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A B S T R A C T 

The frequent elements problem, a key component in demanding stream-data analytics, involves selecting elements whose occurrence exceeds a user-specified 
threshold. Fast, memory-e˙icient 𝜖-approximate synopsis algorithms select all frequent elements but may overestimate them depending on 𝜖 (user-defined parameter). 
Evolving applications demand performance only achievable by parallelization. However, algorithmic guarantees concerning concurrent updates and queries have 
been overlooked. We propose Query and Parallelism Optimized Space-Saving (QPOPSS), providing concurrency guarantees. A cornerstone of the design is a new 
approach for the main data structure for the Space-Saving algorithm, enabling support of very fast queries. QPOPSS combines minimal overlap with concurrent 
updates, distributing work and using fine-grained thread synchronization to achieve high throughput, accuracy, and low memory use. Our analysis shows space 
and approximation bounds under various concurrency and data distribution conditions. Our empirical evaluation relative to representative state-of-the-art methods 
reveals that QPOPSS’s multithreaded throughput scales linearly while maintaining the highest accuracy, with orders of magnitude smaller memory footprint.

1. Introduction

Efficient data synopses are a core component of many applica

tions, including online processing of events, click-streams, web log 
analysis, natural language processing, heavy flow detection in com

puter networks, dimensionality reduction in machine learning (ML), and 
more [10,12,24,32,33]. In essence, data synopses can be used to answer 
queries pertaining to continuous data streams, and they give (often very 
close to accurate) answers with low memory usage and fast processing. 
For example, on a stream of web page clicks from a vast number of users, 
one may estimate unique users clicking a specific link, the most active 
users, quantiles describing the time spent on a web page, and more.

In the literature, there is an established volume of knowledge on 
data synopses [14,10,19,41,30,33]. As the rate at which streaming data 
is produced increases, new approaches that incorporate computational 
parallelism are required to provide continuous and efficient process

ing [11,43,37,38,47]. However, most prior work has not considered the 
impact of concurrent update and query operations on query correctness. 
This gap in the literature means that the way such algorithms perform 
(in terms of processing timeliness and accuracy) in a parallel execution 
is largely unclear.
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In this work, we target the problem of identifying the frequent ele
ments of a stream, i.e., those stream elements whose occurrence exceeds 
a user-specified threshold. The problem has applications in continuous 
monitoring, data processing, and ML pipelines, as discussed in related 
literature [9,16,21,29,40,42,44]. One intuitive application is in network 
traffic monitoring. An IP network flow identifies a connection and is 
represented by a 5-tuple of source and destination IP addresses, source 
and destination port numbers, and protocol. A small number of dis

tinct flows, dubbed elephant flows, tend to make up a large share of 
the bandwidth consumption; tracking them is useful for accounting and 
statistics [18], detecting anomalous patterns such as DDoS attacks [22], 
and for dynamically scheduling network traffic in software-defined net

works [3]. An exact answer requires tracking each unique flow. Due 
to the massive number of bit-combinations possible, this can consume 
memory space on the order of exabytes, making it an impractical ap

proach. If a small and controllable error is acceptable, the memory 
consumed can be drastically reduced by using a synopsis data structure. 
Moreover, high-rate streams place demands on the per-packet process

ing time (PPT). Backbone routers, which process vast amounts of data, 
e.g., the optical carrier bandwidth specifications OC-192 and OC-768, 
can require a PPT of less than 100 ns and 25 ns, respectively [28]. 
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Achieving such low PPT, in the presence of a high incoming packet rate, 
is in some cases only possible by parallelism.

Much of the previous work on parallelizing frequent elements algo

rithms [17,9,29] addresses performance on only updates, without eval

uating the effects of concurrent queries. Understanding performance 
under concurrent updates and queries is crucial, since streaming queries 
often require real-time answers without interrupting high-rate process

ing, implying a trade-off between timeliness and accuracy. Considering 
this need, we make the following contributions:

• We introduce Query and Parallelism Optimized Space-Saving

(QPOPSS), a novel extension of the Space-Saving algorithm [33], 
designed to support concurrent updates and queries while main

taining high approximation accuracy. QPOPSS balances between 
efficient memory use and real-time processing, a key advancement 
in handling high-rate streams with parallelism.

• A major insight of our work is the design of the Query Optimized 
Space-Saving (QOSS), which enables low-latency bulk queries in the 
Space-Saving algorithm. This, in turn, minimizes update overlaps, 
ensuring higher accuracy under concurrent operations, an issue of

ten overlooked in previous work.

• We present a comprehensive analysis of the QPOPSS’s properties, 
examining its performance under various concurrency and data dis

tribution conditions. We establish novel space and approximation 
bounds and provide insights into the efficiency and accuracy trade

offs inherent in parallel data stream processing, an area that has 
been largely unexplored in existing research.

• Our extensive evaluation of the open-source implementation [26] 
uses real-world and synthetic high-rate data to explore trade

offs in parallelism, accuracy, memory consumption, and through

put. Through empirical comparison with state-of-the-art methods 
(e.g., Topkapi [29] and PRIF [44]), we demonstrate that QPOPSS 
achieves orders of magnitude lower memory usage, sometimes re

quiring 100x fewer bytes than other methods, while offering supe

rior accuracy and linear speedup.

The rest of the paper is structured as follows: Section 2 covers the 
background, a description of the system model, and the basic metrics 
of interest. Section 3 analyzes the problem at hand, motivating a novel 
balanced approach, and outlines the associated challenges relative to the 
state of the art. For QPOPSS, we give an overview and its algorithmic 
implementation in Section 4 while Sections 5 and 6 cover its analysis 
and empirical evaluation. We discuss other related work and present our 
conclusions in Sections 7 and 8, respectively.

2. Preliminaries

In an unbounded stream of elements  ∶= 𝜏1, 𝜏2, ..., 𝜏𝑁 , ... for any 𝑁 , 
we say that an element 𝑒 ∈ 𝑈 has a frequency count 𝑓𝑁 (𝑒) = |{𝑗|𝜏𝑗 =
𝑒}| after 𝑁 elements have been processed, where 𝑈 is the universe 
of possible elements. From this point on, we assume that  contains 
only elements of positive unit weight, also known as the cash-register 
model [20].

The 𝜙-frequent elements problem is concerned with selecting the ele

ments of a stream with a frequency count above 𝜙𝑁 , where 𝜙 ∈ [0,1]. 
To find the 𝜙-frequent elements of an arbitrary stream using a deter

ministic algorithm, 𝑂(|𝑈 |) space is necessary [27,30]. For applications 
where an approximation is acceptable, we can relax the exact problem 
to the 𝜖-approximate 𝜙-frequent elements problem,1 defined in [31] as fol

lows.

1 From this point on, we sometimes refer to the 𝜖-approximate 𝜙-frequent ele
ments problem as the frequent elements problem.

Definition 1. Given a stream  of 𝑁 elements, the 𝜖-approximate 𝜙

frequent elements problem is to report a set 𝐹 containing all elements 
𝑒 ∈ 𝑈 with 𝑓𝑁 (𝑒) >𝑁𝜙 and no element 𝑒 ∈ 𝑈 with 𝑓𝑁 (𝑒) <𝑁(𝜙 − 𝜖), 
where 0 < 𝜖 ≤ 𝜙 < 1.

Accordingly, 𝐹 must contain all elements with frequency of occur

rence higher than 𝑁𝜙 but may also include elements that occur at least 
𝑁(𝜙− 𝜖) times due to approximation-induced errors.

Also specified in [31], a closely related definition concerns the esti

mated frequency count of an individual element.

Definition 2. Given a stream  of 𝑁 elements, an 𝜖-approximate fre
quency estimation denoted 𝑓𝑁 (𝑒), of the true frequency count of 𝑒∈𝑈 is 
bounded: 𝑓𝑁 (𝑒) ≤ 𝑓𝑁 (𝑒) ≤ 𝑓𝑁 (𝑒) +𝑁𝜖.

In other words, the estimated count of an element is bounded from 
above by the sum of the elements’ actual frequency count and a fraction 
of the stream length, as decided by the 𝜖-factor.

Algorithms that report the 𝜖-approximate 𝜙-frequent elements de

scribed in Definitions 1 and 2 generally provide at least two operations:

• Update(e,w): element 𝑒 is processed, registering its occurrence in 
the stream. If weighted updates are supported, then 𝑤 is the number 
of simultaneous arrivals of 𝑒 to update the data structure with.

• Query(𝑁,𝜙): Returns 𝐹 from Definition 1 with estimated fre

quency count of each individual element 𝑒 ∈ 𝐹 adhering to the 
bounds in Definition 2.

These algorithms can be distinguished into two classes:

Counter-based Algorithms: Typically deterministic and keep a fixed

size set that contains tuples of element and their estimated occurrences 
in the stream. When an individual element is observed, its associated 
estimated occurrence is incremented. The sets’ fixed size demands a 
tactic for managing the occurrences of an element not in the set while 
the set is full. The tactic often leads to an incurred error but can be 
chosen to minimize the error depending on the area of use. Keeping 
more counters reduces the error and vice versa, highlighting the memory 
space/error trade-off, present in all synopsis data structures. Prominent 
such algorithms are the Frequent (also known as the Misra-Gries) Algo

rithm [34,18,27], Lossy Counting [31], and Space-Saving [33].

Sketch-based Algorithms: Utilize randomized hashing to compress the 
stream state into a 1- or 2-dimensional array of counters. Updating 
the sketch involves computing a hash value for the incoming element. 
A counter corresponding to the hash value is then, e.g., incremented 
or decremented, concluding the update operation. Since the same hash 
value can be computed for multiple different elements (i.e., hash colli

sions), the compressed stream state is encoded in the counters. Element 
queries are carried out by computing e.g. the minimum or median, 
on these counters. Heap data structures can be used to supplement 
sketches and track frequent elements. Similar to counter-based algo

rithms, sketch-based ones imply a memory space/error trade-off. In

fluential sketch-based algorithms that can form the components of a 
solution to the frequent elements problem include the Count-Min Sketch 
[15] and Count Sketch [10].

Comparison: Counter-based algorithms demonstrate superior accuracy 
per memory byte when processing a continuous stream of positive 
updates compared to sketch-based algorithms [25]. Moreover, Space

Saving has been shown to guarantee better accuracy than both Frequent 
and Lossy Counting while having better or equivalent throughput com

pared to them [14].

Space-Saving For self-containment, we summarize the basics of Space

Saving [33] for the 𝜖-approximate frequent elements problem: a set of 
𝑚 tuples of the form (𝑒, 𝑓𝑁 (𝑒)) are kept. If an element 𝑒 that is in the set 
arrives, the associated estimated count 𝑓𝑁 (𝑒) is incremented. If 𝑒 is not 
in the set, and the set contains fewer than 𝑚 tuples, then (𝑒,1) is added 
to the set; if the set contains 𝑚 tuples, though, the one with the least 
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counter, (𝑒𝑚𝑖𝑛, 𝑓𝑁 (𝑒){𝑚𝑖𝑛}) is identified, and the tuple (𝑒𝑛𝑒𝑤,𝑓𝑁 (𝑒)𝑚𝑖𝑛+1)
takes its place, replacing 𝑒𝑚𝑖𝑛 and incrementing the estimated count by 
1. When queried, the tuples with estimated frequency > 𝑁𝜙 are out

put. Setting the number of counters to 𝑚 = 1
𝜖

ensures that the set of 
𝜖-approximate 𝜙-frequent elements is returned [33]. 
Concurrency model: We consider a multicore system, with executions 
threads 𝑡1, ..., 𝑡𝑇 , that do not arbitrarily fail or halt, and are capable 
of communicating using asynchronous shared memory, supported by a 
coherent caching model, through which a thread can access a shared vari

able not in the memory of the core where the thread is running. Each 
thread can perform one of two operations at a time, i.e., do an update, 
by consuming an item from the input stream, or respond to a frequent 
elements query.

