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 A B S T R A C T

The growing global demand for minerals and metals, coupled with the need for improved energy and water 
efficiency in resource extraction, has led to the use of numerical modeling, particularly the discrete element 
method (DEM), to evaluate and optimize comminution processes that account for a significant portion of the 
energy consumption in mineral and metal extraction. Despite advancements, a significant challenge remains 
in balancing the local resolution of fractures at the rock particle level, where physics-based material models 
using the finite element method (FEM) have excelled, with the resolution of industrial-scale total particle 
interactions within the machine system. This work explores the high-resolution fracture of rock particles using 
an established material model implemented within FEM as a valuable reference for fractures with a balanced 
mid-level resolution achieved through a bonded discrete element method applicable to industrial-scale systems. 
Brazilian tests were performed on two rock types to calibrate the models. Single particle breakage (SPB) 
experiments employing digital image correlation (DIC) were conducted to evaluate the performance of the 
models. Finally, the DEM model was demonstrated in an industrial-scale cone crusher application. The results 
show good agreement for the highly resolved FEM approach (requiring only two material parameters to be 
determined, which is particularly advantageous for generating virtual particle breakage data across various rock 
materials, shapes, and sizes) and reasonable agreement for the DEM fracture response, which is attributed to 
the much coarser mesh used that does not capture the crumbling mechanism (as revealed by the comparison 
between the two numerical approaches). Despite these discrepancies, the cone crusher predictions fall within 
the expected ranges for the system response at the machine level.
1. Introduction

There is growing demand for metals and minerals to support the 
green transition of society. Comminution, which is the process of 
reducing the size of rocks, is essential for liberating valuable minerals. 
The mining sector is currently responsible for nearly 2% of the global 
total energy use but is likely to increase significantly by a factor of 
two to eight by 2060 (Aramendia et al., 2023). Nearly half of this 
energy is used in comminution processes, where the inefficient grinding 
processes of ore are the largest single-energy consumers (Jeswiet and 
Szekeres, 2016). To reduce energy consumption, new and optimized 
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comminution equipment is essential. In this context, a virtual com-
minution development platform plays a key role in facilitating the 
development of energy-efficient rock processing solutions, considering 
the significant costs and time involved in physical testing. Additionally, 
simulation-based engineering evaluations enable the identification of 
the optimal operation of existing comminution devices, for instance 
depending on specific ore mineralogy and competence. The discrete 
element method (DEM), pioneered by Cundall and Strack (1979), is the 
preferred approach for modeling processes involving granular materi-
als. However, the most challenging aspect of comminution modeling 
using DEM is that a mechanistic model is of limited use, without 
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the ability to mathematically describe the rock’s response to applied 
forces (Weerasekara et al., 2013). The challenge lies in bridging the 
gap between the mesoscale behavior of individual rock particles and the 
macroscale operation of industrial comminution devices. A successful 
solution must accurately capture the relevant fracture physics at the 
single-particle level while enabling the simulation of large particle as-
semblies within an industrial-scale machine. This paper aims to address 
this critical problem.

In the rock mechanics and geomechanics research community, the 
focus is typically on a single rock specimen, often cylindrical or rectan-
gular, with or without a predefined crack. Historically, from a modeler’s 
perspective, rocks have been viewed as assemblies of glued particles, 
where each particle represents a grain, and the glue represents the 
cement holding the grains together, allowing for the modeling of 
inter-granular fracture (examples include the bonded discrete element 
method (Potapov and Campbell, 1994; Orozco et al., 2019; Cantor 
et al., 2017; Kun and Herrmann, 1996; Potyondy and Cundall, 2004) 
and the lattice element method (Zubelewicz and Bažant, 1987; Bažant 
et al., 1990; Ibrahimbegovic and Delaplace, 2003; Nikolić et al., 2018; 
Cusatis et al., 2011)) as well as intra-granular fracture (Wessling et al., 
2022). The bonded particle model (BPM) by Potyondy and Cundall 
(2004) is perhaps the most well-known approach for treating rocks in 
this manner. In this model, spherical particles are connected by virtual 
Timoshenko beams. When the maximum tensile or shear stress within a 
beam exceeds its tensile or shear strength, the beam is removed, leaving 
a contact model between the now-disconnected particles. Alternatively, 
Voronoi cell tessellation may be used instead of spherical particles, as 
bonding them along their faces helps with volume preservation during 
the fragmentation process, among other benefits (Orozco et al., 2019; 
Cantor et al., 2017; Ibrahimbegovic and Delaplace, 2003). Additional 
advantages of using Voronoi cells as opposed to spheres include their 
closer resemblance to the irregular, polyhedral shapes of some types of 
natural mineral grains, their ability to achieve higher packing densities, 
and the ease with which varying grain sizes and heterogeneity can 
be incorporated into the bonded cell model. Furthermore, Voronoi 
cells generate more realistic and complex fracture patterns along grain 
boundaries or weak planes. High-resolution imaging and segmentation 
techniques such as X-ray computed tomography (CT) and digital image 
processing can be employed to accurately capture realistic grain shape 
distributions in large-scale samples. While Voronoi cells may introduce 
some computational overhead due to their intricate shapes, they can 
actually be more efficient by minimizing the need for excessively fine 
discretizations. The bonded particle model by Potyondy and Cundall 
has entered the field of comminution (Jiang et al., 2023; Quist and 
Evertsson, 2016) with a coarser mesh resolution because of its much 
larger scale compared with that of a single rock specimen (Khanal et al., 
2005; Ergenzinger et al., 2011; Wessling et al., 2023). A good example 
of this application is the work performed by Quist and Evertsson (2016) 
in which compression tests were conducted, and the bonded particle 
model was calibrated against the size-dependent force required to break 
a rock for use in crushing simulations.

Instead of modeling rock fracture explicitly and to speed up the 
DEM simulation, once a failure criterion is met, the particle can be 
replaced with a collection of progeny fragments or new particles (not 
all rock fragments are considered throughout the entire simulation, 
as seen in the bonded particle model), commonly referred to as the 
particle replacement method (PRM), which is the most frequently 
applied approach in comminution modeling using DEM (Cleary, 2001; 
André and Tavares, 2020; Delaney et al., 2015; Denzel et al., 2023). 
While the parent particle is most often a sphere, various shapes are 
used for progeny particles, such as spheres or clumped spheres (Bar-
rios et al., 2020; Brzeziński and Gladky, 2022; Cleary and Sinnott, 
2015; Li et al., 2014; Tavares et al., 2021), superquadrics (Delaney 
et al., 2015), and polyhedral cells (de Arruda Tino and Tavares, 2022; 
Tavares et al., 2020). Traditionally, the failure criterion is based on the 
probability of fracture given the specific amount of energy required 
2 
to break a rock. This criterion is determined using methods such as 
the drop-weight test, which has been enhanced with instrumentation 
for real-time measurements, or through compression tests (King and 
Bourgeois, 1993; Tavares, 2007; Tavares and King, 1998). If the en-
ergy absorbed by the particle during particle–particle or particle–plane 
contact meets the specific fracture energy criteria, it breaks or can 
undergo damage by reducing the fracture energy due to repeated 
low-energy impacts (Tavares and King, 2002). Each fragment is then 
allocated a new fracture energy corresponding to its size, and inherits 
the kinematics from the parent particle. The fragments inherit both the 
linear and angular velocities and, consequently, the kinetic energy of 
the parent particle, which affects the flow behavior on the conveying 
equipment. Overall, the particle replacement method does not capture 
the force–displacement response as accurately as the bonded particle 
model or as well as in rock mechanics where physics-based material 
models using the finite element method (FEM) have excelled, nor can 
it accurately predict rock fragmentation. However, its key strength lies 
in its ability to be conveniently calibrated against the product size dis-
tribution (Jiménez-Herrera et al., 2018). The PRM approach has been 
proven to be effective in comminution devices dominated by impact-
breakage failure modes, whereas machines dominated by compressive 
breakage are more challenging. Additionally, challenges arise related 
to the conservation of mass and momentum due to the replacement 
and introduction of new particles or elements within the same confined 
spatial domain previously occupied by the parent particle.

