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Abstract
We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries,
diagonals, but no connections or reversal) with univalent universes, each containing�, �, path, identity,
natural number, boolean, suspension, and glue (equivalence extension) types. The type theory includes a
syntactic description of a uniform Kan operation, along with judgmental equality rules defining the Kan
operation on each type. The Kan operation uses both a different set of generating trivial cofibrations and a
different set of generating cofibrations than the Cohen, Coquand, Huber, and Mörtberg (CCHM) model.
Next, we describe a constructive model of this type theory in Cartesian cubical sets. We give a mechanized
proof, using Agda as the internal language of cubical sets in the style introduced by Orton and Pitts, that
glue,�,�, path, identity, boolean, natural number, suspension types, and the universe itself are Kan in this
model, and that the universe is univalent. An advantage of this formal approach is that our construction
can also be interpreted in a range of other models, including cubical sets on the connections cube category
and the DeMorgan cube category, as used in the CCHMmodel, and bicubical sets, as used in directed type
theory.

Keywords: Type theory, homotopy type theory, cubical type theory

1. Introduction
Cubical type theories are a family of formal systems for Homotopy Type Theory/Univalent
Foundations (The Univalent Foundations Program, Institute for Advanced Study, 2013;
Voevodsky, 2006). Unlike type theories that express univalence and higher inductive types as
axioms, cubical type theories satisfy the canonicity property stating that closed terms compute
as programs, providing a constructive justification of the univalence axiom. Moreover, because
they provide additional judgmental equalities, and an improved syntax for higher inductive types,
cubical type theories allow a more convenient syntax for synthetic homotopy theory.

1.1 Constructive cubical models and type theories
Voevodsky’s model of univalence in simplicial sets makes essential use of classical logic
(Kapulkin and Lumsdaine, 2021). Because the constructive nature of type theories is one of their
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major philosophical and practical benefits, a number of researchers in homotopy type theory were
drawn to the problem of finding a constructive model of the univalence axiom.

The BCHmodel After an early no-go theorem for constructive simplicial set models (Bezem and
Coquand, 2015), Bezem et al. (2014, 2019) gave a constructive model of univalent type theory in
cubical sets, which are presheaves over the free monoidal category (C,⊗, ·) generated by an inter-
val object I, face maps 0, 1 : · → I, degeneracies I→ ·, and a symmetry involution I⊗ I→ I⊗ I.
In this and other cubical set models, the n-dimensional cells of a type/presheaf A are given by
the set A(I⊗n), and their boundaries are given by restriction along face maps. Types are more-
over equipped with Kan operations assuring that their n-cells form a higher groupoid, which is
necessary to validate the identity elimination rule.

These Kan operations are inspired by the homotopy-theoretic Kan condition – that for any “n-
cube missing one face” there is a complete n-cube that “fills” it (i.e., restricts to that configuration)
(Kan, 1955) – but are stronger in that (1) they apply to a broader class of partial cube configura-
tions, (2) they are given by an operation and not only an existence property, and (3) the operation
is uniform, or natural in the input configuration. The latter condition is crucial for circumventing
the constructivity issue experienced in simplicial models.

Bezem et al. implemented an evaluator called cubical, which computes terms of univalent
type theory in an operationalized version of their model.1 However, this approach does not pro-
duce a better-behaved syntax, because the interpretation of a term in the model is often not
expressible in the original theory. For instance, the model interprets identity elimination using
Kan operations, which have no syntactic counterpart in ordinary homotopy type theory. A nat-
ural next step is therefore to find a syntactic presentation of the cubical model that can capture
some of the new equations validated by the model as judgmental equalities.

There are a few reasons why this strategy appears plausible.We canmake I explicit in the syntax
using variables ranging over its Yoneda embedding as a cubical set; higher cells are then internal-
ized as certain function spaces known as path types. Furthermore, the uniform Kan operations are
strictly stable under substitutions, making them a good fit for the syntax of type theory. However,
there are also a few difficulties. Because the cube category is only monoidal, interval variables
are substructural (specifically, lacking contraction) as in nominal logic (Pitts, 2015); additionally,
without contraction, it is unclear how to express eliminators for higher inductive types.