Performance metrics: These are about both time/space efficiency and 
error [14,30,33]. Key time/space metrics are latency (duration of opera

tions), throughput (number of updates or queries carried out per unit of 
time), scalability (the ability to utilize efficiently multiple threads), and 
consumed memory. Regarding error metrics, the aforementioned 𝜖 factor 
can be tuned to impact the precision (fraction of relevant elements re

ported out of all reported elements), recall (fraction of relevant elements 
reported out of all relevant elements), and average relative error (the 
average of all per-element absolute estimation errors divided by each 
actual in-stream occurrence). Further, we need to consider the effects 
of concurrency on estimation error, which we discuss in the following 
section, analyzing key trade-offs.

3. Problem analysis

Several works present designs that leverage parallelism for the fre

quent elements problem [44,29,9,16,40]. The previous designs can be 
distinguished into those based on Global Data Structure and Thread-local 
Data Structures. We discuss their associated trade-offs and describe the 
problem of query accuracy as it relates to concurrency. Lastly, we mo

tivate the need for a new approach.

3.1. Global data structure

This design uses a shared data structure that all threads access for 
querying and updating. As a result, efficient synchronization methods 
are crucial to the algorithm’s design. The memory footprint is similar 
to sequential frequent elements algorithms, with any excess memory 
being attributed to inter-thread synchronization. The main benefit is 
that a query can be answered by accessing the single synopsis tracking 
the 𝜖-approximate 𝜙-frequent elements.

The Cooperative Thread Scheduling Framework (CoTS) [16] and its 
multi-stream extension [17] belong to this category. The design allows 
threads to delegate their updates to the single thread currently accessing 
the shared data structure. The works lack discussion of the effect of 
overlapping updates and queries on accuracy and rely on the theoretical 
bounds of the sequential Space-Saving algorithm.

3.2. Thread-local data structures

These designs utilize one synopsis data structure per thread. Since 
each thread only updates its local data structure, the update rate scales 
well with the number of threads and can be carried out without syn

chronization. Due to data structure duplication, these designs sacrifice 
accuracy guarantees and use memory proportional to the number of 
threads, exceeding that of a sequential solution. Moreover, to perform 
a query, a thread must merge multiple synopses, which can become a 
major source of latency with a high number of threads.

The Topkapi sketch [29] and the parallel algorithm in [9] utilizing 
Space-Saving, follow this approach; worth noting is that neither of them 
supports overlapping queries and updates. The PRIF algorithm in [44] 
allows overlapping queries and updates. Its memory-intensive design 
features several thread-local data structures that periodically update a 

single large data structure that serves as the final synopsis. While the 
memory/accuracy trade-off is rigorously examined, query throughput 
and concurrency guarantees are not discussed.

3.3. Accuracy and consistency

Since synopsis queries target approximate output, it can be observed 
that strict consistency requirements and associated synchronization can 
induce an overly excessive, partly unnecessary overhead in the con

current setting. Works on concurrency-aware semantics discuss notions 
such as regularity, intermediate value linearizability, 𝑘-out-of-order re

laxation and more [23,35,37,38]. These specifications model operations 
on objects that return values complying with ``observing'' associated 
subsets of updates, relative to the sets implied by linearizability or se

quential consistency. Such concurrency models inspire further analysis 
of accuracy and consistency for queries overlapping updates.

3.4. Need for a balancing approach

The aforementioned categories represent two contrasting perspec

tives. First, the global-data structure can be scanned quickly, enabling 
high query throughput. However, that single data structure can become 
detrimental under high-rate streams processing, due to synchronization 
overhead. Secondly, the thread-local approach allows for high update 
throughput and scalability since multiple threads can process stream el

ements in parallel. However, the frequent elements are scattered across 
several distinct data structures that occupy precious bytes of memory 
and require latency-inducing assembly upon querying.

Clearly, there is a need for a concurrent approach to the frequent 
elements problem that balances and preferably combines, to a large ex

tent, the properties of both categories favorably: a high update/query 
throughput, low memory space, high accuracy, and low query latency 
solution to the highest possible extent. Moreover, an essential missing 
part in the literature is a thorough analysis (both theoretical and empir

ical) of the effects of overlapping updates and queries. This analysis can 
serve as a tool for further exploration of the involved trade-offs. To this 
end, we identify a set of challenges in designing a balanced approach, 
namely to enable:

[C1] high query and update throughput without impacting query la

tency;

[C2] parallelism without an inherent impact on memory and accuracy;

[C3] reasoning about accuracy guarantees in the presence of overlap

ping updates and queries.

We discuss how we address these challenges in the following section, 
where we present our method. The properties of our proposed method 
regarding challenge [C3] are further discussed in Section 5.

4. Query and Parallelism Optimized Space-Saving 

In this section, we present our proposed method, an accuracy

preserving multithreaded design for finding the frequent elements of 
a stream, supporting concurrent updates and queries. Due to the prop

erties of Space-Saving as mentioned in Section 2, we chose it as a com

ponent in our design, hereafter referred to as Query and Parallelism 
Optimized Space-Saving (QPOPSS).

We begin with an overview of the QPOPSS design and its compo

nents along with some auxiliary concepts, followed by our sequential 
Space-Saving algorithmic implementation, with latency optimizations 
as motivated in Section 3.4. Finally, we describe both the update and 
query procedure of QPOPSS in detail.

4.1. Design overview

Addressing [C1]: We present our proposal to reduce query latency 
and improve query throughput drastically, namely the Query Optimized 
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Space-Saving (QOSS) algorithmic implementation, that diminishes over

laps of queries with concurrent updates. A central element of Query 
Optimized Space-Saving is the min-max heap data structure [5], through 
which we can easily find both the element with the least count, which is 
essential to the Space-Saving update procedure, and the elements with 
the largest counts, promoting high query throughput. This is achieved 
as the min-max heap groups elements with similar counts together, al

lowing for their swift selection during a query. 
Addressing [C2]: For maintaining accuracy and space guarantees in a 

concurrent setting, we identified that domain splitting [43] and dele

gating responsibility for a subset of the domain of possible elements 
to each thread through fixed-size, bounded filters can benefit Space

Saving’s accuracy and memory efficiency, as we show in Section 5. This 
implies a new challenge regarding performing a global query over parts 
of the data structure maintained by different threads; we explain how 
we address this through efficient synchronization in section 4.5. 
Addressing [C3] -- in conjunction with [C1]: Regarding concurrent updat

ing, we build on a thread-cooperation technique, shown in [43], that 
promotes thread-local updates to a large extent. We extend it to support 
global queries, which we describe with proper context in the upcom

ing subsection 4.4. Regarding concurrent querying, a lightweight query 
procedure leads to minimal contention on the QOSS algorithm data 
structures in memory, in conjunction with buffered updates. Further

more, the risk of overlapping thread access is reduced, promoting high 
throughput and low latency. We analyze the consistency-related impli

cations of our query method in Section 5. 

4.2. Auxiliary concepts

Besides query optimization that targets parallelism-aware accuracy, 
QPOPSS builds on two concepts from [43], which we reiterate here, for 
self-containment.

Domain Splitting partitions 𝑈 , the input domain, and distributes own

ership to each of the 𝑇 threads, using the function 𝑜𝑤𝑛𝑒𝑟 ∶𝑈 → {1..𝑇 }, 
with 𝑈𝑖 = {𝑒 ∈𝑈 | 𝑜𝑤𝑛𝑒𝑟(𝑒) = 𝑖} denoting the subdomains. This can be 
implemented using a simple hash function, such as modulo: 𝑜𝑤𝑛𝑒𝑟(𝑒) = 𝑒 
mod 𝑇 .

Delegation Filters facilitate efficient inter-thread communication by 
buffering elements owned by other threads. Full filters are handed to 
the thread owning the contained elements. For each of the 𝑇 dispatched 
threads, a series of 𝑇 Delegation Filters are reserved for each thread, 
arranged in a 𝑇 × 𝑇 matrix, bounding the consumed space. Delegation 
filters are small and fixed in size, ensuring a low memory footprint.

At this point, we depart from the approach taken in [43] and describe 
the foundations of our method in the following subsections, starting with 
our query-optimized Space-Saving algorithmic implementation in the 
following subsection.

4.3. Query Optimized Space-Saving 

Emphasizing improved query processing timeliness, we propose our 
Query Optimized Space-Saving (QOSS) algorithmic implementation of 
Space-Saving. QOSS retains the accuracy guarantees and memory re

quirements of Space-Saving while using optimized underlying data 
structures and query procedures.

Efficient implementations of Space-Saving include the Space-Saving 
Linked List (SSL) and Space-Saving Heap (SSH), as evaluated in [14]. SSL, 
similar to the Stream-Summary in [33], maintains a linked list sorted by 
estimated frequency. SSH, on the other hand, stores elements in a min

heap of size 𝑚, enabling retrieval of the least frequent element in 𝑂(1)
time. While SSH is slightly slower than SSL, it requires significantly less 
memory and supports weighted updates, which SSL does not. Weighted 
updates allow multiple occurrences of an element to be processed at 
the same cost as a single update, making SSH the preferred choice in 
weighted settings [4], as required in our work.

Fig. 1. A binary min-max tree with alternating levels. The dashed arrows depict 
the traversal order during a QOSS query.

However, a notable shortcoming of SSH is that answering a query re

quires traversing an array of size 𝑚. During this traversal, each element’s 
count is compared to a threshold to determine if it belongs to the output 
set, resulting in a time complexity linear in 𝑚. 

To alleviate this shortcoming and address [C1] of Section 3.4, the 
Query Optimized Space-Saving (QOSS) keeps a min-max heap [5] data 
structure of size 𝑚 with the counter count satisfying that:

• at an even level (min-level) it is less than all of its descendants;

• at an odd level (max-level) it is greater than all of its descendants.

The min-max heap allows: a) finding the least element in 𝑂(1), which is 
essential for performing update operations quickly, and b) performing 
a query in 𝑂(|𝐹 |) time, where |𝐹 | is the number of frequent elements 
from Definition 1. The number of elements in 𝐹 is commonly signif

icantly less than 𝑚, especially when the input stream is skewed. This 
modification introduces a slight per-element processing overhead. This 
overhead is overshadowed by the overall throughput gain when queries 
are repeatedly carried out while high-rate streams are processed.

Algorithm 1 shows the QOSS pseudocode and a description of it fol

lows here.

Initialization: As seen in Algorithm 1 lines 1 through 5, the number 
of counters, 𝑚, is determined using the desired 𝜖-factor. In line 3, steps 
ensure that each node has either 3 or 0 grandchildren. A counter is a 
tuple consisting of an element identifier 𝑒 and an estimated count 𝑓𝑁 (𝑒). 
The 𝑚 counters are organized in a bounded-size tree structure as a min

max heap denoted 𝐻 (see line 4). Counters can be accessed through a 
fixed-size hash map 𝑀 , initialized at line 5.

