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The phenomenon of synchronization, where entities exhibit stable oscillations with aligned frequencies and
phases, has been revealed in diverse areas of natural science. It plays a crucial role in achieving frequency locking
in multiple applications such as microwave communication and signal processing. The study of synchronization
in quantum systems has gained significant interest, particularly in developing robust methods for synchronizing
distant objects. Here, we demonstrate that synchronization between the boundary sites of one-dimensional
generalized Aubry-André-Harper models can be induced through applying dissipation on the central sites. We
observe two types of synchronization, stemming from the topological edge states, identified by the off-diagonal
or diagonal correlations between the boundary sites. We calculate the relaxation rate to realize the synchro-
nization and its acceleration with bulk dissipation. Remarkably, the synchronous oscillations maintain steady
amplitude and frequency in the thermodynamic limit. Moreover, we show that the synchronization is robust
against perturbations in the Hamiltonian and initial states, highlighting its potential for practical implementation
on near-term quantum simulation platforms.

DOI: 10.1103/mr1f-v8cv

Synchronization is a universal classical dynamical phe-
nomenon observed across various fields such as physics,
biology, and engineering [1,2]. It typically manifests in non-
linear systems when individual frequencies or phases become
locked owing to an external periodic drive, mutual cou-
pling between subsystems, or stochastic noise [3–6]. This
phenomenon has found broad applications in wireless com-
munication [7], signal processing [8], and neuro-inspired
computing [9].

Recently, the study of synchronization has been extended
into the quantum realm with numerous advances in both theo-
retical frameworks and experiment demonstrations [10–30].
Compared to their classical counterparts, quantum systems
exhibit more complex synchronization behaviors. In quantum
van der Pol (vdP) oscillators, quantized energy levels can
enhance phase locking in the presence of strong nonlinear
damping [23]. Conversely, quantum noise may reduce the
frequency entrainment of a quantum vdP oscillator subject
to a weak driving [14]. Moreover, the introduction of a large
Kerr anharmonicity leads to phase synchronization at multi-
ple resonant frequencies, a phenomenon absent in classical
systems [31]. Additionally, parametric (two-photon) driving
can achieve stronger synchronization than coherent driving
[19]. As a unique tool in quantum systems, measurement can
also induce synchronization in a continuously monitored sys-
tem [32]. However, most efforts have been so far focused on
synchronization within systems composed of a few oscillators
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or spins. Observing quantum synchronization in many-body
systems is challenging due to several obstacles. For instance,
the oscillation amplitudes of observables employed to char-
acterize synchronization may vanish in the thermodynamic
limit [32–34], which restricts their applicability in macroscale
networks. Furthermore, while collective synchronization can
arise in ensembles of globally coupled systems [10,16,23,35],
scaling such systems in experiments presents significant diffi-
culties [36,37].

Here, we address these challenges by demonstrating noise-
induced synchronization in the Aubry-André-Harper (AAH)
model and its generalizations, widely studied in the contexts
of localization and topological states [38–42]. We characterize
two types of synchronization between remote edge sites in a
long chain, consisting of over 100 sites, by applying noise
to the central sites. We reveal that the chiral and reflection
symmetries guarantee that the populations at the far ends
synchronously oscillate. We show that the amplitudes and
frequencies of the population oscillation at the boundary sites
are stable in the thermodynamic limit, even in the absence
of global interactions. We calculate the lowest relaxation rate
for synchronization and examine how bulk dissipation can
accelerate the relaxation without disrupting synchronization.
We finally illustrate that the synchronization is robust under
perturbations of both the Hamiltonian and initial states, which
is built upon the topological nature of edge states.

Synchronization of off-diagonal correlations. We begin by
illustrating the first type of synchronization in the generalized
one-dimensional (1D) AAH model, which arises without both
chiral and reflection symmetries. The model is described by
the Hamiltonian

H =
N∑

j=1

Vjn j +
N−1∑
j=1

(g jc
†
j+1c j + H.c.), (1)
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where N is the number of sites, c j (c†
j ) is the fermionic annihi-

lation (creation) operator at site j, n j is the number operator at
site j, g j = g[1 + λ cos(2πα j + φλ)] is the hopping strength
between site j and site ( j + 1), and Vj = V cos(2πα j + φV )
is the on-site potential energy at site j. Both the hopping
strength and the on-site potential energy are modulated by co-
sine functions with the same period 1/α and respective phases
φλ and φV . In the following context, α is always rational and
can be expressed as α = p/q with p and q being co-prime
integers. The special case λ = 0 reduces to the diagonal AAH
model which could be derived from the Hamiltonian in the x
direction of a 2D quantum Hall (QH) model by imposing a pe-
riodic boundary condition in the y direction [43,44]. The good
quantum number, momentum in the y direction, degenerates
into the diagonal phase φV , which assumes values from the
first Brillouin zone (1BZ). Since the on-site potential is peri-
odic with a period q, the bulk wave function takes the Bloch
form and bulk energies decompose into q bands. We start with
the case of p = 1 and q = 3 leading to two edge states, which
facilitates the long-range synchronization between edge sites.