However, to the best of the authors’ knowledge, no published stud-
ies have performed a one-to-one shape correspondence between models 
and experiments involving irregular rock particles, despite the critical 
role that the particle shape plays in the computational modeling of 
granular materials (Zhao et al., 2023; Kawamoto et al., 2016). Instead, 
it is more common to compare the distributions of fracture responses 
of irregular rock particles (Mwanga et al., 2015; Eliáš, 2014). That 
is, ensuring that the predicted force–displacement response of rock 
particles, as well as rock fragmentation in industrial-scale machine 
simulations involving large particle assemblies, aligns with that of 
actual rock remains a research gap; rather, the focus has predominantly 
been on reproducing the product size distribution.

1.1. Outline

The key novelty of this work lies in its attempt to bridge the 
gap between accurately capturing the rock material response at the 
single-particle level and simultaneously facilitating the simulation of an 
industrial cone crusher. The following main analyses are performed:

• Detailed modeling of the rock fracture using a FEM approach 
(Section 3) with a probabilistic fracture model and a detailed 
mesh to obtain high resolution of the fragmentation.

• A bonded discrete element model with Voronoi cells (Section 4) is 
used to model particle breakage at a lower resolution, sufficient 
to capture the overall response but not as detailed as the FEM 
model, while enabling full machine simulation.

• Both the FEM (Section 5.1) and DEM models (Section 5.2) are 
calibrated using the Brazilian indirect tensile strength test (Sec-
tion 2.1).

• The fracture response and behavior are evaluated and validated 
using single-particle breakage compression tests with digital im-
age correlation (DIC) (Section 2.2), with both the FEM (Sec-
tion 6.1) and DEM approaches (Section 6.2).

• The breakage response from the high-resolution FEM and the 
lower-resolution DEM is compared and analyzed (Section 7).

• Finally, the utilization of the DEM model is demonstrated in an 
industrial-scale cone crusher case (Section 8).
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2. Experiments

Indirect tensile tests were conducted to calibrate, and single particle 
breakage (SPB) tests were carried out to validate the fracture models 
presented in Sections 3 and 4. The following section describes briefly 
these testing methods and presents information about the material, 
specimen preparation and experimental setup.

2.1. Indirect tensile strength tests

Diametrical compression tests, also known as the Brazilian disc test 
(BDT) were performed. This is a bi-axial test that allows to determine 
the tensile strength of brittle material indirectly by loading a cylinder 
along its diameter to induce tensile stresses normal to the loading 
direction, which are constant over a region around the center. As a con-
sequence, crack initiation occurs in a high tensile zone, theoretically, 
around the geometrical center of the specimen. Under the assumption 
of plane stress (Jonsén et al., 2007), the ultimate tensile strength (UTS) 
of the material can be estimated by Eq. (1) (Hondros, 1959). 

𝑈𝑇𝑆 = 2𝐹
𝜋𝐷𝑡

(1)

Here, 𝐹  is the force at failure, 𝐷 the diameter, and 𝑡 the thickness.
Cylindrical specimens of granite from Glimmingen and limestone 

from Falköping with flat ends were drilled and cut. It should be noted 
that aggregate rock type materials were used for the experiments, while 
the overall scope of the approach intends to also focus on the com-
minution of ore materials. In order to get access to both crushed rock 
particles, as well as high-quality drill core samples, the most practical 
approach was to sample both specimens for single particle tests, as well 
as larger slabs for drill core specimen extraction, from the same blasting 
charge. In this way, the mineralogical correspondence between the 
specimens is well controlled. Following the recommendations from the 
standard ASTM D3967-16 of having a diameter at least ten times larger 
than the largest grain size, a diameter of 44.8 mm and a thickness-to-
diameter ratio 𝑡∕𝐷 ≈ 0.3 was selected. Quasi-static compression tests of 
BDT specimens (6 limestone and 10 granite specimens) were performed 
with an electro-mechanical loading machine (Dartec M1000/RE) with 
maximum capacity of 100 kN and a maximum stroke of 100 mm. The 
surfaces at the contact points were lubricated to reduce the friction 
effects. The load was monotonically increased by controlling the dis-
placement to 0.2 mm/min and the force was measured continuously 
with a load cell with a maximum capacity of 22 kN and an accuracy of 
±0.14%.

Digital image correlation (DIC) techniques to obtain full displace-
ment and deformation fields on the surface of the specimens were im-
plemented. 2D digital images of BDT specimens were taken at 2 frames 
per second (fps) with Aramis (V6.3.1) Digital Image Correlation System 
(GOM mbH, Germany) and processed with an integrated software to 
determine the evolution of strain fields. The specimens were prepared 
by sandblasting the surface and then spraying black and white Boron 
Nitride Aerosol paint on it to obtain non-directional, high contrast and 
stochastic pattern. An external axial extensometer (Model 3542-025M, 
Epsilon Corp) sampling at 100 Hz was used as a backup measuring 
system.

Displacements in the material were obtained for the calibration of 
FEM models via a virtual extensometer of 𝑙 = 20 mm set along the 
loading direction around the geometrical center of the specimen to 
avoid non-linear deformations at the contact points due to Hertzian 
contact effects (see Fig.  1(a)). An external extensometer of length 
was also used because of the coarser mesh resolution used in the DEM 
model.
3 
2.2. Single irregular particle breakage test

Seven irregular granite rock pieces from Glimmingen quarry and 
seven limestone pieces from Falköping quarry, each of different sizes 
and shapes were obtained for testing. Single particle breakage tests on 
the rock pieces were performed using an Instron 400RD hydraulic ma-
chine (Max. capacity = 2000 kN) and a digital image correlation system 
(Zeiss ARAMIS) at 100 frames per second to obtain deformation fields 
on the surface (see Fig.  1(b)). The loading rate was set at 18 mm/min, 
and the data sampling rate was 1000 Hz. The 3D laser scanning of the 
rock particles was done using a ZEISS Scanbox 4105. To achieve a close 
correspondence in the positioning of the particles in the experimental 
setup and the simulation setup, the 3D models of the particles were first 
positioned in the virtual environment. Then, before each experiment, 
the specific particle was positioned in the compression device with as 
little deviation as possible from the virtual position of the correspond-
ing 3D model. The resulting deviation in height between the loading 
plates in the simulation and the experimental position was below 0.68% 
on average, 0.34% median, and 1.95% maximum. Figs.  2(a) and 2(c) 
show the crack paths after the initial fracture event, identified by the 
first notable drop in force. The corresponding failure loads are listed in 
Table  6.

3. Finite element model

The numerical simulations of the experiments were performed in 
the multi-purpose finite element software ABAQUS (Dassault Systèmes 
Simulia Corp, 2022) using the explicit time integration method. More 
information about the material model and numerical setup is provided 
below.

3.1. FEM material model

The rock material shows a complicated constitutive behavior with 
non-linear elasticity, damage driven by shear in compression and by 
normal stresses in tension, and a strong strain rate sensitivity. An 
additional complexity is its heterogeneity on different scales. It is 
critical to describe the rock material behavior with an appropriate con-
stitutive law capturing the relevant effects for the intended application. 
Shear driven damage in compression has successfully been modeled 
using a pressure dependent plasticity model (Krieg, 1978; Swenson 
and Taylor, 1983). This model coupled with a probabilistic model for 
tensile fracture (Denoual and Hild, 2000; François Hild and da Silva, 
2003; Forquin and Hild, 2010) constitutes the KST-DFH model. The 
model provides an effective approach for predicting rock fracture in 
different applications like percussive drilling, ballistics, and contact 
loading. This model will be relied upon in this work as well. To capture 
the strain rate sensitivity, a viscoplastic modeling approach has been 
used successfully (Saksala, 2010; Saksala et al., 2013).

Initially, the material behavior is assumed to be elastic, and
isotropic elasticity is characterized by the Young’s modulus 𝐸 and 
Poisson’s ratio 𝜈. Brittle materials can fracture in both compression due 
to shear failure and, naturally in tension. To predict both these types 
of damage in rocks with FEM, a simplified version of the well-proven 
KST-DFH constitutive model (named after the authors (Denoual and 
Hild, 2000; Forquin and Hild, 2010; Krieg, 1978; Swenson and Taylor, 
1983)) was used, presently utilizing only the quasi-static description 
of the material behavior. The model describes the behavior of mineral 
materials under low and high confining pressures as well as damage 
due to tensile cracking initiating from random micro defects (Saadati 
et al., 2014; Olsson et al., 2019).

