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REDUCTION FREE NORMALIZATION FOR A

PROOF-IRRELEVANT TYPE OF PROPOSITIONS
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e-mail address: Thierry.Coquand@cse.gu.se

Abstract. We show normalization for a type theory with a hierarchy of universes and a
proof irrelevant type of propositions, close to the type system used in the proof assistant
Lean. The proof uses the technique of Artin glueing between the term model and a suitable
preseaf model. This can also be seen as a proof relevant version of Tait’s computability
argument.

Introduction

We show normalization and decidability of conversion for dependent type theory with a
cumulative sequence of universes U0,U1 . . . with η-conversion and where the type U0 is an
impredicative universe of proof-irrelevant propositions. One interest of such a system is that
it is very close to the type system used by the proof assistant Lean [Car19].

Such a system with a hierarchy of universes, with the lowest level impredicative, was
introduced in [Coq86]. It was conjectured there that this system is stronger than Zermelo
set theory (without even introducing primitive data types). This conjecture was solved
by A. Miquel in [Miq04], by encoding a non well-founded version of set theory where a
set is interpreted as a pointed graph up to bissimulation. The notion of proof-irrelevant
propositions goes back to de Bruijn [dB95].

Our proof is a direct adaptation of the normalization argument presented in [Coq19].
We recall three features of this approach

(1) we never need to consider a reduction relation,
(2) we only define a reducibility predicate, and this reducibility predicate is proof-relevant1,
(3) the reducibility predicate is not defined by an inductive-recursive relation.

This approach has been much refined in [Ste22, Gra22]. One goal of this note is to
illustrate further the flexibility of this “reduction free” approach, by combining it with
an idea already used in [ACP09] for dealing with proof irrelevance. To each type A in a
context Γ, we associate a set of syntactical expressions Term(Γ, A) and a set Elem(Γ, A) of
expressions modulo conversion. We have a quotient map Term(Γ, A) → Elem(Γ, A) and the
main result (Theorem 4.1) is to show that this map has a section.

Key words and phrases: Dependent Type Theory; Presheaf models; Normalization.
1A key point is to define reducibility as a structure and not only as a property. It is only for the lowest

impredicative universe U0 that reducibility is a property.
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The metatheory used in the present note is the impredicative intuitionistic set theory
IZFuω, introduced by P. Aczel [Acz98]. (Essentially the same argument works in a predicative
version CZFuω for a predicative universe of proof-irrelevant propositions.)

As in the previous work [Coq19], the approach is algebraic. We first define a general
operation which associates to any model M another normalization model M∗ with a
projection map M∗ → M . We apply then this general construction to the initial model to
deduce various syntactical properties, such as normalization, decidability of conversion and
type-checking.

1. What is a model of type theory

1.1. Definition. We present a formal system, which at the same time can be thought
of describing the syntax of basic dependent type theory, with explicit substitutions and a
name-free (de Bruijn index) presentation, and defining what is a model of type theory.

A model of type theory consists of one set Con of contexts. If Γ and ∆ are in Con they
determine a set ∆ → Γ of substitutions. If Γ is in Con, it determines a set Type(Γ) of types
in the context Γ. Finally, if Γ is in Con and A is in Type(Γ) then this determines a set
Elem(Γ, A) of elements of type A in the context Γ.

This describes the sort of type theory. We describe now the operations and the equations
they have to satisfy. For any context Γ we have an identity substitution id : Γ → Γ. We also
have a composition operator σδ : Θ → Γ if δ : Θ → ∆ and σ : ∆ → Γ. The equations are

σ id = id σ = σ (θσ)δ = θ(σδ)

We have a terminal context 1 and for, any context Γ, a map () : Γ → 1. Furthermore,
σ = () if σ : Γ → 1.

If A in Type(Γ) and σ : ∆ → Γ we should have Aσ in Type(∆). Furthermore, we have

A id = A (Aσ)δ = A(σδ)

If a in Elem(Γ, A) and σ : ∆ → Γ we should have aσ in Elem(∆, Aσ). Furthermore

a id = a (aσ)δ = a(σδ)

We have a context extension operation: if A in Type(Γ) we have a new context Γ.A.
There is a projection p : Γ.A → Γ and a special element q in Elem(Γ.A,Ap). If σ : ∆ → Γ
and A in Type(Γ) and a in Elem(∆, Aσ) we have an extension operation (σ, a) : ∆ → Γ.A.
We should have

p(σ, a) = σ q(σ, a) = a (σ, a)δ = (σδ, aδ) (p, q) = id

If a in Elem(Γ, A) we write [a] = (id, a) : Γ → Γ.A. Thus if B in Type(Γ.A) and a
in Elem(Γ, A) we have B[a] in Type(Γ). If furthermore b in Elem(Γ.A,B) we have b[a] in
Elem(Γ, B[a]).