Suppose that the nth eigenstate of the single-particle
Hamiltonian of Eq. (1) is given by |ψn〉 = ∑

j u j,nc†
j |0〉 and

N = ql − 1 where l is a positive integer, the eigenvalue equa-
tion leads to the following Harper equation,

guj+1,n + gu j−1,n + V cos(2πα j + φV )u j,n = Enun, (2)

where u j,n is the amplitude of the wave function at site j and
En is the nth single-particle energy. As illustrated in Figs. 1(a)
and 1(b), two edge states are located within the top and bottom
gaps. The edge energies μ1 and μ2 are given by

μ1(φV )/g = −v cos(φV )/2 −
√

1 + 3v2 sin2(φV )/4,

μ2(φV )/g = −v cos(φV )/2 +
√

1 + 3v2 sin2(φV )/4, (3)

with v = V/g. After straightforward calculations, we find that
the edge state corresponding to μ1 (μ2) is localized at the
right (left) edge when φV ∈ (−π, 0) and at the left (right) edge
when φV ∈ (0, π ) [45]. Therefore, the two edge states always
reside at opposite edges for any value of φV .

To achieve synchronization between edge states, we intro-
duce local dissipation targeted at sites S . The density matrix
of the system ρ follows the Lindblad master equation ρ̇(t ) =
L(ρ) = −i[H, ρ] + γ

∑
s∈S (JsρJ†

s − 1/2{J†
s Js, ρ}) where γ

is the dissipation strength, Js is the jump operator at site s,
and L is the corresponding Lindblad superoperator [46,47].
For simplicity, we choose Js as the number operator. Ex-
plicitly quantifying the synchronization involves considering
the two-site correlation function Ci j (t ) ≡ 〈c†

i c j (t )〉 where the
diagonal terms describe the average on-site population. A
straightforward calculation shows that the dynamics of C also
follows a Lindblad master equation, which is employed to
numerically compute the evolution of 〈c†

i c j〉 investigated in
our work [45]. Using the spectral decomposition of L, the
evolution of C is given by C(t ) = ∑

k eλkt |Rk〉〉〈〈Lk|C(0)〉〉,
where λk is the eigenvalue of L, |Rk〉〉 (|Lk〉〉) is the right (left)
eigenoperator of L, and the inner product 〈〈A|B〉〉 between
two operators A and B is defined as Tr(A†B) [48]. Stable
synchronization occurs when all the real parts of the eigen-
values are negative, except for a conjugate imaginary pair
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FIG. 1. Off-diagonal synchronization in the diagonal AAH
model. (a) Energy spectrum of bulk energies (black) and edge states
(red, blue). (b) Amplitudes of two edges states at φV = π/2 and a
bulk state in the middle of the band. (c) Evolution of the two-site
correlation function C1N = 〈c†

1cN 〉 and central site density without
dissipation (upper panel) and with γ /g = 1.5 (lower panel) where
N = 59, v = 0.7, and φV = π/2. (d) Pearson coefficients between
Re[C1N ] and Im[C1N ] after a phase shift.

λ1 = i(εm − εn) and λ2 = λ∗
1 where εm and εn are eigenen-

ergies of the Hamiltonian H [34]. After the other modes
decay to zero, the system is confined to the subspace spanned
by {|ψm〉〈ψm|, |ψm〉〈ψn|, |ψn〉〈ψm|, |ψn〉〈ψn|} where |ψm〉 and
|ψn〉 are the eigenstates corresponding to εm and εn, respec-
tively. The evolution of Ci j (t ) in the subspace is described by

Ci j (t ) = ui,muj,nc0eiωmnt + ui,nu j,mc∗
0e−iωmnt , (4)

up to a constant where c0=〈ψm|C(0)|ψn〉 and ωmn ≡ |εm−εn|.
By specifying the noise as on-site dephasing at the

two centermost sites, i.e., S = {N/2, N/2 + 1}, only two
edge modes are immune to the dissipation, thereby con-
stituting a decoherence-free subspace when N → ∞. Fig-
ure 1(c) shows the evolution of off-diagonal correla-
tions between boundary sites Re[C1N ] = 〈(c†