Updates: Lines 6 through 12 detail the update procedure. If 𝑒 is found 
through hash-table lookup, 𝑓𝑁 (𝑒) is incremented by 𝑤, the weight of the 
update. Otherwise, 𝑒 takes the place of the counter with the least count, 
𝑓𝑁 (𝑒)𝑚𝑖𝑛, which is incremented by 𝑤. If the min-max heap property 
of 𝐻 is violated, it will be restored through at most 𝑂(𝑙𝑜𝑔(𝑚)) swaps 
involving (𝑒, 𝑓𝑁 (𝑒)).
Queries: The query procedure leverages the min-max heap to min

imize unnecessary counter-threshold comparisons. It prioritizes max

level counters first, as they have higher counts and are more likely to 
belong to 𝐹 (see Fig. 1). A stack is used for traversal, while a set 𝑉
tracks visited parent and grandparent counters when traversing min

levels (lines 15-16). Traversal begins with the children of the root 
counter, which hold the largest counts (line 17). If a max-level counter 
exceeds 𝑁𝜙, it is added to the output (lines 21-23), and traversal con

tinues. Otherwise, since all descendant counters must be below 𝑁𝜙, 
traversal stops. When reaching the lowest max-level, traversal proceeds 
upwards through min-levels until returning to the root counter (lines 
31-32, 34-36). 
Query Time Complexity: With a binary min-max heap, a query requires 
at most 5|𝐹 | counter comparisons. This follows from selecting any sub

tree rooted at 𝑟 ∈ 𝐹 . As stated in line 26, each subtree incurs at most 
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Fig. 2. Overview of the update and query operations. Thread 𝑡1 transfers full filters to the owner-threads for subsequent insertion into the reserved thread-local QOSS 
data structures. Queries are mutually exclusive with insertions and gather the subset of frequent elements tracked by each thread into 𝐹 .

Algorithm 1 Algorithmic implementation of the Query Optimized 
Space-Saving (QOSS) algorithm using a binary min-max heap. 

1: function 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑄𝑂𝑆𝑆(𝜖 ∈ [0,1])
2: 𝑚← 4⌊ ⌈𝜖−1⌉

4 ⌋+ 3 ⊳ All nodes have 3 or 0 grandchildren

3: let 𝐻 be a bounded min-max heap of 𝑚 counters initialized to (∅,0)
4: let 𝑀 be a bounded hash map of 𝑂(𝑚) pointers to counters

5: function 𝑈𝑝𝑑𝑎𝑡𝑒𝑄𝑂𝑆𝑆(𝑒 ∈𝑈 , 𝑤∈ℕ)

6: if (𝑒, 𝑓𝑁 (𝑒)) ∈ M then

7: 𝑖← M.Find(e)

8: 𝐻[𝑖]← (𝑒, 𝑓𝑁 (𝑒) +𝑤)
9: else

10: (_, 𝑓𝑁 (𝑒)𝑚𝑖𝑛)←𝐻[1]
11: 𝐻[1]← (𝑒, 𝑓𝑁 (𝑒)𝑚𝑖𝑛 +𝑤)
12: Ensure min-max heap property of 𝐻 is maintained

13: function 𝑄𝑢𝑒𝑟𝑦𝑄𝑂𝑆𝑆(𝜙∈ [0,1], 𝑁 ∈ℕ)

14: initialize empty stack

15: V ←∅
16: Begin by pushing the two max counters {2,3} to the stack

17: while stack is not empty do

18: 𝑖 ← stack.pop()

19: (𝑒, 𝑓𝑁 (𝑒))←𝐻[𝑖]
20: if 𝑓𝑁 (𝑒) >= 𝜙𝑁 then

21: Output (𝑒, 𝑓𝑁 (𝑒))
22: traverse_next_level()

23: function 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙
24: if ⌊log2(𝑖)⌋ ≡ 1 mod 2 then ⊳ i is on a max-level

25: if 4𝑖+ 3 <=𝑚 then ⊳ i has grandchildren

26: push 4𝑖+ 𝑗, 𝑗 ∈ {0,1,2,3} to stack

27: else

28: if 2𝑖+ 1 <=𝑚 then ⊳ i only has children

29: push 2𝑖+ 𝑗, 𝑗 ∈ {0,1} to stack

30: else ⊳ 𝑖 has no children or grandchildren

31: push ⌊ 𝑖 
2
⌋ to stack if ⌊ 𝑖 

2
⌋ ∉ 𝑉

32: 𝑉 ← 𝑉 ∪ {⌊ 𝑖 
2
⌋}

33: else ⊳ i is on a min-level

34: if ⌊ 𝑖 
4
⌋ > 0 then ⊳ i has a grandparent

35: push ⌊ 𝑖 
4
⌋ to stack if ⌊ 𝑖 

4
⌋ ∉ 𝑉

36: 𝑉 ← 𝑉 ∪ {⌊ 𝑖 
4
⌋}

four counter comparisons. Summing over all 𝑟 ∈ 𝐹 results in a total of |𝐹 |+ 4|𝐹 | = 5|𝐹 | comparisons. This optimization significantly reduces 
the number of comparisons, especially in practice, where input streams 
often exhibit skewed distributions

The effects of the QOSS improvements are studied in Section 6, com

paring the algorithmic implementation to a baseline and evaluating the 
query latency and throughput. A better query latency implies less over

lapping with concurrent updates, facilitating improved accuracy.

Algorithm 2 Update operation on thread 𝑗. Constants 𝐷 and 𝐸 are 
user-defined and describe the filter size and the maximum number of 
processed elements per thread before handover.

1: function 𝑈𝑝𝑑𝑎𝑡𝑒𝑄𝑃𝑂𝑃𝑆𝑆(Element e)

2: 𝑖← Owner (e)

3: 𝐹 𝑖𝑙𝑡𝑒𝑟← 𝑇ℎ𝑟𝑒𝑎𝑑𝑠[𝑖].𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐹 𝑖𝑙𝑡𝑒𝑟𝑠[𝑗]
4: (this 𝐹 𝑖𝑙𝑡𝑒𝑟 is reserved for thread 𝑗)
5: if 𝑒 ∈ Filter then

6: Increment count of e
7: else

8: Add e in Filter

9: Set count of e to 1
10: Increment 𝑁[𝑗] by 1
11: Increment 𝑐 by 1
12: (𝑐 counts updates since last handover)

13: if 𝐹 𝑖𝑙𝑡𝑒𝑟.𝑠𝑖𝑧𝑒 =𝐷 or 𝑐 =𝐸 then

14: Push the reserved filters of 𝑗 to the MPSC-stack of the respective 
owners

15: while There are unflushed filters reserved for 𝑗 do

16: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑢𝑝𝑑𝑎𝑡𝑒𝑠()
17: 𝑐← 0

4.4. Concurrent updates

This section provides a detailed discussion of the update procedure 
in the presence of concurrency, which consists of multiple algorithmic 
components arranged in a pipeline (see Fig. 2). An arbitrary thread 𝑗 that 
processes an input-element 𝑒, owned by a thread 𝑖 = 𝑜𝑤𝑛𝑒𝑟(𝑒) (line 2, 
Algorithm 2) inserts 𝑒 in the Delegation Filter of thread 𝑖 that is reserved 
for thread 𝑗 (lines 3-9).

If the element is not in the filter, it is added with a count of one; oth

erwise, its count is incremented. The counters 𝑁[𝑗] (total insertions by 
thread 𝑗) and 𝑐 (insertions since thread 𝑗 last handed over its filter) are 
both incremented (lines 10--11). The filters may be implemented using 
two arrays, one for elements and one for counts, where corresponding 
entries share the same index (similar to Content-Addressable Memory 
[36]). The length of the arrays is 𝐷. If 𝐷 is kept small, the count of an 
element can be found efficiently by a simple linear search.

To improve scalability and prevent filter staleness (discussed further 
in the next subsection), elements are inserted into Delegation Filters 
until either (1) a filter reaches its capacity of 𝐷 elements or (2) the 
thread has processed 𝐸 elements since the last handover. When ei

ther condition is met (line 11), the thread hands over all filters to their 
respective owners (line 12). Handing over and flushing all filters pe

riodically, especially in a skewed input distribution, enhances query 
accuracy since filter element counts are excluded from the query re

sult (see Section 4.5). A filter is handed over to the owner by pushing 
it to a concurrent multiple-producer single-consumer (MPSC) stack re
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Algorithm 3 Processing pending updates on thread 𝑖.
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑢𝑝𝑑𝑎𝑡𝑒𝑠

2: if Threads[i].MPSC-Stack empty then

3: return

4: if Try-lock of Threads[i] taken then

5: return

6: while Threads[i].MPSC-Stack is not empty do

7: 𝐹 𝑖𝑙𝑡𝑒𝑟← 𝑇ℎ𝑟𝑒𝑎𝑑𝑠[𝑖].𝑀𝑃𝑆𝐶-𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝()
8: for 𝑒𝑎𝑐ℎ (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑒 ,𝑊 𝑒𝑖𝑔ℎ𝑡 𝑤) ∈ 𝐹 𝑖𝑙𝑡𝑒𝑟 do

9: Threads[i].UpdateQOSS(e,w)

10: 𝐸𝑚𝑝𝑡𝑦 𝐹 𝑖𝑙𝑡𝑒𝑟
11: 𝐹 𝑖𝑙𝑡𝑒𝑟.𝑠𝑖𝑧𝑒← 0
12: Threads[i].mutex ← 0

Algorithm 4 Query operation on thread 𝑗.
1: function 𝑄𝑢𝑒𝑟𝑦𝑄𝑃𝑂𝑃𝑆𝑆(𝜙∈ [0,1])
2: 𝑁 ← 𝑠𝑢𝑚(𝑁𝑖), 𝑖∈ {1..𝑇 }
3: while there exists QOSS𝑖, 𝑖∈ {1..𝑇 } not yet queried do

4: if Try-lock of Threads[i] taken then

5: Try another thread

6: else

7: Threads[i].QueryQOSS(𝜙,𝑁)

8: Release try-lock of Threads[i]

9: process_pending_updates()

10: Output frequent elements

served for each thread.2 Thread 𝑖 processes its own pending updates until 
all its filters are marked empty (lines 15-16) before it resets 𝑐 to zero 
(line 17) and processes the next input.

Processing pending updates: Each thread periodically checks for ready 
filters to process in its MPSC stack, the absence of which causes imme

diate function termination (lines 2-3 in Algorithm 3). Line 2 exhibits 
behavior typical of fine-grained synchronization, where thread 𝑖 may 
need to retry processing pending updates. However, this is not an issue, 
as threads only process pending updates when no other useful work is 
available. Specifically, when thread 𝑖 checks if the MPSC stack is empty 
while thread 𝑗 has just pushed an update, two outcomes are possible: (1) 
if the change has propagated, thread 𝑖 detects the update and processes 
it immediately without delay; (2) if the change has not yet propagated, 
thread 𝑖 does not detect the update and does not proceed, but will detect 
the update next time it processes its pending updates.

Inversely, ready filters are processed given the successful acquisition 
of a thread-specific try-lock mutex (lines 4-5), preventing possible data 
races due to concurrent updates and queries (see Section 4.5) operations 
that target the thread-local QOSS instance. Contention on the lock is 
low, as it is only accessed when the MPSC stack contains a ready filter 
or when a query is carried out, and can be implemented with a simple 
test-and-set lock. The elements of each filter are fed as weighted updates 
to the QOSS instance (lines 8-9), and the filter is marked as empty (lines 
10-11). Finally, the lock is released (line 12), allowing a querying thread 
to read the QOSS data structure.

4.5. Concurrent frequent elements queries

Any of the 𝑇 dispatched threads may answer a frequent ele

ments query, while other threads may concurrently perform updates 
or queries. The implications of this are discussed in Section 5. A query 
aims to report the set of frequent elements from Definition 1. To calcu

late the threshold value 𝑁𝜙, needed to efficiently select the frequent 
elements, the query procedure begins by estimating the stream length, 
𝑁 . This value is computed as the sum of the elements processed by each 
thread, 𝑁[𝑖] (line 2 in Algorithm 4). To collect the subset of frequent 

2 Note that the number of dispatched threads 𝑇 and the filter size 𝐷 bound 
the memory allocated to the MPSC stack associated with a thread to be 𝑂(𝑇𝐷).

elements tracked by each thread-local QOSS algorithm, the querying 
thread tries to acquire the test-and-set lock associated with each thread 
(line 3). Once the lock of a thread has been acquired, a query is issued 
to the corresponding QOSS algorithm (line 7).

