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Abstract
A reverse Hölder inequality is established on the space of Kähler metrics in the first Chern
class of a Fano manifold X endowed with Darvas’ L p-Finsler metrics. The inequality holds
under a uniform bound on a twisted Ricci potential and extends to Fano varieties with log
terminal singularities. Its proof leverages a “hidden” log-concavity. An application to destabi-
lizing geodesic rays is provided, which yields a reverse Hölder inequality for the speed of the
geodesic. In the case of Aubin’s continuity path on a K-unstable Fano variety, the constant in
the corresponding Hölder bound is shown to only depend on p and the dimension of X . This
leads to some intriguing relations to Harnack bounds and the partial C0-estimate. In another
direction, universal effective openness results are established for the complex singularity
exponents (log canonical thresholds) of ω-plurisubharmonic functions on any Fano variety.
Finally, another application to K-unstable Fano varieties is given, involving Archimedean
Igusa zeta functions.

1 Introduction

1.1 Reverse Hölder inequalities on the space of Kähler metrics

Let X be an n-dimensional compact connected Kähler manifold. Consider the spaceH of all
Kähler metrics on X , in a fixed cohomology class in H2(X ,R). Assuming that H contains
some Kähler metric ω, the space H may be identified with the quotient space H(X , ω)/R,

where H(X , ω) denotes the space of all Kähler potentials (relative to ω) :

H(X , ω) := {
u ∈ C∞(X) : ωu := ω + ddcu > 0

} (
ddcu := i

2π
∂∂̄u

)
. (1.1)

A canonical Riemannanian metric on H(X , ω) was introduced in [48, 72, 83], turning H
into an infinite dimensional Riemannian symmetric space of constant non-negative sectional
curvature. More generally, a canonical L p-Finsler metric on H(X , ω) was put forth in [37],
defined by

∥∥∥∥
dut

dt

∥∥∥∥
p

:=
(∫

X

∣∣∣∣
dut

dt

∣∣∣∣

p ωn
ut

V

)1/p

, V :=
∫

X
ωn
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This Finsler metric induces a bona fide metric dp onH(X , ω), as shown in [37] (generalizing
the case p = 2 established in [32]). From the point of view of quantization, the metric space
(H(X , ω), dp) can be viewed as a limit of the finite dimensional spaces GL(N ,C)/U (N ),

endowed with an L p-Finsler metric induced by the standard l p-norm on R
N , as N → ∞

[42].
An important motivation for allowing p �= 2 comes from the existence problem for

canonical metrics on X , where p = 1 plays a privileged role. For example, assuming for
simplicity that X admits no non-trivial holomorphic vector fields, there exists, by [14, 33], a
constant scalar curvature Kähler (CSCK) metric in H iff the Mabuchi functional M on H,

introduced in [72], admits a minimizer (namely the CSCK metric) iff M is coercive with
respect to d1, i.e. iff

M(u) ≥ Cd1(u, 0) − C

for some constant C (where H has been identified with the space H(X , ω)0 of all Kähler
potentials u satisfying supX u = 0). Moreover, in the Fano case—i.e when ω is in the first
Chern class c1(X) of X—the coercivity in question is equivalent to (uniform) K-stability, by
the solution of the Yau–Tian–Donaldson conjecture in this case [15, 34, 43, 71].

By Hölder’s inequality, applied to
∥∥∥ dut

dt

∥∥∥
p
,

d1(u, 0) ≤ dp(u, 0)

However, in general, dp(u, 0) can not be controlled by d1(u, 0), since the metric completions
(H(X , ω), dp) are strictly decreasing with respect to p. This is illustrated by the toric case,
where dp may be identified with the standard L p-norm for the space of convex functions on
the moment polytope of X [56]. In contrast, a reverse Hölder inequality does hold in RN (by
the compactness of the unit-sphere),

‖·‖p ≤ CN ‖·‖1 , (1.2)

but the constant CN diverges as N → ∞. Still, the following result shows that in the Fano
case a reverseHölder type inequality holds onH(X , ω), under the assumption that the twisted
Ricci potential ρu,γ of u is uniformly bounded, for some γ ∈]0, 1[.
Theorem 1.1 Let X be an n-dimensional Fano manifold. Given a Kähler form ω in c1(X),

the following inequality holds on H(X , ω), for any p ∈ [1,∞[ and γ ∈]0, 1[
dp(u, 0) ≤ Ad1(u, 0) + B,

with

A = Ape2‖ρu,γ ‖L∞ , B = Bp
(
γ −1 + (1 − γ )−1) e‖ρu,γ ‖L∞

where Ap only depends on (p, n) and Bp also depends on (X ,ω). Moreover, if supX u ≤ 0
then Ap/(n + 1) is independent of n and Bp only depends on (p, n).

We recall that the twisted Ricci potential ρu,γ , which depends on (ωu, ω, γ ), may be
defined by the equations

ddcρu,γ = Ricωu − γωu − (1 − γ )ω,

∫

X
eρu,γ

ωn
u

V
= 1. (1.3)

In particular, ρu,t vanishes identically along Aubin’s continuity path ωt , defined by the fol-
lowing equations [1]:

Ricωt = tωt + (1 − t)ω, (1.4)
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which for t = 1 is the Kähler Einstein equation. By [15, 31], the sup over all t ∈ [0, 1[ for
which the equations are solvable coincides with min{δ(X), 1}, where δ(X) is the algebro-
geometric invariant introduced in [52]. This invariant—known as the delta-invariant or the
stability threshold of X - has the property that X is (uniformly) K-stable if and only if
δ(X) > 1 and K-semistable iff δ(X) ≥ 1 [22, 71].

1.2 Application to destabilizing geodesic rays

There is a range of deformation methods in Kähler geometry that—given an initial Kähler
form ω0 in c1(X)—produce a path ωt of Kähler metrics along which the Mabuchi functional
M decreases. A notable example—apart from Aubin’s continuity path ωt—is the Kähler–
Ricci flow. For these two examples it is well-known that, as t is increased, the d1-distance
d1(ut , 0) at the level of Kähler potentials ut stays bounded iff X admits a Kähler-Einstein
metric, in which case ut converges to a Kähler-Einstein potential. On the other hand, if
d1(ut , 0) → ∞ then ut is weakly asymptotic to a geodesic ray in the metric completion
(H(X , ω), d1) alongwhichMdecreases. In fact, the existence of such ad1-geodesic only uses
that M(ut ) is decreasing (this result is implicit in [39]). However, for special deformations
one should obtain geodesic rays vt with advantageous properties. In the light of the Yau-
Tian-Donaldson conjecture and its ramifications the best one can hope for is that the ray vt

be induced by a test configuration for X [34, 35, 43] (as we shall come back to below). In
particular, such a ray is a dp-geodesic ray in the metric completions (H(X , ω), dp) for any
p ≥ 1. Here we show that the latter property holds under a uniform bound on the twisted
Ricci potentials of ut :

Corollary 1.2 Let X be an n-dimensional Fano manifold and u j a sequence in H(X , ω) such
that

(i) d1(u j , 0) → ∞, (i i)M(u j ) ≤ C, (i i i)
∥∥ρu,γ j

∥∥
L∞(X)

≤ R

for some sequence γ j contained in a compact subset of ]0, 1[. Then

• u j is weakly asymptotic to a ray vt which is a dp-geodesic ray in (H(X , ω), dp) for any
p ∈ [1,∞[ and t 	→ M(vt ) is decreasing.

• the dp- speed ‖v̇‖p of the geodesic vt satisfies

‖v̇‖p ≤ A ‖v̇‖1 , (1.5)

for a constant A of the form Ape2R where Ap only depends on (n, p).

When the bound on the Ricci potential is replaced by a uniform Harnack bound, the first
item above was established in [39, Thm 3.2] and applied to the Kähler-Ricci flow. The proof
in [39] uses the Harnack bound in [81], which also holds for Aubin’s continuity path [2,
85, 87]. However, in general, Harnack bounds tend to require rather detailed control on ωu,

such as lower bounds on the Ricci curvature or uniform Sobelev constants (as discussed in
Sect. 7). Accordingly, one advantage of Theorem 1.1 and its corollary is that they generalize
to situations where such bounds are missing. In particular, as next discussed, the results apply
to singular Fano varieties (see also Sect. 7.1 for an application to Aubin type equations on
non-singular X in the presence of non-positive Ricci curvature).

By the solution of the Yau-Tian-Donaldson conjecture for singular Fano varieties [68,
70, 71], such a variety X admits a Kähler-Einstein metric if and only if it is K-polystable.
For non-singular X this was originally shown in [34] using a singular version of Aubin’s
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continuity path and then in [43] using Aubin’s original continuity path ωt . The proof is based
on the partial C0-estimate, which yields a detailed description of the blow-up behaviour of
ωt (as discussed below). However, for singular X the partial C0-estimate is missing and the
only proof of the Yau-Tian-Donaldson conjecture is variational [68, 70, 71], building on [12,
15]. In general, given a positive (1, 1)-current ω in c1(X), with locally bounded potentials
the variational approach in [12] shows that there exists a solution ωt to Aubin’s continuity
equation 1.3 for some t > 0 (in the weak sense of pluripotential theory) iff X has log terminal
singularities. The following result describes the blow-up behaviour of ωt for singular X in
terms of the metric spaces (H(X , ω), dp) (defined on singular varieties in [46]):

Corollary 1.3 Assume that X is an n-dimensional K-unstable Fano variety with log termi-
nal singularities, i.e. δ(X) ∈]0, 1[. Given a positive (1, 1)-current ω in c1(X) with locally
bounded potentials, denote by ωt the corresponding solutions to Aubin’s continuity equa-
tion 1.4, defined for t ∈ [0, δ(X)[. Then the curve ut of the corresponding sup-normalized
potentials ut is weakly asymptotic—as t increases towards δ(X)—to a non-trivial asymptotic
ray vt , which is a dp-geodesic ray in (H(X , ω), dp) for any p ∈ [1,∞[ and t 	→ M(vt ) is
decreasing. Moreover, the dp- speed ‖v̇‖p of the geodesic vt satisfies

‖v̇‖p ≤ Ap(n + 1) ‖v̇‖1 , (1.6)

for a constant Ap only depending on p.

When X is non-singular we show that Ap can be taken as 1, using the Harnack type bound
in [87] (see Sect. 7). It should be stressed that in the singular case there is an infinite number
of deformation types of K-unstable Fano varieties with log terminal singularities in any given
dimension n. Indeed, this is the case already for toric Fano varieties; see the examples 4.2 in
[44, page 100], which are K-unstable by [9].

