
Efficient corpus search using unary and binary indexes

Downloaded from: https://research.chalmers.se, 2025-07-01 20:04 UTC

Citation for the original published paper (version of record):
Ljunglöf, P., Smallbone, N., Thoresson, M. et al (2022). Efficient corpus search using unary and
binary indexes. 20th Conference on Natural Language Processing, KONVENS 2024 - Proceedings of
the Conference: 149-158

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Efficient corpus search using unary and binary indexes

Peter Ljunglöf
Computer Science and Engineering

and Språkbanken Text
University of Gothenburg

Gothenburg, Sweden
peter.ljunglof@gu.se

Nicholas Smallbone
Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
nicsma@chalmers.se

Abstract

We investigate how disk-based inverted indexes
can be used for efficient searching in large an-
notated corpora. We give a formal semantics
for simple corpus queries, and show how they
can be translated into lookups in unary and bi-
nary indexes.

1 Introduction

The corpus infrastructure Korp (Lars Borin, 2012)
provides access to more than 250 different corpora
comprising a total of 15 billion tokens, via a user-
friendly search interface. The main problem with
querying Korp is that it is slow – even the simplest
searches take a while, and more complex queries
can take several minutes.

There are several similar corpus infrastructures
around the world, some of them much bigger than
Korp, and all struggle with finding new ways to
make searching more efficient.

In this paper we give a formal semantics for
simple corpus queries, and show how they can be
translated into lookups in pre-compiled indexes.
We introduce binary indexes which give a drastic
improvement for many common queries. We also
describe how to implement these indexes in order
to optimise intersection of the results.

2 Related work

There seem to be two main approaches to making
corpus search efficient: using an inverted index, or
an existing database engine.

2.1 Inverted indexes

In the field of information retrieval, the most com-
mon inverted index is the suffix array (Manber and
Myers, 1993). There is plenty of research on how
to compress suffix arrays (e.g., Grossi and Vitter,
2005). Meurer (2020) shows how to modify a suffix

array to support regular expression search. Suffix
arrays can only be used to query plain text: it is not
obvious how to use them for querying annotated
corpora. Our proposal can be seen as a modified
suffix array.

Corpus Workbench (Evert and Hardie, 2011) is
the current backbone of Korp. The corpus is com-
piled into inverted indexes, one per annotated at-
tribute (e.g., word, lemma, part of speech).

2.2 Using a database engine

Davies (2005) translates corpus n-grams into an
SQL database, and shows how to use the database
to make complex queries. AlpinoGraph (Kleiweg
and van Noord, 2020) compiles treebanks into
graphs stored in an SQL database. Krill (Diewald
and Margaretha, 2016) uses the Apache Lucene in-
formation retrieval engine as a backbone, and can
compile several different query formalisms into
optimised searches.

2.3 Drawbacks of existing approaches

As far as we know, existing approaches do not
combine multiple search indexes. When given a
complex query, they usually use one of the indexes
(or tables) to get a collection of potential search
results, and then filter the results one by one, by
testing if they match the query. The single indexes
(or tables) themselves can be very detailed, but the
papers do not discuss how to combine the results
of querying different indexes.

3 Definitions and semantics

3.1 Annotated corpora

For the purposes of this paper, an annotated corpus
is a collection of texts. Each text consists of sen-
tences which in turn consist of tokens. Each token
is annotated with a number of attributes, such as
word (surface form), lemma, pos (part of speech),



etc. Each attribute has one single string or numeric
value. Our approach is agnostic to which attributes
there are.

This definition of corpus is very restricted. We
do not currently handle multi-token annotations,
set-valued attributes, structural attributes, or empty
tokens, to name just a few possibilities.

Formally, a corpus C is a sequence of tokens

C[0] C[1] . . . C[i] C[i+1] . . . C[n–2] C[n–1],

where each token is an attribute-value mapping.
We write C[i].pos for the value of attribute pos
at position i. We also assume that the corpus is
divided into sentences, so that certain corpus posi-
tions mark the start of a sentence.

3.2 Queries
We use a restricted version of CQL (the “corpus
query language”, see section 2.2.3 in Evert and
Hardie, 2011). The final section discusses how to
lift some of the restrictions.