Recall that the try-lock acquisition is a non-blocking action; if a 
thread cannot acquire it immediately, it will simply retry later. Due to 
the aggregation of elements in Delegation Filters, contention on these 
accesses is low. Meanwhile, the thread can do other useful work, namely 
processing its pending updates if any (line 9). Furthermore, in the QOSS 
algorithmic implementation (section 4.3), a query is processed in 𝑂(|𝐹 |)
time, where |𝐹 | is the number of frequent elements, further reducing the 
contention.

Query scalability enhancement: We identify a performance tradeoff in 
the design of Delegation Filters: During a query, buffered element occur

rences in the Delegation Filters can be ignored to improve query speed 
and overall throughput. However, this introduces a slack between when 
an element is first observed and subsequently reported in a query. By 
bounding the maximum sum of element counts in a Delegation Filter by 
a constant 𝐸, we can guarantee a bounded handover delay, which can be 
kept low concerning the usual inaccuracy inherent to data synopses. At 
the same time, we aim to maximize the portion of elements in the QOSS 
data structures. We achieve this by introducing the aforementioned 
mechanisms concerning 𝐷 and 𝐸 for promptly handing over filters to 
owner threads at a fixed rate. Indeed, initial experiments suggested that 
exploring this tradeoff resulted in up to 1.73x higher throughput and 
0.5x lower query latency (with 24 threads, 𝜙 = 10𝜖 = 0.0001, E=1000, 
D=32, querying on average once per 10 updates using real IP-packet 
data), compared to the non-enhanced approach, while keeping the re

porting delay below 𝐸 element occurrences multiplied by the number 
of threads. The side effect on the approximate output introduced by the 
enhancement diminishes rapidly with the length of the execution, as we 
show in Section 5, where we define the prevailing consistency guaran

tees.

5. Analysis

Having described our method for estimating the frequent elements, 
we now focus on the space requirements and estimation guarantees un

der concurrent updates and queries. To aid us in this task, we define a 
set of symbols common to our analysis in Table 1.

We initiate the discussion using a meta-lemma containing useful lem

mas and theorems from [33] that apply to the QOSS algorithm.

Lemma 1. QOSS preserves the following properties (implied from the 
respective lemmas and theorems in [33])

1. (From Lemma 3.3 in [33]) If the number of counters 𝑚 is chosen 
such that 𝑚 = 1

𝜖
, then the minimum counter value of QOSS, denoted 

as 𝐹min, is less than or equal to ⌊𝑁𝜖⌋, where 𝑁 is the length of the 
stream.

2. (From Theorem 3.5 in [33]) Any element that occurs more than 
𝐹min times in  is guaranteed to be tracked by QOSS.

3. (From Lemma 3.4 in [33]) Elements tracked by QOSS are overes

timated by at most 𝐹min. In other words: 𝑓𝑁 (𝑒) ≤ 𝑓𝑁 (𝑒) ≤ 𝑓𝑁 (𝑒) +
𝜖𝑁 .

4. (From Lemma 4.3 in [33]) Any element that occurs in  more fre

quently than the maximum possible value of 𝐹min is guaranteed to 
be reported, regardless of stream order.

The rest of this section adheres to the following structure: First, we 
show that maintaining accuracy requires fewer counters when the QOSS 
algorithm observes a stream of elements belonging to a subset of the 
original domain of possible elements. Second, we describe the counter 
requirements of QPOPSS, composed of multiple QOSS. Lastly, we focus 
on the consistency guarantees of the frequent elements in the face of 
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Table 1
Descriptions of symbols used.

Symbol Description 
𝜖 User-specified approximation factor. 
𝜙 User-specified frequent element threshold. 
 The stream of elements. 
𝑁 The stream length of  . 
𝑈 Domain of  . 
𝑒 An element of a stream. 
𝑟(𝑒) The rank of a stream element. 
𝑓𝑁 (𝑒) The number of occurrences of 𝑒 in  . 
𝑓𝑁 (𝑒) The estimated number of occurrences of 𝑒 in  . 
𝑚 The number of counters in QOSS. 
𝐹 Set of elements and estimated occurrence in  tracked by QOSS. 
𝐹min Least estimated occurrence of an element in  tracked by QOSS. 
𝑇 Number of dispatched threads. 
𝔻(𝑒) The number of counts of 𝑒 in a Delegation Filter. 
𝐸 Parameter controlling the number of elements in delegation filters. 
𝐷 Number of slots in a delegation filter. 
𝜁 The Euler–Riemann function. 
𝑎 Skew parameter for Zipf distribution. 
𝑁𝑆 Stream length at the start of a query. 
𝑁𝐸 Stream length at the end of a query. 

concurrently overlapping queries and updates, and provide consistency

implied accuracy bounds.

5.1. Domain splitting and space requirements

We begin by analyzing the number of counters required by QOSS 
to accurately report the frequent elements defined in Section 2 when 
processing elements from a split-domain stream, i.e., a stream where 
elements not in a specific subset of the universe of possible elements are 
omitted.

To this end, we introduce 1..𝑥 as the 𝑥-prefix of an unbounded 
stream  , containing the first 𝑥 elements. Each symbol in the sequence, 
called 𝑖 for each 𝑖 ∈ {1..𝑥}, can be found in 𝑈 ∪ {∅}, the universe 
of possible elements in union with the null symbol. We include ∅ to 
denote the absence of an element, used for highlighting element-wise 
differences between streams. Furthermore, we introduce a function to 
transform a stream to a stream block (analogous to a set block [8]), con

taining only stream elements from a specific set block 𝐵 of a partition of 
𝑈 . The following are three function definitions for constructing a stream 
block, counting the number of deleted elements in a stream, and finding 
the length of a bounded stream.

block( ,𝐵) =
⎧⎪⎨⎪⎩
1 if 1 ∈𝐵 else ∅ if 𝑥 = 1
(∅,block(2...𝑥,𝐵)) if 1 ∉ 𝐵
(1,block(2...𝑥,𝐵)) if 1 ∈ 𝐵

#del() =
⎧⎪⎨⎪⎩
1 if 1 = ∅ else 0 if 𝑥 = 1
#del(2...𝑥) if 1 ≠∅
1+ #del(2...𝑥) if 1 = ∅

len() =
⎧⎪⎨⎪⎩
0 if 1 = ∅ else 1 if 𝑥 = 1
1 + len(2...𝑥) if 1 ≠∅
len(2...𝑥) if 1 = ∅

Using these definitions, a stream block can be constructed as in the fol

lowing example: if 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 1..5 ∶= 𝑎, 𝑎, 𝑏, 𝑑, 𝑐, and 𝐵 = {𝑎, 𝑐}, 
then 1..5 ∶= 𝑏𝑙𝑜𝑐𝑘( ,𝐵) = 𝑎, 𝑎,∅,∅, 𝑐, #del()=2, and len() = 3.

From this point, to bound the number of counters needed by QPOPSS 
to produce the frequent elements from Definition 1, we observe the re

lationship between the stream’s domain size and the minimum counter 
in QOSS.

Lemma 2. When QOSS observes the stream block  ∶= block( ,𝐵) and 
maintains 𝑚 = 1 

𝑇 𝜖
counters, the minimum counter is at most ⌊𝑁

𝜖
⌋, if |𝐵| = ⌈ |𝑈 |

𝑇
⌉.

Proof. Let 𝑗 and 𝐿 be arbitrary positive integers. Consider a stream 
with length 𝑙𝑒𝑛() =𝐿(𝑚+1+ 𝑗), containing 𝑚+1+ 𝑗 distinct elements, 
each repeated 𝐿 times. Let these elements belong to the set 𝑈 , such that |𝑈 | = 𝑚 + 1 + 𝑗. Given |𝐵| = ⌈ |𝑈 |

𝑇
⌉, the stream  ∶= 𝑏𝑙𝑜𝑐𝑘( ,𝐵) has a 

length of 𝑙𝑒𝑛() =𝐿𝑚+1+𝑗
𝑇

. We utilize claim 1 in Lemma 1 to determine 
the minimum counter of QOSS while observing :

𝐹min ≤ ⌊𝐿𝑚+ 1 + 𝑗 − (𝑚+1+𝑗)(𝑇−1)
𝑇

𝑚 
⌋ = ⌊𝜖𝐿(𝑚+ 1 + 𝑗

)⌋ = ⌊𝑁𝜖⌋ □

This follows naturally from the linear relationship between con

sumed space and the accuracy of the Space-Saving algorithm, and has 
implications for the required number of counters of QOSS under domain 
splitting in the following.

Lemma 3. When QOSS observes the stream block  ∶= block( ,𝐵) and 
maintains 𝑚 = 1 

𝑇 𝜖
counters, it tracks every element occurring more than ⌊𝑁𝜖⌋ times with an estimation error of at most ⌊𝑁𝜖⌋ if |𝐵| = ⌈ |𝑈 |

𝑇
⌉.

Proof. From Lemma 2, we establish that QOSS maintains a minimum 
counter value 𝐹min ≤ ⌊𝑁𝜖⌋. Leveraging claims 2 and 3 in Lemma 1, 
elements occurring more than ⌊𝑁𝜖⌋ times are guaranteed to be tracked, 
with an overestimation error of at most ⌊𝑁𝜖⌋. □

Since QPOPSS consists of QOSS instances, their space requirements 
and accuracy guarantees are interlinked. QPOPSS dispatches 𝑇 QOSS 
instances, one for each thread. According to Lemma 3, each requires 
1 
𝑇 𝜖

counters to track the frequent elements. Therefore, the total num

ber of counters needed to track and report the 𝜖-approximate frequent 
elements of  is 𝑇 1 

𝑇 𝜖
= 1

𝜖
.

Corollary 1. QPOPSS requires 1
𝜖

counters to track every element in 
occurring more than ⌊𝑁𝜙⌋ times, with an estimation error at most ⌊𝑁𝜖⌋.

We now investigate the number of required counters, assuming that 
the input data stream conforms to the Zipf distribution.

Theorem 1. QOSS with 𝑚 =
(

1 
𝜖𝑇

) 1 
𝑎

counters, fed with stream  ∶=
block( ,𝐵), tracks every element occurring more than 𝑁𝜙 times and 
reports occurrences with an error of at most ⌊𝑁𝜖⌋, provided  is con

structed from a noiseless Zipf distribution with 𝑎 > 1, regardless of 
stream permutation.

