrews, K.M., Delahaye, B.L., 2000. Influences on knowledge processes in
organizational learning: the psychosocial filter. J. Manag. Stud. 37 (6),
797–810. http://dx.doi.org/10.1111/1467-6486.00204.

nnosi, M., Magnusson, M., Martini, A., Appio, F., 2016. Social conduct, learning
and innovation: An abductive study of the dark side of agile software
development. Creat. Innov. Manag. 25 (4), 515–535. http://dx.doi.org/10.
1111/caim.12172.

tuahene-Gima, K., 1996. Market orientation and innovation. J. Bus. Res. 35 (2),
93–103. http://dx.doi.org/10.1016/0148-2963(95)00051-8.

urum, A., Daneshgar, F., Ward, J., 2008. Investigating knowledge management
practices in software development organisations - An Australian experience.
Inf. Softw. Technol. 50 (6), 511–533. http://dx.doi.org/10.1016/j.infsof.2007.
05.005.

https://doi.org/10.1016/j.jss.2022.111572
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb1
http://dx.doi.org/10.1177/174701610900500203
http://dx.doi.org/10.1177/174701610900500203
http://dx.doi.org/10.1177/174701610900500203
http://dx.doi.org/10.1002/smj.4250140105
http://dx.doi.org/10.1111/1467-6486.00204
http://dx.doi.org/10.1111/caim.12172
http://dx.doi.org/10.1111/caim.12172
http://dx.doi.org/10.1111/caim.12172
http://dx.doi.org/10.1016/0148-2963(95)00051-8
http://dx.doi.org/10.1016/j.infsof.2007.05.005
http://dx.doi.org/10.1016/j.infsof.2007.05.005
http://dx.doi.org/10.1016/j.infsof.2007.05.005


R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

E

E

arney, J., 2000. Firm resources and sustained competitive advantage.
Adv. Strateg. Manag. 17, 203–227. http://dx.doi.org/10.1016/S0742-3322(00)
17018-4, cited By 46.

eck, K., Beedle, M., Bennekum, A.V., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Mar-
tin, R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D., 2001. Manifesto
for agile software development.

egel, A., Nagappan, N., 2007. Usage and perceptions of agile software develop-
ment in an industrial context: An exploratory study. In: First International
Symposium on Empirical Software Engineering and Measurement (ESEM
2007). pp. 255–264. http://dx.doi.org/10.1109/ESEM.2007.12.

eleska-Spasova, E., Glaister, K., Stride, C., 2012. Resource determinants of
strategy and performance: The case of British exporters. J. World Bus. 47
(4), 635–647. http://dx.doi.org/10.1016/j.jwb.2011.09.001, cited By 29.

jørnson, F.O., Dingsøyr, T., 2008. Knowledge management in software engineer-
ing: A systematic review of studied concepts, findings and research methods
used. Inf. Softw. Technol. 50 (11), 1055–1068. http://dx.doi.org/10.1016/j.
infsof.2008.03.006.

orrego, G., Morán, A.L., Palacio, R.R., Vizcaíno, A., García, F.O., 2019. Towards
a reduction in architectural knowledge vaporization during agile global
software development. Inf. Softw. Technol. 112, 68–82. http://dx.doi.org/10.
1016/j.infsof.2019.04.008.

radley, J.H., Hebert, F.J., 1997. The effect of personality type on team
performance. J. Manag. Dev. 16 (5), 337–353. http://dx.doi.org/10.1108/
02621719710174525.

ryman, A., 2001. Social Research Methods. Oxford University Press, New York,
NY, USA.

udwig, M., Jeong, S., Kelkar, K., 2009. When user experience met agile: A
case study. In: CHI ’09 Extended Abstracts on Human Factors in Computing
Systems. In: CHI EA ’09, ACM, New York, NY, USA, pp. 3075–3084. http:
//dx.doi.org/10.1145/1520340.1520434.