A query is of the form [literal*]+, where a literal
is either ‘attr = value’ or ‘attr ̸= value’. Here is an
example query:

[pos=NN] [lemma=to] [lemma=house pos̸=VB]

This searches for sentences which contain a noun
(NN), followed by the lemma “to”, followed by the
lemma “house” not as a verb (VB).

3.3 Query semantics
In the query above, the literal “lemma=house” oc-
curs 2 tokens after the first query token; we say that
it has relative position 2. Using relative positions,
we can write the example query as:

[pos@0=NN] ∧ [lemma@1=to]
∧ [lemma@2=house] ∧ [pos@2 ̸=VB]

where [lemma@2=house] means that the lemma at
position 2 is house. We define the semantics of
a literal l at relative position k as the set of all
positions p such that l is true at position p+k:

[attr@k=val] ≡ { p | C[p+k].attr = val }
We call this set a query set and we write it
{attr@k=val}. The semantics of a combined query
is then the intersection of the query sets for each of
the literals in the query. But if a literal is negated
{attr@k ̸=val}, we instead take the difference with
the corresponding positive literal. So the semantics
of the example query is:

{pos@0=NN} ∩ {lemma@1=to}
∩ {lemma@2=house} \ {pos@2=VB}

4 Efficient inverted indexes

Each annotation attribute (pos, lemma, etc.) can
be pre-compiled into an inverted index of corpus
positions. This index is inspired from suffix arrays,
in that we do not have to store the values in the
index – it is just a large array of corpus positions.
The array is sorted alphabetically on the attribute
value at the given position. When there are many
tokens with the same attribute value, these positions
are in increasing order.

Assume that we have a (very small) corpus con-
sisting of the following sentence:

0 1 2 3 4 5 6

word: The horse raced past the barn fell
pos: DT NN VB IN DT NN VB

Now the index for the pos attribute will be the
following array of positions: [0, 4, 3, 1, 5, 2, 6].
This array is sorted alphabetically on pos values:
[0, 4] are DT, [3] is IN, [1, 5] are NN, and [2, 6]
are VB. Furthermore, each group of positions for
the same value is in increasing order.

4.1 Searching an inverted index

To search for a value in an index we can do two
very efficient binary searches – one that finds the
first matching value and another that finds the last
match. If we search for NN in the example index
these searches return 3 and 4, which are the start
and end indices in the index, where all the corpus
positions for NN are found.

Naively, to execute the query {pos@k=NN}, we
should search for NN, and then subtract k from
all matching positions. For efficiency, we instead
just record the start and end indices (3 and 4) and
the relative position k, using which we can easily
recover all matching positions.

4.2 Intersecting query sets

Since the corpus positions within a query set are
ordered, we can efficiently intersect two query sets.
Depending on the relative sizes of the sets we use
one of the following two algorithms:

• If one set is much larger than the other, we
use a filtering strategy: Iterate through each
element of the smaller set, and test if it is also
in the larger set using binary search.

• If the sets are approximately the same size,
we use a merge strategy: Iterate through both
sets in parallel.



Regardless of the intersection algorithm, the result-
ing set will also be ordered, so we can use that
when intersecting with more query sets.

We adapt the algorithms to compute set differ-
ence, which is used for negated literals. We also
adapt them to work on query sets that include a
relative position k, as in section 4.1.

4.3 Indexes and sets as on-disk arrays
The query indexes and the query sets are stored
as memory-mapped integer arrays on disk. In this
way we can work with huge corpora that are much
too large to fit in RAM.

4.4 Computing the query result
To execute a query, we look up each literal (sec-
tion 4.1) to get its query set. Then we follow the
query semantics, using set intersection and differ-
ence (section 4.2) to find the final result. If we have
several query sets, we have to decide in which or-
der to intersect them. A heuristic that works well in
practice is to start from the smallest sets and leave
the largest until later.