The KST part of the model describes the damage in compres-
sion under different confining pressures due to shear failure using a 
plasticity-like model. The yield surface, describing when shear failure 
occurs is given by 

𝜎 =
√

𝑎 2 + 𝑎 𝑃 + 𝑎 𝑃 2. (2)
𝑒𝑞 0 1 2
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Fig. 1. Figure (a) illustrates the Brazilian disc specimen and boundary conditions. Color contours display the analytical solution for the vertical displacements of a point load 
configuration. The red lines indicate the position of the virtual extensometer of length 𝑙 used in the calibration of the FEM and external extensometer of length  used in DEM. 
Figure (b) present an image of the single particle breakage test setup. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
Fig. 2. Deformation in terms of von Mises strain fields of (a–b) granite and (c–d) limestone samples at first fracture, identified at first load drop, and post-first fracture. Crack 
patterns are identified as strain localization zones on the surface and visualized by warm colors, i.e., the red color represents a high strain, whereas the blue color represents a 
low strain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Here, 𝑎0, 𝑎1, 𝑎2 are material parameters and 𝑃  is the hydrostatic pres-
sure. The yield surface is assumed to be constant regardless of plastic 
deformations. Furthermore, the KST model includes a piecewise linear 
function linking the volumetric strain 𝜀(𝑛)𝑣  to the hydrostatic pressure 
𝑃 (𝑛) due to the collapse of pores (where 𝑛 = 1, 2...𝑁 stages of in-
elastic compaction). However, this effect was small in the present 
study, because the studied materials contained only a small fraction 
of pores (Saadati et al., 2018).

Damage due to tensile cracking is handled by the DFH part of 
the model, which represents an anisotropic damage formulation. This 
model describes the probabilistic behavior of brittle materials account-
ing for crack initiation at the weakest defect in a considered vol-
4 
ume. The model provides the tensile failure stress in a principal stress 
direction 𝑖 for an element in the model, 𝜎(𝑖)𝐹  by 

𝑃𝐹 = 1 − exp

[

−

(

𝜎(𝑖)𝐹
𝜎0

)𝑚
𝑉𝑒𝑙
𝑉𝑟𝑒𝑓

]

, (3)

where 𝑃𝐹  is the probability of failure, 𝜎0 is the Weibull scale parameter, 
𝑚 the Weibull exponent, 𝑉𝑒𝑙 the element volume associated with the 
studied integration point, and 𝑉𝑟𝑒𝑓  an arbitrary reference volume in-
troduced for dimensional consistency. A consequence of this material 
description is that larger elements will have a lower average failure 
stress as the probability of finding critical defects is larger in larger 
elements. The average failure stress 𝜎  of a volume 𝑉  is specified as 
𝑤 𝑟𝑒𝑓
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a material parameter given by Eq. (4), making a smooth transition from 
uniaxial tensile testing to the finite element model and the consequence 
is that a tensile sample with volume 𝑉𝑟𝑒𝑓  will have an average tensile 
strength of 𝜎𝑤, 

𝜎𝑤 = 𝜎0𝛤
(

1 + 1
𝑚

)

(4)

where 𝛤 (𝑥) is the gamma function. Damage occurs when the principal 
stress in direction (𝑖) exceeds the critical stress in that direction, 𝜎(𝑖)𝐹 , 
randomly sampled for each element using the probability distribution 
given in Eq. (3). A consequence of the anisotropic damage model is that 
if the material has failed in one principal direction, it still has a tensile 
strength in the other two perpendicular principal direction, mimicking 
the behavior of a crack. The benefit of using the DFH model is two-fold; 
scatter in experimental data can be due to the probabilistic description 
of the failure stress and a statistical volume effect can also be captured 
as larger loaded volumes have a higher probability of containing defects 
of a given critical size.

Previous studies (Erzar and Forquin, 2014; Saadati et al., 2016) 
have shown that the activation, growth, and propagation of cracks 
occur along with a bridging phenomenon that locally resists crack 
opening, resulting in softening behavior under dynamic tension. When 
the material is exposed to high tensile stress rates, cracks nucleate 
when the tensile stress reaches a critical value and propagate until 
they encounter other defects that have also formed in front of them, 
resulting in relaxation effects around the crack tip (Denoual and Hild, 
2000). This phenomena can be included in the model as an extra 
cohesive stress term 𝜎𝑐𝑜ℎ added to the macroscopic principal stress 𝛴𝑖. 
However, this cohesive behavior is set to zero in the present work as 
this effect has mainly been seen under dynamic load conditions and 
thus complete failure of the material in direction (𝑖) occurs if the critical 
stress is exceeded. More details on how the anisotropic damage model 
works can be found for instance in Olsson et al. (2019).

4. Discrete element model

In DEM (Cundall and Strack, 1979), each particle interacts with 
neighboring particles through contact forces, and its motion is governed 
by Newton’s second law. The ordinary differential equations (ODEs) 
can be solved using explicit time integration methods such as forward 
Euler and the velocity Verlet algorithm (Cundall and Strack, 1979; 
Govender et al., 2014; Rozmanov and Kusalik, 2010). To update the 
positions and orientations of the particles at each time step, the Verlet 
velocity algorithm was used for the translation and forward Euler, 
for the rotational integration. The particles are pseudo-rigid, meaning 
they can overlap, provided the overlap distance is small compared to 
the particle size, such that the deformation of the particles is neg-
ligible. This assumption requires small time steps to achieve slight 
overlaps and maintain numerical stability. Explicit methods, particu-
larly with parallel computing, offer efficient and scalable solutions for 
industrial-sized problems involving large-particle systems. The in-house 
software Demify, developed at the Fraunhofer-Chalmers Centre, lever-
aging High-Performance Computing (HPC) on Graphical Processing 
Units (GPUs) was utilized to achieve these capabilities.

The bonded particle model (BPM) (Potyondy and Cundall, 2004) 
is a variation of DEM that introduces virtual, yet removable, cohesive 
bonds in the form of Timoshenko beams between spherical particles, 
mimicking the natural bonds (cement) found between grains in rock, 
thereby simulating rock fracture. Since the inception of spherical BPM, 
a number of extensions have emerged, including polyhedral block 
BPM (Liu et al., 2020). In contrast, the particles were treated as Voronoi 
cells bonded at the nodes, preserving both mass and volume during 
the breakage process, similar to the bonded cell model (Potapov and 
Campbell, 1994; Cantor et al., 2017; Orozco et al., 2019; Kun and Her-
rmann, 1996; Asahina and Bolander, 2011). This approach also reduces 
the number of elements required to capture nontrivial shapes compared 
to spheres. For example, in Fig.  3(a), 50 Voronoi cells were used to 
5 
Fig. 3. (a) Bonded Voronoi-particle model generated from the approximation of the 
scanned (golden) rock surface using the convex hull method. (b) The dilated polyhedron 
is the union of a sphere and a polyhedron (illustration courtesy of Anita Ullrich). (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

discretize the rock, which differs from many other DEM computer codes 
that use spherical particles. Additionally, the constitutive response of 
the bonds was defined using a traction–separation description (Liu and 
Ji, 2019; Ma et al., 2014; Li et al., 2024; Ma et al., 2016). This method 
is in contrast to the sudden load drop and mesh-dependent energy 
dissipation observed in the BPM, as it maintains a fixed area under 
the traction–separation law across mesh sizes (Wang et al., 2023). 
The chosen approach resembles the lattice element model utilizing the 
strong discontinuity approach but includes element overlap (Nikolić 
et al., 2018).

In Demify, points inside the spatial domains were randomly placed, 
including the Brazilian discs and scanned rocks, with a minimum 
allowed distance, referred to as the pruning distance. The Voro++ 
library (Rycroft, 2009) was used to compute the Voronoi tesselations of 
the spatial domain and the randomly sampled points. A convex surface 
was generated for the non-convex scanned rocks using the convex hull 
method in MeshLab, which is an open-source system for processing and 
editing 3D triangular meshes, as depicted in Fig.  3(a). Each Voronoi cell 
was treated as a dilated polyhedron, which is the union of a sphere and 
polyhedron based on the Minkowski sum, as illustrated in Fig.  3(b). The 
dilation radius of the sphere controlled the smoothing of the dilated 
polyhedron, and it was set to 10% of the average particle size in the 
bonded model.