If σ : ∆ → Γ and A in Type(Γ) we define σ+ : ∆.Aσ → Γ.A to be (σp, q).
The extension operation can then be defined as (σ, u) = [u]σ+. Thus instead of the

extension operation, we could have chosen the operations [u] and σ+ as primitive, like in
[Ehr88]. Our argument is independent of this choice of primitive operations.

We suppose furthermore one operation Π A B such that Π A B in Type(Γ) if A in
Type(Γ) and B in Type(Γ.A). We should have (Π A B)σ = Π (Aσ) (Bσ+).
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We have an abstraction operation λb in Elem(Γ,Π A B) for b in Elem(Γ.A,B) and an
application operation c a in Elem(Γ, B[a]) for c in Elem(Γ,Π A B) and a in Elem(Γ, A).
These operations should satisfy the equations

(λb) a = b[a], c = λ(cp q), (λb)σ = λ(bσ+), (c a)σ = cσ (aσ)

We assume each set Type(Γ) to be stratified in Type0(Γ) ⊆ Type1(Γ) ⊆ . . . .
Each subset Typen(Γ) is closed by dependent product, and we have Un in Typen+1(Γ)

such that Elem(Γ,Un) = Typen(Γ).

Finally we assume U0 to be impredicative and types in U0 to be proof-irrelevant.
Impredicativity means that Π A B is in Type0(Γ) if B is in Type0(Γ.A) where A can be any
type, and proof-irrelevance means that a0 = a1 : Elem(Γ, A) whenever A is in Type0(Γ) and
a0 and a1 are in Elem(Γ, A).

We think of types in Type0(Γ) as proof-irrelevant propositions.

Note that, in an arbitrary model we may have some equality of the form2 Π A B = U0

and the operations, like product operations, don’t need to be injective.

1.2. Examples of Models. Like for equational theories, there is always the terminal model
where all sorts are interpreted by a singleton.

P. Aczel in [Acz98] provides a model in in a impredicative intuitionistic set theory IZFuω,
with intuitionistic versions of Grothendieck universes V0,V1, . . . ,Vω.

A context is interpreted as a set in Vω, and Type(Γ) is interpreted by Γ → Vω. The
lowest universe U0 is interpreted by the set of truth values V0: the set of subsets of 1 = {0}.
In order to interpret the fact that U0 is closed by arbitrary products, P. Aczel introduces a
non-standard encoding of dependent products, see [Acz98], which we use in building our
normalization model (see Appendix). This encoding of dependent products Πx∈AB(x) is
such that Πx∈AB(x) ⊆ 1 if we have B(x) ⊆ 1 for all x in A.

M. Hofmann [Hof97] shows how to refine a presheaf model over an arbitrary small
category to a model of type theory. It models universes, and if we use Aczel’s encoding of
dependent products, we also get a model where the lowest universe U0 is interpreted by
the presheaf of sieves. Using Aczel’s non-standard encoding [Acz98] of dependent products
mentioned above, we see that U0 is closed by dependent products of families valued in U0.
We write U0, U1, . . . for the universes corresponding to V0, V1, . . .

We will work in the last section with the initial or term model M0 (see Appendix). This
is the model where elements are syntactical expressions modulo equations/conversion rules.
One important result which follows from the “normalization model” we present in the next
section, is that equality is decidable for the initial model, and that constructors are injective;
this means in particular that we cannot have an equality of the form U0 = Π A B and that
Π A0 B0 = Π A1 B1 in Type(Γ) implies A0 = A1 in Type(Γ) and B0 = B1 in Type(Γ.A0).
This injectivity property may not hold in general for an arbitrary model; for instance in the
set model, we have ∅A = ∅ for any non empty set A.