1.2.1 Relations to the partial C0 -estimate

There are some intriguing relations between the inequality 1.6 and the partial C0-estimate
along Aubin’s continuity path conjectured in [88] and established in [86], when X is non-
singular. To explain this recall that the partial C0-estimate says that the Kähler potential ut

of ωt is of the form
ut = ϕt + O(1), (1.7)

where O(1) is uniformly bounded in L∞(X) andϕt is a family of Bergmanmetrics associated
to a some tensor power K ∗⊗k

X → X . Embedding X in the projectivization of H0(X , K ∗⊗k
X ),

identified with PNk−1, this means that the corresponding Kähler forms ωϕt are the restriction
to X of G∗

t ωFS, for some curve Gt ∈ GL (Nk,C), where ωFS denotes the Fubini-Study
metric on PNk−1. Since the space of Bergman metrics at level k—which is parameterized by
GL (Nk,C)/U (Nk)—is finite dimensional it seems thus natural to expect that the inequal-
ity 1.6 could be deduced from the standard reverse Hölder inequality in R

Nk (formula 1.2).
This can be made more precise as follows. As shown in [34, III], a subsequence of a family
Gt in GL (Nk,C)—satisfying appropriate assumptions—is asymptotic to a one-parameter
subgroup of GL (Nk,C), induced by a special test configurationX for X . If these assumption
would apply, the previous corollary would follow from the fact that geodesic rays associ-
ated to a special test configurations also satisfy a universal reverse Hölder inequality of the
form 1.6 (as observed in Sect. 8.1). However, as discussed in [43, Section 3.1], the assump-
tions in question have not yet been established for Aubin’s original continuity method. But
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they do hold in the singular setup considered in [34], where the Kähler form ω is replaced
by the positive current defined by an appropriate anti-canonical divisor 	 on X . Anyhow,
the partial C0-estimate appears to be wide open for singular Fano varieties X (since its proof
requires, in particular, a uniform bound on the Sobolev constants; cf. [96]).

In the light of the previous discussion it seems natural to conjecture that the geodesic ray
vt appearing in the previous corollary is induced by a special test configuration X and that
X computes the stability threshold δ(X) in the sense of [71, Thm 1.2] (a related conjecture
is proposed in [94]).

1.3 Proof of Theorem 1.1 via log-concavity andmoment bounds

In a nutshell, the idea of the proof of Theorem 1.1 is to relate dp(u, 0) to the moments of a
somewhat hidden log-concavemeasure onR and use the reverseHölder inequality for random
variables with log-concave distribution [74, App.III] [66], known as the Kahane–Khinchin
inequality. This leads to universal moment bounds (Theorem 4.1), fromwhich Theorem 1.1 is
deduced. In general, dp(u, 0) can also expressed directly as the p-th moment of a probability
measure on R, introduced in [21]. However, as pointed out in Sect. 8.2, this measure is not
log-concave, nor is the analogous measure associated to a test configuration, studied in [24,
61, 93], in general.

1.4 Effective openness on Fano varieties

In another direction, the universal moment bounds alluded to above yield universal effective
openness results for complex singularity exponents on Fano varieties. In order to state these
results, we first recall some standard notation. Given a compact Kähler manifold X , denote
by PSH (X , ω) the space of all ω-plurisubharmonic functions on X . This is the space of all
u ∈ L1(X) such that ωu ≥ 0, in the sense of currents on X (where ωu is the current defined
as in formula 1.1). The complex singularity exponent [45] of a function u ∈ PSH(X , ω) also
known as its log canonical threshold, is defined as the positive number

cu := sup

{
γ : Zu(γ ) :=

∫

X
e−γ udV < ∞

}

for any fixed volume form dV on X . By the solution of Demailly–Kollar’s openness conjec-
ture [45] in [51], when n ≤ 2 and [16, 19], in general,

Zu(γ ) < ∞ �⇒ Zu(γ + ε) < ∞. (1.8)

for some ε > 0.More precisely, in [16, 19] a stronger local result on a ball inCn is established
which yields an effective bound on ε of the following form

ε <
γ

C(X ,ω) Zu(γ )
(1.9)

for a constant C(X ,ω) depending on (X , ω) (by covering X with a finite number of coordinate
balls). See also [54, 56, 58, 76] for more general effective results on the strong form of
Demailly–Kollar’s openness conjecture.

Here we will concerned with the case when X is a Fano. More generally, we will allow
X to be a Fano variety with (at worst) log terminal singularities. Fix a measure dV on X
corresponding to a locally bounded metric on the anti-canonical line bundle K ∗

X of X with
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positive curvature current, denoted byω.The assumption that X has log terminal singularities
ensures that dV has finite total mass. The following result involves the logarithmic derivative

d log Zu(γ )

dγ
=

∫
X (−u)e−γ udV
∫

X e−γ udV
,

(
Zu(γ ) :=

∫

X
e−γ udV

)

when cu < 1.

Theorem 1.4 Let X be a Fano variety, ω ∈ c1(X) and assume that u ∈ PSH(X , ω) satisfies
u ≤ 0. If Zu(γ ) < ∞ and Zu(1 − δ) = ∞ for some δ > 0, then Zu(γ + ε) < ∞ for any ε

satisfying

ε <
1

A d log Zu(γ )
dγ

+ C
(
γ −2 + δ−2

)

for universal constants A and C (i.e. independent of X and, in particular, on the dimension
of X).

More precisely, it will be shown that A can be taken arbitrarily close to 16 (at the expense
of increasing C), by using the effective Kahane–Khinchin inequality in [75]. Moreover, for
a fixed value of A, the constant C could also readily be estimated.

The previous theorem may be reformulated as the following universal lower bound:

d log Zu(γ )

dγ
≥ 1

A

1

(cu − γ )
− B

(
γ −2 + (1 − cu)−2) (C = AB). (1.10)

Integrating this bound yields the following variant of the effective bound 1.9 in the present
setup, which depends on Zu(γ ) and γ in a universal manner.

Corollary 1.5 Let X be a Fano variety and assume that u ∈ PSH(X , ω) satisfies u ≤ 0 and
that

∫
X dV = 1. If Zu(γ ) < ∞ and Zu(1 − δ) = ∞ for some δ > 0, then Zu(γ + ε) < ∞

for any ε satisfying

ε <
e−a

(
γ −1+γ δ−2)

Zu(γ )A

for universal constants A and a.

It should be stressed that ω-plurisubharmonic functions satisfying cu < 1 exist on all
Fano varieties X , that are not weakly exceptional (in the sense that lct (X) ≥ 1, where
lct (X)denotes the global log canonical threshold of −K X , which coincides with the alpha
invariant of −K X ) [30]. For example, among the non-singular Fano surfaces (i.e. del Pezzo
surfaces) only those with degree one, and without anti-canonical cuspidal curves, are weakly
exceptional [29]. Furthermore, according to a conjecture of Cheltsov [28], only two of the 105
deformation families of non-singular Fano threefolds contain weakly exceptional members.

To close the circle, an application of the lower bound 1.10 to K-unstable Fano varieties is
given in the final section of the paper.

2 Preliminaries

Throughout the paper the precise values of the constants C etc appearing in the inequalities
may change from line to line.
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2.1 The space of Kähler potentials

Let (X , ω) be a compact Kähler manifold of dimension n and denote byH(X , ω) the corre-
sponding space of all Kähler potentials u on X :

H(X , ω) := {
u ∈ C∞(X) : ωu := ω + ddcu > 0

} (
ddcu := i

2π
∂∂̄u

)
.

Following [37] the Finsler L p-metric on H(X , ω) defined by
(∫

X

∣∣∣∣
dut

dt

∣∣∣∣

p ωn
ut

V

)1/p

, V :=
∫

X
ωn

induces a metric dp onH(X , ω) satisfying the following inequalities, for constants cn,p only
depending on n and p (see [37, Thm 3]):

c−1
n,p

(∫
|u0 − u1|p

(
ωn

u0

V
+ ωn

u1

V

))1/p

≤ dp(u0, u1) ≤ cn,p

(∫
|u0 − u1|p

(
ωn

u0

V
+ ωn

u1

V

))1/p

(2.1)

The first inequality, applied to (u0, u1) = (0, u), implies that
(∫

|u|p ωn

V

)1/p

≤ cn,pdp(u, 0) (2.2)

and, as a consequence, ∣∣∣∣sup
X

u

∣∣∣∣ ≤ cn,1d1(u, 0) + Cω (2.3)

(see [37, Cor 4]). In the case when (u0, u1) = (0, u) and u ≤ 0 the following more precise
estimates hold:

Lemma 2.1 For u ∈ H(X , ω) satisfying sup u ≤ 0

dp(u, 0) ≤
(∫

|u|p
(

ωn
u

V

))1/p

,

∫
|u|ω

n
u

V
≤ (n + 1)d1(u, 0). (2.4)

Proof The first inequality is contained in [37, Lemma 4.1]. To prove the second one, note

that since −u ≥ 0 we have that
∫ |u|ωn

u
V ≤ −(n + 1)E(u), where

E(u) := 1

V (n + 1)

∫

X

n∑

j=0

(−u)ω
j
u ∧ ωn− j (2.5)

(which is the unique primitive of the one-form onH(X , ω) defined by u 	→ ωn
u/V satisfying

E(u) = 0). Finally, by [37, Cor 4.14], −E(u) = d1(u, 0), when supX u ≤ 0. ��

2.1.1 Metric completions, finite energy spaces and geodesics

Denote by PSH (X , ω) the subspace of L1(X) consisting of all ω-plurisubharmonic (ω-psh)
functions on X , i.e. all strongly upper-semicontinuous functions u such that ωu ≥ 0 holds in
the sense of currents [57]. We will denote by ωn

u the non-pluripolar Monge-Ampère measure
of u [58]. As shown in [37]—answering a conjecture of Guedjs when p = 2—the metric
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completion (H(X , ω), dp) of themetric space (H(X , ω), dp)may be identifiedwith the finite
energy space

E p(X , ω) :=
{

u ∈ PSH (X , ω) :
∫

X
ωn

u =
∫

X
ωn,

∫

X
|u|pωn

u < ∞
}

,

introduced in [58] and the inequalities 2.1 hold on all of E p(X , ω). Moreover, the spaces
E p(X , ω) are strictly decreasing wrt p.