1cN + c†
N c1)/2〉

and Im[C1N ] = 〈(c†
1cN − c†

N c1)/2i〉. Analogous to the di-
agonal correlations 〈c†

1c1〉 and 〈c†
N cN 〉, it is natural to

explore whether synchronization exists between these
off-diagonal functions. The initial state is chosen as
a product state | + 00 · · · 0+〉 with |+〉 j = (|0〉 j + |1〉 j )/√

2 where |0〉 j and |1〉 j denotes the vacuum state and exci-
tation state at site j, respectively. As a comparison, the upper
panel depicts the free evolution of Re[C1N ] and Im[C1N ] in
the absence of dissipation where the oscillations are out of
phase and exhibit the superposition of different modes. In
contrast, the lower panel illustrates that after dissipation is ap-
plied, Re[C1N ] and Im[C1N ] synchronize with a constant phase
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FIG. 2. Diagonal synchronization in the off-diagonal AAH
model. (a) Energy spectrum. Red and blue circles indicate the de-
generate points of the edge states. (b) Amplitudes of edges states at
degenerate points and a bulk state in the middle of the band. (c) Den-
sity evolution at edge and middle sites without dissipation (upper
panel) and with γ /g = 2 (lower panel) where N = 80, λ = 0.2, and
φλ = 0. (d) Pearson coefficients between n1 and nN .

difference of π/2. This synchronization occurs because
C1N (t ) becomes proportional to ei2|μ1(π/2)−μ2(π/2)|t up to
a constant, as described by Eq. (4). The synchroniza-
tion can be confirmed by the Pearson coefficient which
is defined as r[ f , h](t ) = Cov[ f , h]/

√
Var[ f ]Var[h] for two

time-dependent functions f (t ) and h(t ) [34,49–51]. Syn-
chronized oscillations lead to |r| = 1 while the uncorrelated
functions imply r = 0. Figure 1(d) plots the Pearson coef-
ficient r between Re[C1N (t )] and Im[C1N (t + τ )] where τ =
π/2ω is the time shift calculated by the theoretical frequency
to align the phases. The Pearson coefficient converging to one
in the case with dissipation further confirms that the oscilla-
tion frequency matches the theoretical result.

Synchronization of diagonal correlations. We have demon-
strated that two QH edge states enable off-diagonal correla-
tions between edge sites. In practice, it is preferable to observe
synchronization in diagonal correlations or local on-site pop-
ulations. In the following, we show that such synchronization
can be observed in the AAH model by incorporating chiral
symmetry and reflection symmetry [45]. We now consider the
off-diagonal AAH model corresponding to V = 0 and λ 
= 0
in Eq. (1). When α takes the value of 1/2, Majorana modes
emerge on this model, which is similar to the Kitaev chain,
attributed to the additional chiral symmetry [52]. Here, we
focus on the case α = 1/4, i.e., p = 1 and q = 4, where the
chiral symmetry is also preserved.

Figure 2(a) shows the normalized energy for φλ taking
the value from 1BZ where N = 4l with an open boundary
condition and S = {N/2, N/2 + 1}. The top and bottom bands

Without dissipation
With dissipation
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FIG. 3. Diagonal synchronization in the generalized four-band
off-diagonal AAH model. (a) Energy spectrum of bulk states (black)
and degenerate edge states (red, blue). (b) Amplitudes of the edges
states and a bulk state in the middle of the band with g2/g1 = 0.7.
(c) Density evolution at edge and middle sites without dissipation
(upper panel) and with γ /g1 = 2 (lower panel) where N = 41 and
g2/g1 = 0.7. (d) Pearson coefficients between n1 and nN .

in the four bands are fully gapped which indicates the ex-
istence of QH edge states. However, the central two bands
are gapless and two zero-energy edge modes are found for
−3π/4 < φλ < −π/4 and π/4 < φλ < 3π/4. In the bottom
and top band gaps, a pair of left QH edge states with ener-

gies ±
√

2 + λ2 − 2
√

2λ sin(φλ + π/4) emerge for −3π/4 <

φλ < π/4 and a pair of right QH edge states with ener-

gies ±
√

2 + λ2 + 2
√

2λ sin(φλ − π/4) emerge for −π/4 <

φλ < 3π/4 [45]. To observe the diagonal synchronization,
we require the Hamiltonian to hold a reflection symmetry
(c j → c†