We did some testing with the 100 million to-
ken British National Corpus (BNC).1 The resulting
query sets for the example query from section 3.2–
3.3 are as follows:

{pos@0=NN} → 26 M results
{lemma@1=to} → 2.6 M results
{lemma@2=house} → 63 k results
{pos@2=VB} → 18 M results

We start by intersecting {lemma@2=house} with
{lemma@1=to}, which gives 586 results. Then we
intersect with other query sets, in the end finding 62
search results. Intersection here uses the filtering
strategy from section 4.2, which only needs to iter-
ate through the smallest index, {lemma@2=house},
so the query runs quickly.

5 Binary query indexes

Consider the following very general query:
[lemma@0=the] ∧ [pos@1=NN] ∧ [pos@2=NN]

Each of these literals results in a huge set:
{lemma@0=the} → 6 M results
{pos@1=NN} → 26 M results
{pos@2=NN} → 26 M results

So the intersection becomes slower (about 20 times
slower than the previous example). The first in-
tersection gives 4.2 M results, and the second one
results in 570,000 final results.

1BNC, http://www.natcorp.ox.ac.uk/

To improve the efficiency of these generic
queries we can also build binary query indexes,
in addition to the unary indexes.

5.1 Binary indexes

Formally, a unary query index [a] can be seen as a
function from values to query sets:

[a] ≡ λv → {a@0=v}
Similarly a binary query index can be viewed as a
function from pairs of values to query sets:

[a] [b] ≡ λv, w → {a@0=v} ∩ {b@1=w}
[a] [] [b] ≡ λv, w → {a@0=v} ∩ {b@2=w}

(similar for [a] [] [] [b], etc.)

For example, an index [lemma] [] [pos] answers
queries such as [lemma=the] [] [pos=NN]. These
binary indexes can be compiled and searched in a
similar way to the unary indexes.

5.2 Searching using binary indexes

Now, if we take the example from the beginning
of section 5, we can search in the following binary
indexes, in addition to the unary indexes we already
tried:

[lemma=the] [pos=NN] → 4.2 M results
[lemma=the] [] [pos=NN] → 1.9 M results
[pos=NN] [pos=NN] → 3.7 M results

Now we can intersect the two smaller sets:

{lemma@0=the} ∩ {pos@2=NN}
and

{pos@1=NN} ∩ {pos@2=NN}
This intersection gives 570 k results, and we do
not have to use the other indexes: by set theory,
the intersection above describes the same set as the
query, so we have the correct result already.

5.3 Reducing the size of binary indexes

Each binary index is as large as a unary index,
and there are many possible binary indexes. If we
have n different attributes (and therefore n unary
indexes), then there are n2 possible binary indexes
per relative distance. So there are n2 [a][b] indexes,
and n2 [a][][b] indexes, etc.

We don’t have to build all these indexes. If a
binary index is missing, we can simply fall back to
searching in two unary indexes instead, just as in
section 4. But the binary indexes are very useful,
so can we reduce their size in any way?

http://www.natcorp.ox.ac.uk/


We observe that if a query uses a literal that is
uncommon in the corpus (e.g. lemma=turtle), there
is no need to use binary indexes for that query,
since the unary lemma index will already give us a
small query set. So one optimisation is to not add
all value pairs (v, w) to the index, but only the ones
where v and w are common:

• Only add a new index instance (v, w) to the
index [a][b], if the corresponding unary in-
stances v and w are common enough in [a]
and [b] respectively.

When we execute a query, we then need to check
which literals are uncommon, and exclude the use
of binary indexes for those literals.

For example, in the BNC each full (unary and
binary) index uses around 400 MB. If we set the
threshold to 10,000 unary instances, the binary in-
dexes are reduced to 250–300 MB each.

6 Sentence borders

The corpus is encoded as a sequence of tokens,
and a sentence starts directly after the previous one
ends. So how can we ensure that we don’t match
sentence borders? E.g., we don’t want our query
from section 5 to match a sentence that ends in “the
horse” where the next sentence starts with “cats”.