4.1. Bond model

In this model, a vector 𝐝 connects two bonded points, denoted as 𝑖
and 𝑗. The unit normal vector to the surface of the bond is defined as 
𝐧 = 𝐧𝑖−𝐧𝑗

|

|

|

𝐧𝑖−𝐧𝑗
|

|

|

, where 𝐧𝑖 is the outward normal to the surface at the position 
of point 𝑖, while 𝐧𝑗 is the outward normal at the position of point 𝑗. To 
calculate the normal strain 𝜀 in the bond, the reference length 𝑙𝑖𝑗 = 𝑙𝑖+𝑙𝑗
was introduced as the sum of the distances from the center of each 
element to the interface of the element (Liu and Ji, 2019). The normal 
strain can then be expressed as 

𝜀 = 𝐝 ⋅ 𝐧
𝑙𝑖𝑗

. (5)

Utilizing the additive decomposition of 𝐝 into the normal 𝐧 and tan-
gential direction 𝐭 = 𝐝−(𝐝⋅𝐧)𝐧 , the engineering shear strain in the bond 
|𝐝−(𝐝⋅𝐧)𝐧|



L. Suarez et al. Minerals Engineering 232 (2025) 109488 
is described as 

𝛾 =
|𝐝 − (𝐝 ⋅ 𝐧)𝐧|

𝑙𝑖𝑗
(6)

Given the strains in the bond, the stresses are calculated using a 
constitutive relationship, in this case, Hooke’s generalized law, i.e., 

𝜎 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
𝜀 = 𝑘𝑛𝜀, (7)

𝜏 = 𝐸
2(1 + 𝜈)

𝛾 = 𝑘𝑡𝛾, (8)

where 𝐸 represents Young’s modulus, 𝜈 stands for Poisson’s ratio, 𝜎
denotes the normal stress and 𝜏 represents the shear stress.

Given the stresses in the bond, the Cauchy traction vector reads 
𝐓 = 𝜎𝐧 + 𝜏𝐭. The magnitude of the Cauchy traction vector represents 
the effective stress, 

𝜎𝑒 =
√

⟨𝜎⟩2 + 𝜏2, (9)

while 

𝑑𝑒 =
√

⟨𝑑𝑛⟩
2 + 𝑑2𝑡 (10)

is the corresponding magnitude of the displacement vector 𝐝, where 
𝑑𝑛 = 𝐝⋅𝐧 and 𝑑𝑡 = 𝐝⋅𝐭. Here, ⟨ ⟩ denotes the Macaulay brackets excluding 
the compression stress and displacement, i.e., 

⟨𝜎⟩ =

{

0, if 𝜎 < 0
𝜎, if 𝜎 ≥ 0.

(11)

At the onset of damage in the bond, the quadratic nominal stress 
criterion (QNSC) is assumed as 
(

⟨𝜎⟩
𝜎̄

)2
+
( 𝜏
𝜏

)2
= 1, (12)

where 𝜎̄ represents the tensile strength, and 𝜏 = 𝐶 − 𝜇𝜎 represents the 
Mohr–Coulomb shear strength. Here, 𝐶 represents the cohesion of the 
material, and 𝜇 = tan𝜙 represents the internal friction coefficient, with 
𝜙 denoting the angle of internal friction for the material.

To describe the evolution of damage in the bond, an irreversible 
Kachanov-like damage variable denoted as 𝐷 ∈ [0, 1] was introduced. 
Linear softening is considered, which can be expressed as follows 

𝐷 =
𝑑𝑓𝑒

(

𝑑𝑚𝑎𝑥𝑒 − 𝑑0𝑒
)

𝑑𝑚𝑎𝑥𝑒

(

𝑑𝑓𝑒 − 𝑑0𝑒
) , (13)

where 𝑑0𝑒  represents the effective displacement at the onset of damage, 
𝑑𝑓𝑒  stands for the effective displacement at rupture (i.e., 𝜎𝑒 = 0) 
and 𝑑𝑚𝑎𝑥𝑒  corresponds to the maximum attained value of the effective 
displacement in the loading history. The area of the triangle beneath 
the effective traction–separation law, denoted as 𝐺𝑓 , and the effective 
stress at damage initiation, denoted as 𝜎0𝑒 , determine the effective 
displacement at rupture as follows 

𝑑𝑓𝑒 =
2𝐺𝑓

𝜎0𝑒
. (14)

An illustration of the effective traction–separation law is depicted in 
Fig.  4. A commonly employed expression for 𝐺𝑓  is derived from the 
work of Benzeggagh and Kenane (1996). This expression is given by 

𝐺𝑓 = 𝐺𝐼 +
(

𝐺𝐼𝐼 − 𝐺𝐼
)

(

2𝐺𝐼𝐼
𝐺𝐼 + 2𝐺𝐼𝐼

)

, (15)

where 𝐺𝐼  represents the area under the mode I traction–separation 
law in pure tension, while 𝐺𝐼𝐼  represents the area under the mode 
II traction–separation law in simple shear. The fracture energy re-
quired to break the bond is defined as the area beneath the force–
displacement curve, rather than the traction–separation law, although 
they are connected through the bond’s cross-sectional area.
6 
Fig. 4. Traction–separation law.

As the damage variable 𝐷 increases from 0 to 1, the stresses in the 
bond degrade as follows 

𝜎 =

⎧

⎪

⎨

⎪

⎩

𝑘𝑛
𝑙𝑖𝑗
𝑑𝑛, if 𝑑𝑛 < 0

(1 −𝐷) 𝑘𝑛𝑙𝑖𝑗
𝑑𝑛, if 𝑑𝑛 ≥ 0,

(16)

𝜏 = (1 −𝐷)
𝑘𝑡
𝑙𝑖𝑗

𝑑𝑡. (17)

In other words, there is no damage in compression, i.e., 𝑑𝑛 < 0. Con-
sequently, the particles may overlap at the contact points undergoing 
compression. The amount of overlap is controlled by the stiffness 𝑘𝑛𝑙𝑖𝑗 . 
Upon bond breakage (i.e., 𝐷 = 1), the bond, along with its associated 
force and stiffness, is removed. Subsequently, the Hertz–Mindlin con-
tact model (Nye et al., 2014) remains, using the dilatation radius of the 
dilated polyhedron instead of the spherical particle radius.

To remedy traction oscillations, the presented formulation requires 
a special computational procedure because it is based on an explicit 
method, as summarized in Algorithm 1.
Algorithm 1 
1. Initialize a flag variable "init" as "True."
2. Calculate displacements using Eqs. (5) through (6) and (10).
3. Calculate stresses using Eqs. (7) through (9).
4. If QNSC equals 1 and "init" is "True," define 𝑑0𝑒 , 𝜎0𝑒 , 𝑑𝑓𝑒 , and set "init" 
to "False." Remark 1.1: If 𝑑𝑓𝑒 ≤ 𝑑0𝑒 , set 𝑑𝑓𝑒 = 𝑑0𝑒  + tolerance and update 
𝐺𝑓  according to Eq.  (14).
5. If "init" is "False," calculate the damage variable using Eq.  (13) 
and update stresses using Eqs. (16) through (17) and (9). Remark 
1.2: If 𝑑𝑚𝑎𝑥𝑒 > 𝑑𝑓𝑒 , set 𝐷(𝑛+1) to 1. Remark 1.3: If 𝐷(𝑛+1) < 𝐷(𝑛), set 
𝐷(𝑛+1) = 𝐷(𝑛).

Given the stresses in the bond, the normal force 𝐹𝑛 and the shear 
force 𝐹𝑡 are calculated as the normal stress 𝜎 and the shear stress 𝜏
acting on the bond area 𝐴𝑛 , respectively, where 𝐴 represents the area 
of the interface, and 𝑛 stands for the number of bonds on the interface. 
The fracture energy needed to break the interface is the sum of the area 
under the force–displacement curves of the bonds.