Proof. According to claim 4 in Lemma 1, QOSS reports frequent ele

ments occurring more often than the maximum possible value of 𝐹min . 
For a Zipf-distributed input stream, the maximum value of 𝐹min is less 
than or equal to the cumulative occurrences of the elements ranked be

tween 𝑚 + 1 and |𝑈 |, divided equally over the number of counters: 

𝐹
𝑧𝑖𝑝𝑓

𝑚𝑖𝑛
≤

𝑁

𝑚 

∑|𝑈 |
𝑖=𝑚+1

1 
𝑖𝑎∑|𝑈 |

𝑖=1
1 
𝑖𝑎

. Similarly, the number of occurrences of an element 

of a particular rank is described as 𝑁

𝑟(𝑒)𝑎
1 ∑|𝑈 |

𝑖=1
1 
𝑖𝑎

. The following proof obli

gation describes the ranks of elements whose occurrences exceed the 
maximum value of 𝐹𝑧𝑖𝑝𝑓

𝑚𝑖𝑛
:

1 
𝑟(𝑒)𝑎

>
1 
𝑚

|𝑈 | ∑
𝑖=𝑚+1

1 
𝑖𝑎

(1)

The right-hand side of the inequality can be simplified:
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1 
𝑟(𝑒)𝑎

>
1 
𝑚𝑎

|𝑈 |
𝑚 ∑
𝑖=2 

1 
𝑖𝑎

Since 
∑|𝑈 |

𝑚 
𝑖=2

1 
𝑖𝑎

has no closed-form expression, 𝜁(𝑎) − 1 is used as a sub

stitute, imposing a greater constraint on 𝑚:

1 
𝑟(𝑒)𝑎

>
1 
𝑚𝑎

(𝜁(𝑎) − 1)

Given that 𝐵 is formed by randomly selecting |𝑈 |
𝑇

elements from 𝑈 with 
uniformity (approximately), the cumulative elements are denoted by 
(𝜁(𝑎) − 1) can be assumed to be evenly distributed among threads3:

1 
𝑟(𝑒)𝑎

>
1 
𝑚𝑎

(𝜁(𝑎) − 1)
𝑇

This simplifies to:

𝑚> 𝑟(𝑒)
(
𝜁(𝑎) − 1
𝑇

) 1 
𝑎

(2)

Now, considering the inequality 𝑁

𝑟(𝑒)𝑎𝜁(𝑎) < 𝑁𝜖, satisfied for element 
ranks that occur more often than the threshold. The inequality can be 
solved for 𝑟(𝑒) to obtain the least element rank satisfying the above in

equality:

𝑟(𝑒) ≥
(

1 
𝜖𝜁(𝑎)

) 1 
𝑎

We can now substitute 𝑟(𝑒) in inequality 2:

𝑚>

(
𝜁(𝑎) − 1
𝑇 𝜖𝜁(𝑎) 

) 1 
𝑎

=
(

1 
𝑇 𝜖

− 1 
𝑇 𝜖𝜁(𝑎)

) 1 
𝑎

Since the residual 1 
𝑇 𝜖𝜁(𝑎) is negligible for large 𝜁(𝑎), and 

( 1 
𝑇 𝜖

− 1 
𝑇 𝜖𝜁(𝑎)

) 1 
𝑎

remains sufficiently small as 𝜁(𝑎) decreases, setting 𝑚 =
( 1 
𝑇 𝜖

) 1 
𝑎 guaran

tees that the proof obligation in inequality (1) is satisfied, i.e., elements 

with rank less than 
(

1 
𝜖𝜁(𝑎)

) 1 
𝑎

exceed the maximum minimum counter 

value, and will therefore be reported by QOSS. □

Having determined the space requirements of QOSS when observing 
a stream with Zipfian distribution, we can discuss the space require

ments of QPOPSS. QPOPSS dispatches 𝑇 threads, each with its own 

QOSS algorithm instance requiring 
( 1 
𝑇 𝜖

) 1 
𝑎 counters according to The

orem 1.

Corollary 2. QPOPSS requires 𝑇
( 1 
𝑇 𝜖

) 1 
𝑎 counters to track every element 

of a stream  occurring more than ⌊𝑁𝜖⌋ times and reports the number 
of occurrences of elements with an error of at most ⌊𝑁𝜖⌋, given that 
is constructed from a noiseless Zipf distribution with 𝑎 > 1, regardless 
of stream permutation.

Ultimately, Corollaries 1 and 2 describe the required number of 
counters needed by QPOPSS to track the 𝜖-approximate 𝜙-frequent ele

ments across various distributions. Additionally, the Delegation Filters 
described in 4.4 contain counters equal to the number of threads squared 
times the number of counters kept by each filter (𝑇 2𝐷). Having es

tablished space requirements, we now explore the query consistency 
guarantees of QPOPSS.

3 This assumption is motivated by the fact that the |𝑈 |−(𝑚+1) least frequent 
elements contribute little to the total count and greatly outnumber 𝑚.

5.2. Query consistency guarantees

In this section, we provide an invariant for the approximation 
guarantees of the frequent elements and their occurrence reported by 
QPOPSS as they relate to challenge [C3]. We use a similar reasoning 
and method as Rinberg and Keidar [37], who defined bounds for the es

timated count of an element on a concurrent Count-Min Sketch, given 
that its counters are monotonically increasing, as is the case with coun

ters in QOSS. Before we delve into the consistency analysis, we first 
discuss the implications of the algorithm design.

Query Scalability Enhancement: As implied by the query scalability 
enhancement of QPOPSS described in Section 4.4, the parameter 𝐸 rep

resents the maximum number of elements present in a delegation filter 
at any point in time. Since there are 𝑇 delegation filters that can con

tain an element, the maximum number of element occurrences that can 
be missing from a reported element count is 𝑇 ⋅ 𝐸, which is put more 
concisely as the following lemma.

Lemma 4. When  consists of elements drawn from an arbitrary distri

bution, 𝔻(𝑒), the number of counts of 𝑒 inside delegation filters, is less 
than 𝑇 ⋅𝐸.

Note that the lemma is a rather substantial overestimation. In com

mon executions, Delegation Filters contain various elements. Being fully 
occupied by a single element is unlikely in each Delegation Filter.

Suppose the input distribution is noiseless Zipf with skew parameter 
𝑎 > 1. In that case, we can give a tighter bound on the number of counts 
of a particular element 𝑒 inside Delegation Filters.

Lemma 5. When  consists of elements drawn from a noiseless Zipf 
distribution with infinite domain and skew parameter 𝑎 > 1, 𝔻(𝑒) is at 
most 𝑇 ⋅𝐸 

𝜁(𝑎)𝑟(𝑒)𝑎 .

Query consistency: To capture the notion of queries that are concurrent 
with updates, we introduce 𝑁𝑆 and 𝑁𝐸 , which represent the stream 
lengths at the start and end of a query. These values are ordered such 
that 𝑁𝑆 ≤𝑁 ≤𝑁𝐸 . We update claim 3 in Lemma 1 to capture potential 
concurrent update operations during a query as follows.

Lemma 6. Given a stream  of 𝑁 elements, QPOPSS estimates the 
occurrence of an element 𝑒 ∈ 𝑈 such that 𝑓𝑁𝑆 (𝑒) − 𝔻(𝑒) ≤ 𝑓𝑁 (𝑒) ≤
𝑓𝑁𝐸

(𝑒) + 𝜖𝑁𝐸 .

Proof. We have that 𝑓𝑁𝑆 (𝑒) ≤ 𝑓𝑁𝐸 (𝑒). There are at most 𝔻(𝑒) counts 
of element 𝑒 that have not yet been inserted into the QOSS instance 
of the owner of 𝑒, therefore, 𝑓𝑁𝑆 (𝑒) − 𝔻(𝑒) ≤ 𝑓𝑁 (𝑒) is the minimum 
value a counter can assume. The maximum overestimation of QOSS is 
𝜖𝑁 , which is maximized at the end of a query when 𝑁𝐸 elements have 
been processed. Therefore, the estimated count of an element is at most 
𝑓𝑁 (𝑒) ≤ 𝑓𝑁𝐸 (𝑒) + 𝜖𝑁𝐸 . □

We provide a consistency guarantee for the set of elements reported 
by QPOPSS, aligning with Definition 1 for queries spanning more than 
0 updates.

Theorem 2. Given a stream  of 𝑁 elements, QPOPSS is guaranteed 
to report the set 𝐹 containing all elements 𝑒 ∈𝑈 with 𝑓𝑁𝑆 (𝑒) > 𝜙𝑁𝑆 +
𝔻(𝑒), and no elements 𝑒 ∈ 𝑈 with 𝑓𝑁𝐸 (𝑒) < (𝜙 − 𝜖)𝑁𝑆 − 𝜖(𝑁𝐸 −𝑁𝑆 ), 
where 0 < 𝜖 ≤ 𝜙 < 1.

Proof. The QPOPSS algorithm reports all elements with an estimated 
count

𝑓 (𝑒)𝑁𝑆 > 𝜙𝑁𝑆 (3)
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This is true since 𝑁𝑆 is calculated at the start of a query; all elements 
with 𝑓𝑁 (𝑒) > 𝜙𝑁𝑆 are reported, and QOSS counters increase monoton

ically.

As shown in Lemma 6, 𝑓𝑁 (𝑒) is at least (a) 𝑓𝑁𝑆 (𝑒)−𝔻(𝑒), and at most 
(b) 𝑓𝑁𝐸 (𝑒) +𝑁𝐸𝜖. Substituting 𝑓𝑁 (𝑒) for (a) in inequality (3) yields:

𝑓𝑁𝑆
(𝑒) > 𝜙𝑁𝑆 +𝔻(𝑒) (4)

Substituting 𝑓𝑁 (𝑒) for (b) in inequality (3) yields:

𝑓𝑁𝐸
(𝑒) > 𝜙𝑁𝑆 − 𝜖𝑁𝐸

Expression (a) and the negation of (b) together give that all elements 
𝑓𝑁𝑆

(𝑒) > 𝜙𝑁𝑆 and no elements 𝑓𝑁𝐸 (𝑒) < 𝜙𝑁𝑆 − 𝜖𝑁𝐸 are reported by 
QPOPSS. □

According to Theorem 2 QPOPSS will report all elements occurring 
more than 𝜙𝑁𝑆 times after processing 𝑁𝑆 elements, given that delega

tion filters are empty. With fixed-size delegation filters, QPOPSS tends 
to report all elements more frequently than 𝜙𝑁𝑆 as the stream length 
grows in relation to the delegation filter size. This notion is formalized 
in Theorem 3 below.

Theorem 3. As the length of the stream 𝑁 tends to infinity, QPOPSS 
reports all 𝜖-approximate frequent elements.

Proof. We start by normalizing inequality (4):

𝑓𝑁𝑆
(𝑒)

𝑁𝑆

> 𝜙+ 𝔻(𝑒)
𝑁𝑆

The element 𝑒 occurs a fraction 𝑃 (𝑒) =
𝑓𝑁𝑆

(𝑒)
𝑁𝑆

of the time in the stream. 
We then have that:

lim 
𝑁𝑆→∞

𝑃 (𝑒) > 𝜙+ 𝔻(𝑒)
𝑁𝑆

→ 𝑃 (𝑒) > 𝜙

Thus, once enough elements have been processed, all elements with 
𝑃 (𝑒) > 𝜙 are reported. □

Theorem 4. As 𝑁 tends to infinity, QPOPSS achieves perfect recall for 
streams constructed by drawing elements from a Zipf distribution with 
𝑎 > 1.

Proof. Rewriting inequality (4) in its Zipfian form:

1 
𝜁(𝑎)𝑟(𝑒)𝑎

> 𝜙+ 𝔻(𝑒) 
𝜁(𝑎)𝑟(𝑒)𝑎𝑁𝑆

Solving for r(e) gives:

(
1 

𝜁(𝑎)𝜙
− 𝔻(𝑒) 
𝜁(𝑎)𝜙𝑁𝑆

) 1 
𝑎

> 𝑟(𝑒)

Simplifying yields:

(
1 

𝜁(𝑎)𝜙

) 1 
𝑎
(
1 − 𝔻(𝑒)

𝑁𝑆

) 1 
𝑎

> 𝑟(𝑒)

We then have that:

lim 
𝑁𝑆→∞

(
1 

𝜁(𝑎)𝜙

) 1 
𝑎
(
1 − 𝔻(𝑒)

𝑁𝑆

) 1 
𝑎

> 𝑟(𝑒)→
(

1 
𝜁(𝑎)𝜙

) 1 
𝑎

> 𝑟(𝑒)

This means that all elements with a rank lower than 
(

1 
𝜁(𝑎)𝜙

) 1 
𝑎

are 

guaranteed to be reported given that enough elements have been pro

cessed. □

Table 2
The number of frequent elements for different 
threshold values of 𝜙 in the CAIDA and selected 
Zipf data sets.

Data set 
𝜙 10−3 10−4 10−5

CAIDA 44 1555 10463 
Zipf a=1.25 74 467 2952 
Zipf a=2 24 77 246 
Zipf a=3 9 20 43 

Fig. 3. Rank and count of each unique element in the CAIDA data set. Zipf 
distributions with skew 0.5 and 1 are plotted as a guide. Note the logarithmic 
scale on x- and y-axes.