To solve this we encode the start of a sentence
as an attribute of its own. So we build an index
[s] which has a special value (say S) only for the
tokens that start a sentence. Our example query can
then be translated to:

[lemma@0=the] ∧ [s@1 ̸=S] ∧ [pos@1=NN]
∧ [s@2 ̸=S] ∧ [pos@2=NN]

6.1 Sentence borders and binary indexes
To handle sentence borders and binary indexes we
need to incorporate the literals [s@1 ̸=S] in our bi-
nary indexes. So their meaning is actually:

[a] [b] ≡ λv, w → {a@0=v} ∩ {b@1=w}
∩ {s@1 ̸=S}

[a] [] [b] ≡ λv, w → {a@0=v} ∩ {b@2=w}
∩ {s@1 ̸=S} ∩ {s@2 ̸=S}

That is, the indexes exclude matches which cross a
sentence border. Though this perhaps looks compli-
cated, it can be generated automatically, and keeps
query execution simple. Our example query in
section 5 can still be translated to searches in the
following three binary indexes:

[lemma][pos], [lemma][][pos], and [pos][pos]

And just as in section 5.2, we only have to intersect
the two smallest query sets because the final query
set is subsumed by the intersection.

7 Future work

We have a prototype written in Python. It is fast,
despite Python being an interpreted language, but
there is certainly room for improvement. In partic-
ular building the indexes can be optimised.

7.1 More expressive queries

Currently we can only handle simple queries with
exact matching and conjunction (i.e., set intersec-
tion), but there are some possibilities for making it
more expressive:

Filtering The simplest and most general ap-
proach is to use filtering. First we translate the
query into a less precise query that we can handle,
then we filter the results by checking them against
the full query.

Disjunction Disjunctive queries such as
([pos=DT] | [pos=JJ]) [pos=NN] should be fairly
easy to support, by using set disjunction in a
similar way to intersection.

Repetition Queries with repetitions such as
[pos=DT] [pos=JJ]* [lemma=house], and holes
such as [pos=DT] []* [lemma=house], can probably
be solved by building tailor-made binary indexes.

Prefixes Finding all values starting with a prefix,
such as [lemma=cat. . . ], is more tricky but still
possible to solve. Binary search can find the start
and end positions of all values that match the prefix,
but the results will not be one single sorted set.
Instead we will get a sequence of sorted groups,
one for each matching value, something like [12
43 57] [11 52 77] [22 23]. We then have to do
a second pass to merge all these groups into one
single set.

Regular expressions, backreferences, etc., etc.
Hopefully we can incorporate ideas from the litera-
ture, such as the techniques for regular expression
matching by Meurer (2020), or the graph search
used in AlpinoGraph (Kleiweg and van Noord,
2020), or the query translations of Krill (Diewald
and Margaretha, 2016), just to mention a few.



References
Mark Davies. 2005. The advantage of using relational

databases for large corpora. International Journal of
Corpus Linguistics, 10(3):307–334.

Nils Diewald and Eliza Margaretha. 2016. Krill: Korap
search and analysis engine. Journal for Language
Technology and Computational Linguistics, 31(1):63–
80.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century corpus workbench: Updating a query archi-
tecture for the new millennium. In Proceedings of
the Corpus Linguistics 2011 conference, University
of Birmingham, UK.

Roberto Grossi and Jeffrey Scott Vitter. 2005. Com-
pressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. SIAM
Journal on Computing, 35(2).

Peter Kleiweg and Gertjan van Noord. 2020. Alpino-
graph: A graph-based search engine for flexible and
efficient treebank search. In Proceedings of the 19th
International Workshop on Treebanks and Linguistic
Theories, pages 151–161, Düsseldorf, Germany.

Johan Roxendal Lars Borin, Markus Forsberg. 2012.
Korp – the corpus infrastructure of Språkbanken. In
Proceedings of LREC 2012, pages 474–478, Istanbul,
Turkey.

Udi Manber and Gene Myers. 1993. Suffix arrays: A
new method for on-line string searches. SIAM Jour-
nal on Computing, 22(5).

Paul Meurer. 2020. Designing efficient algorithms for
querying large corpora. In Hagen, Hjelde, Stern-
holm, and Vangsnes, editors, Bauta: Janne Bondi Jo-
hannessen in memoriam, Oslo Studies in Language,
11(2), pages 283–302.