Geometrically, contraction of interval variables computes a diagonal of an n-cube as an (n− 1)-
cube. Adding contraction/diagonals to the cube category of Bezem et al. yields the Cartesian
cube category, the free finite product category on an interval object (i.e., the monoidal prod-
uct ⊗ becomes a Cartesian product ×). In addition to the syntactic benefits described above,
the Cartesian cube category is also natural from a semantic point of view. Indeed, Awodey has
encouraged its investigation since 2013 due to its goodmathematical properties: it is the classifying
topos of bipointed sets; unlike the free symmetric monoidal cube category, geometric realization
of Cartesian cubical sets preserves products; and the interval is atomic (i.e., exponentiation by the
interval has a right adjoint) (Awodey, 2016). The Cartesian cube category is also a strict test cate-
gory, meaning, roughly, that presheaves on it (classically) admit a model structure with the same
homotopy theory as simplicial sets/topological spaces (though this model structure’s fibrations
may not coincide with the fibrations used in the cubical type theory or its cubical sets model);
Buchholtz and Morehouse (2017) develop a thorough investigation of which cube categories are
(strict) test categories.

The De Morgan (CCHM) model The constructions of Bezem et al. do not work in the presence of
diagonals, because the Kan operations associated to several type formers are not natural in diag-
onal maps. In 2014, Coquand proposed two alternate uniform Kan operations, differing in what
partial cube configurations are allowed: the first was intended for a model in Cartesian cubical sets
(Coquand, 2014b) and the second for De Morgan cubical sets, which extend the Cartesian cubes
with an additional form of degeneracy known as connections I× I→ I (logically corresponding to
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meets and joins) as well as a reversalmap I→ I (Coquand, 2014a). Notably, the latter Kan opera-
tion builds in a regularity condition which allows path types to strictly model Martin-Löf identity
types.

In mid-2014, several syntactic type theories with interval variables were developed: Bernardy
et al. (2015) developed a presheaf type theory for polymorphism, Coquand (2014a) developed
a type-theoretic presentation of the De Morgan model, and Brunerie and Licata (2014) devel-
oped a type-theoretic presentation of the incomplete Cartesian model. Isaev (2014) developed an
interval-based type theory with diagonals and one connection, which has since evolved into the
Arend proof assistant.2

Our attempts in 2014–2015 to adapt a proposed construction of univalent universes in the De
Morgan model to the Cartesian model revealed that the former did not in fact satisfy the required
regularity condition.3 Following this discovery, Cohen et al. (2018) (“CCHM”) dropped the reg-
ularity condition from the De Morgan model and corrected it to obtain a constructive model of
univalent type theory and a De Morgan cubical type theory containing univalent universes closed
under �, �, path, natural number, circle, and propositional truncation types for which Huber
(2019) proved canonicity. That type theory was implemented in the cubicaltt prototype proof
assistant4 and later integrated into Cubical Agda (Vezzosi et al., 2019). Two machine-checked
formalizations of this model have been developed. At the suggestion of the fifth author, Bickford
(2020) gave a direct representation of cubical sets in Nuprl (Constable et al., 1986), verifying that
the model can be developed in a constructive metatheory. Orton and Pitts (2016, 2018), Licata
et al. (2018), Orton (2019a,b) use a more abstract technique, in which Agda is used as the internal
language of cubical sets.

The Cartesianmodel Despite this progress on the DeMorgan model, a Cartesian model (and type
theory) remained elusive. The constructions of Cohen et al. cannot be adapted to the Cartesian
setting, in this case because the Kan operations associated to several type formers make essential
use of connections. Awodey (2018b) constructed a model of identity types in Cartesian cubical
sets as path types using a regular uniform Kan composition operation, but this model has not yet
been extended to univalent universes.

