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We give necessary and sufficient conditions for the embeddings ΛBV(p) ⊆ ΓBV(qn↑q)

and ΦBV ⊆ BV(qn↑q). As a consequence, a number of results in the literature, 
including a fundamental theorem of Perlman and Waterman, are simultaneously 
extended.
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1. Introduction and main results

Let Λ = {λj}∞j=1 be a nondecreasing sequence of positive numbers such that 
∑∞

j=1
1
λj

= ∞. Following 
[1], we call Λ a Waterman sequence. Let Φ = {φj}∞j=1 be a sequence of increasing convex functions on [0, ∞)
with φj(0) = 0. We say that Φ is a Schramm sequence if 0 < φj+1(x) ≤ φj(x) for all j and 

∑∞
j=1 φj(x) = ∞

for all x > 0. This terminology is used throughout.
We begin by recalling two generalizations of the concept of bounded variation which are central to our 

work.

Definition 1.1. A real-valued function f on [a, b] is said to be of Φ-bounded variation if

VΦ(f) = VΦ(f ; [a, b]) = sup
n∑

j=1
φj(|f(Ij)|) < ∞,
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where the supremum is taken over all finite collections {Ij}nj=1 of nonoverlapping subintervals of [a, b] and 
f(Ij) = f(sup Ij) − f(inf Ij). We denote by ΦBV the linear space of all functions f such that cf is of 
Φ-bounded variation for some c > 0.

If for every f ∈ ΦBV, we define

‖f‖ := |f(a)| + inf{c > 0 : VΦ(f/c) ≤ 1},

then it is easily seen that ‖ · ‖ is a norm, and ΦBV endowed with this norm turns into a Banach space. The 
space ΦBV is introduced in Schramm’s paper [15]. For more information about ΦBV, the reader is referred 
to [1].

If φ is a strictly increasing convex function on [0, ∞) with φ(0) = 0, and if Λ = {λj}∞j=1 is a Waterman 
sequence, by taking φj(x) = φ(x)/λj for all j, we get the class φΛBV of functions of φΛ-bounded variation. 
This class was introduced by Schramm and Waterman in [16] (see also [17] and [11]). More specifically, if 
φ(x) = xp (p ≥ 1), we get the Waterman–Shiba class ΛBV(p), which was introduced by Shiba in [18]. When 
p = 1, we obtain the well-known Waterman class ΛBV.

In the case λj = 1 for all j, we obtain the class φBV of functions of φ-bounded variation introduced 
by Young [26]. More specifically, when φ(x) = xp (p ≥ 1), we obtain the Wiener class BVp (see [24]), and 
taking p = 1, we have the well-known Jordan class BV.

Remark 1.2. One can easily observe that functions of Φ-bounded variation are bounded and can only have 
simple discontinuities (countably many of them, indeed). The class ΦBV has many applications in Fourier 
analysis as well as in treating topics such as convergence, summability, etc. (see [24,26,21–23,12,15]).

Definition 1.3. Let {qn}∞n=1 and {δn}∞n=1 be sequences of positive real numbers such that 1 ≤ qn ↑ q ≤ ∞
and 2 ≤ δn ↑ ∞. A real-valued function f on [a, b] is said to be of qn-Λ-bounded variation if

VΛ(f) = VΛ(f ; qn ↑ q; δ) := sup
n≥1

sup
{Ij}

( s∑
j=1

|f(Ij)|qn
λj

) 1
qn < ∞,

where the {Ij}sj=1 are collections of nonoverlapping subintervals of [a, b] such that infj |Ij | ≥ b−a
δn

. The class 
of functions of qn-Λ-bounded variation is denoted by ΛBV(qn↑q) (= ΛBV(qn↑q)

δ ). In the sequel, we suppose 
that [a, b] = [0, 1].

The class ΛBV(qn↑q) was introduced by Vyas in [19]. When λj = 1 for all j and δn = 2n for all n, we get 
the class BV(qn↑q)—introduced by Kita and Yoneda (see [9])—which in turn recedes to the Wiener class 
BVq, when qn = q for all n.