arstensen, P.H., Sørensen, C., 1996. From the social to the systematic. Comput.
Support. Coop. Work (CSCW) 5 (4), 387–413. http://dx.doi.org/10.1007/
BF00136712.

hau, T., Maurer, F., 2004. Tool support for inter-team learning in agile software
organizations. In: Melnik, G., Holz, H. (Eds.), Advances in Learning Software
Organizations. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 98–109.

ockburn, A., Highsmith, J., 2001. Agile software development: The people factor.
Computer 34 (11), 131–133. http://dx.doi.org/10.1109/2.963450.

ohendet, P., Edward Steinmueller, W., 2000. The codification of knowledge: a
conceptual and empirical exploration. Ind. Corp. Change 9 (2), 195–209.

onboy, K., 2009. Agility from first principles: Reconstructing the concept of
agility in information systems development. Inf. Syst. Res. 20 (3), 329–354.
http://dx.doi.org/10.1287/isre.1090.0236.

orbin, J.M., Strauss, A., 1990. Grounded theory research: Procedures, canons,
and evaluative criteria. Qual. Sociol. 13 (1), 3–21. http://dx.doi.org/10.1007/
BF00988593.

orbin, J., Strauss, A., 2015. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage publications, California,
United States, p. 431.

owan, R., Foray, D., 1997. The economics of codification and the diffusion of
knowledge. Ind. Corp. Change 6 (3), 595–622. http://dx.doi.org/10.1093/icc/
6.3.595.

urrall, S.C., Judge, T.A., 1995. Measuring trust between organizational boundary
role persons. Organ. Behav. Human Decis. Process. 64 (2), 151–170.

urtis, B., Herb, K., Neil, I., 1988. A field study of the software design process
for large systems. Commun. ACM 31 (11), 1268–1287, http://doi.acm.org/10.
1145/50087.50089.

atta, P., Acar, W., 2010. Software and human agents in knowledge codification.
Knowl. Manag. Res. Pract. 8 (1), 45–60. http://dx.doi.org/10.1057/kmrp.2009.
34.

ikert, K., Paasivaara, M., Lassenius, C., 2016. Challenges and success factors
for large-scale agile transformations: A systematic literature review. J. Syst.
Softw. 119, 87–108. http://dx.doi.org/10.1016/j.jss.2016.06.013.

ingsøyr, T., Royrvik, E., 2003. An empirical study of an informal knowledge
repository in a medium-sized software consulting company. In: 25th Inter-
national Conference on Software Engineering, 2003. Proceedings. pp. 84–92.
http://dx.doi.org/10.1109/ICSE.2003.1201190.

irks, K.T., Ferrin, D.L., 2001. The role of trust in organizational settings. Organ.
Sci. 12 (4), 450–467. http://dx.doi.org/10.1287/orsc.12.4.450.10640.

orairaj, S., Noble, J., Malik, P., 2012. Knowledge management in distributed
agile software development. In: 2012 Agile Conference. pp. 64–73. http:
//dx.doi.org/10.1109/Agile.2012.17.

ybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: A
systematic review. Inf. Softw. Technol. 50 (9–10), 833–859. http://dx.doi.org/
10.1016/j.infsof.2008.01.006.

dward Steinmueller, W., 2000. Will new information and communication
technologies improve the ’codification’ of knowledge? Ind. Corp. Change 9
(2), 361–376. http://dx.doi.org/10.1093/icc/9.2.361.

rsoy, I.B., Mahdy, A.M., 2015. Agile knowledge sharing. Int. J. Softw. Eng. (IJSE)
6 (1), 1–15.
16
Flyvbjerg, B., 2006. Five misunderstandings about case-study research. Qual. Inq.
12 (2), 219–245. http://dx.doi.org/10.1177/1077800405284363.