2This can even be the case a priori in the term model, though it follows from our proof that this is not
the case.
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2. Normalization Model

We present a variation of the model used in [Coq19]. As in [Coq19], we work in a suitable
presheaf topos, but with a slight variation for the choice of the base category. We start from
an arbitrary model M .

2.1. Category of telescopes. As in [Coq19], we define first the collection of telescopes
X,Y, Z, . . . . These are finite list X = A0, A1, . . . , An−1 with A0 in Type(), A1 in Type(().A0)
and so on. Any telescope X has an interpretation ⟨X⟩ which is a context of the model M ,
by taking ⟨X⟩ = ().A0.A1. . . . .An−1. We can have ⟨X⟩ = ⟨Y ⟩ in M without having X = Y .
We write () the empty telescope. If X is a telescope and A in Type⟨X⟩, we may write X.A
for X,A.

We can now define the base category of the presheaf model. A map α : Y →S X is a
syntactical object defined inductively. We have () : Y →S () and if we have already define
α : Y →S X then we can either add a type to Y getting αp : Y,B →S X, or we can add a
type to X, getting α+ : Y,A⟨α⟩ →S X,A. We define at the same time ⟨()⟩ by the clauses:

⟨()⟩ = () ⟨αp⟩ = ⟨α⟩p ⟨α+⟩ = ⟨α⟩+

A map α : Y →S X can be seen as a proof relevant witness that Y extends X (which was
the relation used in [CG90]). It is direct to define a syntactical identity map idS : X →S X
by induction on X so that ⟨idS⟩ = id and to define a composition operation. We get in this
way a category C of telescopes3.

We can also define a syntactic projection map pS : X.A → X such that ⟨pS⟩ = p by
induction on X. This category of syntactic extensions will be the base category C for the
presheaf topos Ĉ in which we define the normalization model4.

2.2. Syntactic expressions. We introduce, for A in Type⟨X⟩, the set Term(X,A). This is
a set of syntactical expressions. Contrary to the set Elem(⟨X⟩, A), these expressions are not
quotiented up to conversion. Also the syntactical expressions don’t use explicit substitutions
and can be thought of as annotated λ-expressions.

The syntactical expressions are described by the following grammar

K,L, k ::= vn | Un | app K L k k | λ K K k | Π K L | 0
where vn are de Bruijn index. This forms a set with a decidable equality. We define then
inductively for A in Type⟨X⟩ a subset Term(X,A) of this set of syntactical expressions. Each
such set Term(X,A) is then also a set with a decidable equality. If k is in Term(X,A) we
define by induction on k an element ⟨k⟩ in Elem(⟨X⟩, A). This can be thought of as the
interpretation of the syntactical expression k. We can also see the map

k 7→ ⟨k⟩ Term(X,A) → Elem(⟨X⟩, A)
as a quotient map.

We have Un in Term(X,Ul) if n < l and ⟨Un⟩ = Un.

We have v0 in Term(X.A,Ap) and vn+1 in Term(X.A,Bp) if vn is in Term(X,B).

3It would also have been possible to use renaming as maps, as in [Coq19, Ste22, Gra22].
4The use of context as world for a normalization argument goes back to [CG90]. It was introduced there

as a solution of the problem of having empty types, problem which was solved in [Gir71] by the introduction
of a constant in all types with special reduction rules.
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We let ⟨vn⟩ to be qpn and ⟨Ul⟩ = Ul.

If K is in Term(X,Un) and L in Term(X.⟨K⟩,Un) then Π K L is in Term(X,Un) and
⟨Π K L⟩ = Π ⟨K⟩ ⟨L⟩. If furthermore k′ is in Term(X, ⟨Π K L⟩) and k in Term(X, ⟨K⟩)
then app K L k′ k is in Term(X, ⟨L⟩[⟨k⟩]) and then ⟨app K L k′ k⟩ = ⟨k′⟩ ⟨k⟩.

If K is in Term(X,Un) and L in Term(X.⟨K⟩,Un) and t is in Term(X.⟨K⟩, ⟨L⟩) then
λ K L t is in Term(X, ⟨Π K L⟩) and ⟨λ K L t⟩ = λ ⟨t⟩.

If K is in Term(X,Ul) and l ≤ n then K is in Term(X,Un).