A natural and important problem is to determine relations between the above-mentioned classes; see 
[21,12,4,9,6,13,8,5] for some results in this direction. In particular, Perlman and Waterman found the fun-
damental characterization of embeddings between ΛBV classes in [12]. Ge and Wang characterized the 
embeddings ΛBV ⊆ φBV and φBV ⊆ ΛBV (see [5]). It was shown by Kita and Yoneda in [9] that the 
embedding BVp ⊆ BV(pn↑∞) is both automatic and strict for all 1 ≤ p < ∞. Furthermore, Goginava charac-
terized the embedding ΛBV ⊆ BV(qn↑∞) in [6], and a characterization of the embedding ΛBV(p) ⊆ BV(qn↑q)

(1 ≤ q ≤ ∞) was given by Hormozi, Prus-Wiśniowski and Rosengren in [8]. In this paper, we investigate the 
embeddings ΛBV(p) ⊆ ΓBV(qn↑q) and ΦBV ⊆ BV(qn↑q) (1 ≤ q ≤ ∞). The problem as to when the reverse 
embeddings hold is also considered, which turns out to have a simple answer (see Remark 1.10(ii) below).

Throughout this paper, the letters Λ and Γ are reserved for a typical Waterman sequence. We associate 
to Λ a function which we still denote by Λ and define it as Λ(r) :=

∑[r]
j=1

1
λj

for r ≥ 1. The function Λ(r) is 
clearly nondecreasing and Λ(r) → ∞ as r → ∞. Our first main result reads as follows.
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Theorem 1.4. Let 1 ≤ p ≤ qn ↑ q ≤ ∞. Then, a necessary and sufficient condition for the embedding 
ΛBV(p) ⊂ ΓBV(qn↑q) is

lim sup
n→∞

max
1≤k≤δn

Γ(k)
1
qn Λ(k)−

1
p < ∞. (1.1)

Moreover, if the hypothesis is replaced by the condition that {Γ(n)/Λ(n)}∞n=1 be nondecreasing, then the 
conclusion of the theorem still holds true.

An important consequence of Theorem 1.4 is the following corollary, which is indeed a nontrivial extension 
of [12, Theorem 3].

Corollary 1.5. Let 1 ≤ p ≤ q < ∞. Then, a necessary and sufficient condition for the embedding ΛBV(p) ⊆
ΓBV(q) is

sup
1≤n<∞

Γ(n)
1
q

Λ(n)
1
p

< ∞.

Corollary 1.6. ([8, Theorem 1]) Let 1 ≤ p < ∞. Then, a necessary and sufficient condition for the embedding 
ΛBV(p) ⊆ BV(qn↑q) is

lim sup
n→∞

max
1≤k≤δn

k
1
qn

(∑k
i=1

1
λi

) 1
p

< ∞.

Next corollary extends [9, Lemma 2.1].

Corollary 1.7. Let 1 < q ≤ ∞. Then, we have
⋃

1≤p<q

ΛBV(p) ⊆ ΛBV(qn↑q).

If Φ = {φj}∞j=1 is a Schramm sequence, we define Φk(x) :=
∑k

j=1 φj(x) for x ≥ 0. Then Φk(x) is clearly 
an increasing convex function on [0, ∞) such that Φk(0) = 0 and Φk(x) > 0 for x > 0. Without loss of 
generality we assume that Φk(x) is strictly increasing on [0, ∞). Let Φ−1

k (x) be the inverse function of Φk(x). 
Our next main result can be formulated as follows.

Theorem 1.8. A necessary and sufficient condition for the embedding ΦBV ⊂ BV(qn↑q) is

lim sup
n→∞

max
1≤k≤δn

k
1
qn Φ−1

k (1) < ∞. (1.2)

Corollary 1.9. A necessary and sufficient condition for the embedding φΛBV ⊂ BV(qn↑q) is

lim sup
n→∞

max
1≤k≤δn

k
1
qn φ−1(Λ(k)−1) < ∞.

Remark 1.10. (i) When φ(x) = xp, 1 ≤ p < ∞, Corollary 1.9 yields Corollary 1.6 as a special case.
(ii) By [9, Theorem 3.3], the class BV(qn↑∞) always contains a function with nonsimple discontinuities. 

Since clearly BV(qn↑∞) ⊆ ΛBV(qn↑∞), this is also the case for the class ΛBV(qn↑∞). On the other hand, as 
pointed out in Remark 1.2, the functions in the classes ΦBV and ΛBV(p) can only have simple discontinuities. 
Hence, the corresponding reverse embeddings can never happen.
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2. An auxiliary inequality

In this section we establish an inequality (see (2.1) below) which plays a crucial role in the sufficiency 
part of the proof of Theorem 1.4. Also some applications of it are presented in Corollary 2.2 and Remark 2.3. 
The following proposition is indeed a generalization of [10, Lemma].