Frigg, R., Hartmann, S., 2018. Models in science. In: Zalta, E.N. (Ed.), The Stanford
Encyclopedia of Philosophy, Summer 2018 ed. Metaphysics Research Lab,
Stanford University.

Ghobadi, S., Mathiassen, L., 2016. Perceived barriers to effective knowledge
sharing in agile software teams. Inf. Syst. J. 26 (2), 95–125. http://dx.doi.
org/10.1111/isj.12053.

Glazer, R., 1998. Measuring the knower: Towards a theory of knowledge equity.
Calif. Manage. Rev. 40 (3), 175–194.

Gorschek, T., Gomes, A., Pettersson, A., Torkar, R., 2012. Introduction of a process
maturity model for market-driven product management and requirements
engineering. J. Softw.: Evol. Process 24 (1), 83–113. http://dx.doi.org/10.1002/
smr.535.

Grant, R.M., 1996. Toward a knowledge-based theory of the firm. Strateg. Manag.
J. 17 (S2), 109–122. http://dx.doi.org/10.1002/smj.4250171110.

Hall, M., 2006. Knowledge management and the limits of knowledge cod-
ification. J. Knowl. Manag. 10 (3), 117–126. http://dx.doi.org/10.1108/
13673270610670894.

Hall, T., Beecham, S., Rainer, A., 2002. Requirements problems in twelve software
companies: an empirical analysis. IEE Proc. - Softw. 149 (5), 153–160. http:
//dx.doi.org/10.1049/ip-sen:20020694.

Hendriks, P., 1999. Why share knowledge? The influence of ICT on the motiva-
tion for knowledge sharing. Knowl. Process Manag. 6 (2), 91–100. http://dx.
doi.org/10.1002/(SICI)1099-1441(199906)6:2<91::AID-KPM54>3.0.CO;2-M.

Hislop, D., 2013. Knowledge Management in Organizations: A Critical
Introduction. OUP Oxford.

Hoda, R., Noble, J., Marshall, S., 2012. Developing a grounded theory to explain
the practices of self-organizing Agile teams. Empir. Softw. Eng. 17 (6),
609–639.

Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.M., 2009. Using
software archaeology to measure knowledge loss in software projects due
to developer turnover. In: 2009 42nd Hawaii International Conference on
System Sciences. pp. 1–10. http://dx.doi.org/10.1109/HICSS.2009.498.

Käpyaho, M., Kauppinen, M., 2015. Agile requirements engineering with pro-
totyping: A case study. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE). pp. 334–343. http://dx.doi.org/10.1109/RE.2015.
7320450.

Karlsen, J.T., Hagman, L., Pedersen, T., 2011. Intra-project transfer of knowledge
in information systems development firms. J. Syst. Inf. Technol. 13 (1), 66–80.
http://dx.doi.org/10.1108/13287261111118359.

Karlsson, L., Dahlstedt, Å.G., Regnell, B., och Dag, J.N., Persson, A., 2007.
Requirements engineering challenges in market-driven software develop-
ment: An interview study with practitioners. Inf. Softw. Technol. 49 (6),
588–604. http://dx.doi.org/10.1016/j.infsof.2007.02.008, Qualitative Software
Engineering Research.

Kaya, N., Patton, J., 2011. The effects of knowledge-based resources, market ori-
entation and learning orientation on innovation performance: An empirical
study of Turkish firms. J. Int. Dev. 23 (2), 204–219. http://dx.doi.org/10.1002/
jid.1662.

Kittlaus, H.-B., Fricker, S., 2017. Software Product Management: The ISPMA-
Compliant Study Guide and Handbook. Springer, http://dx.doi.org/10.1007/
978-3-642-55140-6.

Kogut, B., Zander, U., 1992. Knowledge of the firm, combinative capabilities, and
the replication of technology. Organ. Sci. 3 (3), 383–397. http://dx.doi.org/
10.1287/orsc.3.3.383.