One key addition to this notion of syntactical expressions, introduced in order to deal
with proof-irrelevant propositions, is the special constant 0. We have 0 in Term(X,A)
whenever A is in Type0(⟨X⟩) and Elem(⟨X⟩, A) is inhabited.

Since Elem(⟨X⟩, A) is a subsingleton we can define ⟨0⟩ to be any element u of Elem(⟨X⟩, A).
(We don’t need any choice since u = v if u and v are in Elem(⟨X⟩, A).)

If u is in Elem(⟨X⟩, A) we write Term(X,A)|u the subset of syntactical expressions k in
Term(X,A) such that ⟨k⟩ = u.

Like in [Coq19], we need to define two subsets of Term(X,A), the subsets Norm(X,A)
of normal terms and Neut(X,A) of neutral terms. These are defined inductively by the
following clauses.

We have v0 in Neut(X.A,Ap) and vn+1 in Neut(X.A,Bp) if vn is in Neut(X,B).

We have app K L k t in Neut(X, ⟨L⟩[⟨t⟩]) if K in Norm(X,Un) and L in Norm(X.⟨K⟩,Un)
and k in Neut(X, ⟨Π K L⟩) and t in Norm(X, ⟨K⟩).

We have λ K L t in Norm(X, ⟨Π K L⟩[⟨t⟩]) if K in Norm(X,Un) and L in
Norm(X.⟨K⟩,Un) and k in Neut(X, ⟨Π K L⟩) and t in Norm(X, ⟨K⟩).

We have Π K L in Norm(X,Un) if K in Norm(X,Un) and L in Norm(X.⟨K⟩,Un).

We have K in Norm(X,Un) if K is in Neut(X,Ul) and l ≤ n.

We have Ul in Norm(X,Un) if l < n.

We have 0 in Norm(X,K) if K is in Neut(X,U0) and Elem(⟨X⟩, ⟨K⟩) is inhabited

We have k in Norm(X,K) if K is in Neut(X,Un) with n > 0 and k is in Neut(X,K).

As in [Hof97, Coq19], we freely use the notations of type theory for operations in the

presheaf topos Ĉ. In this presheaf models we have a cumulative sequence of universe Un, for
n = 0, 1, . . . , ω. Furthermore, as noticed above, U0 inherits from V0 the fact that it is closed
by arbitrary products.

In this model, we have a family of types Typen (in the universe U1) with families of
types Elem(T ) and Term(T ) for T : Typen. We have two subtypes Norm(T ) and Neut(T )
of Term(T ). We also have an interpretation function Term(T ) → Elem(T ). Because of our
choice of morphisms for the category of telescopes, each Term(T ) has (internally) a decidable
equality.
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2.3. Artin Glueing. We define now a pseudomorphism [KHS19] between the model M

and the presheaf model Ĉ. The normalisation model M∗ will be a refinement of the glued
model [KHS19] along this pseudomorphism.

To each context Γ in M , we associate a presheaf |Γ| of Ĉ by taking |Γ|(X) to be the set
⟨X⟩ → Γ, with restriction maps ρ 7→ ρα = ρ⟨α⟩ for α : Y →S X.

Each element A in Typen(Γ) in the model M defines then a presheaf map |A| : |Γ| →
Typen, by ρ 7→ Aρ. Similarly, each element a in Elem(Γ, A) in the model M defines a global
element |a| : Πρ:|Γ|Elem(|A|ρ).

For any A in Typen(Γ) in M , we have a constant in the presheaf model Ĉ
mk : Πρ:|Γ||A|ρ → |Γ.A|

and projections fst : |Γ.A| → |Γ| and snd : Πν:|Γ.A||A|(fst ν) satisfying the equations

fst (mk ρ u) = ρ snd (mk ρ u) = u ν = mk (fst ν) (snd ν)

This defines a pseudomorphism between the model M and the model Ĉ.
Given B in Typen(Γ.A), let us write C = Π A B in Typen(Γ). If ρ : |Γ| and w in

Elem(|C|ρ) and u in Elem(|A|ρ) we can define w u in Elem(|B|(mk ρ u)), which is levelwise
the application.