To dissipate some of the kinetic energy and thereby improve the sta-
bility of the bonded DEM model, a damping coefficient 𝛽 proportional 
to the stiffness of the bond and the strain rate, resembling a standard 
dash-pot (Jou et al., 2019) was introduced. This is expressed as follows 
in Eqs. (18) and (19)

𝐹𝑛 =
(

𝜎 − 𝛽𝑘𝑛𝜀̇
) 𝐴
𝑛
, (18)

𝐹𝑡 =
(

𝜏 − 𝛽𝑘𝑡𝛾̇
) 𝐴
𝑛
. (19)

Note that the forces in Eqs. (18) and (19) are calculated in the local 
coordinate system defined by the orientation of the bond surface. These 
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forces must be transformed to the global coordinate system as follows 

𝐅 = 𝐹𝑛𝐧 + 𝐹𝑡𝐭, (20)

where 𝐧, 𝐭, and 𝐝 are all expressed in the global coordinate system.
The final step involves vector addition to determine the force and 

moment acting on each particle before updating the orientations and 
positions of the particles by using Newton’s second law.

5. Model calibration

5.1. FEM model calibration

3D Brazilian disc test (BDT) simulations were performed in the 
same way as in the experiments by first ensuring contact between 
the loading plates and the cylindrical mineral sample, followed by 
monotonic loading until failure. For single particle breakage (SPB) 
simulations, because of the irregular shape of the 3D scanned samples 
and the optimization of the contact points with the loading plates 
during compression, settlement simulations using the effect of gravity 
were implemented as a pre-loading stage. In contrast to the compressive 
loading stages, the settlement simulations used a dynamic implicit time-
integration method. The resting bodies were then monotonically loaded 
in a displacement-control setting. The displacement rates were scaled 
to obtain a reasonable computational time. Although the deformation 
rates were increased and the velocity of the plates was set to 10 mm/s, 
they were sufficiently low to neglect the inertial dynamic effects. The 
results were verified by testing different velocities and evaluating the 
contribution of dynamic effects on the mechanical response. In both the 
BDT and SPB models, it was assumed negligible the deformation of the 
plates.

The BDT model consisted of a cylindrical sample (𝐷 = 44.8 mm, 
𝑡 = 13.8 mm) with eight-node brick elements with reduced integra-
tion, loaded along its diameter using two flat rigid plates. For the 
SPB simulations, reconstructed 3D scanned samples of different shapes 
and sizes were used. The geometries were meshed with ANSA BETA 
CAE systems v24 using a combination of 4-node linear tetrahedral 
and 5-node pyramidal elements to obtain both good resolution and 
computational cost. The distribution of the element volume of the 
3D scanned rocks during the meshing process of the BDT geometries 
was considered for consistency during calibration. The size dependency 
in fracture mechanics simulations is acknowledged; however, in this 
model, the definition of the probability of failure and defect density 
by means of a Weibull distribution reduces its effect on the overall 
mechanical response. Furthermore, a workflow was implemented to 
address the mesh-size-dependent fracture energy by accounting for the 
same characteristic volumes across the models. The BDT samples had 
188,000 elements, whereas the 3D scanned rocks had 110,000–210,000 
elements due to different volumes.

It has been demonstrated that for Brazilian disc tests, there is a 
minimal difference between friction and frictionless setups in the stress 
distribution within the central area of the disc where the stresses are 
fully developed (Yuan and Shen, 2017). However, at the contact points, 
the radial and tangential components of the stress are higher when 
there is no physical buffering of the rough contact between the plates 
and disc, such as through cushioning techniques. In the present sim-
ulations, to simulate the experimental setup as accurately as possible 
without compromising the computational cost, a kinematic contact 
constraint was implemented in ABAQUS, allowing some separation in 
the normal direction with a HARD pressure definition, while employing 
a penalty definition with 𝜇 = 0.6 in the tangential direction.
7 
5.1.1. Calibration result
Figs.  5(a) and 5(b) present the force–displacement response of the 

granite and limestone Brazilian disc samples. Slight nonlinearities in 
the experimental data can be attributed mainly to defects in the mate-
rial but also to the concentration of stresses close to the contact points 
and frictional effects. Although granite and limestone have different 
morphologies, a  similar initial stiffness of the sample was identified 
and was used to determine the Young modulus 𝐸 of the two materials 
instead of performing additional uniaxial compression tests solely for 
this purpose. Due to this similar initial stiffness, the same value of 
Young’s modulus will be used for both materials, resulting in decent 
agreement with the experimental force–displacement graphs in Figs. 
5(a) and 5(b). For the other parameters in the KST-DFH model, the 
calibrated parameters in Saadati et al. (2014) for Bohus granite were 
used as a starting point in the present work.

Focus for the calibration of the model with the present materials 
is to capture the failure load statistics of the Brazilian disc samples. 
Statistical distributions of failure loads, both from simulations and ex-
periments, were estimated using median ranks. The calibration showed 
that it was sufficient to change only the Weibull parameters 𝜎𝑤 and 𝑚 to 
obtain decent agreement with the experimental data as seen in Fig.  6. 
The same Weibull exponent 𝑚 = 7 was found to describe the outcome of 
both materials while the Weibull stress differed with 𝜎𝑤 = 17 MPa and 
𝜎𝑤 = 21 MPa for limestone and the granite materialm, respectively. The 
KST part of the model has a very limited influence on the results for the 
Brazilian disc load case, and hence the material parameters determined 
in Saadati et al. (2014) were used for both materials. This statement 
will be validated later when simulating the single particle breakage test. 
All needed material parameters, both presently calibrated and those 
taken from Saadati et al. (2014), are presented in Table  1.

Figs.  5(c) and 5(d) show the fracture patterns of both granite and 
limestone. The damage variable 𝐷1 indicates the maximum level of 
damage in the first principal direction when it reaches unity (blue if 
𝐷1 = 0, red if 𝐷1 = 1). The physical meaning of this value is related 
to the open cracks that are normal to the maximum principal stress 
direction. The FEM results show good agreement with the fracture 
pattern: a main crack along the loading direction and secondary cracks 
at the contact points due to shear stresses.

A parametric study was performed to determine the sensitivity of 
the Weibull modulus 𝑚 and average strength 𝜎𝑤 on the expected failure 
load values. Both strong and weak specimens were included in the 
results looking to replicate heterogeneity of the source material in 
comminution processes. (Notice that here the terms weak and strong 
refer to a scale of rock strength.) The cumulative density function of 
the failure loads in Fig.  6, estimated using median ranks, shows a large 
scatter in the data for both granite and limestone. Simulations were 
performed using different combinations of characteristic parameters 
and determined that the Weibull modulus and average strength are 
interdependent parameters contributing to dispersion of the failure 
load.

Data from numerical simulations have less scatter than the exper-
imental data, that is, there is a probability of underestimating the 
failure load of strong specimens. The Brazilian disc is a practical test 
for obtaining the tensile response of brittle materials, however, it is 
important to highlight the complexity of the stress state and mechanics 
at the contact points. Deterministic behaviors become dominant when 
high compressive stresses close to the contact point activate random 
defects and contribute to damage in the principal direction; thus, there 
is a loss in the stiffness of the element and overall failure of the 
continuum.

5.2. DEM model calibration

First, the Brazilian disc was discretized into 300 cells using a 
pruning distance of 2.5 mm in Demify. To accelerate the simulations, 
the velocity of the top plate was set to 250 mm/s. The time step 
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Table 1
Parameters used in the KST-DFH material model. For the KST part, the parameters in Saadati et al. (2014) for Bohus granite 
were used for both materials.
 Granite Limestone  
 Mechanical Properties
 𝐸 (GPa) 77 77  
 𝜈 (–) 0.21 0.21  
 𝜌 (kg/m3) 2540 2540  
 Hydrostatic behavior(from Saadati et al. (2014))
 

KS
T

𝜀(𝑛)𝑣 (–) [0, −0.028] [0, −0.028]  
 𝑃 (𝑛) (MPa) [0, 864] [0, 864]  
 Deviatoric behavior (from Saadati et al. (2014))
 𝑎0 (MPa)2 23500 23500  
 𝑎1 (MPa) 465 465  
 𝑎2 (–) 1.51 1.51  
 Weibull parameters
 