Kuusinen, K., Gregory, P., Sharp, H., Barroca, L., Taylor, K., Wood, L., 2017. Knowl-
edge sharing in a large agile organisation: A survey study. In: International
Conference on Agile Software Development. Springer, pp. 135–150.

Lai, L.F., 2007. A knowledge engineering approach to knowledge management.
Inform. Sci. 177 (19), 4072–4094. http://dx.doi.org/10.1016/j.ins.2007.02.028.

Lavrakas, P., 2008. Encyclopedia of Survey Research Methods. http://dx.doi.org/
10.4135/9781412963947.

Lenberg, P., Feldt, R., Wallgren, L.-G., 2014. Towards a behavioral software engi-
neering. In: Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering. In: CHASE 2014, ACM, New
York, NY, USA, pp. 48–55. http://dx.doi.org/10.1145/2593702.2593711.

Lenberg, P., Feldt, R., Wallgren, L.-G., 2015. Behavioral software engineering:
A definition and systematic literature review. J. Syst. Softw. 107, 15–37.
http://dx.doi.org/10.1016/j.jss.2015.04.084.

Li, J., Moe, N.B., Dybå, T., 2010. Transition from a plan-driven process to scrum:
A longitudinal case study on software quality. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ESEM ’10, ACM, New York, NY, USA, pp. 13:1–13:10. http:
//dx.doi.org/10.1145/1852786.1852804.

MacCormack, A., Verganti, R., 2003. Managing the sources of uncertainty:
Matching process and context in software development. J. Prod. Innov.
Manage. 20 (3), 217–232. http://dx.doi.org/10.1111/1540-5885.2003004.

McChesney, I.R., Gallagher, S., 2004. Communication and co-ordination practices
in software engineering projects. Inf. Softw. Technol. 46 (7), 473–489. http:
//dx.doi.org/10.1016/j.infsof.2003.10.001.