To summarize, the analysis underscores the memory and space ben

efits of operating on a subset of the original domain (Corollaries 1 and 
2). It also highlights the impact of excluding elements from Delegation 
Filters on query consistency and accuracy, offering bounds for the latter 
(Lemmas 4 and 5). Moreover, it addresses the consistency guarantees of 
frequent elements amid concurrent queries and updates (Theorems 2, 3, 
and 4).

6. Evaluation

Considering the analytical properties of QPOPSS, we proceed with 
in-depth empirical evaluation. We begin by describing the experimental 
setup in detail. Then, we investigate the performance of QOSS compared 
to Space-Saving. We also compare QPOPSS and the representative works 
[29,44] on throughput and scalability, accuracy and memory require

ments, as well as query latency.

6.1. Experimental setup

Computing platforms: The experiments were carried out on two plat

forms: Platform A, a dual-socket NUMA server with 2 Intel Xeon X5675 
processors, each with 12 cores and 2-way hyperthreading. Each core 
runs at 3.07 GHz, with cache sizes L1 32 KB, L2 256 KB, and 12 MB 
shared L3 cache. It runs Debian 10.9 and gcc v.8.3. Platform B is a dual

socket Intel(R) Xeon(R) CPU E5-2695 v4 NUMA server with 36 cores 
(2.1 GHz) and 2-way hyper-threading. Each core runs at 2.1 GHz and 
uses 32 KB L1 data cache and 256 KB L2 cache, and 45 MB shared L3 
cache. It runs openSUSE Tumbleweed and gcc v.14.2.1. 

We run experiments on both platforms. In particular, we use Plat

form B when the higher parallelism it enables is needed for adequate 
evaluation.

Data sets: Both synthetic and real data were used in the evaluation of 
QPOPSS. Unless otherwise stated, the synthetic data sets contain 100𝑀
elements, sampled from a universe of |𝑈 | = 100𝑀 elements accord

ing to the probability mass function of the Zipf distribution such that 
𝑓𝑁 (𝑒) = 𝑁

𝐻|𝑈 |,𝑎𝑟(𝑒)𝑎 [46], where 𝐻|𝑈 |,𝑎 = ∑|𝑈 |
𝑖=1

1 
𝑖𝑎

. In total, 11 synthetic 
data sets were created from Zipf distributions with skew parameter 𝑎
ranging from 0.5 to 3 in increments of 0.25. Hereinafter, we use the 
term skew to mean 𝑎 in 𝑓𝑁 (𝑒) = 𝑁

𝐻|𝑈 |,𝑎𝑟(𝑒)𝑎 .

A real-world data set was extracted from the CAIDA Anonymized 
Internet Traces 2019 data set [1] by selecting an arbitrary 60-minute 
window of IP packet traffic in an arbitrary direction of a backbone in

terface. Each packet contains a 5-tuple (flow) of source and destination 
IP addresses, source and destination ports, and transport layer protocol 
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used. The set contains roughly 21𝑀 packets belonging to around 2.1𝑀
unique flows. As shown in Fig. 3, the distribution of the flows is simi

lar to that of synthetic data generated with a skew parameter of 1. The 
number of frequent elements in the data set is detailed in Table 2 for 
different values of 𝜙. For this parameter, we use values similar to es

tablished works in the field [27,14,33], to facilitate comparison with 

other approaches. As for the synthetic data, the expression 
( 1 
𝜁(𝑎)𝜙

) 1 
𝑎 de

scribes the least element rank for a certain threshold value 𝜙 and Zipf 
distribution skew parameter 𝑎.
Metrics: Evaluation metrics include query and update throughput 
(millions of operations per second), accuracy, memory consumption 
(megabytes reserved), and the latency (the time between the start and 
end of a query in microseconds). More specifically, accuracy is measured 
as average relative error (ARE) (ratio of estimated element occurrences to 
actual occurrences), precision (ratio of actual positive frequent elements 
to the number of reported frequent elements), and recall (ratio of actual 
positive frequent elements to the number of actual frequent elements).

Measurement Methodology: Our experiments measured throughput as 
the number of operations (updates and queries) per time unit. Through

put experiments were executed for 10 seconds while processing a stream 
of 100 million elements repeatedly for the duration. The number of 
counters of each baseline was set according to the respective theoret

ical bound. The query latency was calculated by measuring processor 
clock cycles between a query’s start and end. This was done for multiple 
queries whose mean value was calculated. The accuracy metrics were 
measured by processing a stream and issuing a single query at the end. 
The memory consumption was calculated by selecting an accuracy level 
and computing the memory consumption for the different baselines ac

cording to their theoretical space/accuracy bounds.

Baselines: We compare our open-source QPOPSS [26]-along with the 
code for generating synthetic data and links to the real data used in this 
evaluation-to the following baselines. These baselines are also discussed 
in Section 3, with additional details provided here for clarity.

1. A single-threaded QOSS

2. QPOPSS using Space-Saving as the inner algorithm

3. PRIF [44]

4. Topkapi [29]

To examine the speedup between a single-threaded QOSS and the mul

tithreaded QPOPSS, (1) was selected as a baseline, while (2) facilitates 
studying the impact of QOSS on query response time. (3) and (4) were 
chosen since they are representative multithreaded approaches to the 
frequent elements problem. The 𝑜𝑤𝑛𝑒𝑟 function described in Section 4.2

uses the modulo operator: 𝑜𝑤𝑛𝑒𝑟(𝑒) = 𝑒 mod 𝑇 .

PRIF [44] entails a reserved merging thread that periodically merges 
updates from thread-local algorithm instances. As an algorithmic com

ponent, the authors present OWFrequent, an optimized version of Fre

quent [34] that supports weighted updates. Due to the merging thread, 
extra latencies are introduced. The authors propose an update coeffi

cient 𝛽 that controls the rate at which the merging thread receives 
updates from the thread-local OWFrequent algorithm instances. The au

thors give a rigorous analysis and evaluation of the approach. The eval

uation shows that PRIF is somewhat precise in reporting the frequent 
elements and that there is a good speedup compared to a single-threaded 
version. Due to the absence of open-source implementations of PRIF, one 
was created for evaluation purposes [26]. As in the authors’ implementa

tion, a shared-bounded buffer was implemented with semaphores [39] 
to handle the communication between the sub-threads and the merg

ing thread. OWFrequent was implemented using the frequent elements 
sketch algorithm package from [13] as a base. The implementation of 
QOSS was also based on said algorithm package.

The Topkapi Sketch [29] combines the concepts of the Frequent Algo

rithm with the Count-Min Sketch by keeping a Frequent counter in each 
cell of a Count-Min Sketch matrix. A Topkapi Sketch with log(2𝑁

𝛿
) rows 

and 1
𝜖

counters (see analysis section in [15]), solves the 𝜙-approximate 
frequent elements problem outlined in Definition 1. The authors present 
a multithreaded approach wherein multiple streams are processed con

currently. At the end of processing, the summaries are merged into a 
final result, aiming to deliver the frequent elements of the combined 
stream, adhering to the outlined theoretical limits. The code is open 
source and was adopted for the relative study in this paper.

In summary, a motivating factor in the selection of these algorithms 
among others is the support of concurrent queries and updates and com

patibility in computational model.

Baseline adaptations: To ensure a fair comparison, certain adaptations 
were made. Since PRIF supports concurrent queries and updates, we 
implemented it as is. Regarding Topkapi, as it lacks design elements 
that enable concurrent queries and updates, when it comes to through

put, the experiments allowed it to perform thread-unsafe queries without 
synchronization, since its original design did not target concurrent up

dates [29]. This adaptation clearly favors the throughput performance of 
Topkapi, which would otherwise require a synchronization mechanism. 
However, this allows us to establish a best-case estimate for Topkapi’s 
parallel performance and compare it to our approach. This also does 
not affect the accuracy evaluation of Topkapi since that is measured via 
a query at the end of the stream, irrespective of the synchronization 
mechanisms used.

Experiment Parameters: Across experiments, the following parameters 
are varied: skewness of the input distribution, frequent element threshold 
parameter (𝜙, controlling query size), number of dispatched threads, query 
rate, and stream length. This simulates the point during execution when 
a query occurs. To reduce the size of the parameter space, 𝜖 (present in 
all baselines) is set to 1 

𝑚
= 𝜖 = 0.1𝜙. This is in alignment with previous 

studies [43,2,14] to ensure consistency and comparability with existing 
research. The PRIF-specific 𝛽 parameter controlling the delay at which 
elements are sent to the merging thread is set to 𝛽 = 0.9𝜖, as in the au

thors’ evaluation [44]. The Topkapi-specific rows (also present in the 
Count-Min Sketch [15]) parameter controlling the probability of failure 
to estimate an element count within a certain error is affixed to 4, which 
was also the case in the authors’ evaluation [29]. The analysis in Sec

tion 5 implies that QPOPSS finds all frequent elements with 1
𝜖

counters 
for both the real-world data sets and the Zipf distribution data sets with 

𝑎 ≤ 1. However, for Zipf data sets with 𝑎 > 1, 1 
𝜖𝑇

1 
𝑎 counters suffice.

6.2. Query Optimized Space-Saving 

We begin the evaluation by examining the impact of the inner al

gorithm employed by QPOPSS. We study the differences in latency and 
throughput between QOSS and Space-Saving since both algorithms have 
identical accuracy and memory consumption.

Fig. 4 contains the experimental results, where a query is carried out 
every 10000 updates, and 𝜙 is set to 10−4 = 10𝜖 to limit the parameter 
space.

Figs. 4a and 4b show the latency and throughput over varied skew 
levels. QOSS yields a higher throughput than the baseline for all skew 
values, and the latency is significantly lower with QOSS (up to 5x lower) 
for low skew values of 0.5-1.25. The improvement is less noticeable at 
higher skew levels in both figures. QOSS performs significantly better 
than Space-Saving when the skew level 𝑎 < 1. This is due to QOSS’s more 
efficient, low-latency query procedure and the fact that both algorithms 

use 𝑚 = 1
𝜖

counters instead of 
( 1
𝜖

) 1 
𝑎 for higher skew levels. Additionally, 

lower skew levels contain more frequent elements, as shown in Table 2.

In Figs. 4c and 4d, the scalability of the approaches is evaluated as 
the number of dispatched threads varies. The experiments use two data 
sets: the synthetic Zipf data with skew parameter a=1 and the CAIDA IP

packet trace. QOSS achieves up to 1.3x higher throughput for the CAIDA 
data set and up to 4x lower latency for both data sets. In particular, 
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Fig. 4. Throughput and query latency when QPOPSS employs QOSS or Space-Saving as the inner algorithm. Platform A, queries make up 0.01% of the operations 
and 𝜙= 10−4.

Fig. 5. Throughput of QPOPSS in million operations per second. Values of 𝐸 and 𝐷 are varied. The query rate is 0.02%. 

Fig. 4d shows that the latency of QOSS scales significantly better with 
the increasing number of threads, compared to Space-Saving.

As the number of threads increases, the performance gap grows in 
favor of QOSS. This improvement is because QOSS only checks a subset 
of counters to identify frequent elements, while Space-Saving needs to 
inspect all of its counters.

6.3. Throughput and scalability of QPOPSS

We evaluate the throughput and scalability of QPOPSS by studying 
the impact of parameters 𝐸 and 𝐷 across varying skewness and thread 
counts. Recall that 𝐸 is the maximum number of elements a thread pro

cesses before pushing filters and 𝐷 defines the maximum number of 
unique elements per filter.