Proposition 2.1. Let 1 ≤ q < ∞ and n ∈ N. Then

( n∑
j=1

xq
jzj

) 1
q ≤

n∑
j=1

xjyj max
1≤k≤n

( k∑
j=1

zj

) 1
q
( k∑

j=1
yj

)−1
, (2.1)

where {xj}, {yj} and {zj} are positive nonincreasing sequences.

Proof. Without loss of generality we may assume that 
∑n

j=1 xjyj = 1. With this in mind, it is enough to 
prove that the maximum value of 

∑n
j=1 x

q
jzj under above assumptions is

max
1≤k≤n

( k∑
j=1

zj

)( k∑
j=1

yj

)−q

.

We claim that the solution to this problem satisfies condition

x1 = x2 = · · · = xk > xk+1 = xk+2 = · · · = xn = 0 (2.2)

for some 1 ≤ k ≤ n. To prove our claim, we suppose to the contrary that there exists a solution which does 
not satisfy condition (2.2). Then for some 1 ≤ k ≤ n, we have xk+1 > 0 and

x1 = x2 = · · · = xk > xk+1 ≥ xk+2 ≥ · · · ≥ xn ≥ 0.

Put

A :=
k∑

j=1
xjyj , B :=

n∑
j=k+1

xjyj , C := xk+1

xk
,

and define

Aη(t) + Bt = 1.

Then the n-tuple

(η(t)x1, η(t)x2, · · · , η(t)xk, txk+1, · · · , txn)

satisfies conditions of the problem, whenever 0 ≤ t < 1/AC + B. Now define

f(t) := η(t)q
k∑

j=1
xq
jzj + tq

n∑
j=k+1

xq
jzj

and consider two possibilities:
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1) If q > 1 then

f ′′(t) = q(q − 1)
(
η(t)q−2(η′(t))2

k∑
j=1

xq
jzj + tq−2

n∑
j=k+1

xq
jzj

)

and hence f ′′(1) > 0 which in turn implies that f has a local minimum at t = 1. This is a contradiction.
2) If q = 1 then f(t) is linear. Consequently,

A

n∑
j=k+1

xq
jzj −B

k∑
j=1

xq
jzj = 0

which implies that the problem has a solution satisfying condition (2.2). This completes the proof. �
Let f be a bounded function on [0, 1]. The modulus of variation of f is the sequence νf and is defined 

by

νf (n) := sup
n∑

j=1
|f(Ij)|,

where the supremum is taken over all finite collections {Ij}nj=1 of nonoverlapping subintervals of [0, 1]. The 
modulus of variation of f is nondecreasing and concave. A sequence ν with such properties is called a 
modulus of variation. The symbol V [v] denotes the class of all functions f for which there exists a constant 
C > 0 (depending on f) such that νf (n)/ν(n) ≤ C for all n (see [3]). The following corollary is an immediate 
consequence of inequality (2.1).

Corollary 2.2. ([2, Theorem 1]) The following inclusion holds.

ΛBV ⊆ V [nΛ(n)−1].

Proof. Let {Ij}nj=1 be a collection of nonoverlapping subintervals of [0, 1]. If f ∈ ΛBV, q = 1, xj = |f(Ij)|, 
yj = 1/λj and zj = 1, from (2.1) we obtain

n∑
j=1

|f(Ij)| ≤
n∑

j=1

|f(Ij)|
λj

max
1≤k≤n

kΛ(k)−1 ≤ VΛ(f)nΛ(n)−1,

which means that f ∈ V [nΛ(n)−1]. �
Remark 2.3. Let Λ = {λj} and Γ = {γj} be Waterman sequences. As stated on page 181 of [14], Perlman 
and Waterman have shown, in the course of the proof of [12, Theorem 3], that if there is a constant C such 
that

n∑
j=1

1
γj

≤ C

n∑
j=1

1
λj

for all n,

then, given any nonincreasing sequence {aj} of nonnegative numbers,

n∑
j=1

aj
γj

≤ C
n∑

j=1

aj
λj

.

It is worth mentioning that one can easily see that this is a simple consequence of inequality (2.1) above.
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3. Proofs of main results

Proof of Theorem 1.4. Necessity. We proceed by contraposition. If (1.1) does not hold, using the fact that 
Γ(r) → ∞ as r → ∞, we may, without loss of generality, assume that γ1 = 1 and for each n

Γ(δn) ≥ 2n+2, (3.1)

and

Γ(rn)
1
qn Λ(rn)−

1
p > 24n (3.2)

for some integer rn, 1 ≤ rn ≤ δn.
We are going to construct a function f in ΛBV(p) that does not belong to ΓBV(qn↑q). To this end, let sn

be the greatest integer such that 2sn − 1 ≤ 2−nΓ(δn) and put tn = min{rn, sn}. We define a sequence of 
functions {fn}∞n=1 on [0, 1] as follows:

fn(x) :=

⎧⎨
⎩

2−nΛ(rn)−
1
p , x ∈ [2−n + 2j−2

δn
, 2−n + 2j−1

δn
); 1 ≤ j ≤ tn,

0 otherwise.