http://dx.doi.org/10.1016/S0742-3322(00)17018-4
http://dx.doi.org/10.1016/S0742-3322(00)17018-4
http://dx.doi.org/10.1016/S0742-3322(00)17018-4
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb9
http://dx.doi.org/10.1109/ESEM.2007.12
http://dx.doi.org/10.1016/j.jwb.2011.09.001
http://dx.doi.org/10.1016/j.infsof.2008.03.006
http://dx.doi.org/10.1016/j.infsof.2008.03.006
http://dx.doi.org/10.1016/j.infsof.2008.03.006
http://dx.doi.org/10.1016/j.infsof.2019.04.008
http://dx.doi.org/10.1016/j.infsof.2019.04.008
http://dx.doi.org/10.1016/j.infsof.2019.04.008
http://dx.doi.org/10.1108/02621719710174525
http://dx.doi.org/10.1108/02621719710174525
http://dx.doi.org/10.1108/02621719710174525
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb15
http://dx.doi.org/10.1145/1520340.1520434
http://dx.doi.org/10.1145/1520340.1520434
http://dx.doi.org/10.1145/1520340.1520434
http://dx.doi.org/10.1007/BF00136712
http://dx.doi.org/10.1007/BF00136712
http://dx.doi.org/10.1007/BF00136712
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb18
http://dx.doi.org/10.1109/2.963450
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb20
http://dx.doi.org/10.1287/isre.1090.0236
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.1007/BF00988593
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb23
http://dx.doi.org/10.1093/icc/6.3.595
http://dx.doi.org/10.1093/icc/6.3.595
http://dx.doi.org/10.1093/icc/6.3.595
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb25
http://doi.acm.org/10.1145/50087.50089
http://doi.acm.org/10.1145/50087.50089
http://doi.acm.org/10.1145/50087.50089
http://dx.doi.org/10.1057/kmrp.2009.34
http://dx.doi.org/10.1057/kmrp.2009.34
http://dx.doi.org/10.1057/kmrp.2009.34
http://dx.doi.org/10.1016/j.jss.2016.06.013
http://dx.doi.org/10.1109/ICSE.2003.1201190
http://dx.doi.org/10.1287/orsc.12.4.450.10640
http://dx.doi.org/10.1109/Agile.2012.17
http://dx.doi.org/10.1109/Agile.2012.17
http://dx.doi.org/10.1109/Agile.2012.17
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1093/icc/9.2.361
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb34
http://dx.doi.org/10.1177/1077800405284363
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb36
http://dx.doi.org/10.1111/isj.12053
http://dx.doi.org/10.1111/isj.12053
http://dx.doi.org/10.1111/isj.12053
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb38
http://dx.doi.org/10.1002/smr.535
http://dx.doi.org/10.1002/smr.535
http://dx.doi.org/10.1002/smr.535
http://dx.doi.org/10.1002/smj.4250171110
http://dx.doi.org/10.1108/13673270610670894
http://dx.doi.org/10.1108/13673270610670894
http://dx.doi.org/10.1108/13673270610670894
http://dx.doi.org/10.1049/ip-sen:20020694
http://dx.doi.org/10.1049/ip-sen:20020694
http://dx.doi.org/10.1049/ip-sen:20020694
http://dx.doi.org/10.1002/(SICI)1099-1441(199906)6:2<91::AID-KPM54>3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1099-1441(199906)6:2<91::AID-KPM54>3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1099-1441(199906)6:2<91::AID-KPM54>3.0.CO;2-M
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb45
http://dx.doi.org/10.1109/HICSS.2009.498
http://dx.doi.org/10.1109/RE.2015.7320450
http://dx.doi.org/10.1109/RE.2015.7320450
http://dx.doi.org/10.1109/RE.2015.7320450
http://dx.doi.org/10.1108/13287261111118359
http://dx.doi.org/10.1016/j.infsof.2007.02.008
http://dx.doi.org/10.1002/jid.1662
http://dx.doi.org/10.1002/jid.1662
http://dx.doi.org/10.1002/jid.1662
http://dx.doi.org/10.1007/978-3-642-55140-6
http://dx.doi.org/10.1007/978-3-642-55140-6
http://dx.doi.org/10.1007/978-3-642-55140-6
http://dx.doi.org/10.1287/orsc.3.3.383
http://dx.doi.org/10.1287/orsc.3.3.383
http://dx.doi.org/10.1287/orsc.3.3.383
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb53
http://dx.doi.org/10.1016/j.ins.2007.02.028
http://dx.doi.org/10.4135/9781412963947
http://dx.doi.org/10.4135/9781412963947
http://dx.doi.org/10.4135/9781412963947
http://dx.doi.org/10.1145/2593702.2593711
http://dx.doi.org/10.1016/j.jss.2015.04.084
http://dx.doi.org/10.1145/1852786.1852804
http://dx.doi.org/10.1145/1852786.1852804
http://dx.doi.org/10.1145/1852786.1852804
http://dx.doi.org/10.1111/1540-5885.2003004
http://dx.doi.org/10.1016/j.infsof.2003.10.001
http://dx.doi.org/10.1016/j.infsof.2003.10.001
http://dx.doi.org/10.1016/j.infsof.2003.10.001


R. Ouriques, K. Wnuk, T. Gorschek et al. The Journal of Systems & Software 197 (2023) 111572

M

M

M

N

N

N

N

O

O

O

P

R

R

S

S

S

S

S

S

S

S

S

elnik, G., Maurer, F., 2004. Direct verbal communication as a catalyst of agile
knowledge sharing. In: Proceedings of the Agile Development Conference,
ADC 2004. pp. 21–31. http://dx.doi.org/10.1109/ADEVC.2004.12.

elo, C.d.O., Cruzes, D.S., Kon, F., Conradi, R., 2013. Interpretative case stud-
ies on agile team productivity and management. Inf. Softw. Technol. 55
(2), 412–427. http://dx.doi.org/10.1016/j.infsof.2012.09.004, Special Section:
Component-Based Software Engineering (CBSE), 2011.