DF
H

𝑚 (–) 7 7  
 𝜎𝑤 (MPa) 21 17  
 𝑉𝑟𝑒𝑓 (mm3) 195 195  
Fig. 5. Qualitative and quantitative results of granite (left) and limestone (right) Brazilian disc samples. Figure (a–b) presents the force–compression response for both experiments 
(obtained via virtual extensometer 𝑙) and simulations. Figure (c–d) presents an overlay of post-fracture images from experimental results and post-failure damage obtained from 
simulations (blue if 𝐷1 = 0, red if 𝐷1 = 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
size is 1 × 10−7 seconds, corresponding to 0.0171 times the Rayleigh 
critical time step, using the average particle size of 5.5 mm in the 300-
cell model. A design of experiments (DOE) on inputs that have the 
most significant influence on the model’s behavior was performed to 
assess the impact of model inputs on model outputs (Yoon, 2007). This 
approach enabled the optimization of the model’s performance relative 
to the experimental results, where the target values were the average 
maximum force and the corresponding displacement between the two 
contact points in Fig.  1(a). The model inputs of significant influence 
were assumed to be the Young’s modulus of the bond, the bond’s 
tensile strength (with cohesion set to 1.5 times the tensile strength Ma 
et al., 2014), and the internal friction coefficient. The remaining fixed 
model inputs are presented in Table  2. As previously pointed out, 
Young’s modulus was not measured but was instead treated as a 
calibration parameter in both DEM and FEM. Additionally, a rock–
steel friction coefficient of 0.95 was used to mitigate sliding in the 
8 
simulations. Two expressions were obtained: one for the maximum 
force (with a coefficient of determination 𝑅2 = 0.98) and one for 
the corresponding displacement (with a coefficient of determination 
𝑅2 = 0.9), as functions of model inputs that significantly influence the 
system. Subsequently, the errors were minimized from the target values 
through multi-objective optimization using a weight factor of 0.5. The 
calibration results for granite and limestone are presented in Table 
3 and Fig.  7(a). Although the maximum force remained within the 
measured experimental range, the corresponding displacement did not. 
This discrepancy can be attributed to the coefficient of determination 
𝑅2 = 0.9 for the expression derived from the DOE for the displacement 
at maximum force, in contrast to 𝑅2 = 0.98 for the maximum force 
itself, combined with multi-objective optimization. Moreover, more ad-
vanced methods for parameter identification, such as machine-learning 
techniques, are available for this class of problems (Ibrahimbegovic 
et al., 2020; Dobrilla et al., 2023a,b), which represent a highly active 
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Fig. 6. Cumulative density function (CDF) of failure loads of granite and limestone 
Brazilian samples illustrating the effect of the Weibull parameters 𝑚 and 𝜎𝑤 on the 
failure load, as well as the calibrated parameters with a point-dashed line.

Table 2
DEM material and contact model parameters.
 Rock  
 Young’s modulus 77 GPa  
 Poisson’s ratio 0.21  
 Density 2540 kg/m3 
 Steel  
 Young’s modulus 210 GPa  
 Poisson’s ratio 0.3  
 Density 7700 kg/m3 
 Rock−Rock  
 Sliding friction 0.6  
 Coefficient of restitution 0.15  
 Rock−Steel  
 Sliding friction 0.95  
 Coefficient of restitution 0.3  
 Bond  
 Poisson’s ratio 0.25  
 Damping coefficient 1 × 10−4  
 Mode I area 10 N/m  
 Mode II area 10 N/m  

Table 3
Calibrated DEM bond parameters for granite and limestone.
 Parameter Granite Limestone 
 Young’s modulus 43 GPa 46 GPa  
 Tensile strength 38 MPa 28 MPa  
 Cohesion 57 MPa 42 MPa  
 Internal friction 0.8 0.8  

field. Nonetheless, the calibrated result was assumed to be satisfactory 
in capturing the mechanical response of granite and limestone, given 
the experimentally observed variance and in comparison to comminu-
tion modeling, where it is common practice to set the particle stiffness 
lower than the actual rock stiffness to speed up DEM simulations, as 
pointed out by Delaney et al. (2015).

Another important aspect of calibration, alongside curve fitting, 
is ensuring that the simulation adequately reflects what is observed 
in the experiment. Fig.  7(b) illustrates the damage evolution in the 
Brazilian disc. In this visualization, the red cell indicates that all bonds 
9 
Fig. 7. (a) Calibrated force–displacement response of a Brazilian disc of granite and 
limestone, along with the upper and lower measured bounds. (b) Damage evolution in 
a Brazilian disc, where the red cell represents all bonds having failed, and the darkest 
blue cell indicates that no bonds are failing. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

have failed, whereas the darkest blue cell indicates that no bonds have 
failed. Ideally, a splitting crack should be initiated at the center of 
the disc for the tensile test to be accurate. However, this is rarely the 
case as initiation often deviates from the center and may even start 
from the loading plates (Fairhurst, 1964). Cracks originating from the 
loading plates are more common in tests utilizing flat loading plates, 
primarily because of the stress concentration associated with point 
loads. Nevertheless, the predicted crack path in Fig.  7(b) aligns well 
with that in other studies (Ma and Huang, 2018; Wessling et al., 2022).

5.2.1. Mesh dependency
The objective is to simulate the industrial-scale crushing of rocks 

towards comminution, a process involving large-particle systems. Nat-
urally, this imposes constraints on the number of cells in a bonded 
DEM model considering that the critical time step is proportional to the 
particle size (Burns et al., 2019). Additionally, this model is currently 
restricted to a finite array of unique particle shapes (up to approxi-
mately a thousand unique element shapes). In principle, the prediction 
ability will be improved by a more resolved mesh in both the particle 
scale simulation as well as in the system scale. The trade-off between 
local resolution for each particle and the number of feed particles has 
yet to be decided case by case. Therefore, it is relevant to investigate 
the mesh resolution dependency on the fracture response on the particle 
scale. Fig.  8 illustrates the tensile strength of the Brazilian disc plotted 
against the number of cells, indicating that it was within an acceptable 
range for attaining mesh convergence. The meshing parameters used to 
discretize the disc are listed in Table  7.

To extend a given mesostructure from the Brazilian disc to irregular 
geometries, such as rocks, the relative measure 𝑉𝐵𝐷𝐸𝑀∕𝑛𝑐𝑒𝑙𝑙𝑠 was intro-
duced, where 𝑉  represents the volume of the bonded DEM model, 
𝐵𝐷𝐸𝑀
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Fig. 8. Tensile strength of the Brazilian disc as a function of the number of cells, and the post-peak damage distribution in the disc (red cell indicating all bonds have failed, 
darkest blue cell indicating no bonds are failing). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and 𝑛𝑐𝑒𝑙𝑙𝑠 denotes the number of cells. This measure should remain 
consistent across the bonded DEM models, ensuring uniformity in the 
average mesostructure across all geometries. This is refered to as the 
meso constant.

5.2.2. Rate dependency
The Brazilian disc was subjected to various loading rates to ex-

plore the rate-dependent behavior resulting from the term with damp-
ing coefficient 𝛽 in Eqs. (18) and (19). Fig.  9 illustrates the force–
displacement response of the disc for different loading rates, calculated 
as the velocity of the plate divided by the diameter of the disc. The 
previously applied plate loading velocity of 250 mm/s corresponds to 
a loading rate of 5.6 per second. It was observed that as the loading rate 
increases, the softening response of the force–displacement curve tran-
sitions from a rapid to a more gradual drop. This behavior is expected 
because the strain rate is proportional to the damping coefficient in 
Eqs. (18) and (19). The strength of the disc remains unaffected because 
cracks propagate at high speeds during the softening part of the curve, 
often approaching the speed of sound in brittle materials. The rapid 
propagation of cracks in brittle materials is associated with the release 
of the stored elastic energy.

6. Single particle breakage simulations

6.1. FEM simulation results

Once the material parameters 𝑚, 𝜎𝑤, 𝜎𝑐𝑜ℎ were calibrated against 
Brazilian disc experiments, numerical simulations of single particle 
10 
Fig. 9. The force–displacement response of a Brazilian disc of granite under different 
loading rates.

breakage (SPB) tests were used to validate the mechanical response of a 
few randomly selected irregularly shaped samples using the same mate-
rial parameters as in the Brazilian disc simulations. Fig.  10 presents the 
results of the cumulative density function of the failure load for both 
the experiments and simulations of the granite and limestone samples. 
The numerical results were in good agreement with the experimental 
data. In comparison to the results from Brazilian disc simulations, there 



L. Suarez et al. Minerals Engineering 232 (2025) 109488 
Fig. 10. Cumulative density function (CDF) of failure loads of irregularly shaped 
granite and limestone samples comparing experimental outcomes with predictions using 
FEM.

is a higher probability of overestimating the failure load of rock samples 
with FEM simulations.