N+1− j and c†
j → cN+1− j). It implies that sin(φλ) = 0

or φλ = 0 (φλ = π is ruled out due to the absence of edge
states), where four QH edge states are degenerate at energies
±ε∗ = ±√

2 + λ2 − 2λ. In the upper panel of Fig. 2(c), we
show the evolution of density operators located at the edge
sites and the middle site without dissipation. The initial state
is prepared as |100 · · · 0+〉. The interference of propagation of
two excitations results in the unsynchronized population fluc-
tuation between edge sites. The nonzero density at the middle
site also indicates the propagation of excitations over time. On
the contrary, the populations at edge states are synchronized
with the frequency ω = 2ε∗ under the dissipation applied to
the bulk states. Although the oscillation amplitude at the right
edge site is half of that at the left edge site due to the initial
condition, the Pearson coefficient r[n1, nN ] shown in Fig. 2(d)
signifies the stable synchronization driven by the dissipation.

To achieve synchronization over an extensive param-
eter region, we consider a generalized four-band off-

L022064-3
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FIG. 4. Amplitudes A, frequencies ω, decay rates rdecay, and re-
laxation rates rrelax of synchronization as functions of cell numbers
l in the generalized four-band off-diagonal AAH model. (a) Syn-
chronization frequencies ω and amplitudes A for γ /g1 = 1 (circles),
γ /g1 = 2 (triangles), and γ /g1 = 3 (crosses), with g2/g1 = 0.7.
Dashed lines are theoretical results in the thermodynamic limit.
(b) Decay rates of synchronization modes fitted with f (l ) = a + bcl

(solid lines). (c) Relaxation rates for central-site dissipation fitted
with f (l ) = a + b/(l + c)d (solid lines). (d) Relaxation rates with
bulk dissipation for uniformly increasing γ /g1 from 0.002 (bottom)
to 0.038 (top).

diagonal AAH model characterized by periodic coefficients
(g1, g2,−g2,−g1). For N = 4l + 1, the Hamiltonian holds
another reflection symmetry [c j → (−1) jc†

N+1− j and c†
j →

(−1) jcN+1− j]. Combined with chiral symmetry, four degener-
ate QH edge states emerge for −1 < g2/g1 < 1 with energies
±

√
g2

1 + g2
2 as shown in Fig. 3(a) [45]. These four edge states

collectively form the synchronization mode. In Fig. 3(b), we
depict the amplitudes of edge states within the bottom gap
or top gap, which resemble the edge states at φV = 0 shown
in the off-diagonal AAH model. By specifying S = {(N −
3)/2, (N − 1)/2, (N + 1)/2, (N + 3)/2, (N + 5)/2} and ini-
tializing the state as |100 · · · 0+〉, synchronization between
two edges occurs under dissipation, featuring a mutual oscil-
lation frequency as illustrated in Figs. 3(c) and 3(d).

Synchronization rate and oscillation amplitude. In small-
sized systems, the synchronization between edges exhibits a
notable decay over time due to the failure to meet synchro-
nization conditions [45]. The decay rate rdecay is proportional
to the wavefunction density at the central sites with dissi-
pation, which diminishes exponentially with the number of
cells l as |g2

2/g2
1|l . Consequently, the synchronization has a

prolonged lifetime as the number of cells increases. We plot
in Fig. 4(a) the oscillation amplitude and frequency of the
left edge site as functions of dissipation strength and the
number of cells for the generalized four-band AAH model.
For comparison, we also present the expected results in the
thermodynamic limit, where the amplitude is given by A =
(1 − g2

2/g2
1)2/2 and independent of the dissipation strength γ

[45]. The consistency between finite-size results and theoret-
ical predictions indicates that the amplitude and frequency of
the synchronization are unaffected by the dissipation strength
and converge to a constant as l grows. This behavior con-

trasts with the findings from previous work [34], where the
synchronization amplitude scales inversely with the length of
the chain due to its reliance on bulk wavefunctions. By diag-
onalizing the Lindblad superoperators, we extract the decay
rate of the synchronization mode, determined by the smallest
modulus of the real part of eigenvalues with a nonzero imag-
inary part, which is also known as the spectral gap (or the
asymptotic decay rate) [53]. In Fig. 4(b), we depict the decay
rates over different values of γ and l , fixing g2/g1 = 0.7,
and fit the data with an exponential function a + bcl . The
fitting result c = 0.49 aligns well with g2

2/g2
1. The exponential

closing of the spectral gap is also observed in other systems
with Anderson localization [54,55].