iller, D., Shamsie, J., 1996. The resource-based view of the firm in two
environments: The hollywood firm studios from 1936–1965. Acad. Manag. J.
39 (3), 519–543. http://dx.doi.org/10.2307/256654.

ieves, J., Quintana, A., Osorio, J., 2014. Knowledge-based resources and innova-
tion in the hotel industry. Int. J. Hosp. Manag. 38, 65–73. http://dx.doi.org/
10.1016/j.ijhm.2014.01.001, cited By 36.

onaka, I., 1994. A dynamic theory of organizational knowledge creation. Organ.
Sci. 5 (1), 14–37. http://dx.doi.org/10.1287/orsc.5.1.14.

onaka, I., Takeuchi, H., Umemoto, K., 1996. A theory of organizational
knowledge creation. Int. J. Technol. Manage. 11 (7–8), 833–845.

onaka, I., Toyama, R., Konno, N., 2000. SECI, ba and leadership: a unified
model of dynamic knowledge creation. Long Range Plan. 33 (1), 5–34.
http://dx.doi.org/10.1016/S0024-6301(99)00115-6.

ECD, 2022. Entrepreneurship - enterprises by business size - OECD data.
http://dx.doi.org/10.1787/31d5eeaf-en.

uriques, R., Wnuk, K., Berntsson Svensson, R., Gorschek, T., 2018. Thinking
strategically about knowledge management in agile software development.
In: Kuhrmann, M., Schneider, K., Pfahl, D., Amasaki, S., Ciolkowski, M.,
Hebig, R., Tell, P., Klünder, J., Küpper, S. (Eds.), Product-Focused Software
Process Improvement. Springer International Publishing, Cham, pp. 389–395.

uriques, R., Wnuk, K., Svensson, R.B., Gorschek, T., 2019. Knowledge manage-
ment strategies and processes in agile software development: A systematic
literature review. Int. J. Softw. Eng. Knowl. Eng. 29 (3), 345–380. http:
//dx.doi.org/10.1142/S0218194019500153.

aredes, J., Anslow, C., Maurer, F., 2014. Information visualization for agile soft-
ware development. In: 2014 Second IEEE Working Conference on Software
Visualization. pp. 157–166. http://dx.doi.org/10.1109/VISSOFT.2014.32.

us, I., Lindvall, M., 2002. Knowledge management in software engineering. IEEE
Softw. 19 (3), 26–38. http://dx.doi.org/10.1109/MS.2002.1003450.

yan, S., O’Connor, R.V., 2013. Acquiring and sharing tacit knowledge in soft-
ware development teams: An empirical study. Inf. Softw. Technol. 55 (9),
1614–1624. http://dx.doi.org/10.1016/j.infsof.2013.02.013.

aito, S., Iimura, Y., Massey, A.K., Antón, A.I., 2018. Discovering undocumented
knowledge through visualization of agile software development activities.
Requir. Eng. 23 (3), 381–399. http://dx.doi.org/10.1007/s00766-018-0291-4.

antos, V., Goldman, A., De Souza, C.R., 2015. Fostering effective inter-team
knowledge sharing in agile software development. Empir. Softw. Eng. 20
(4), 1006–1051. http://dx.doi.org/10.1007/s10664-014-9307-y.

eaman, C., 1999. Qualitative methods in empirical studies of software engi-
neering. IEEE Trans. Softw. Eng. 25 (4), 557–572. http://dx.doi.org/10.1109/
32.799955.

edano, T., Ralph, P., Péraire, C., 2017. Software development waste. In: Proceed-
ings of the 39th International Conference on Software Engineering. ICSE ’17,
IEEE Press, Piscataway, NJ, USA, pp. 130–140. http://dx.doi.org/10.1109/ICSE.
2017.20.