To obtain an accurate description of the mechanical response and 
fracture pattern, the load–displacement curves were also checked. Fig. 
11(a) shows the experimental and numerical results for the granitic 
rock sample. The overall behavior of the experiments and simula-
tions is similar with an increasing load until failure at approximately 
20 kN, where the load drops suddenly due to the propagation of a 
major crack. The slight instabilities during loading can be attributed to 
crumbling (Tavares, 2007) and local microcracking during the loading 
process. Differences might be caused by disparities in the initial posi-
tioning of the rocks. Fig.  11(b) presents the load–displacement response 
of a limestone rock sample and, as for granite, the FEM simulation 
captures the failure load and overall process.

The fracture pattern was well captured by the simulations (see 
Figs.  11(c) and 11(d)) compared to the experimental results (see Figs. 
2(a) and 2(c)). Small rotations and chipping at the contact points 
during compression experiments were also observed in the simulations. 
Although a higher resolution at the contact points can provide a more 
accurate response, it also negatively affects the computational cost.

Brazilian disc tests included both strong and weak samples, which 
increased the scatter of the failure load. The scatter obtained from the 
numerical simulations is not as large as that obtained from the exper-
imental tests, which can lead to underestimation of the failure load. 
However, the validated data from the single particle breakage tests 
showed great agreement, and the trend in the scatter was well captured. 
From a statistical point of view, geometry plays an important role in the 
prediction of the detailed fracture behavior under compressive loads. 
The reason for this is the relationship between the number of contact 
points, heterogeneity of the mineral material, and random distribution 
of defects. High stresses activate flaws in the material until it reaches 
a critical state in which damage in the material counteracts the ability 
to withstand further loading.

6.2. DEM simulation results

In the discretization of the rocks from granite and limestone, a 
meso constant of 2.2 × 10−7 was utilized, corresponding to 100 cells in 
Fig.  8, to expedite the large-scale crushing simulation, while ensuring 
detailed predictions of the crack path within the rocks. The meshing 
parameters used to discretize the rocks are listed in Table  7. Due to 
the significant computational expense associated with simulating an 
almost quasi-static experiment with an explicit solver, the plate velocity 
applied was 50 mm/s (equivalent to a loading rate of 1.117 s−1 in 
Fig.  9) to accelerate the simulations. Fig.  9 shows that the loading 
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rate does not affect the load-bearing capacity of the DEM model. Figs. 
12(a) and 12(b) show the force–displacement responses of the DEM 
simulations and experiments for granite and limestone, respectively. 
The crack predictions, along with the meshed rock, are displayed after 
the initial fracture event in Figs.  13(a) and 13(b), which were identified 
by the first notable drop in force. It is important to remember that 
the DEM simulations were calibrated against the Brazilian disc test in 
Fig.  7(a) and not against the single particle breakage experiments. The 
predicted slope and maximum force in the DEM simulations exceeded 
the experimental values, whereas results of the crack path predic-
tions, depicted in Figs.  13(a) and 13(b), align with the experimental 
recordings considering the coarse mesh used.

Considering that the calibrated DEM model is less stiff than the 
Brazilian disc, it is a noteworthy observation that the opposite is 
observed in the single particle breakage case. Compared to the Brazilian 
disc, which exhibits a splitting-like crack through the specimen, the 
single particle breakage test shows shape effects in the form of crum-
bling (i.e., local contact damage), a precursor to crack propagation. This 
mechanism can also be confirmed by examining the force–displacement 
response of the single particle breakage test, which is nonlinear, com-
pared to the almost linear response of the Brazilian disc test. The DEM 
model does not capture this local mechanism due to mesh coarseness, 
while the high-resolution FEM model does, which is a trade-off when 
making the DEM scalable. A comparison between FEM, DEM and the 
experiments is presented in Section 7.

7. Discussion and comparison

In Fig.  14, the failure probability distributions from the single par-
ticle breakage tests are shown for the DEM simulations and compared 
with previous FEM and experimental results. A larger variation is 
observed in the simulations compared to the experiments. Overall, the 
DEM simulations tend to overpredict the failure load, whereas the FEM 
results are much closer to the experimental values, although they are 
generally about 10% higher than the experimental results. It is also 
worth noting that the experimental curve differs somewhat from the 
one shown in Fig.  10. In Fig.  10, only the experimental points used to 
validate the FEM model were included in the curve, while in Fig.  14, 
the full experimental dataset is utilized. 

Fig.  15 shows a comparison of the crack patterns for both granite 
and limestone using different methods: DIC, FEM and DEM simulations. 
The major cracks responsible for failure are well captured by both 
numerical methods, although FEM simulations are also able to capture 
secondary cracks. However, comparing the DEM and FEM crack pre-
dictions directly is difficult due to differences in mesh resolution and, 
consequently, model geometry, as well as the current DEM implemen-
tation of averaged damage variables for Voronoi cells, which prevents 
plotting exact crack paths. As a result, only general crack patterns can 
be shown, not precise locations, though the overall trends in crack 
patterns appear to overlap between the two models.

Unlike FEM, where an element stops contributing once the damage 
variable reaches one, in the bonded DEM, the Hertz–Mindlin contact 
model remains. It contributes to the load increase until the first frac-
ture event occurs, resulting in the separation of the rock into two or 
more parts. Additionally, due to the use of a coarse DEM mesh that 
enables upscaling, capturing crumbling (Unland, 2007) (local contact 
damage) is more challenging than in FEM. In the Brazilian test, crum-
bling was not an issue, as indicated by the linear curve up to the 
failure point. Crumbling causes flattening or widening of the contact 
region, redistribution of stresses in the rock, and explains the stiffening 
force–displacement response of the rocks. Capturing this phenomenon 
requires significantly more discrete elements, which would substan-
tially increase the computational cost of the large-scale simulation 
and make it infeasible. Another contributing factor to the crumbling 
mechanism is the non-convex rock shape which was approximated by 
the convex hull method in Fig.  3(a).
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Fig. 11. Qualitative and quantitative results for granite and limestone samples. Figures (a) and (b) present the force–displacement response for both the experiment (obtained 
via an external extensometer) and the simulation of granite and limestone samples, respectively. Figures (c) and (d) present an overlay of the post-fracture pattern from the 
experimental results and the damage obtained from the simulations of granite and limestone samples, respectively.
8. Demonstration of the DEM model for a cone crusher application

As the work in this paper relates to the ’industrial scale’ of a 
comminution system in relation to the particle scale, it is relevant to 
address a suitable definition of the term. The following aspects can be 
considered:

• The machine system size as well as size ratio to the representative 
size of the particle population.

• The number of particles needed in a model of such a system.
• The prediction utility of the performed simulation. The utility 
may either be related to the ability of predicting machine related 
responses such as power draw, wear, capacity etc. It can also 
mean the ability to predict the particle material response in terms 
of particle size distribution, fracture rates, particle shape, or even 
mineral liberation. The ideal ability is naturally that both machine 
and material responses can be predicted with an accuracy enough 
to improve the system or solve a particular problem.

In this section, we demonstrate the proposed methodology on a typical 
cone crusher model used in aggregate production and mining oper-
ations.  The cone crusher machine operates such that the mantle is 
assembled on the main shaft, which is seated in an eccentric bushing 
at the bottom and held by a plain bearing at the top of the shaft. When 
the eccentric bushing is turned, the mantle moves in a nutating motion 
with a pivot point in the top bearing, causing an opening and closing 
compression action between the mantle and the concave surfaces. As 
the particles flow further down in the chamber the distance between 
the surfaces reduces and the particles are sequentially fractured. The 
mantle can be lifted up and down through a hydraulic cylinder, en-
abling control of the close side setting (CSS). The CSS is defined as 
the smallest gap between the mantle and the concave at the end of the 
chamber. The eccentric throw is given by the eccentric bushing and can 
hence not be controlled or adjusted during operation.