Lemma 2.1. In the presheaf topos Ĉ, we have the following operations, for ρ : |Γ| and
K : Norm(Un) such that ⟨K⟩ = |A|ρ and G : Πk:Neut(Aρ)Norm(Un) such that ⟨Gk⟩ =
|B|(mk ρ ⟨k⟩):
(1) ΠS K G : Norm(Un) such that ⟨ΠS K G⟩ = |C|ρ,
(2) λS g : Norm(|C|ρ)|w for w in Elem(|C|ρ) and g : Πk:Neut(Aρ)Norm(|B|(mk ρ ⟨k⟩))|(w ⟨k⟩),
(3) appS K G k′ k : Neut(|B|(mk ρ u))|(w u) for w in Elem(|C|ρ) and u in Elem(|A|ρ) and

k′ : Neut(|C|ρ)|w and k : Norm(|A|ρ)|u.
Proof. We prove the first point, the arguments for the two other points being similar.

We have to define ΠS K G in Term(X,Un) such that ⟨ΠS K G⟩ = Cρ. Here ρ is in
⟨X⟩ → Γ and K is in Norm(X,Un) and such that ⟨K⟩ = Aρ. Furthermore, G is an operation
such that Gα k is an element of Term(Y,Un) satisfying ⟨Gα k⟩ = B(ρα, ⟨k⟩) for α : Y → X
and k in Term(Y,Aρα) and satisfying (Gα k)α1 = G(αα1) (kα1), for α1 : Z →S Y .

We then take ΠS K G to be Π K (GpS v0).
We have ⟨ΠS K G⟩ = Π ⟨K⟩ ⟨GpS v0⟩ and ⟨K⟩ = Aρ and ⟨GpS v0⟩ = B(ρp, q).
If α : Y →S X we have (ΠS K G)α = (Π K (GpS v0))α = Π Kα (GpS v0)(αpS , v0)

and (GpS v0)(αpS , v0) = GαpS v0, so the operation ΠS is functorial.

3. Normalization model

3.1. Internal definitions. The first definitions are purely internal to the model Ĉ.
For T in Typen, we define Type′n(T ) to be the set of 4-tuples (T ′,K, qT , rT ) where

5

(1) T ′ is in Elem(T ) → Un,
(2) K is in Norm(Un)|T ,
(3) qT , a “quote” function, is in Πu:Elem(T )T

′u → Norm(T )|u,

5This definition goes back to the unpublished paper [TAS97] for system F; one contribution of [Coq19] is
to explain how to treat universes and general dependent products, and the contribution of the present paper
is to extend this to an impredicative universe of proof irrelevant propositions.
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(4) rT , a “reflect” function, is in Πk:Neut(T )T
′⟨k⟩.

We define qUn A (A′,K, qA, rA) = K.

For n > 0 and K in Neut(Un) we define rUn K to be (K ′,K, qK , rK) where K ′u is
Norm(K)|u and qK u u′ = u′ and rK k = k.

For n = 0, and K in Neut(Un), we define rUn K to be (K ′,K, qK , rK) where K ′u is {0}
and6 qK u u′ = 0 and rK k = 0.

3.2. The glued model for normalization. We can now define the normalization model
M∗, where a context is a pair Γ,Γ′ where Γ is a context of M and Γ′ is a dependent family
over |Γ| in the model Ĉ.

We define ()′ to be the constant family of constant presheaf {0}.

The set Type∗n(Γ,Γ
′) is defined to be the set of pairs A,A where A is in TypeMn (Γ) and

A is a global element of

Πρ:|Γ|Γ
′(ρ) → Type′n(|A|ρ)

An element of this type A,A is a pair a, a where a is in ElemM (Γ, A) and a is a global
element of

Πρ:|Γ|Πρ′:Γ′(ρ)Aρρ
′.1(|a|ρ)

We define Un = Un,Type
′
n, qUn , rUn and U∗

n is the pair Un,Un.

The extension operation is defined by (Γ,Γ′).(A,A) = Γ.A, (Γ.A)′ where (Γ.A)′(ρ, u) is
the set of pairs ρ′, u′ with ρ′ ∈ Γ′(ρ) and u′ in Aρρ′.1(u).