The functions fn, defined in this fashion, have disjoint supports and therefore f(x) :=
∑∞

n=1 fn(x) is a 
well-defined function on [0, 1]. In addition, we have

VΛ(f) ≤
∞∑

n=1
VΛ(fn) =

∞∑
n=1

( 2tn∑
j=1

(2−nΛ(rn)−
1
p )p

λj

) 1
p

≤
∞∑

n=1
2−n+1

( rn∑
j=1

Λ(rn)−1

λj

) 1
p =

∞∑
n=1

2−n+1
(Λ(rn)

Λ(rn)

) 1
p

< ∞,

since the sequence {Λ(rn)−1}∞n=1 is nonincreasing and tn ≤ rn. This means that f ∈ ΛBV(p).
On the other hand, f /∈ ΓBV(qn↑q). To see this, note that the definition of sn implies 2(sn + 1) − 1 >

2−nΓ(δn). Combining this with (3.1), we obtain Γ(2sn − 1) ≥ 2−n−1Γ(δn). Consequently, if tn = sn, then 
the preceding inequality means that

Γ(2tn − 1) ≥ 2−n−1Γ(δn) ≥ 2−n−1Γ(rn),

since rn ≤ δn. Also, if tn = rn, clearly 2tn − 1 ≥ rn and hence Γ(2tn − 1) ≥ Γ(rn), since Γ(r) is increasing. 
Thus, we have shown

Γ(2tn − 1) ≥ 2−n−1Γ(rn), for all n. (3.3)

Finally, the intervals

Ij :=
[
2−n + j−1

δn
, 2−n + j

δn

]
, j = 1, ..., 2tn − 1,

have length 1 for each n, and thus
δn
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VΓ(f) ≥
( 2tn−1∑

j=1

|f(Ij)|qn
γj

) 1
qn =

(
Γ(2tn − 1)(2−nΛ(rn)−

1
p )qn

) 1
qn

≥ 2−n
(
2−n−1Γ(rn)(Λ(rn)−

1
p )qn

) 1
qn ≥ 2n,

where the last two inequalities are due to (3.3) and (3.2), respectively. As a result, VΓ(f) is not finite.
Sufficiency. Assume (1.1) and let f ∈ ΛBV(p). Let {Ij}sj=1 be a nonoverlapping collection of subintervals 

of [0, 1] with inf |Ij | ≥ 1/δn, and let q = qn/p ≥ 1, xj = |f(Ij)|p, yj = 1/λj , zj = 1/γj . By [7, Theorem 368], 
we may also assume that the xj ’s are arranged in descending order. Now, we can apply (2.1) to get

( s∑
j=1

|f(Ij)|qn
γj

) 1
qn ≤

( s∑
j=1

|f(Ij)|p
λj

) 1
p max

1≤k≤s
Γ(k)

1
qn Λ(k)−

1
p

≤
( s∑

j=1

|f(Ij)|p
λj

) 1
p max

1≤k≤δn
Γ(k)

1
qn Λ(k)−

1
p ,

where the second inequality is a consequence of s ≤ δn. Taking suprema over all collections {Ij}sj=1 as 
above, and over all n yields

VΓ(f) ≤ VΛ(f) sup
n

max
1≤k≤δn

Γ(k)
1
qn Λ(k)−

1
p < ∞.

Hence f ∈ ΓBV(qn↑q) and the first part of the theorem is proved.
To prove the second part, let us assume that {Γ(n)/Λ(n)}∞n=1 is nondecreasing. Observe that the proof 

of necessity is identical to that given in the first part. For sufficiency, note that the only case which needs 
to be justified is when qn < p for some n. If this is the case, we first apply (2.1) with q = 1 to obtain

s∑
j=1

|f(Ij)|p
γj

≤
s∑

j=1

|f(Ij)|p
λj

max
1≤k≤s

Γ(k)Λ(k)−1. (3.4)