Any two elements u0, u1 in E1(X , ω) can be connected by a canonical path ut called
a finite energy geodesic in [37, 40] and a psh geodesic in [15], defined by the following
envelope:

ut (x) := sup

{
vt (x) : vt is a subgeodesic lim sup

t→0
vt ≤ u0, lim sup

t→1
vt ≤ u0

}
. (2.6)

We recall that a subgeodesic vt is defined as a curve in PSH (X , ω) with the following
property: complexifying t the corresponding iR-invariant function V (x, t) := v�t (x) on
X×]0, 1[×iR is in PSH (X×]0, 1[×iR, ω) , using the same notation ω for the pull-back of
ω to the product X × (]0, 1[×iR).

Recall that, given a metric space (M, d), a curve ut connecting two given points u0 and
u1 in M is said to be a d-geodesic (also known as a constant speed geodesic) if

d(ut , u0) = td(u1, u0), when t ∈ [0, 1].
As shown in [37], building on [21], the psh geodesic ut connecting any two given elements
u0, u1 in E p(X , ω) is a dp-geodesic. When p > 1 this is the unique dp-geodesic connecting
u0, u1 (by [40, Thm 3.3]). Given a dp-geodesic vt we will use the notation

‖v̇‖p := dp(vt , v0)/t, t > 0

which is independent of t . When vt is a geodesic ray emanating from 0 and v0 is the constant
geodesic 0, ‖v̇‖p is, in the terminology of [40], the distance between the dp-geodesic vt and
v0 wrt the cordal metric on the space of dp-geodesic rays, introduced in [40].

2.2 The Fano setup

Henceforth, X will be assumed to be a compact Fano manifold. This means that the anti-
canonical line bundle K ∗

X is ample. Equivalently, X admits a volume form dVX with positive
Ricci curvature, i.e.

ω := Ric dVX (:= −ddc log dVX )

defines a Kähler form on X in the first Chern class c1(X) of X . Conversely, any Kähler form
ω in c1(X)may be expressed as in the previous equation and the corresponding volume form
dVX is uniquely determined by ω under the normalization condition

∫
X dVX = 1, which

will henceforth be assumed. Denote by V the volume of X :

V := c1(X)n
(

=
∫

X
ωn

)

To u in H(X , ω) and γ ∈]0,∞[ we attach the following probability measure on X :

μγ u := e−γ udVX∫
X e−γ udVX

. (2.7)
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(which only depends on the Kähler form ω + ddcu when γ = 1). In terms of this measure,
the twisted Ricci potential ρu,γ of a Kähler potential u (definined in formula 1.3) may,
alternatively, be defined by the relation

eρu,γ
ωn

u

V
= μγ u . (2.8)

ρu,1 is independent of ω and is usually simply called the Ricci potential of ωu, denoted by
ρωu .More generally, the twisted Ricci potential ρu,γ is well-defined for any u ∈ PSH (X , ω)

satisfying

• the non-pluripolar Monge-Ampère measure ωn
u is, locally, absolutely continious wrt

Lesbegue measure
• e−γ udVX has finite total mass.

3 Log-concavity

Fix u ∈ H(X , ω) such that supX u ≤ 0 and consider the following function on R :

Zu(γ ) :=
∫

X
e−γ udVX .

The key analytic ingredient in the proofs in the coming sections is the following result,
expressing Zu(γ ) in terms of the Laplace transform of a log concave measure ν0 on R. That
is to say that ν0 is either a Dirac mass or ν0 is absolutely continuous wrt Lesbegue measure
on R and the logarithm of its density is concave.

Theorem 3.1 For any u ∈ H(X , ω) such that supX u ≤ 0 and any γ ∈]0, 1[

Zu(γ ) = G(γ )

∫

R

e−tγ ν0, G(γ ) := 2γ

�(1 − γ )
(3.1)

for a log-concave measure ν0 on R (depending on u), where �(s) denotes the Gamma-
function. Moreover, the log-concave probability measures νγ := e−tγ ν0/

∫
R

e−tγ ν0 satisfy
the following inequality:

∫

R

|t |νγ ≤ d log Zu(γ )

dγ
+ C

(
γ −1 + (1 − γ )−1) (3.2)

for a constant C independent of u and γ.

It should be stressed that the formula in the previous theorem does not hold with a constant
function G(γ ), as can be checked in simple examples. This means that the measure on R

defined as the push-forward of dVX under u is not log-concave, in general. Still it would be
interesting to know if G(γ ) can be taken to be bounded as γ → 1? If so, this would eliminate
the diverging factor (1 − γ )−1 appearing in Theorem 5.1.

3.1 Preparations for the proof of Thm 3.1

The proof is based on a lifting argument where X is replaced by the total space of K X → X .

We start by setting up some notation. Given a Fano manfold X denote by Y the total space
of the canonical line bundle K X → X and by Y ∗ the space obtained by deleting the zero-
section of K X → X . There is a canonical C∗-action on Y , induced by the linear structure
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on the fibers of the line bundle K X → X . Moreover, the space Y comes with a canonical
holomorphic top form 
, which is one-homogeneous wrt theC∗-action on Y . Indeed, 
 can
be constructed as follows. Fix local holomorphic coordinates z ∈ C

n on X and trivialize,
locally, K X → X by the corresponding holomorphic section dz(:= dz1 ∧ · · · ∧ dzn). This
induces local holomorphic coordinates (z, w) ∈ C

n+1 on Y and the top form 
 defined by
dz ∧ dw glues to a globally well-defined holomorphic top form on Y .

Recall that we have fixed a volume form dVX on X with positive Ricci curvature, denoted
by ω (Sect. 2.2). By well-known general principles, a volume form dV on X induces a one-
homogeneous function r on Y that is plurisubharmonic iff Ric dV ≥ 0. Indeed, dV induces
a metric on K X → X and r may be defined as the corresponding “norm-function” on the
total space Y of K X → X . But here it will be convenient to adopt the following alternative
definition of the function r corresponding to dVX : r is the function on Y determined by

i (n+1)
 ∧ 
̄ = rdr ∧ dVX ∧ dθ, on Y ∗ (3.3)

where dVX ∧ dθ denotes the fiber product of the measure dVX on the base of the fibration
Y ∗ → X with the family of standard S1-invariant measures dθ on the fibers of the fibration.
The function r is, indeed, one-homogeneous wrt the R>0-action on Y (since 
 is) and
plurisubharmonic (since, by assumption,Ric dVX ≥ 0).Moreover, r extends to a psh function
on Y (since it is bounded from above in a neighourhood of the zero-section in K X ).

To any given u ∈ PSH(X , ω) we associate the following psh function on Y :
ψ := u + log r2. (3.4)

The psh functions ψ on Y that can be be expressed in this way are precisely the ones which
are log-homogeneous under the C

∗-action on Y ; ψ(λ·) = log(|λ|2) + ψ for any λ ∈ C
∗.

In geometric terms, this follows form the fact that eψ is the one-homogenous function on Y
corresponding to the volume form dV := e−udVX on X .

Proposition 3.2 Assume that ψ0 = f (log r2), where f is an increasing convex function on
] − ∞,∞[, assumed bounded from below and that ψ1 is psh and log-homogeneous on Y .

Then the logarithm of the following function is concave on R :

V (t) :=
∫

{ψ1≤t}
e−ψ0 i (n+1)
 ∧ 
̄,

if it is finite for all t . More generally, the result holds when Y is a (possibly singular) Fano
variety and r is the one-homogeneous function corresponding to a (possibly singular) metric
on K ∗

X with positive curvature current, assuming that the corresponding measure dVX on X
gives finite total volume to X .

Proof In the case when Y = C
m (which, after passing to a finite cover, corresponds to the

case when X = P
n) the result follows from [6, Prop 6.5], which is a slight generalization

of [17, Thm 1.2] and [8, Thm 2.3]. The proof first uses the subharmonicity result for Bergman
kernels established in [17, Thm 1.1]. Then the S1-symmetry of ψ0 and ψ1 is used. In the
case when X is smooth one could, presumably, proceed in a similar manner. Indeed, the
proof of [17, Thm 1.1] is based on ∂-estimates for (n + 1, 0)-forms on the pseudoconvex
domain {{ψ1 ≤ t}} with weight e−ψ0 , which still apply when Y is a complex manifold. But
one technical difficulty in the proof in [17] stems from the fact that, in general, the domain
{ψ1 ≤ t} may be not have a smooth boundary, which is bypassed using an approximation
procedure. Since this seems to lead to major technical difficulties when X (and thus also Y )
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is singular we will instead give a more direct proof, which has the virtue that is also applies
to singular X .

First assume that dVX is a smooth volume form. Then r is a smooth coordinate on Y ∗.
Hence, using the factorization 3.3 and first performing the integration over r , we can express

V (t) =
∫

X

(∫ e−ut

0
e−ψ0(r)rdr

)

dVX , ut := u − t, (3.5)

where u is the function on X corresponding to ψ1 in formula 3.4. The change of variables
s = log(r2) yields

1

2

∫ e−ut

0
e−ψ0(r)rdr =

∫

{s<−ut }
e−φ(s)ds, φ(s) := f (s) − s

Now, given a real variable u, define χ(u) by

χ(u) = − log
∫

{s<−u}
e−φ(s).

Let us show that
(i) χ ′′(u) ≥ 0, (i i) 0 ≤ χ ′(u) ≤ 1. (3.6)

Since φ(s) is convex the first item follows directly from Prekopa’s theorem [79] (or the
Brunn–Minkoski inequality). Next, by definition,

χ ′(u) := e−φ(−u)

∫
{s<−u} e−φ(s)

,

which is manifestly non-negative. In order to show that χ ′(u) ≤ 1 it is—since χ(u) is
convex, by (i)—enough to consider the limit when u → ∞. By assumption, we have that
φ(s) = f (−∞) − s + o(1), uniformly as s → −∞. Hence, in the limit where u → ∞ the
quotient above coincides with

lim
u→∞

e−u
∫
{s<−u} es

= 1,

using that the denominater equals e−u . This proves formula 3.6.
Next note that, if χ satisfies the conditions in formula 3.6, then

u ∈ PSH (X , ω), �⇒ χ(u) ∈ PSH (X , ω). (3.7)

Indeed,

ddcχ(u) = χ ′′du ∧ dcu + χ ′ddcu ≥ χ ′ωu − χ ′ω ≥ −ω.