irmon, D., Hitt, M., 2009. Contingencies within dynamic managerial capabilities:
Interdependent effects of resource investment and deployment on firm
performance. Strateg. Manag. J. 30 (13), 1375–1394. http://dx.doi.org/10.
1002/smj.791, cited By 159.

oliman, F., Spooner, K., 2000. Strategies for implementing knowledge man-
agement: role of human resources management. J. Knowl. Manag. 4 (4),
337–345. http://dx.doi.org/10.1108/13673270010379894.

oomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A., 2016.
The effect of software engineers’ personality traits on team climate and
performance: A systematic literature review. Inf. Softw. Technol. 73, 52–65.
http://dx.doi.org/10.1016/j.infsof.2016.01.006.

ørensen, C., Lundh-Snis, U., 2001. Innovation through knowledge codification.
J. Inf. Technol. 16 (2), 83–97. http://dx.doi.org/10.1080/713772762.

teen, O., 2007. Practical knowledge and its importance for software product
quality. Inf. Softw. Technol. 49 (6), 625–636.
17
Stettina, C.J., Heijstek, W., Fægri, T.E., 2012. Documentation work in agile teams:
The role of documentation formalism in achieving a sustainable practice. In:
2012 Agile Conference. pp. 31–40. http://dx.doi.org/10.1109/Agile.2012.7.

Stol, K., Ralph, P., Fitzgerald, B., 2016. Grounded theory in software engineer-
ing research: A critical review and guidelines. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering. ICSE, pp. 120–131. http:
//dx.doi.org/10.1145/2884781.2884833.

Strode, D.E., Huff, S.L., Hope, B., Link, S., 2012. Coordination in co-located agile
software development projects. J. Syst. Softw. 85 (6), 1222–1238. http:
//dx.doi.org/10.1016/j.jss.2012.02.017.

Swedish Research Council, 2017. Good Research Practice. Swedish Research
Council, Stockholm, Sweden, p. 86.

Szulanski, G., Cappetta, R., Jensen, R.J., 2004. When and how trustworthiness
matters: Knowledge transfer and the moderating effect of causal ambiguity.
Organ. Sci. 15, 600–613.

Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst.
Softw. 86 (6), 1498–1516. http://dx.doi.org/10.1016/j.jss.2012.12.052.

West, D., Grant, T., Gerush, M., D’Silva, D., 2010. Agile development: Mainstream
adoption has changed agility. Forrester Res. 2 (1), 41.

Williams, L., Cockburn, A., 2003. Agile software development: it’s about feedback
and change. Computer 36 (6), 39–43. http://dx.doi.org/10.1109/MC.2003.
1204373.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

Raquel Ouriques is a Ph.D. student in Software Engineering at Blekinge Institute
of Technology. Her research interest includes developing studies/strategies to im-
prove software-intensive product development organisations processes, applying
management practices that consider knowledge as a key to combine strategy and
technology.

Krzysztof Wnuk is an associate professor at the Software Engineering Research
Group (SERL) of Blekinge Institute of Technology, Sweden. He received his M.Sc.
Degree from Gdansk University of Technology, Poland (2006) and his Ph.D. from
Lund University, Sweden (2012). His research interests include market-driven
software development, requirements engineering, software product manage-
ment, decision making in requirements engineering, large-scale software, system
and requirements engineering and management and empirical research methods.
He is interested in software business, open innovation and open source software.
He works as an expert consultant in software engineering for the Swedish
software industry.