As in [Coq19], we define a new operation Π∗ (A,A) (B,B) = C,C where C = Π A B.
We write (T ′,K, qT , rT ) = Aρρ′ in Type′n(|A|ρ) and for each u in Elem(|A|ρ) and u′ in

T ′(u) we write

(F ′uu′, F0uu
′, qFuu

′, rFuu
′) = B(mk ρ u)(ρ′, u′)

in Type′n(|B|(mk ρ u)). We then define Cρρ′ in Type′n(|C|ρ) to be the tuple

• R′(w) = Πu:Elem(|A|ρ)Πu′:T ′(u)F
′uu′(wu)

• L = ΠS K G
• qR w w′ = λS g
• (rR k)uu′ = rFuu

′(appS K G k (qTuu
′))

where G is the function G k = F0⟨k⟩(rT k) and g the function g k = qF ⟨k⟩(rTk)(w ⟨k⟩)
(w′⟨k⟩(rTk)).

We can check using Lemma 2.1 that R′, L, qR, rR is an element of Type′n(|C|ρ).

We get in this way a new model M∗ with a projection map M∗ → M .

6This is well-defined since u is in Elem(⟨K⟩) and so 0 is in Norm(⟨K⟩).
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4. Applications of the normalization model

For the term model M0, we have an initial map M0 → M∗
0 which is a section of this projection

map. In this case, the contexts of M0 are the same as telescopes and we have ⟨X⟩ = X.

For each context Γ of M0, we can hence compute, using this section, Γ′ which is internally
a dependent family over |Γ|. Externally, this is given by a family of sets Γ′(∆, ρ) for ρ : ∆ → Γ
with restriction maps ρ′ 7→ ρ′α for α : ∆1 →S ∆.

For A in Type(Γ) let us write A′ρρ′ for (Aρρ′).1 and rAρρ
′ for (Aρρ′).4, which, internally,

is a function in Πk:Neut(|A|ρ)A
′ρρ′⟨k⟩, Externally, this can be seen as a function rA(∆, ρ)ρ′k in

A′(∆, ρ)ρ′⟨k⟩ for ρ : ∆ → Γ and ρ′ in Γ′(∆, ρ) and k in Neut(∆, Aρ). This function satisfies
(rA(∆, ρ)ρ′k)α = rA(∆1, ρα)(ρ

′α)(kα) for α : ∆1 →S ∆. Similarly we define qAρρ
′ to be

(Aρρ′).3.

For the two main applications of this normalization model, we first build id′Γ in Γ′(Γ, id).
The definition is by induction on Γ.

For Γ = () we take7 id′Γ = 0.
If we have defined id′Γ in Γ′(Γ, id) and A is in Type(Γ), let ∆ = Γ.A. We have p : ∆ → Γ

and pS : ∆ →S Γ. Let ρ′ be id′ΓpS in Γ′(∆, p); we can define id′∆ = ρ′, rA(∆, p)ρ′v0.

If A is in Type(Γ) we can compute A id id′ = (T ′,K, qT , rT ) and we define reify(A) to
be (A id id′).2 = K. We have ⟨reify(A)⟩ = A since ⟨reify(A)⟩ = A id = A. If furthermore
a is in Elem(Γ, A) we define reify(a) in Norm(Γ, A) to be qA id id′ a (a id id′). We have
⟨reify(a)⟩ = a in Elem(Γ, A).

We can summarize this discussion as follows.

Theorem 4.1. For each context Γ, the quotient map k 7→ ⟨k⟩, Term(Γ, A) → Elem(Γ, A)
has a section a 7→ reify(a).

Corollary 4.2. Equality in M0 is decidable.

Proof. If a and b are in Elem(Γ, A) we have reify(a) = reify(b) in Term(Γ, A) if, and only if,
a = b in Elem(Γ, A). The result then follows from the fact that the equality in Term(Γ, A) is
decidable.

We also can prove that Π is one-to-one for conversions, following P. Hancock’s argument
presented in [ML75]. The following Lemma follows from the definition of reify.

Lemma 4.3. For A in Type(Γ) and B in Type(Γ.A), we have reify(Π A B) = Π reify(A)
reify(B).

Corollary 4.4. If Π A0 B0 = Π A1 B1 in Type(Γ) in the term model, we have A0 = A1 in
Type(Γ) and B0 = B1 in Type(Γ.A0).

Proof. We have reify(Π A0 B0) = Π reify(A0) reify(B0) = Π reify(A1) reify(B1) =
reify(Π A1 B1) as syntactical expressions, and hence reify(A0) = reify(A1). This implies
A0 = A1 in Type(Γ). We then have reify(B0) = reify(B1), which implies similarly B0 = B1

in Type(Γ.A0).