Nowcomplexify t and consider the functionU := u−�t on X×(R×iR).ThenddcU ≥ −ω,

where we have identified ω with its pull-back to X × (R × iR). Applying the implication
3.7 with u replaced by U thus reveals that χ(U ) ∈ PSH (X × (R × iR), ω). This means
that vt := χ(ut ) is a subgeodesic in PSH(X , ω) (as defined in Sect. 2.1.1). Hence, the
proposition follows from the following complex generalization of the Prekopa theorem for
convex functions established in [20]: the function

t 	→ − log
∫

X
e−vt dVX (3.8)

is convex for any subgeodesic vt .
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Next, consider the case when X is non-singular, but dVX corresponds to a (possibly
singular) metric on K ∗

X . This means that the local density of dVX is of the form e−φ where
φ locally represents the metric on K ∗

X in question, in additive notation. In the case that φ

is locally bounded the same proof as in the case when dVX is a volume form (i.e. φ is
smooth) still applies. In the general case we can express φ as a decreasing limit of locally
bounded metrics φ j on K ∗

X with positive curvature current and conclude using the monotone
convergence theorem. Finally, when X is non-singular we proceed in essentially the same
way, using that the convexity of the function 3.8 still holds, as observed in [12] (and the
decomposition 3.5 still holds, since it can be applied on the regular locus of X). ��

3.2 Conclusion of the proof of Thm 3.1

We will apply Prop 3.2 with ψ0 = r2. Expressing u in terms of ψ on Y we can write
∫

X
e−γ udVX = 1

∫ ∞
0 r−2γ e−r2rdr

∫

Y
e−γψdVY , dVY := e−ψ0 i (n+1)
 ∧ 
̄ (3.9)

Hence, pushing forward the integration over Y to R and using the factorization 3.3 gives

Zu(γ ) = 1
∫ ∞
0 r−2γ e−r2rdr

∫

R

e−γ tψ∗dVY , (3.10)

for any γ. Next, note that for γ > 0
∫

R

e−γ tψ∗dVY = γ

∫

R

e−tγ ν0, ν0 = V (t)dt, V (t) := dVY ({ψ < t}) . (3.11)

Indeed, since ψ∗dVY = V ′(t)dt (in the sense of distributions) integrating by parts reveals
that the previous formula holds if

lim
t→±∞ e−tγ V (t) = 0, (γ > 0)

But, by Chebyshev’s inequality, V (t) ≤ Cεeεt for any ε ∈]0, 1[ (with Cε = ∫
Y e−εψdVY ).

The vanishing in the previous equation thus follows when t → ∞ and t → −∞ by taking
ε sufficiently close to 0 and 1, respectively. This concludes the proof of formula 3.11 and
shows that formula in the Theorem holds with

G(γ ) := γ
∫ ∞
0 r−2γ e−r2rdr

(= γ

�(1 − γ )/2
),

where �(s) is the classical Gamma-function. Finally, the log-concavity of ν0 follows from
Prop 2.7, applied to the functions (ψ0, ψ1) = (r2, ψ) on Y .

3.2.1 Proof of the inequality 3.2

Let us first show that ∫

R

|t |dνγ ≤
∫

Y
|ψ | e−γψdVY∫

Y e−γψdVY
+ γ −1. (3.12)

First, integrating by parts (just as in the proof of formula 3.11) yields, with σ(t) denoting the
L∞-function defined by the sign of t , which is the distributional derivative of |t | :

γ

∫

R

|t |e−γ t V (t)dt =
∫

R

e−γ t (|t |V (t))′ dt =
∫

R

e−γ t (|t |V ′(t) + σ(t)V (t)
)

dt
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Hence,
∫

R

|t |e−γ t V (t)dt ≤ γ −1
∫

R

e−γ t |t |V ′(t)dt + γ −1
∫

R

e−γ t V (t)dt .

Dividing both sides with
∫

e−γ t V (t)dt and invoking formulas 3.1, 3.11, thus proves for-
mula 3.12. Next, using that that |ψ | ≤ |u| + | log r2| the integral over Y in formula 3.12 may
be estimated by

∫

Y
|u| e−γψdVY∫

Y e−γψdVY
+

∫

Y
| log r2| e−γψdVY∫

Y e−γψdVY
,

where dVY was defined in formula 3.9. Expressing dVY in terms of dVX , the first integral
equals

∫
Y |u|μγ and the second one is equal to the following constant, only depending on γ,

Cγ :=
∫ ∞
0 e−r2 | log r2|r−2γ rdr

∫ ∞
0 e−r2r−2γ rdr

,

which satisfies Cγ ≤ C(1 − γ )−1 (using that Cγ is comparable to the first derivative of
log�(1 − γ ) at γ = 1).

4 Moment bounds on Fanomanifolds

Let X be a Fano manifold. In this section, we prove the following general dimension-free
moment bounds, expressed in terms of the probability measure μγ u, defined by formula 2.7.
They will be used in the proof of Theorem 1.1, given in the next section.

Theorem 4.1 Let X be an n-dimensional Fano manifold and ω a Kähler form in c1(X).

Given p ∈ [1,∞[ and γ ∈]0, 1[ the following inequality holds for any u in H(X , ω) such
that supX u ≤ 0 :

(∫

X
(−u)pμγ u

)1/p

≤ Ap

∫

X
(−u)μγ u + Bp

(
γ −1 + (1 − γ )−1)

where the constants Ap and Bp only depend on p. More generally, given γ ∈]0, 1[ the
inequality holds for any u ∈ PSH (X , ω) such that supX u ≤ 0, if

∫
e−γ udVX < ∞.

Remark 4.2 The inequality above does not hold with Ap and Bp independent of p. Indeed,
otherwise one could, by letting p → ∞, replace the lhs in the inequality with ‖u‖L∞(X) .

But this contradicts the fact that there exist u ∈ PSH (X , ω) which are unbounded, while∫
X (−u)μγ u is finite for any γ (for example, any unbounded u ∈ PSH (X , ω) with vanishing

Lelong numbers).

The idea of the proof is to combine Thm 3.1 with the following well-known Kahane–
Khinchin inequality for log-concave probability measure ν on R and p ≥ 1 :

(∫
|t |pdν

)1/p

≤ C p

(∫
|t |dν

)
(4.1)

with a universal constant C p (only depending on p) [74, App.III] [66]. In order to use this
inequality we will apply the following elementary lemma that relates moments to higher
order derivatives of the cumulant-generating function:
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Lemma 4.3 Let σ be a measure on a topological space S and f a measurable function on
(S, σ ). Given γ ∈ R denote by 〈·〉γ integration wrt the probability measure eγ f σ/

∫
S eγ f σ,

assuming that
∫

S e(γ+ε) f σ < ∞ for all sufficiently small ε. Then there exist universal
coefficents a j1,..., jp−1 ∈ R such that

〈
f p〉

γ
= d p

dγ p
log

〈
eγ f

〉

γ
+

∑

j1,..., jp−1

a j1,..., jp−1

〈
f j1

〉

γ

〈
f j2

〉

γ
· · ·

〈
f jp−1

〉

γ
,

where the sum ranges over all non-negative integer indices ( j1, . . . , jp−1) such that ji ≤
p − 1, j1 + · · · + jp−1 = p.

Proof This is well-known and can be shown using direct differentiation, by rewriting
eγ f σ/

∫
S eγ f σ = eγ f −log

∫
S eγ f σ σ. Alternatively, the formula follows from general result

expressing a j1,..., jp−1 in terms of partial Bell polynomials [92]. For future reference, let us
record the following explicit expressions when p ≤ 2 :

d

dγ
log

〈
eγ f

〉

γ
= 〈 f 〉γ ,

d2

dγ 2 log
〈
eγ f

〉

γ
= 〈

f 2
〉
γ

− 〈 f 〉2γ . (4.2)

��
Wewill prove Theorem 4.1 by induction over p.We thus assume that p ≥ 2 and that The-

orem 4.1 holds for p − 1. Applying the previous lemma to (S, σ, f ) given by (X , dVX ,−u)

and using the assumption that the theorem holds for p − 1 gives

〈
(−u)p〉

γ
≤ d p

dγ p
log

〈
e−uγ

〉

+
∑

j1,..., jp−1

∣∣a j1,..., jp−1

∣∣ (Ap−1 〈(−u)〉γ + Bp−1
(
γ −1 + (1 − γ )−1))p

≤ d p

dγ p
log

〈
e−uγ

〉 + A′
p 〈(−u)〉p

γ + B ′
p

(
γ −1 + (1 − γ )−1)p

,

for some constants A′
p and B ′

p only depending on p. Next, by the formula in Theorem 3.1,
we can express

log
〈
e−uγ

〉 = log
∫

R

e−tγ ν0 + logG(γ ),

for a log-concave measure ν0. Hence,

〈
(−u)p〉

γ
≤ d p

dγ p
log

∫

R

e−tγ ν0 +
∣∣∣∣

d p

dγ p
logG(γ )

∣∣∣∣ + A′
p 〈(−u)〉p

γ

+B ′
p

(
γ −1 + (1 − γ )−1)p

.

Since �(s) has a simple pole at s = 0 we have
∣∣∣ d p

dγ p logG(γ )

∣∣∣ ≤ cp
(
γ −1 + (1 − γ )−1

)p
,

giving

〈
(−u)p〉

γ
≤ d p

dγ p
log

∫

R

e−tγ ν0 + A′
p 〈(−u)〉p

γ + B ′′
p

(
γ −1 + (1 − γ )−1)p

,

for B ′′
p = B ′

p + cp. Next, applying Lemma 4.3 to (R, ν0, t), combined with the Kahane–
Khinchin inequality 4.1 for the log-concave probability measures νγ on R defined by

νγ := e−tγ ν0∫
R

e−tγ ν0
,

123



Reverse Hölder inequalities on the space of Kähler metrics. . . Page 15 of 33     2 

gives

d pγ

dγ p
log

∫

R

e−tγ ν0 ≤ C p

(∫
|t |νγ

)p

.

By the inequality in Theorem 3.1 (combined with formula 4.2 for p = 1),
∫

R

|t |νγ ≤ 〈(−u)〉γ + C
(
γ −1 + (1 − γ )−1) .

All in all, this means that
〈
(−u)p〉

γ
≤ C p

(〈(−u)〉γ + C
(
γ −1 + (1 − γ )−1))p + A′

p 〈(−u)〉p
γ

+B ′′
p

(
γ −1 + (1 − γ )−1)p

.

The induction step is thus concluded by combining the inequality in Theorem 3.1 with the
standard reverse Hölder inequality in R

3 (appearing in formula 1.2).