Fig. 5 presents a sensitivity analysis on Platform B, which provides 
a higher degree of multithreading. Specifically, Fig. 5a shows QPOPSS 
throughput for 16 combinations of 𝐸 and 𝐷 across varying skew levels. 
For Zipf parameters greater than 1.5, the results exhibit a clear separa

tion between lines, indicating a correlation between throughput and 𝐸. 

This matches expectations: higher 𝐸 allows more thread-local work and 
reduces synchronization overhead. When the Zipf parameter is below 
1.5, 𝐸 has less effect on throughput, as shown by the overlapping lines. 
This is expected: at low skew, filters usually fill with 𝐷 elements before 
𝐸 items are processed. Consequently, the push frequency is determined 
by 𝐷 rather than 𝐸, reducing the impact of 𝐸 on throughput. Regard

ing Fig. 5b, a low value of 𝐸 consistently results in reduced throughput 
across all numbers of dispatched threads. In contrast, higher values of 
𝐸 and 𝐷 generally lead to increased throughput, with the best perfor

mance observed when both 𝐸 and 𝐷 are maximized. However, higher 
values of 𝐸 can also cause increased buffering and delays in reporting 
element counts. This highlights the importance of carefully selecting 𝐸
and 𝐷, as optimizing for throughput may negatively impact accuracy, 
as stated in Theorem 2. Interestingly, when 𝐸 > 1000, throughput scales 
linearly and only flattens after 36 cores, likely due to two-way hyper

threading. 
To understand how QPOPSS compares to Topkapi [29] and PRIF [44], 

we now focus on throughput and scalability when varying 𝜙, the num

ber of threads and the number of concurrent queries. We also compare 
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Fig. 6. Throughput in million operations per second and multicore speedup of QPOPSS for different skew parameters of the synthetic Zipf data sets. The skew level 
varies along the x-axis. Note the logarithmic y-axes.

the internal throughput scalability of QPOPSS (i.e., speedup) to a single

threaded QOSS algorithm, across Platforms A and B.

Fig. 6 shows the update and query throughput relative to the skew 
of the input data. The three different values of 𝜙 represent queries of 
varying sizes based on the number of frequent elements (see Table 2). 
In each execution, 24 threads are dispatched on Platform A, and 72 
threads on Platform B. QPOPSS shows a higher throughput than Topkapi 
in all cases except for when no queries are carried out, and the skew 
value is between 0.5 and 1 (Fig. 6a). As the query rate increases to 
0.02 in Fig. 6a, QPOPSS maintains a high throughput across all skew 
levels and values of 𝜙, several times higher than Topkapi, which was 
shown to be highly scaleable in [29]. As expected, for query rates above 
0, the computationally heavy merge operations carried out by Topkapi 
yield a diminished overall throughput. On the contrary, our algorithms 
continue to maintain a high throughput even with concurrent queries.

Due to its query-prioritized design, PRIF copes well with an increased 
query rate. However, the update throughput of PRIF seems to be strongly 
dependent on the threshold parameter 𝜙, as setting 𝜙 = 10−5 yields very 
low throughput across all skew levels and for all query rates. Overall, it 
is observed that QPOPSS is the balanced choice, performing well in most 
circumstances and combinations of parameter variations. This trend can 
be observed for both platforms.

The plots containing black lines in Fig. 6 show the speedup relative 
to a single-threaded QOSS. The speedup of QPOPSS with 24 and 72 dis

patched threads compared to a single-threaded QOSS is around 10-30x 
for Platform A and around 20-50 for Platform B across all combinations 
of 𝜙, query rate, and skew. Interestingly, due to the efficiency of the del

egation filters, QPOPSS achieves a speedup greater than the number of 
dispatched threads in higher skew levels. As worker-threads in QPOPSS 
swiftly insert elements in filters (an operation consisting of linear search

ing through a small fixed-size array and incrementing a counter), the 
single-threaded execution of QOSS must update a more complex tree 
data structure, potentially performing multiple time-consuming swap 
operations to ensure maintained heap properties.

The throughput and multicore scalability results for the CAIDA data 
set are shown in Fig. 7. When no queries are carried out (Figs. 7a and 7c), 
the throughput of Topkapi and QPOPSS is similar. However, as the query 
rate increases (Figs. 7b and 7d), Topkapi’s performance rapidly de

creases, highlighting the inefficiencies of the query process. Comparing 
Topkapi and QPOPSS, there is no major difference between platforms, 
aside from the generally lower throughput on Platform A than B, due to 
fewer threads. As for PRIF, the throughput does not vary with the query 
rate but instead depends on the threshold parameter 𝜙. The different al

gorithms’ throughput clearly correlates with the frequent elements per 
value of 𝜙 in Table 2, with numerous frequent elements corresponding 
to lower throughput and vice-versa. When 𝜙 = 10−3, PRIF outperforms 
QPOPSS. Still, in all other cases, QPOPSS can be observed to be the 
more balanced approach, maintaining high throughput when respond

ing to large and small queries. QPOPSS has a positive trend, wherein 
throughput increases with the number of dispatched threads. This is not 
the case for PRIF, which, especially for low values of support parameter 
𝜙, seems to have declining throughput as more threads are added. This 
is likely due to PRIF’s single merging thread becoming a bottleneck.

In the case of real-world data input as in Fig. 7, the throughput 
speedup of QPOPSS scales linearly with the number of threads compared 
to single-threaded Space-Saving, independently of 𝜙 and the query rate. 
Interestingly, the throughput of the different algorithms in Figs. 7a and 
7c correlates very well with the frequent elements for each data set and 
value of 𝜙 in Table 2, with numerous frequent elements corresponding 
to lower throughput and vice-versa.

6.4. Memory consumption and query accuracy

We now compare each approach’s memory requirements and the 
ability to report the frequent elements of a stream correctly. Correct

ness is measured by the metrics recall, precision, and ARE, previously 
mentioned in 6.1. Due to the space-accuracy trade-off associated with 
the 𝜖-approximate 𝜙-frequent problem, we set the memory consumption 
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Fig. 7. Throughput in million operations per second and multicore speedup of QPOPSS using the CAIDA backbone router data set. The number of threads varies 
along the x-axis. Note the logarithmic y-axes.

Fig. 8. Memory consumed by each approach in megabytes. The number of 
threads varies along the x-axis. Note the logarithmic y-axis.

of each approach to be equal to that of the respective analysis [29,44] 
(for QPOPSS, see Corollaries 1 and 2). Each counter equals 32 bytes.

Fig. 8 shows the megabytes consumed by each approach as the num

ber of dispatched threads increases. Three values of 𝜙 are plotted for 
each baseline.

QPOPSS consumes the least space for each threshold parameter value 
of 𝜙 and scales up to 450 threads with at most 65.8 MB consumed in the 
case of 𝜙 = 10−5, compared to the 288.1 GB required by PRIF and 57 GB 
required by Topkapi. The memory consumption of QPOPSS also scales 
very well with different values of 𝜙, as seen in Fig. 8. For example, at 
450 threads, 𝜙 = 10−3 requires 34 MB, 𝜙 = 10−4 requires 37 MB, and 
𝜙 = 10−5 requires 65 MB, which is very low and shows high scalability.

The PRIF memory requirements are 2 𝑇+1
𝜖−𝛽 , where 𝛽 < 𝜖, and 𝑇 is the 

number of dispatched threads (compared to QPOPSS, the latter uses 1
𝜖

counters, with an additional 𝑇 2𝐷 counters Delegation Filters, where 𝐷
is the maximum number of unique elements in a filter).

Given the space-accuracy trade-off typical of synopsis algorithms, 
QPOPSS is also highly accurate. Using the above-described amount of 

memory bytes, we now compare the accuracy of each approach. To com

pare fairly between baselines, the experiments entail processing a stream 
of elements followed by a single query, which is compared to the ground 
truth. The following results, therefore, show the accuracy of each ap

proach without considering the effects of concurrency. Fig. 9 contains 
the ARE, which is the arithmetic mean of the error in each element count 
divided by the actual count. ARE was measured across different datasets, 
stream lengths, and thread counts. In Fig. 9a, the x-axis shows the level 
of input data skew. The stream lengths are simulated by querying after 
a certain number of elements have been observed. As the length of the 
stream increases, QPOPSS displays decreasing ARE over all skew levels. 
This behavior is predicted by Theorem 4, i.e., as the stream length tends 
to infinity, the ARE tends to 0. PRIF’s ARE is relatively high compared to 
the other baselines and seems not to correlate with either skew level or 
stream length. For Topkapi, however, the ARE seems to depend less on 
stream length and more on the skew level, as the accuracy improves in 
the higher levels. For skew values above 2, Topkapi often achieved zero 
ARE, meaning all estimated counts were exact. Fig. 9b contains the ARE 
for two input data sets while varying the number of dispatched threads. 
The data sets were Zipf with skew level 1 and for the real CAIDA data 
set. QPOPSS is the approach with the least ARE, both in the case of real 
and synthetic data. However, for the synthetic data, there seems to be 
an upward trend as the number of dispatched threads increases, while 
for the real data, the ARE seems to stabilize from 16 to 24 threads. Top

kapi and PRIF have a high ARE, which remains somewhat stable as the 
number of threads increases.

The results presented in Table 3 describe how the baselines com

pare on precision and recall when the support 𝜙 and skew level of the 
synthetic data sets are varied. The results show that QPOPSS maintains 
perfect precision and recall in all cases. All approaches show high preci

sion and recall; however, QPOPSS is alone in achieving perfect precision 
and recall for all parameter combinations. Table 3 shows that Topkapi 
achieves sub-optimal precision in skew levels between 0.75 and 1.25. 
This can be attributed to Topkapi being based on the probabilistic Count

Min Sketch. In Table 3, both PRIF and Topkapi have varied outcomes, 
as PRIF’s recall drops to 0.87 in one case.
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Table 3
Accuracy in terms of precision and recall for different threshold values of 𝜙 and Zipf skew.

Method QPOPSS PRIF Topkapi 
Skew 

Metric 
𝜙 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

Precision 1 1 1 1 1 1 1 1 1 
0.5

Recall 1 1 1 1 1 1 1 1 1 
Precision 1 1 1 1 1 1 1 1 0.793 

0.75
Recall 1 1 1 0.751 0.972 0.971 1 1 0.681 
Precision 1 1 1 1 1 1 0.982 0.991 0.814 

1
Recall 1 1 1 0.965 0.973 0.941 0.982 0.991 0.545 
Precision 1 1 1 1 1 1 0.997 0.997 0.827 

1.25
Recall 1 1 1 0.973 0.977 0.984 1 0.997 0.827 
Precision 1 1 1 1 1 1 1 1 1 

1.5
Recall 1 1 1 0.980 0.982 0.913 1 1 1 
Precision 1 1 1 1 1 1 1 1 1 

1.75
Recall 1 1 1 0.971 0.981 0.983 1 1 0.705 
Precision 1 1 1 1 1 1 1 1 1 

2
Recall 1 1 1 1 0.994 0.991 1 1 0.520 
Precision 1 1 1 1 1 1 1 1 1 

2.25
Recall 1 1 1 0.944 1 1 1 1 0.432 
Precision 1 1 1 1 1 1 1 1 1 

2.5
Recall 1 1 1 0.928 0.986 1 1 1 0.397 
Precision 1 1 1 1 1 1 1 1 1 

2.75
Recall 1 1 1 1 0.981 1 1 1 0.366 
Precision 1 1 1 1 1 1 1 1 1 

3
Recall 1 1 1 1 1 1 1 1 0.348 

Fig. 9. Average relative error. The Zipf skew level varies along the x-axis. 𝜙= 10−4. Note the logarithmic y-axes. 