Then an application of Hölder’s inequality yields

s∑
j=1

|f(Ij)|qn
γj

=
s∑

j=1

( |f(Ij)|p
γj

) qn
p

γ
qn
p −1

j

≤
( s∑

j=1

|f(Ij)|p
γj

) qn
p Γ(s)1−

qn
p

≤
( s∑

j=1

|f(Ij)|p
λj

) qn
p Γ(s)1−

qn
p max

1≤k≤s
Γ(k)

qn
p Λ(k)−

qn
p

≤
( s∑

j=1

|f(Ij)|p
λj

) qn
p max

1≤k≤δn
Γ(k)Λ(k)−

qn
p ,

where the last two inequalities are due, respectively, to (3.4) and the fact that {Γ(n)/Λ(n)}∞n=1 is nonde-
creasing. �
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Proof of Theorem 1.8. Necessity. Suppose (1.2) does not hold. Then, without loss of generality, we may 
assume that for each n

δn ≥ 2n+2,

and

r
1
qn
n Φ−1

rn (1) > 24n (3.5)

for some integer rn, 1 ≤ rn ≤ δn.
We will now construct a function f ∈ ΦBV such that f /∈ BV(qn↑q). To do so, let sn be the greatest 

integer such that 2sn − 1 ≤ 2−nδn, let tn = min{rn, sn} and consider the sequence {fn}∞n=1 of functions on 
[0, 1] defined in the following way:

fn(x) :=

⎧⎨
⎩

2−nΦ−1
rn (1) , x ∈ [2−n + 2j−2

δn
, 2−n + 2j−1

δn
); 1 ≤ j ≤ tn,

0 otherwise.

Since the fn’s have disjoint supports, f(x) :=
∑∞

n=1 fn(x) is a well-defined function on [0, 1]. Thus, using 
convexity of the Φrn ’s we have

VΦ(f) ≤
∞∑

n=1
VΦ(fn) =

∞∑
n=1

2tn∑
j=1

φj(2−nΦ−1
rn (1)) =

∞∑
n=1

Φ2tn(2−nΦ−1
rn (1))

≤
∞∑

n=1
Φ2rn(2−nΦ−1

rn (1)) ≤
∞∑

n=1
2Φrn(2−nΦ−1

rn (1)) < ∞,

that is, f ∈ ΦBV.
In conclusion, let us show that f /∈ BV(qn↑q). To this end, proceeding in the same way as in the proof of 

Theorem 1.4, we obtain

2tn − 1 ≥ 2−n−1rn, for all n. (3.6)

Since for every n, all intervals

Ij :=
[
2−n + j−1

δn
, 2−n + j

δn

]
, j = 1, ..., 2tn − 1,

have length 1
δn

, we get

V (f ; qn ↑ q, δ) ≥
( 2tn−1∑

j=1
|f(Ij)|qn

) 1
qn =

(
(2tn − 1)(2−nΦ−1

rn (1))qn
) 1

qn

≥ 2−n
(
2−n−1rn(Φ−1

rn (1))qn
) 1

qn ≥ 2n,

where the last two inequalities are results of (3.6) and (3.5), respectively. Therefore, f /∈ BV(qn↑q).
Sufficiency. Let f ∈ ΦBV. To show that f ∈ BV(qn↑q), it suffices to prove the inequality

V (f ; qn ↑ q; δ) ≤ C sup
n

max
1≤k≤δn

k
1
qn Φ−1

k (1), (3.7)

where C is a positive constant depending solely on f .



M. Moazami Goodarzi et al. / J. Math. Anal. Appl. 450 (2017) 829–838 837
In the course of the proof of Theorem 2.1 in [25], the author proceeds to estimate (
∑n

j=1 x
q
j)

1
q under the 

restriction

n∑
j=1

φj(xτ(j)) ≤ VΦ(f),

where the xj ’s are arranged in descending order and τ is any permutation of n letters. Using Wang’s 
approach in [20], he finds the following:

( n∑
j=1

xq
j

) 1
q ≤ 16 max

1≤k≤n
k

1
q Φ−1

k (VΦ(f)). (3.8)

To prove (3.7), consider a nonoverlapping collection {Ij}sj=1 of subintervals of [0, 1] with inf |Ij | ≥ 1/δn. If 
we put q = qn, xj = |f(Ij)|, and if the xj ’s are rearranged in descending order, then we may apply (3.8) to 
obtain

( s∑
j=1

|f(Ij)|qn
) 1

qn ≤ 16 max
1≤k≤s

k
1
qn Φ−1

k (VΦ(f))

≤ 16 max
1≤k≤δn

k
1
qn Φ−1

k (VΦ(f)).

Taking suprema and using concavity of the Φ−1
k ’s yields (3.7) with C = 16(1 + VΦ(f)). �
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