4.1 The proof for general u

Finally, given γ ∈]0, 1[ we will show that the inequality in the theorem holds in the general
case where u ∈ PSH (X , ω) and

∫
e−γ udVX < ∞ (assuming that supX u ≤ 0, as before).

First observe that both sides in the inequality to be shown are still finite in the general case.
Indeed, by the resolution of Demailly–Kollar’s openness conjecture (that we shall come back
to in Sect. 9) there exists ε > 0 such that

∫
e−(γ+ε)udVX < ∞. (4.3)

Given this integrability 4.3, the proof of the theorem proceeds exactly as in the previous case.

5 Reverse Hölder inequalities on the space of Kähler metrics

We next turn to the proof of the following slightly more general formulation of Theorem 1.1,
stated in the introduction, where ρu,γ denotes the twisted Ricci potential, defined by for-
mula 2.8.

Theorem 5.1 Given a Kähler form ω in c1(X) and p ∈ [1,∞[ the following inequality holds
for any u ∈ PSH (X , ω) such that ωn

u is absolutely continuous wrt Lesbesgue measure and
any γ ∈]0, 1[ such that

∫
e−γ udVX < ∞ :

dp(u, 0) ≤ Ad1(u, 0) + B,

with

A = Ape2‖ρu,γ ‖L∞ , B = Bp
(
γ −1 + (1 − γ )−1) e‖ρu,γ ‖L∞ ,

where Ap only depends on (p, n) and Bp also depends on (X ,ω). Moreover, if supX u ≤ 0
then Ap/(n + 1) is independent of n and Bp only depends on (p, n).

First assume that supX u ≤ 0. Then Theorem 4.1 implies, by the very definition of the
twisted Ricci potential (Definition 2.8), that

(∫

X
(−u)p ωn

u

V

)1/p

≤ ApesupX ρu,γ −p−1 infX ρu,γ

∫

X
(−u)

ωn
u

V
+ Be−p−1 infX ρu,γ , (5.1)
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where B = Bp
(
γ −1 + (1 − γ )−1

)
. Invoking the inequalities in Lemma 2.1 thus concludes

the proof when supX u ≤ 0. Finally, in the general case we may decompose u = ũ + supX u
where supX ũ = 0. Combining the previous case with the triangle inequality for dp yields

dp(u, 0) ≤ dp(ũ, 0) +
∣∣∣∣sup

X
u

∣∣∣∣ ≤ Ad1(ũ, 0) + B +
∣∣∣∣sup

X
u

∣∣∣∣ ≤ Ad1(u, 0) + B + 2

∣∣∣∣sup
X

u

∣∣∣∣ .

The proof is thus concluded by invoking the inequality 2.3 for p = 1.

5.1 Application to destablizing geodesic rays

We next deduce the following slighltly more general formulation of Cor 1.2.

Corollary 5.2 Let u j be a sequence in E1(X , ω) such that ωn
u j

is absolutely continuous wrt

Lesbesgue measure and
∫

e−γ j udVX < ∞ for some sequence γ j contained in a compact
subset of ]0, 1[. Assume that

(i) d1(u j , 0) → ∞, (i i)M(u j ) ≤ C, (i i i)
∣∣∣ρu j,γ j

∣∣∣ ≤ R

Then

• u j is weakly asymptotic to a ray vt which is a dp-geodesic ray in (H(X , ω), dp) for any
p ∈ [1,∞[ and t 	→ M(vt ) is decreasing.

• the dp- speed ‖v̇‖p of the geodesic vt satisfies

‖v̇‖p ≤ A ‖v̇‖1 , (5.2)

for a constant A of the form Ap,ne2R where Ap,n only depends on (n, p). Moreover, if
supX u j ≤ 0, then Ap,n = Ap(n + 1), where Ap only depends on p.

Given Theorem 1.1 the proof is similar to the proof of [39, Thm 3.2] (see also [94] for
general results in Hadamard spaces covering the case p = 2). Let v j (t) be the psh geodesic

[0, d1(u j , 0)] → E1(X , ω), t 	→ v j (t) (5.3)

coinciding with 0 and u j at t = 0 and at t = d1(u j , 0), respectively (the parametrization has
been made so that v j (t) has unit d1-speed). We will first show (assuming (i) and (i i)) that
there exists a geodesic ray v(t) in E1(X , ω) such that v j (t) → v(t) in E1(X , ω) uniformly on
[0, T ], for any given finite T—after perhaps passing to a subsequence. Moreover, if the Ricci
potential of u j is uniformly bounded, then the construction will show that vt is a dp-geodesic
ray for any p ∈ [1,∞[. To this end fix T > 0 and consider v j (t) on [0, T ]. By construction

t ∈ [0, T ] �⇒ d1(v j (t), 0) = t ≤ T ( �⇒ ∣∣sup v j (t)
∣∣ ≤ CT ) (5.4)

Moreover, by assumption (i i)

M(v j (t)) ≤ C0, C0 := max{C,M(0)} (5.5)

Indeed, by assumption the estimate holds at t = Tj and hence it holds for t ≤ Tj by the
convexity of M on E1(X , ω) [13]. The previous two estimates imply, by the compactness
theorem in [12], that the maps 5.3, defined by the geodesic v j (t), when restricted to [0, T ],
take values in a fixed compact subset KT of E1(X , ω). Since the maps are 1-Lipschitz (by
the very definition of d1-geodesics) it thus follows from the Arzela-Ascoli theorem in metric
spaces that v j (t) converges uniformly on [0, T ] to a curve v(t) in E1(X , ω), after perhaps
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passing to a subsequence. As a consequence, by [15, Prop 1.11], v(t) is a psh geodesic and,
in particular, a d1-geodesic in E1(X , ω).Using a diagonal argument this yields a d1-geodesic
ray v(t) with the required properties.

Next, assume a uniform bound R on the twisted Ricci ρu j ,γ j potentials of u j and that γ j is
contained in a compact subset K of ]0, 1[. Then, by Theorem 5.1, the bound on d1(v j (t), 0)
in formula 5.4 yields, since any psh geodesic is a dp-geodesic,

t ≤ T �⇒ dp(v j (t), 0) = t
dp(u j , 0)

d1(u j , 0)
≤ T A + B

d1(u j , 0)
) (5.6)

(where A and B depend on R and p and B also depends on the compact subset K ). Hence,
by [13, Prop 2.7], the d1-limit point v(t) is in E p(X , ω) for any p ≥ 1. Since the previous
bound holds for any p ≥ 1 it follows from Lemma 5.3 below that, for t fixed, v j (t) dp-
converges towards v(t) for any p ≥ 1. Next, recall that v j (t) has unit d1-speed, i.e. T =
d1(v j (T ), 0) = T . Hence, letting j → ∞ in the bound 5.6 at t = T gives

dp(v(T ), 0) ≤ d1(v(T ), 0)A,

which proves the inequality 5.2, by taking T = 1. Finally, the bound 5.5 on M(v j (t))
implies, sinceM is d1-lower semi continuous [13], thatM(v(t)) ≤ C0. It thus follows from
the convexity of t 	→ M(v(t)) that M(v(t)) is decreasing in t .

Lemma 5.3 Assume that v j d1-converges towards v and that there exists ε > 0 such that
dp+ε(v j , 0) is uniformly bounded. Then v j dp-converges towards v.

Proof We will use the inequalities 2.1. Given R > 0 decompose
∫

X
|v j − v|p

(
ωn

v j

V
+ ωn

v

V

)

=
∫

|v j −v|≤R
|v j − v|p

(
ωn

v j

V
+ ωn

v

V

)

+
∫

|v j −v|>R
|v j − v|p

(
ωn

v j

V
+ ωn

v

V

)

.

Rewriting |v j − v|p = R P (|v j − v|/R)p, the first term may, since (|v j − v|/R)p ≤ (|v j −
v|/R)1, be estimated as

∫

|v j −v|≤R
|v j − v|p

(
ωn

v j

V
+ ωn

v

V

)

≤ R p−1
∫

X
|v j − v|1

(
ωn

v j

V
+ ωn

v

V

)

,

which converges to zero when j → ∞, since v j d1-converges towards v. Next, using that
1 ≤ |v j − v|ε R−ε, when |v j − v| > R the second term above may be estimated by

R−ε

∫

X
|v j − v|p+ε

(
ωn

v j

V
+ ωn

v

V

)

≤ R−εCε .

Hence, letting first j and then R tend to infinity concludes the proof. ��

6 Generalization to singular Fano varieties

In this section we explain how to extend the previous results to singular Fano varieties and
prove Corollary 1.3. The results also extend—with essentially the same proofs—to the more
general twisted setting (considered in [15] when X is smooth).
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We thus let X be a singular Fano variety. This means that X is a normal complex variety
such that K ∗

X is defined as an ampleQ-line bundle over X (see [12, 46, 68, 70]). Fix ameasure
dVX on X corresponding to a locally bounded metric on K ∗

X with positive curvature current,
denoted by ω. We will assume that dVX has finite total mass. As is well-known [12] this is
equivalent to X having log terminal singularities which will henceforth be assumed.

We recall that a Kähler form on a normal complex variety X is, by definition, locally
the restriction to X of a Kähler form on C

M under a local embedding of X as a variety in
C

M . The spaceH(X , ω) of Kähler potentials (relative to ω) is defined exactly as in the case
when X is singular. Theorem 4.1 now extends directly to singular Fano varieties, using that
Prop 3.2 applies to singular Fano varieties. By [46], all the results in Sect. 2.1 on Darvas’
L p-distances extend to singular normal varieties. Hence, Theorem 4.1 implies, precisely as
before, that Theorem 5.1 holds for any singular Fano variety with log terminal singularities.
In turn, just as before, the latter theorem implies that Corollary 5.2 applies to singular Fano
varieties (using the results on singular Fano varieties in [12, 46]).