Tony Gorschek is a Professor of Software Engineering at Blekinge Institute of
Technology — where he works as a research leader and scientist in close collab-
oration with industrial partners. Dr. Gorschek has over fifteen years industrial
experience as a CTO, senior executive consultant and engineer. In addition he
is a serial entrepreneur — with five startups in fields ranging from logistics
to internet based services and database register optimisation. At present he
works as a research leader and in several research projects developing scalable,
efficient and effective solutions in the areas of Requirements Engineering,
Product Management, Value based product development, and Real Agile™and
Lean product development andevolution. Dr. Gorschek leads the SERT profile
(Software Engineering ReThought) developing the next generation of applied
empirical research movements to meet the challenges of the next generation of
software intensive products and services. www.rethought.se www.gorschek.com

Dr. Richard Berntsson Svensson is an Associate Professor in Software Engi-
neering at Chalmers | university of Gothenburg, Sweden. His research interests
include data-driven decision making, agile and lean software development,
requirements engineering, creativity and innovation, and human aspects of
software engineering. He received his Ph.D. from Lund University, Sweden, 2011

http://dx.doi.org/10.1109/ADEVC.2004.12
http://dx.doi.org/10.1016/j.infsof.2012.09.004
http://dx.doi.org/10.2307/256654
http://dx.doi.org/10.1016/j.ijhm.2014.01.001
http://dx.doi.org/10.1016/j.ijhm.2014.01.001
http://dx.doi.org/10.1016/j.ijhm.2014.01.001
http://dx.doi.org/10.1287/orsc.5.1.14
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb66
http://dx.doi.org/10.1016/S0024-6301(99)00115-6
http://dx.doi.org/10.1787/31d5eeaf-en
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb69
http://dx.doi.org/10.1142/S0218194019500153
http://dx.doi.org/10.1142/S0218194019500153
http://dx.doi.org/10.1142/S0218194019500153
http://dx.doi.org/10.1109/VISSOFT.2014.32
http://dx.doi.org/10.1109/MS.2002.1003450
http://dx.doi.org/10.1016/j.infsof.2013.02.013
http://dx.doi.org/10.1007/s00766-018-0291-4
http://dx.doi.org/10.1007/s10664-014-9307-y
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/ICSE.2017.20
http://dx.doi.org/10.1109/ICSE.2017.20
http://dx.doi.org/10.1109/ICSE.2017.20
http://dx.doi.org/10.1002/smj.791
http://dx.doi.org/10.1002/smj.791
http://dx.doi.org/10.1002/smj.791
http://dx.doi.org/10.1108/13673270010379894
http://dx.doi.org/10.1016/j.infsof.2016.01.006
http://dx.doi.org/10.1080/713772762
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb82
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb82
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb82
http://dx.doi.org/10.1109/Agile.2012.7
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb86
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb86
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb86
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb87
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb87
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb87
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb87
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb87
http://dx.doi.org/10.1016/j.jss.2012.12.052
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb89
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb89
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb89
http://dx.doi.org/10.1109/MC.2003.1204373
http://dx.doi.org/10.1109/MC.2003.1204373
http://dx.doi.org/10.1109/MC.2003.1204373
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb91
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb91
http://refhub.elsevier.com/S0164-1212(22)00248-5/sb91
http://www.rethought.se
http://www.gorschek.com

	The role of knowledge-based resources in Agile Software Development contexts
	Introduction
	Background and related work
	Agile software development
	Definition of relevant concepts relevant to `knowledge'
	Knowledge-based resources

	Research method
	Phase 1 — Research design
	Sampling of practitioners
	Phase 2 — Data collection
	Data storage
	Ethical concerns

	Phase 3 — Data analysis phase
	Theory evaluation

	Findings
	The Knowledge-Push Theory
	Causal conditions
	Scenario analysis — C1

	Intervening conditions
	Team environment and settings — C2
	Ability to systematise and transmit knowledge — C3
	Inefficient utilisation of knowledge-based resources — C4

	Actions/strategy
	Task planning and Resource Management — C5
	Social collaboration — C6


	Discussion
	Connections with existing literature and implications for research
	Practical implications for KM in ASD
	Knowledge codification
	Knowledge Sources


	Threats to validity
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A. Supplementary data
	References