6.5. Query latency

In this section, we evaluate the latency of QPOPSS by analyz

ing thread sensitivity in relation to parameters 𝐸 and 𝐷 on Platform 
B, which supports higher multithreading. Additionally, we compare 
QPOPSS, PRIF, and Topkapi on Platform A to assess QPOPSS’s perfor

mance relative to other state-of-the-art methods. 
Starting with the thread sensitivity experiment, we conducted a se

ries of experiments to evaluate how 𝐷, 𝐸, and 𝑇 affect query latency, 
as shown in Fig. 10. Each box plot represents the response delays for 
4,000 queries during runtime. Notably, latency increases sharply when 
𝑇 rises from 36 to 48 threads, likely due to 2-way hyperthreading. 

Larger values of 𝐷 and 𝐸 lead to more local computation, likely 
explaining the tighter latency distributions at higher 𝑇 in Figs. 10b, 10c, 
and 10d. For 𝑇 = 72, the mean latency and distribution tails are in the 
range of hundreds of microseconds, with only some outliers reaching up 
to 3 ms.

We also conducted experiments to compare the different approaches 
in terms of query latency. Here, we present the mean latency out of 
4000 queries carried out during runtime. In each run of a query latency 
experiment, the query and update workload is evenly distributed across 
all threads, with 0.01% of the operations carried out being queries and 
the other 99.9% being update operations. For the experiments in Fig. 11, 

the threshold parameter was set to 𝜙 = 10−4 = 10𝜖. A synthetic Zipf data 
set with shape parameter 𝑎 = 1 was used as input to the baselines.

As seen in Fig. 11a, PRIF takes the least time to perform a query 
in all showcased parameter combinations. This is a result of its query

dedicated merging thread. A design that foregoes memory conservative

ness in favor of minimal query latency. A query by QPOPSS takes on the 
order of 10 to 100 microseconds, suiting many real-world applications. 
The Topkapi approach takes on the order of 100 milliseconds, which 
introduces delays unsuitable for real-world high-throughput applica

tions. The query latency of QPOPSS decreases with skew level, while 
the latency of the two other approaches is constant regardless of stream 
distribution. This is most likely due to the small number of required 
counters for QPOPSS in the higher skew levels.

Fig. 11b contains the results of the experiments where the number of 
threads was varied. These results are consistent with previous ones. Due 
to the design of PRIF, where a single merging thread is queried, it is not 
affected by increasing the number of threads. QPOPSS has a slight up

ward trend, meaning that the number of threads dispatched affects the 
query latency since more QOSS instances need to be merged. Topkapi 
has a slightly steeper upward trend due to its cumbersome merging pro

cess, initiated each time a query is carried out. Nonetheless, QPOPSS 
maintains at least an order of magnitude lower latency compared to 
Topkapi across all numbers of threads.
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Fig. 10. Box plots of the query latency as the number of dispatched threads of QPOPSS vary along the x-axis. Using Platform B, the CAIDA data set, and 0.01% 
queries. The box limits from top to bottom represent the 75th and 25th percentiles, respectively. Whiskers are located the 25th percentile - 1.5*IQR and the 75th 
percentile + 1.5*IQR, where IQR is the distance between the quartiles.

Fig. 11. Query latency with 0.01% queries, platform A and 𝜙= 10−4. Note the logarithmic y-axes. 

6.6. Summary

When it comes to the comparison between Space-Saving and QOSS 
as the inner algorithm employed by QPOPSS, throughput and latency 
greatly improve, especially in the lower skew levels. The results of the 
comparative evaluation between the state-of-the-art methods are sum

marized in Table 4, using both platforms A and B.

The throughput of QPOPSS excels when processing streams with 
high data skew and while answering large queries. Compared to PRIF 
and Topkapi, QPOPSS handles this scenario exceptionally well. When 
processing the CAIDA data set, especially when queries are present in 
the workload, Topkapi lacks the competitive throughput of QPOPSS and 
PRIF.4 PRIF handles both the low and high query rates equally well due 

4 Recall that this is despite the fact that Topkapi was given an advantage 
regarding throughput in the presence of concurrent queries, by not enforcing 
thread-safe synchronization, as they were not part of its design.

to its query-favored design. The precision and recall of QPOPSS are per

fect when processing Zipf data sets, and the ARE is low, diminishing 
quickly as the stream length grows. PRIF and Topkapi have higher ARE 
when processing real-world data, and Topkapi has excellent ARE when 
processing high-skew synthetic data. When scalable memory consump

tion is important, QPOPSS has a clear advantage over both PRIF and 
Topkapi due to their counters increasing with a factor of 𝑇 , which is 
not the case for QPOPSS. PRIF excels in latency due to its design of con

stant merging by a dedicated thread, while QPOPSS and Topkapi appear 
less favorable due to employing a merge-on-demand style of querying. 
Our sensitivity analysis reveals that throughput is strongly influenced 
by 𝐸, particularly for Zipf parameters above 1.5, where increased 𝐸 en

hances thread-local processing and reduces synchronization overhead. 
At lower skew levels, throughput becomes more dependent on 𝐷 rather 
than 𝐸. Higher values of 𝐸 and 𝐷 improve performance but may intro

duce buffering delays, affecting accuracy as outlined in Theorem 2. 
Our latency analysis highlights the significant impact of 𝑇 . Higher 𝐸

and 𝐷 values result in more local computation, leading to reduced query 
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Table 4
Summary of the evaluation results, given a high number of dispatched threads, moderate 
to high data skewness, and considerable stream length. The number of ↑ and ↓ symbols 
indicate positive and negative comparative performance on a specific metric, respectively 
(i.e., ↑ on latency and ARE means a low and therefore desirable metric value).

B
a
se

li
n
e Query aspects Metric 

Throughput Precision Recall ARE Memory Latency 

Q
P
O

P
S
S Few

Small ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑
Large ↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑

Many
Small ↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑
Large ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑

P
R

IF

Few
Small ↑↑ ↑↑ ↑ ↓ ↓↓ ↑↑
Large ↓↓ ↑↑ ↑↑ ↓ ↓↓ ↑↑

Many
Small ↑↑ ↑↑ ↑ ↓ ↓↓ ↑↑
Large ↓↓ ↑↑ ↑↑ ↓ ↓↓ ↑↑

T
o
p
k
a
p
i

Few
Small ↑ ↑↑ ↓↓ ↑ ↓ ↓
Large ↑ ↑ ↓ ↑ ↓ ↓

Many
Small ↓↓ ↑↑ ↓↓ ↑ ↓ ↓
Large ↓↓ ↑ ↓ ↑ ↓ ↓

delays at larger 𝑇 . For 𝑇 = 72, mean latencies and tail distributions re

main in the range of hundreds of microseconds, with occasional outliers 
reaching up to 3 milliseconds. These results demonstrate the trade-offs 
between throughput, latency, and memory efficiency, emphasizing the 
need for careful parameter selection based on workload characteristics. 

7. Other related work

As mentioned in Section 3, several algorithms target variants of the 𝜖
approximate frequent elements using multithreading, with emphasis on 
thread-local approaches as discussed in that section and the evaluation 
baselines [29,40,44,9,16]. What follows are descriptions of representa

tive approaches and the rationale for including them in our evaluation.

The Augmented Sketch (ASketch) [40] is a highly accurate stream 
processing algorithm for element frequency estimation. The design com

prises two interconnected data structures: a sketch and a filter. The 
fixed-size filter tracks elements and their occurrence. When the filter 
becomes full and a non-tracked element appears in the stream, the ele

ment is inserted both in the filter and in the underlying sketch. ASketch 
improves accuracy and increases throughput when processing streams 
with high data skew. The authors also provide designs for parallel pro

cessing with either the filter and the sketch running on different cores or 
where a complete ASketch runs on a reserved core. However, although 
frequent elements estimation is possible, the approach focuses on the 
point estimation of the frequency count of specific elements.

The HeavyKeeper algorithm [21] targets combining counter-based 
and sketch-based approaches for element-count tracking. By periodi

cally decaying element counts, freshness is ensured as input data distri

butions shift over time. HeavyKeeper can be combined with a min-heap 
to track the most frequent elements of a stream. It is a sequential algo

rithm, though, and its parallelization, allowing concurrent updates with 
queries and the appropriate supporting data structures, is not discussed 
in the work.

M. Cafaro et al. [9] present a parallel design utilizing Space-Saving 
as the core algorithm in a purely thread-local design. Queries merge 
each Space-Saving algorithm instance in a tree-like fashion until only a 
final algorithm instance that contains the frequent elements is left. The 
design gives perfect speedup compared to a sequential Space-Saving al

gorithm instance. Moreover, the accuracy of the presented design was 
precisely equal to the single-threaded version. However, no scheme for 
concurrent queries is given and is therefore not usable in real-life appli

cations where continuous queries are required, which are targeted here. 
This fact, coupled with our inability to find a readily available open

source implementation, made us choose not to include the approach in 
our evaluation.

The Cooperative Thread Scheduling Framework (CoTS) [16] and its 
multi-stream extension [17] are approaches for parallelizing the fre

quent elements problem. Similar to QPOPSS, this approach builds on the 
Space-Saving algorithm. The design features a single Space-Saving al

gorithm instance on which each thread operates. Update operations are 
carried out directly on the space-saving algorithm instance or handed 
over to whichever thread currently has exclusive access. The synchro

nization primitives used are lock-free, promoting high throughput.

The approach was evaluated using synthetic Zipfian data sets, show

ing relative throughput gains between CoTS and a lock-based design. 
However, the work lacks discussion on the effects of overlapping up

dates and queries on query accuracy and rely solely on the analysis of 
the sequential Space-Saving algorithm. Additionally, due to the combi

nation of the complexity of the approach and the absence of a readily 
available open-source implementation, implying risks of misinterpreta

tion of the work, it was not possible to include this approach in our 
evaluation.

8. Conclusions

High-throughput data analytics is important in many fields, such 
as network optimization, cybersecurity, and online data analysis. It re

quires novel algorithmic solutions that exploit concurrency to achieve 
a higher degree of parallelism. To this end, we analyzed the problem 
of finding the frequent elements of high throughput data streams with 
concurrent updates and queries, identifying a set of challenges.

To address these challenges, we designed and extensively evalu

ated Query and Parallelism Optimized Space-Saving, both analytically 
and empirically, exploring the extended trade-off space in the presence 
of concurrent queries and updates for the frequent elements problem. 
To address concurrency-associated accuracy challenges, we provided a 
bound on the space required by QPOPSS to accurately report the fre

quent elements of a stream. Furthermore, we bounded the frequent 
elements reported and their estimated occurrence when queries overlap 
concurrently with updates. To our knowledge, this has not been done 
before in the context of frequent elements estimation.

In addressing timeliness challenges, we proposed the Query Opti

mized Space-Saving algorithmic implementation, which drastically re

duces the query latency compared to the original approach. We evalu

ated QPOPSS through comparison with representative methods in the 
literature, using synthetic and real-life data sets and using two different 
NUMA hardware platforms. The results clearly show that QPOPSS accu

rately and swiftly reports the frequent elements of a stream compared 
to other approaches, using extremely few bytes of memory, addressing 
challenges related to memory footprint and accuracy. This can be at

tributed to the unique combination of domain partitioning, inter-thread 
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filters, and query-optimized synopsis data structures, which together en

sure high throughput, low latency, low memory, and high accuracy for 
an overall balanced approach. The code and the data used (alt. code to 
generate the synthetic data-sets) are openly available [26].

Future work could extend this method beyond frequent elements to 
quantiles, histograms, wavelets, and related problems. Moreover, recent 
advances where parallelization improvements are of interest include 
methods for finding frequent elements in streams of both updates and 
removals [45]. Such works can lay the groundwork for efficient mech

anisms for tracking the most recent frequent elements [6,7], as the 
stream data distribution may change over time. It is of particular in

terest to study efficient mechanisms for maintaining frequent elements 
in a sliding-window framework, given that real-world data streams of

ten exhibit non-stationary behavior.
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