6.0.1. Proof of Corollary 1.3

Consider now Aubin’s equations 1.4 on X , defined in the weak sense of pluripotential the-
ory [12], i.e. the sup-normalizedpotentialut ofωt ,which is inPSH (X , ω) ∩ L∞(X), satisfies

ωn
ut

/V = μut ,t (6.1)

By results in [12] this means, equivalently, that ut minimizes a twisted Mabuchi functional
that we shall denote byMt . Moreover, it follows from results in [68, 70] (or more precisely
the proof of the main results) that for any {1, δ(X)} is the sup over all t ∈ [0, 1[ for which the
Eq. 6.1 admits a solution ut in E1(X , ω) (the assumption that X has log terminal singularities
ensures that δ(X) > 0). The Eq. 6.1 says, in particular, that ωn

ut
is, locally on the regular

locus of X , absolutely continuous wrt Lebesgue measure,
∫

X e−tut dVX < ∞ and ρu,t ≡ 0.
Hence, Cor 1.3 follows from Cor 5.2 on Fano varieties, once we have verified that

d1(ut , 0) → ∞ (6.2)

as t → δ(X) (since supX ut = 0 the corresponding geodesic ray vt is then non-trivial
in the sense that vt is not of the form ct for any constant c). Assume, in order to get a
contractiction, that d1(ut , 0) ≤ C, , after passing to a subsequence. Then it follows from
results in [12, 46] that, after passing to a subsequence, ut d1-converges to uδ in E1(X , ω),

minimizingMδ(X) and thus uδ satisfies the Eq. 6.1 for t = δ(X). By, assumption, δ(X) < 1
and, as a consequence, any solution of the equation 6.1 for t = δ(X) is uniquely determined.
Indeed, since ω is a positive current with locally bounded potentials [12, Thm 11.1] implies,
just as in the case of t = 1 considered in [12, Thm 5.1], that uδ is uniquely determined
modulo the flow of a holomorphic vector field W on X , preserving ω. But this can only
happen if W vanishes identically, as follows from [20, Prop 8.2] applied to any non-singular
resolution of X . Thus uδ is uniquely determined. As a consequence—just as in the case that
t = 1 and there are no holomorphic vector fields, considered in [46]—Mt is coercive on
E1(X , ω) when t = δ(X). Since coercivity is preserved when t is replaced by t + ε for any
sufficently small number ε this means that Mδ(X)+ε is coercive for any sufficently small
positive number ε. It thus follows from [12] that Mδ(X)+ε has a minimizer, which satisfies
the Eq. 6.1 for t = δ(X) + ε. But this contradicts the fact that min{1, δ(X)} is the sup over
all t ∈ [0, 1[ for which the Eq. 6.1 is solvable. This proves the divergence 6.2.
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7 Comparison with Harnack type bounds

In this section we compare Theorems 1.1 and Corollary 1.2 with the Harnack type bounds
in [2, 85, 87] for non-singular X . We start with the following analogs of the reversed Hölder
inequalities in Theorems 4.1, 1.1.

Proposition 7.1 Let X be a Fano manifold of dimension and ω ∈ c1(X). There exists a
constant Bn, depending on n, such that

‖u‖L∞(X) ≤
∫

X
(−u)

ωn
u

V
+ δ−1Bn (7.1)

for any u ∈ H(X , ω) satisfying supX u ≤ 0 and

Ric ωu ≥ δωu . (7.2)

As a consequence,
dp(u, 0) ≤ (n + 1)d1(u, 0) + δ−1Bn . (7.3)

for any p ∈ [1,∞[.
Proof The first inequality is shown in [2, Prop 3.6] (using a uniform lower bound on the
Green function for the Laplacian of (X , ωu), in terms of the diameter, deduced from the
uniform bound on the L2-Sobolev constant of ωu [63]). The second inequality then follows
from Lemma 2.1. ��
Remark 7.2 The inequality 7.1 is also shown in [87] (in the course of the proof of [87, Thm
2.1]), but with a constant An in front of the integral over X . The proof uses that a strict
lower bound on the Ricci curvature of ωu implies a uniform upper bound on the Sobolev
constant and the Poincaré constant of (X , ωu) (so that Moser iteration can be applied). As
shown in [81] the latter upper bounds hold along the Kähler-Ricci flow. As a consequence,
so does the inequality 7.1 (see Step 3 in the proof of the main result in [81]). This means,
by the proof of the previous proposition, that the reversed Hölder inequality 7.3 holds along
the Kähler-Ricci flow (with A and B depending on X). This was first shown in [39, Thm 1]
for a particular normalization of the potentials, using the uniform Harnack bound discussed
below.

Now consider ωut satisfying Aubin’s continuity equation. Then the Ricci curvature bound
in the previous proposition automatically holds when t ≥ δ > 0. The reversed Hölder
bound 7.3 thus follows for ut when t ≥ δ > 0. As a consequence, the proof of 5.2 yields a
strong reverse Hölder inequality for the corresponding destabilizing geodesic ray appearing
in Cor 1.2, for non-singular X :

‖v̇‖p ≤ (n + 1) ‖v̇‖1 . (7.4)

While the potential ut is only determined up to an additive constant (depending on t), the
constant is often fixed by demanding that

∫

X
e−tut dVX = 1, (7.5)

(where, as before, Ric dVX := ω). Equivalently, this means that ut is the unique solution to
Aubin’s Monge-Ampère equation [1]:

ωn
ut

V
= e−tut dVX . (7.6)
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Note that, by Jensen’s inequality, sup ut ≥ 0.

Proposition 7.3 Let X be a Fano manifold of dimension. The following Harnack bound

− inf
X

u ≤ A sup
X

u + δ−1Bn (7.7)

holds for ut satisfying Eq. 7.6 for t ≥ δ > 0, where A = n and B depends on (X , ω, δ).

Proof A slightly weaker inequality appears in [85, Prop 2.1] and closely related inequalities
also appear in [87]. Here we note that the proposition also follows from the inequality 7.1,
applied to the function supX ut − ut , which gives

sup
X

ut − inf
X

ut ≤ (n + 1)(sup
X

ut − E(ut )) + B

where E(u) is the functional appearing in formula 2.5. The proof is thus concluded by noting
that −E(ut ) is uniformly bounded from above, by the bound 7.10 below. ��

In general, as shown [39] (in the context of the Kähler-Ricci flow), a uniform Harnack
bound implies that

dp(u, 0) ≤ Ap,δ sup
X

u + Bp,δ, (7.8)

using the inequalities 2.1; see [39, Thm 3.1] and its proof. However, for singular X the
problem of establishing a Harnack bound along Aubin’s complex Monge-Ampère equation
appears to be wide open. Still, Theorem 4.1 implies that a weak Harnack bound holds, which
implies the inequality 7.8, assuming that δ(X) < 1 :
Proposition 7.4 Let X be Fano variety with log terminal singularities and let ut ∈ L∞(X)∩
PSH (X , ω) be the solution to Aubin’s Monge–Ampère equation 7.6, for t ∈]0, δ(X)[. Then,
for any given p ∈ [1,∞[, there exists constants ap and bp such that the following weak
Harnack bound holds:

(∫

X
|ut |p ωn

ut

V

)1/p

≤ ap(n + 1) sup ut + bp
(
t−1 + (1 − t)−1) , (7.9)

where ap depends only on p and bp on (p, X , ω). As a consequence

B−1 sup
X

ut − B ≤ dp(ut , 0) ≤ A sup
X

ut + B
(
t−1 + (1 − t)−1)

for a constant A only depending on (p, n) and a constant B also depending on (X , ω).

Proof According to the inequalities 2.1 it will be enough to establish the first inequality.
Applying Theorem 5.1 to ut − supX ut and using the triangle inequality yields
(∫

X
|ut |p ωn

ut

V

)1/p

≤
∣∣∣∣sup

X
ut

∣∣∣∣ + Ap(n + 1)

(
sup

X
u − E(u)

)
+ Bp

(
t−1 + (1 − t)−1) ,

where E(u) is the functional appearing in formula 2.5. All that remains is thus to show that

− E(ut ) ≤ C . (7.10)

To this end consider the twisted Ding functional defined by

Dt (u) := −E(u) − t−1 log
∫

X
e−tudVX (7.11)
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for a given t ∈ [0, 1[. We define D0(u) as the limit of Dt (u) as t decreases to 0, which
amounts to replacing the second term in the definition ofDt (u) by

∫
X udVX .Note thatDt (u)

is decreasing in t, as follows directly fromHölder’s inequality.Moreover, ut minimizesDt (u)

(see [12]). Hence,

D1(ut ) ≤ Dt (ut ) ≤ Dt (u0) ≤ C := D0(u0)

By formula 7.5, this proves the bound 7.10. ��
Remark 7.5 The terminilogy of Harnack bounds and weak Harnack bounds adopted here
mimics the corresponding terminilogy for positive solutions and supersolutions to linear
elliptic equations, where the role of u is played by −u (cf. [90, Cor 10] and [90, Thm 9],
respectively). However, in the present setup u does not have a fixed sign, which effects the
formulation of the bounds.

There are some intruiging connections between the proof of the Harnack bound 7.7 and
the weak Harnack bound in Prop 7.4. As discussed in Remark 7.2 the Harnack bound follows
from bounds on the Sobolev and Poincaré constants, which in turn follow from a strictly
positive uniform lower bound on the Ricci curvature of (X , ωu). The latter bounds have
been extended to complete metric spaces (X , d) using various generalized notions of Ricci
curvature, defined in terms of the convexity of the entropy functional on the space of all
probability measures on X , endowed with the L2-Wasserstein metric [91, Section 30] [80,
Prop 3.3]. When X is a singular Fano variety and ω is taken to be a Kähler form the positive
current ωut defines a Kähler metric on the regular locus Xreg of X . However, (Xreg , ωt )

is not complete and its seems to be unknown whether the metric completion of (Xreg , ωt )

satisfies any kind of Ricci curvature bound in the sense of metric spaces. From this point of
view the key advantage of the method of proof of Prop 7.4 is that it is based on the convexity
of the functional appearing in formula 3.8, which holds when Ric dV ≥ 0 in the general
setup of singular Fano varieties. Incidently, this functional is precisely the Legendre-Fenchel
tranform of the entropy functional appearing in the definition of Ricci curvature of metric
spaces.

7.1 Aubin type equations in the absence of positive Ricci curvature

Given a Kähler form ω in c1(X), F ∈ C∞(X) and t > 0 consider the following complex
Monge-Ampère equations for ut ∈ H(X , ω):

ωn
ut

= e−tut eFωn . (7.12)

This equation has been studied extensively when n = 1 motivated, in particular, by Niren-
berg’s problem of prescribing the scalar curvature of conformal metrics on the two-sphere
and the Chern-Simons Higgs model (see, for example, the blow-up analysis in [47, 67]).