Since in quantum dissipative systems with local interac-
tions the propagation speed of the information is constrained
by the Lieb-Robinson velocity [56], synchronizing two edges
requires a time proportional to the system’s size, given that
dissipation is only applied to the central sites. The relax-
ation rate rrelax is set by the smallest modulus of the real
part of eigenvalues excluding those associated with the syn-
chronization modes. In Fig. 4(c), we plot the corresponding
relaxation rates as a function of l for different dissipation
strengths γ . We observe that the relaxation rate scales as
1/lα with α ∈ [2, 3] for different noise strengths, which is
consistent with the scaling of the gap of an XY model with
boundary dissipation [57,58]. To boost the relaxation rate, we
consider an alternative setting with the same Hamiltonian,
extending dissipation to a segment of (N + 1)/2 sites from
site (N + 3)/4 to site (3N + 1)/4. The synchronization modes
remain protected in the thermodynamic limit, as the distance
between the edge of the chain and the boundary site of the
dissipation region increases with N . However, the relaxation
rate shows more complex behavior and undergoes a scaling
transition observed in the XY model with the bulk dissipa-
tion [58]. As shown in Fig. 4(d), the relaxation rate remains
independent of l when l is below a critical value lc, then de-
creases as 1/lα beyond the critical point, with α = 2 from the
data fitting, exhibiting a faster relaxation rate compared with
Fig. 4(c) and the rrelax ∝ l−3 scaling reported in the previous
work [34].

Robustness. We now test the robustness of the diagonal
synchronization in the last scenario against symmetry-broken
terms. The synchronization grounded on the edge states per-
sists as long as the chiral and reflection symmetries are
preserved. Such symmetry can be broken explicitly by the
next-nearest-neighbor (NNN) hopping term. To verify the sta-
bility of the synchronization under perturbation, we add an
NNN hopping term

∑
j (g3c†

j c j+2 + H.c.) into the Hamilto-
nian. As shown in Figs. 5(a) and 5(b), the evolution of the
populations at the two edge sites is still synchronized under
dissipation with the initial state chosen as in Fig. 3(c). We
also verify that the synchronization perseveres even when
disorder is introduced in the NN coupling strength within the
bulk [45]. This robustness originates from the resilience of the
topological edge states to perturbations.

Apart from the perturbations in the Hamiltonian, the syn-
chronization is also robust to different choices of initial
states. We prepare the initial state as a random product state
⊗N

j=1(cos θ j + eiφ j sin θ jc
†
j )|0 j〉 where θ j and φ j are uniformly

sampled from [0, π ) and [0, 2π ), respectively. Figures 5(c)

L022064-4
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FIG. 5. Robustness of diagonal synchronization in the general-
ized four-band off-diagonal AAH model. The legends are the same
as those in Fig. 3(c). (a), (b) Population evolution at edge and
bulk sites with next-nearest-neighbor hopping

∑
j (g3c†

j c j+2 + H.c.)
where g3/g1 = 0.1. The initial state is chosen as the same as that in
Fig. 3(c). (c), (d) The initial state is chosen as a random product state.

and 5(d) show that the synchronization between edge sites is
established with the dissipation evolving from a random state,
whereas the corresponding evolution remains uncorrelated in
the absence of dissipation.

Conclusion. We have demonstrated that synchronization
between edge sites occurs in the generalized AAH mod-
els exposed to dissipation. In the diagonal AAH model, we
have observed the synchronization of off-diagonal correla-

tions between edge sites despite the lack of symmetries.
Synchronization between on-site populations is also real-
ized in both the off-diagonal AAH model and a generalized
four-band AAH model with additional chiral and reflection
symmetries. The synchronization amplitude and frequency
converge to steady values which are independent of the dissi-
pation strength in the thermodynamic limit. We also show that
bulk dissipation applied to the central half of the chain can
accelerate the relaxation while maintaining the synchroniza-
tion mode. Furthermore, we reveal that the synchronization
mode is robust against the symmetry-breaking terms, such
as NNN interactions, and random initial states owing to the
power of topology. Since our approaches relies solely on
the spatial distribution of edge states, it can be readily ex-
tended to incorporate alternative dissipation processes such
as substituting dephasing noise with particle loss [45] and
applied to any topological system that hosts edge states.
The generalized AAH model can be implemented in optical
lattices or superconducting circuits [59,60]. The dephasing
channel can be simulated by introducing engineered noise into
the lattice potentials or by modulating the fluxes in Joseph-
son junctions within superconducting systems [45,61,62].
Our protocol also holds practical potential in constructing
long-range synchronization networks [63] and communica-
tion based on synchronization [64–66].
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