The crusher machine model used for the demonstration is a Sandvik 
Hydrocone CH660 with a coarse chamber. The system domain size to 
fit the crusher is approximatly L2 × W2 × H3 meter. The machine 
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Table 4
Parameter settings for the cone crusher simulation case. The DEM parameters for 
granite, which is considered in this case, are listed in Tables 2 and 3.
 Parameter Value Unit  
 Closed side setting 38 [mm] 
 Eccentric throw 26 [mm] 
 Ecentric speed 290 [rpm] 
 Feed size distribution +60/−90 [mm] 
 Concave type Coarse (C) [–]  
 Crusher model CH660 [–]  

and operating parameters are summarized in Table  4. The crusher was 
operated with eccentric speed 290 rpm, close side setting at 38 mm, 
eccentric throw 26 mm and a uniform feed size between +60/−90 mm. 
A choke feeding condition is created by initiating the feed with a plane 
geometry at the choke level position in the chamber for the first second 
of feeding. The plane is then lowered and the crushing is initiated. This 
start sequence allows for a fast reach of steady-state operation. The feed 
particle model of rock 7 made of granite is meshed with 198 Voronoi 
elements and the material and bond model parameters for granite 
seen in Tables  2 and 3 are applied. The results for the demonstration 
simulation can be seen in Fig.  16. The mean power draw is ∼146 kW, 
the mean hydrostatic pressure is 1.22 MPa and the throughput is 199 
tons per hour (tph). In this work, we will not compare the simulation 
results to experimental results since such a scope would suit a sepa-
rate publication. However, the resulting nominal values for mass flow 
throughput, power draw and hydrostatic pressure are in the right order 
of magnitude and well in line with the typical expected values seen in 
the Sandvik manual for the CH660 crusher model.

The calculation of the fragment size distribution from a bonded el-
ement particle model is not trivial. Quist and Evertsson (2016) applied 
an image analysis-based approach to estimate the size distribution. 
Here, an alternative approach is used to identify the connectivity of 
all surviving fragments for each time sample event. The characteristic 
particle size for each fragment is then calculated for the cluster of intact 
Voronoi elements making up a fragment particle. The resulting feed, 
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Fig. 12. Comparison between the force–displacement response of single particle breakage from DEM simulations and experimental curves for (a) granite and (b) limestone.
discharge and Voronoi element particle size distributions are presented 
in Fig.  16. For cone crusher applications it is a rule of thumb that the 
P80 particle size should be within some millimeters of the value of the 
close side setting. Here, the P80 equals 41.2 mm and the CSS is 38 mm, 
which indicates that the simulated crushing response is realistic.

An important observation is that the Voronoi fragment size distri-
bution provides a constraint on the fine end of the discharge product 
size distribution. Furthermore, if a single Voronoi mesh resolution is 
used for all feed particle sizes, the element top size for the largest feed 
size constrains the closed-side setting. A solution to this problem is to 
generate more resolved meshes for the largest feed particles and less 
resolved meshes for the smallest feed particles. This also has the benefit 
of controlling the effective element distribution within a narrow range. 
The computational performance in terms of simulation time was ∼ 500
min per simulated second for the steady-state operation at a time step of 
2.5e−7 s and 119,600 particle elements active in the domain. The mem-
ory allocation on the GPU was ∼ 3600 MB. A system with approximatly 
6 times larger particle population size would be possible on the same 
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graphics card with 24 GB memory available. The model was configured 
with a constant feed rate and a particle destructor domain below the 
crusher; hence, the total cumulative number of elements passing the 
crusher was higher and proportional to the simulation end time. The 
simulation was performed on a workstation with an Nvidia RTX3090 
graphics card and AMD Ryzen 9 7950X 16-core processor. Hence, 
it is deemed that these simulations are feasible from an industrial 
perspective as useful results can be obtained overnight on a high-end 
workstation.

9. Conclusions

The major outcomes of the work can be summarized as follows:

• The calibration of the bonded Voronoi-based DEM model and the 
KST-DFH rock mechanics material model in FEM was performed 
using the Brazilian disc test with a known cylindrical rock shape 
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Fig. 13. The damage distribution in the single particle breakage test after fracture is visualized in DEM simulations, where red cells represent that all bonds have failed, and the 
darkest blue cells indicate that no bonds have failed for (a) granite and (b) limestone. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
Fig. 14. Cumulative distribution of the failure probability for single particle breakage 
for experiment, FEM and DEM.
14 
to capture the actual rock material response.
• DEM and FEM validation against single-particle breakage tests 
with 3D laser-scanned shapes ensured that the rock shapes were 
known in both the models and experiments. The FEM approach 
predicted mechanical responses well and provided detailed frac-
ture patterns. The coarser DEM model satisfactorily predicted the 
overall response, despite mesh coarseness preventing the capture 
of local contact damage. The lack of local mesh resolution in the 
contact points leads to a stiffer response than in the FEM model 
and the experiments, where the material in the contact region is 
allowed to crumble.

• An industrial-sized cone crusher simulation demonstrated that 
the bonded DEM models of the rocks can predict all important 
machine responses at a relevant scale, aligning with the expected 
values for the chosen crusher machine. Full experimental valida-
tion of the cone crusher simulation is omitted for brevity in this 
work.

In future work, the potential to utilize high-resolution FEM pre-
dictions in the further development and calibration of bonded DEM 
models could be explored. This may complement physical experiments, 
particularly in advancing predictive capabilities related to mineral 
lithology and liberation, as the FEM model mesh scale is closer to 
typical ore mineral grain sizes.
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Fig. 15. Comparison of the crack pattern at first fracture for both granite and limestone obtained from DIC, FEM and DEM simulations.

Fig. 16. Compilation of simulation results including simulation snapshot images with particles colored by particle size (top) and velocity (bottom), and size distributions, mass 
flow throughput, power draw and hydrostatic pressure on the right.
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Table 5
Mechanical properties of Brazilian disc specimens. The ultimate tensile strength (UTS) 
was estimated from Eq. (1).
 ID Failure load (kN) UTS (MPa) 
 BD-G-01 10.9 11.0  
 

Gr
an
ite

BD-G-02 15.7 16.2  
 BD-G-03 12.3 12.5  
 BD-G-04 12.9 13.3  
 BD-G-05 13.6 14.0  
 BD-G-06 15.8 16.1  
 BD-G-07 13.0 13.4  
 BD-G-08 11.9 12.0  
 BD-G-09 12.0 12.2  
 BD-G-10 13.8 13.9  
 BD-L-01 9.8 10.0  
 

Li
m
es
to
ne

BD-L-02 10.8 11.2  
 BD-L-03 10.8 11.1  
 BD-L-04 7.9 8.2  
 BD-L-05 9.8 10.3  
 BD-L-06 9.2 8.8  
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Table 6
Failure loads from single particle breakage tests of granite and limestone.
 ID Failure load (kN) 
 SPB-G-01 17.9  
 

Gr
an
ite

SPB-G-02 22.6  
 SPB-G-03 15.7  
 SPB-G-04 28.7  
 SPB-G-05 15.3  
 SPB-G-06 28.7  
 SPB-G-07 14.3  
 SPB-L-01 16.9  
 

Li
m
es
to
ne

SPB-L-02 12.5  
 SPB-L-03 15.5  
 SPB-L-04 16.3  
 SPB-L-05 9.8  
 SPB-L-06 13.1  
 SPB-L-07 14.7  

Table 7
DEM meshing parameters used in Demify: pd is an abbreviation for 
pruning distance.
 Brazilian  
 50 cells 0.0035 pd  
 100 cells 0.003 pd  
 150 cells 0.003 pd  
 200 cells 0.0025 pd  
 250 cells 0.0025 pd  
 300 cells 0.0025 pd  
 350 cells 0.0025 pd  
 400 cells 0.002 pd  
 450 cells 0.002 pd  
 500 cells 0.002 pd  
 SPB granite  
 Rock 1 376 cells 0.0035 pd 
 Rock 2 312 cells 0.0035 pd 
 Rock 3 206 cells 0.0035 pd 
 Rock 4 339 cells 0.0035 pd 
 Rock 5 211 cells 0.0035 pd 
 Rock 6 372 cells 0.0035 pd 
 Rock 7 198 cells 0.0035 pd 
 SPB limestone  
 Rock 1 353 cells 0.0035 pd 
 Rock 2 280 cells 0.0035 pd 
 Rock 3 381 cells 0.0035 pd 
 Rock 4 408 cells 0.0035 pd 
 Rock 5 243 cells 0.0035 pd 
 Rock 6 349 cells 0.0035 pd 
 Rock 7 298 cells 0.0035 pd 
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