When F is the Ricci potential of ω, F = ρω, the Eq. 7.12 is precisely Aubin’s Monge–
Ampère equation 7.6. However, in general, unless F is constant, ωut does not have positive
Ricci curvature. As a consequence, the inequalities in Proposition 7.1, do not apply. But
Theorem 4.1 directly yields

(∫

X
(sup ut − ut )

p ωn
ut

V

)1/p

≤ e2‖F−ρω‖L∞
(

A
∫

X
(sup ut − ut )

ωn
ut

V
+ B

)
,

where A = Ap and B = Bp
(
γ −1 + (1 − γ )−1

)
for the constants Ap and Bp appearing in

Theorem 4.1. As a consequence, if ut minimizes the corresponding twisted Ding functional
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Dt (defined by replacing dVX in formula 7.11 with eFωn) then the proof of Proposition 7.4
reveals that ut satisfies a weak Harnack bound of the form 7.9, obtained by multiplying ap

and bp with e2‖F−ρω‖L∞ . It should be stressed that the minimizing property in question is
not automatic, unless F is constant (but, by [5], any minimizer ut satisfies the Eq. 7.12,
under the normalization condition

∫
e−tut eFωn = 1). When n = 1 the stronger Harnack

bound 7.7 holds, with constants A and B depending on ‖F‖L∞ . This follows from the local
results in [84] , confirming a conjecture in [25]. The proof in [84] uses the Alexandrov–Bol
isoperimetric inequality for surfaces.

8 Comparison with Duistermaat–Heckman typemeasures and
log-concavity

8.1 Test configurations and K-stability

Let L be an ample line over a compact complex manifold X . Recall that a test configuration
(X ,L) for (X , L) (as appearing the definition of K-stability, discussed below)may be defined
as a C∗-equivariant embedding

(X × C
∗, L) ↪→ (X ,L)

of the polarized trivial fibration (X × C
∗, L) over C∗ into a normal variety X , fibered over

C, endowed with a relatively ample Q-line bundle L and a C
∗-action on (X ,L) covering

the standard C
∗-action on C. In particular, there is a C

∗-action on the scheme defined by
the central fiber (X0,L0). Given ω ∈ c1(L) a test configuration induces, by [78], a psh
geodesic ray ut (emanating from 0) which is in E p(X , ω) and thus defines a dp-geodesic,
for any p. Indeed, ut may be defined as an envelope (as in formula 2.6) over all vt such that
the corresponding ω-psh function V (x, τ ) on X × C

∗
τ , where τ := e−t , has the property

that ddcV + ω is the restriction to X × C
∗ of the curvature form of a locally bounded and

positively curved metric on L → X . Set

u̇ := dut

dt
|t=0, μ := u̇∗(

ωn

V
),

By [36], u̇ ∈ L∞(X), which ensures that the push-forward u̇∗(ωn

V ) is well-defined. As in [21],
the dp-speed of the geodesic ut may be expressed as

‖u̇‖p := dp(u1, 0) =
(∫

X
|u̇|p ωn

V

)1/p

=
(∫

R

|t |pdμ

)1/p

. (8.1)

By the main result of [61]—proving a conjecture in [93] - the probability measure μ on R

can be expressed as the following weak limit of weight measures:

μ = lim
k→∞

1

Nk

Nk∑

i=1

δ
λ

(k)
i /k

where the real numbers λ
(k)
1 , . . . , λ

(k)
Nk

are the weights of theC∗-action on the complex vector

space H0(X0,L⊗k
0 ).This limit is called theDuistermaat–Heckman measureof (X ,L) in [24].

In the terminology of [24, 49] ‖u̇‖p thus coincides with the L p-norm ‖(X ,L)‖L p of the test
configuration (X ,L).
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When the central fiber of X0 is reduced and irreducible it follows from the main result
of [77] that the probability measureμ onR is log-concave. More precisely, it is shown in [77]
thatμ is the push-forward toR of the uniformmeasure on a convex body inRn under a linear
map. Log-concavity then follows directly from the classical Brunn–Minkowski theorem. In
particular, by the reverse Hölder inequality 4.1 for log-concave measures, there exists, for
any given p ∈ [1,∞[, a constant C p (only depending on p) such that

‖(X ,L)‖L p ≤ C p ‖(X ,L)‖L1 (8.2)

This inequality does not seem to have been observed before in this context. But as pointed out
the author by Sébastien Boucksom and Mattias Jonsson, it is closely related to the inequality
in [23, Lemma 3.14]. Indeed, the latter inequality yields the strong reverse Hölder bound,

‖(X ,L)‖L p ≤ (n + 1) ‖(X ,L)‖L1 (8.3)

for all p ≥ 1 ifμ is supported in [0,∞[. In particular, the corresponding constant is uniformly
bounded with respect to p. But in contrast to the inequality 8.2 the bound depends on n.

Moreover, similar inequalities also appear in [97], as pointed out the the author by Tamas
Darvas. The proof of the bound 8.3 exploits that the nth root of μ(]t,∞[) is concave, as a
consequence of the Brunn–Minkowski theorem.

Remark 8.1 Note that the constant (n + 1) in the bound 8.3 for (X ,L) also appears in the
reverse Hölder bound 7.4 for the destabilizing geodesic ray vt that is weakly asymptotic to
Aubin’s continuity path. This is in line with the discussion on the partialC0-estimate, follow-
ing Corollary 1.3. Indeed, if the assumptions on the corresponding curve Gt in GL (Nk,C)

would apply, then the bound 7.4 for vt would follow from the bound 8.3 applied to the special
test-configuration associated to Gt .

It should be stressed that the bound 8.2 does not hold for all test configurations. Indeed,
by the example in [24, Prop 8.5], the inequality fails for p > n/(n − 1) when X is taken
to be the deformation to the normal cone of a given point x on X , i.e. p : X → X × C is
the blow-up of {x} × {0} in X × C and Lε := p∗L − εE, where E denotes the exceptional
divisor over p and ε is a given sufficiently small positive rational number. In particular, in
this example (whereX0 is reduced, but has two components) μ can not be log-concave.

8.1.1 Relations to K-stability

Recall that, in the context of theYau-Tian-Donaldson conjecture [15, 34, 43], a Fanomanifold
(X , K ∗

X ) is said to beK-stable if the Donaldson-Futaki invariant DF (X ,L) is strictly positive
for all non-trivial test configurations and uniformly K-stable if there exists a constant ε > 0
such that|

DF (X ,L) ≥ ε ‖(X ,L)‖1 ,

where ‖(X ,L)‖p is defined, in terms of the Duistermaat–Heckman μ, discussed above, as

‖(X ,L)‖p :=
(∫

R

|t − c|pμ

)1/p

, c :=
∫

R

μ.

By [71], (X , K ∗
X ) is, in fact, K-stable iff it is uniformly K-stable. Moreover, by [69], one may

when testing (uniform) K-stability restrict to special test konfigurations (X ,L), i.e. such that
X0 has log terminal singularities (and, in particular, is reduced and irreducible). But in this
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case μ is, as pointed out above, log-concave and, as a consequence, so is the translation of μ

by c. Hence, as explained above, for any p ∈ [1,∞[ there exists a constant C p such that

‖(X ,L)‖p ≤ C p ‖(X ,L)‖1
for all special test configurations. All in all, this means that

(X , K ∗
X ) is K-stable ⇐⇒ ∀p ∈ [1,∞[∃εp ∈]0,∞[: DF (X ,L) ≥ εp ‖(X ,L)‖p

for all non-trivial special test configurations

8.2 Failure of log-concavity for general geodesic segments

Given u ∈ H(X , ω), let ut be the psh geodesic coinciding with 0 and u at t = 0 and t = 1,
respectively. Then

dp(u, 0) =
(∫

X
|u̇|p ωn

V

)1/p

=
(∫

R

|t |pdμ

)1/p

using that u̇ ∈ L∞(X) [21]. However, in general, μ is not log-concave. Indeed, assume in
order to get a contraction that μ is log-concave. Then the reverse Hölder inequality 4.1 for
log-concave measures implies that

dp(u, 0) ≤ C pd1(u, 0)

for a C p only depending on p.But such a reverse Hölder inequality does not hold, in general,
as stressed in the introduction of the paper.

9 Effective openness

The non-effective openness result 1.8 may be reformulated as

lim
γ→cu

Zu(γ ) = ∞, Zu(γ ) :=
∫

X
e−γ udV (9.1)

We will prove the following reformulation of the effective openness in Theorem 1.4:

Theorem 9.1 Let X be a Fano variety. Assume that u ∈ PSH(X , ω) satisfies cu < 1 and
sup u ≤ 0. Then there exist universal constants A and B such that

d log Zu(γ )

dγ
≥ 1

A

1

(cu − γ )
− B

(
γ −2 + (1 − cu)−2) ,

for any positive γ such that Zu(γ ) < ∞. In other words, setting C := AB,

(cu − γ ) ≥ 1

A d log Zu(γ )
dγ

+ C
(
γ −2 + (1 − cu)−2

) .

The constant A can be taken arbitrarily close to 16.

Thekey ingredient in the proof is the following effective refinement of themoment inequal-
ities in Theorem 4.1 (in the case p = 2):
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Lemma 9.2 There exists a universal constant B such that
(

d2 log Zu(γ )

d2γ

)1/2

≤ 2C2
d log Zu(γ )

dγ
+ B

(
γ −1 + (1 − γ )−1)

where C2 ≤ 2.

Proof By Thm 3.1 (and its proof) the function Zu(γ ) on ]0, cu[ admits the following repre-
sentation, where �(s) denotes the classical Gamma-function:

Zu(γ ) = G0(γ )

∫

R

e−tγ ν0, G0(γ ) := γ

�(1 − γ )/2
, (9.2)

for a log-concave measure ν0 on R (depending on u). Moreover,

∫

R

|t |dνγ ≤ d log Zu(γ )

dγ
+ γ −1 + Cγ , Cγ :=

∫ ∞
0 e−r2 | log r2|r−2γ rdr

∫ ∞
0 e−r2r−2γ rdr

≤ C(1 − γ )−1

(9.3)
where νγ denotes the log-concave probability measure e−tγ ν0/

∫
R

e−tγ ν0 on R and C is a
universal constant (that can be estimated using [60, Thm 1]). Now, applying formula 9.2
gives (using formula 4.2):

d2 log Zu

d2γ
= d2 logG0

d2γ
+

〈(
t − 〈t〉γ

)2〉

γ

where 〈·〉γ denotes integration wrt the probability measure νγ on R. Denote by C2 the best
constant in the following inequality

(∫

R

|t |2 ν

)1/2

≤ C2

(∫

R

|t | ν
)

for centered log-concave probability measures ν. By the recent result [75, Thm 1.2] on
effective Kahane–Khinchin inequalities the following explicit bound holds:

C2 ≤ 2

(see also [50] for related results). Since νγ is log-concave it thus follows that
〈(

t − 〈t〉γ
)2〉

γ
≤ C2

〈(
t − 〈t〉γ

)〉
γ

≤ 2C2 〈|t |〉γ .