Corollary 4.5 (Subject reduction). If (λb) a is in Elem(Γ, D) then b[a] is in Elem(Γ, D).

7We defined Γ′(∆, ρ) to be the constant 1 = {0} in this case.



Vol. 19:3 IMPREDICATIVE REDUCTION FREE NORMALIZATION 5:9

Proof. We have b in Elem(Γ.A,B) and a in A′ and λb in Π A′ B′ with Π A B = Π A′ B′

and D = B′[a]. By the previous Corollary, we have A = A′ and B = B′ and b[a] is in
Elem(Γ, B[a]) = Elem(Γ, B′[a]) = Elem(Γ, D).

We can define a normal form function nf : Term(Γ, A) → Norm(Γ, A) by nf(k) =
reify(⟨k⟩).

By mutual induction, we can show the following.

Lemma 4.6. If t is in Norm(Γ, A) then t = reify(⟨t⟩) and if k is in Neut(Γ, A) then

rA id id′ k = ⟨k⟩ id id′.

Corollary 4.7. We have nf(nf(t)) = nf(t) for any t in Term(Γ, A).

Corollary 4.8. The section map reify : Elem(Γ, A) → Term(Γ, A) is natural in Γ w.r.t. the
morphisms in the telescope category C.

Proof. If α : ∆ → Γ is a morphism in C and a is in Elem(Γ, A) and t = reify(a) we have t in
Norm(Γ, A) and tα in Norm(∆, Aα) with ⟨tα⟩ = ⟨t⟩α = aα. By the previous Lemma, we get
reify(aα) = reify(⟨tα⟩) = tα = reify(a)α.

This implies that, in the presheaf model Ĉ the interpretation map Term(T ) → Elem(T )
for T in Type has a section Elem(T ) → Term(T ). Furthermore, Norm(T ), which has internally
a decidable equality, is isomorphic to Elem(T ).

5. Conclusion

This note can be seen as a weak “positive” complement of the “negative” result in [AC20],
in the sense, that, in the absence of the problematic cast function analysed in [AC20], we do
have normalization and decidability of conversion.

Our argument extends to the addition of dependent sum types with surjective pairing,
or inductive types. In general, inductive types have to be declared in some universe Un with
n > 0.

Note that it is possible to define the absurd proposition ⊥ in U0 as ΠX:U0X and to add
the large elimination rule ⊥→ A for any type A while preserving decidability of equality.

A natural question is what happens if we consider a proof relevant impredicative type
of propositions. In a companion paper, we show that the present technique extends also to
this case.
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[Gir71] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination
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Appendix A. Variations on the formulation of the system

Our formal system is not a generalised algebraic theory, presenting the sort Type(Γ) as
stratified by Typen(Γ) and requiring Elem(Γ,Un) = Typen(Γ). It would instead have been
possible to use coercion functions Tn(X) in Type(Γ) and T l

n(X) in Elem(Γ,Ul) for X in
Elem(Γ,Un) with Tl(T

l
n(X)) = Tn(X) for l ≤ n. One would then also need a dependent

product operation Πn X Y in Elem(Γ,Un) with Tn(Π
n X Y ) = Π Tn(X) Tn(Y ) for n > 0 and

the impredicative dependent product Π0 A Y in Elem(Γ,U0) with T0(Π
0 A Y ) = Π A T0(Y ).

One can then apply e.g. [PV07] to justify the existence of an initial model. We can see our
system as an informal notation used to simplify the presentation.

One can wonder how crucial is the use of P. Aczel’s encoding of dependent product
[Acz98] which justifies the equality T0(Π

0 A Y ) = Π A T0(Y ). Without this encoding, we
only have one isomorphism between T0(Π

0 A Y ), which is a subset of 1, and Π A T0(Y ),
which is also a subsingleton, but may not be a subset of 1. The following argument, due
to M. Shulman, provides a more modular solution to this issue, which is independent of
the way one encodes dependent product in the underlying set theory. One replaces the set
model M by a new model M ′ with the same notion of context but letting Type′(Γ) to be
the disjoint sum Type(Γ) + Elem(Γ,U0). It is then possible to define by case a new product
operation so that we get a strict equality T0(Π

0 A Y ) = Π A T0(Y ).
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