The proof is thus concluded by applying the inequality 9.3 and noting that d2 logG0
d2γ

≤ 0

(since both log γ and − log�(1 − γ ) are convex). Alternatively, by including d2 logG0
d2γ

the
value of the constant B could be decreased slightly. ��

9.0.1. Proof of Theorem 9.1

Set g(γ ) := d log Zu(γ )/dγ. First observe that, regardless of the assumption that u ≤ 0,

g(γ ) → ∞, γ → cu . (9.4)

Indeed, g(γ ) is increasing, since log Z(γ ) is convex. Hence, if the divergence in question
does not hold, then Z(γ ) is bounded as γ → cu, which contradicts that Z(γ ) → ∞.
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By the previous lemma

(
dg(γ )

dγ

)1/2

≤ 2C2g(γ ) + Bγ , Bγ := B
(
γ −1 + (1 − γ )−1)

Now assume that γ ∈ [γ0, cu[. Then

Bγ ≤ b0 := B
(
γ −1
0 + (1 − cu)−1

)
.

Thus, if we assume that b0 ≤ g, then

(
dg(γ )

dγ

)1/2

≤ (2C2 + 1)g(γ ),

i.e.

dg(γ )

dγ
≤ Ag(γ )2, A := (2C2 + 1)2

Setting t := cu − γ this means that

d(g−1)

dt
≤ A

when t ∈]0, cu − γ0[. Since g−1 → 0 as t → 0 (by 9.4) it thus follows that g ≥ (At)−1

when t ∈]0, cu − γ0[, under the assumption that g ≥ b0. Finally, replacing a general given
u, satisfying u ≤ 0, with u − b0 gives gu−b0 = gu + b0 ≥ b0. Hence, applying the previous
bound to u − b0 gives

gu + b0 ≥ (At)−1, t ∈]0, cu − γ0[
In other words, for γ ∈ [γ0, cu[

gu(γ ) ≥ 1

A

1

(cu − γ )
− b0, γ ∈ [γ0, cu[

In particular, taking γ = γ0 concludes the proof. In fact, A can be taken arbitrarily close to
(2C2)

2 (at the expense of increasing B) if one applies the previous argument to u − ε−1 for
ε sufficiently small. In particular, since C2 ≤ 2 this shows that A can be taken arbitrarily
close to 16.

9.1 Proof of Cor 1.2

We next deduce the following reformulation of Cor 1.2:

Corollary 9.3 Let X be a Fano variety assume that u ∈ PSH(X , ω) satisfies u ≤ 0 and that∫
X dV = 1. If Zu(γ ) < ∞ and Zu(1 − δ) = ∞ for some δ > 0. Then there exist universal

constants A and b such that

Zu(γ ) ≥ e−b
(
γ −1+γ δ−2

)

(cu − γ )1/A
,

when γ ∈]0, cu[.
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Proof Integrating d log Zu(γ )/dγ over [γ /2, γ ] and using the bound in the previous theorem
gives

log Zu(γ ) − log Zu(
γ

2
) ≥ 1

A
log

1

(cu − γ )
+ 1

A
log(cu − γ /2) − B

(
γ −1 + 1

2
δ−2γ

)
.

Since u ≤ 0 we have Zu(
γ
2 ) ≥ ∫

X dV = 1. Moreover, cu − γ /2 ≥ γ /2, using that γ < cu .

Hence,

log Zu(γ ) ≥ 1

A
log

1

(cu − γ )
+ log(γ /2)

A
− B

(
γ −1 + 1

2
δ−2γ

)
.

Finally, since γ ≤ 1 we have log(γ /2)
A − Bγ −1 ≥ −bγ −1 for b sufficiently large (depending

on A and B). ��

10 Universal bounds on Archimedean zeta functions and K-unstable
Fanos

The logarithmic derivative of Zu(γ ), appearing in Theorem 9.1, does not seem to have
appeared previously in the context of Demailly–Kollar’s openness conjecture. But its lower
bound can be motivated as follows. Consider the case when u corresponds to an anti-
canonical effective Q-divisor D on X . This means that k D is cut out by some section
fk ∈ H0(X , K ∗⊗k

X ), for a positive integer k and

u = k−1 log ‖ fk‖2 , fk ∈ H0(X , K ∗⊗k
X ) (10.1)

where ‖·‖ denotes the metric on K ∗⊗k
X , corresponding to dV . Hence,

Zu(γ ) =
∫

X
‖ fk‖−2γ /k dV. (10.2)

By scaling fk we may assume that u ≤ 0, i.e. that

sup
X

‖ fk‖ ≤ 1. (10.3)

The complex singularity c of u coincides with the log-canonical threshold of the divisor D:

cu = lct (D)

(the assumption that cu < 1 equivalently means that the divisor D is non-log canonical
in the standard sense of birational algebraic geometry [65]). It is well-known that Zu(γ )

extends to a meromorphic function on C. In fact, Zu(γ ) is an instance of the geometric
Igusa zeta functions for local fields studied in [26, 27] (after making the change of variables
s = −γ /k. More precisely, the present setup concerns the field C endowed with its standard
Archimedean absolute value. All the poles of Zu(γ ) are located at negative rational numbers
and −cu is the largest pole of Zu(γ ) (as follows from resolution of singularities; see [62,
Thm 5.4.1] and [27, Prop 4.2.4]). In particular, there exists a positive integer m (the order of
the largest pole) such that, for γ close to cu :

Zu(γ ) = Fu(γ )

(cu − γ )m
,
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where Fu(γ ) is holomorphic function which is non-vanishing for γ = cu . Differentiating
thus gives

d log Zu(γ )

dγ
= m

1

(cu − γ )
− Gu(γ )

for a local holomorphic function Gu(γ ). Since m ≥ 1 this means that for any fixed divisor
the lower bound 1.10 holds with A = 1, but with B depending on Gu(γ ) and thus on u (i.e.
on the divisor D). From this point of view, the main point of the lower bound 1.10 is thus
the universality.

10.1 Application to K-unstable Fano varieties

Given a Fano variety X , set

Nk := dim H0(X , K ∗⊗k
X ),

which tends to infinity as k is increased. Let Dk be the anti-canonical effective Q-divisor on
X Nk whose support consists of all configurations (x1, . . . , xNk ) of Nk points on X ,which are
in “bad position” with respect to H0(X , K ∗⊗k

X ) :
SuppDk :=

{
(x1, . . . , xNk ) : ∃sk ∈ H(X , K ∗⊗k

X ) : sk(xi ) = 0, ∀i, sk �≡ 0
}

.

Denote by Zk(γ ) the corresponding Archimedean zeta function 10.2. In the context of the
probabilistic approach to the construction of Kähler-Einstein metrics, it is conjectured in [4]
that X admits a unique Kähler-Einstein metric iff lct(Dk) ≥ 1+ ε for k sufficiently large, for
some ε > 0. The “if direction” was established in [52]. More precisely, combining results
in [52, 82] yields

lim sup
k→∞

lct(Dk) ≤ δ(X)

(see [7] for a direct analytic proof). In particular, if X is K-unstable (i.e. not K-semistable)—
which by [22, Thm B] is equivalent to δ(X) < 1—then

lim sup
k→∞

lct(Dk) < 1.

As a consequence, if X is K-unstable, the lower bound 1.10 applies to the Archimedean zeta
function Zk(γ ) corresponding to the divisor Dk on X Nk :

d log Zk(γ )

dγ
≥ 1

A

1

(lct (Dk) − γ )
−B

(
γ −2 + (1 − lct (Dk))

−2) , γ ∈]0, lct (Dk)[ (10.4)

for k sufficiently large. This yields a quantitative universal lower bound on the rate of the
blow-up of the logarithmic derivative of Zk(γ ) as γ increases towards lct (Dk).

Concluding speculations

Under the hypothesis that themeromorphic function Zk(γ ) onC is zero-free and holomorphic
in a k-independent neighborhood of [0, lct (Dk)[ in C, it follows from results in [3] that
lct(Dk) converges towards δ(X) and

lim
k→∞ N−1

k
d log Zk(γ )

dγ
= E

(
ωn

uγ

V

)

, γ < δ(X),

123



Reverse Hölder inequalities on the space of Kähler metrics. . . Page 29 of 33     2 

where E(μ) denotes the pluricomplex energy of a probability measure μ on X , relative to
ω (using the notation in [3]) and uγ denotes the unique potential of ωt solving Aubin’s
continuity equation 1.4 for t = γ, normalized so that supX uγ = 0.1 Since E(ωn

uγ
/V ) is

comparable to d1(uγ , 0) it follows from formula 6.2 that

lim
γ→δ(X)

E(ωn
uγ

/V ) = ∞.

Comparing with the lower bound 10.4 leads one to wonder if the blow-up rate of E(ωn
uγ

/V )

can also be quantified? However, no such information can be deduced from the lower
bound 10.4, since the bound is suppressed when it is divided by Nk and k → ∞. But
one can get an idea of what to expect by looking at the “local” setup where X is replaced
with the unit-ball B1 in C

n and the reference form ω is assumed to vanish identically on
B1, considered in [10, 59]. Then uγ is taken to be a continuous plurisubharmonic function
solving

(ddcuγ )n = e−γ udz ∧ dz̄
∫

B e−γ udz ∧ dz̄
on B1, u = 0 on ∂ B1 = 0. (10.5)

Compared to Eq. 6.1 we have set V = 1,which in this local setup, can always be arranged by
rescaling γ. If we impose the condition that u be rotationally invariant the boundary condition
on u is equivalent to the condition that supB1

u = 0, which is inline with the condition on uγ

employed in the global setup of Fano manifolds. Under this symmetry condition there is a
unique solution uγ to Eq. 10.5 when γ < n +1 and the explicit computations in [10, Section
3.3] reveal that there exists a constant bn such that

E(ωn
uγ

/V ) = n

n + 1
log

(
1

δ(B1) − γ

)
+ bn, γ → δ(B1)(:= n + 1).

Accordingly, it seems natural to ask if for any K-unstable Fano manifold X there exists a
positive constant a such that, as γ is increased towards δ(X),

E(ωn
uγ

/V ) = a log

(
1

δ(X) − γ

)
+ O(1)?

However, it may be that a not only depends on X but also on the fixed Kähler form ω in
c1(X).
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