Angiuli et al. (2016, 2017a), Angiuli and Harper (2017) made progress by developing a com-
putational Cartesian cubical type theory in the sense of Nuprl (Constable et al., 1986), in which
types are construed as partial equivalence relations that specify the evaluation behavior of untyped
programs. This model validates the rules of a formal type theory and yields a a strict, rather than
homotopy, canonicity result for a Cartesian cubical type theory with �, �, path, boolean, circle,
and “isovalence” types, the latter being a variant of univalence for strict isomorphisms (pairs of
functions that compose to the identity up to judgmental equality, not up to paths).

In Spring 2017, Angiuli et al. (“AFH”) discovered how to construct univalent universes in the
Cartesian model by extending the Kan operation to allow open boxes with fixed diagonals (i.e.,
adding the diagonal I→ I× I as a cofibration). Using this idea, Angiuli et al. (2017b, 2018b),
Angiuli (2019) define a computational Cartesian cubical type theory with a univalent universe
hierarchy as well as an extensional equality judgment internalized as an equality pre-type. This
type theory was implemented by Angiuli et al. (2018a) in the RedPRL proof assistant.5

In this paper, we define a formal Cartesian cubical type theory that abstracts from the computa-
tional semantics, along with amachine-verified Cartesian cubical sets model. This work completes
the formalism given by Brunerie and Licata (2014) and the constructive model begun by Coquand
(2014b). Our work here complements AFH (Angiuli et al., 2017b) by showing that the definition
of univalent universes in the Cartesian setting admits a broader class of mathematical models,
including not only Cartesian cubical sets but also other presheaf categories, such as ones with
additional structure on the interval (e.g. connections, reversals) or additional cofibrations. The
definitions of the Kan operations can become quite involved, and while AFH contains extremely
detailed on-paper proofs of correctness, the model we present here has been formalized in Agda,
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lending additional confidence in the correctness of the ideas. Presentationally, we make some
choices that expose some similarities with the definitions in the De Morgan model,6 and disen-
tangle the construction of univalent and Kan universes from an additional feature of AFH, where
the Kan composition operation disallows false cofibrations, avoiding the “empty system composi-
tions” that proliferate in formalizations. Since the original development of this work, versions of
Cartesian cubical type theory close to the one described in this paper have been implemented in
the prototype proof assistants yacctt7 and redtt.,8 and the ability to add new interval structure
and cofibrations has been used to define a bicubical directed type theory as an extension of this
work (Weaver and Licata, 2020).

Notwithstanding the existence of the CCHM model, we believe Cartesian cubical type the-
ory without connections is worth studying for several reasons. First, we found it mathematically
interesting to investigate whether connections are necessary to obtain a constructive model
of univalence, or whether the technically simpler Cartesian cube category suffices. But aside
from curiosity, there are two important reasons to pursue different cubical type theories. One
reason is efficiency of implementation, with the goal of (for instance) running Brunerie’s calcu-
lation of π4(S3)∼=Z/2Z, which none of the existing prototypes are able to do. There are some
time-consuming aspects of the implementation of De Morgan model (e.g. checking equality of
“systems” in the presence of connections) that are not necessary in the Cartesian model, so it
is at least plausible that avoiding connections might be useful for efficiency. A second reason is
that cubical type theories differ in their range of models; we would eventually like a cubical type
theory that, like axiomatic homotopy type theory, interprets in all ∞-toposes (Shulman, 2019),
and it seems plausible that such an interpretation might be easier when less structure on the cube
category is demanded by the type theory. A related question is whether the model structure on
cubical sets defined from the type theory (Sattler, 2017) is Quillen equivalent to spaces (e.g. sim-
plicial sets). While this is not true (Sattler, 2018) for the Kan composition operation we use here,
Awodey, Cavallo, Coquand, Riehl, Sattler have shown that it is true for an “equivariant” extension
of our Kan operation (Riehl, 2019). The formal cubical type theory that we define in this paper
should interpret in this equivariant model, allowing a translation of theorems proved in it to facts
about a standard notion of spaces. (The De Morgan model is also not equivalent to spaces, but
the question is still open for the model with connections but no reversal.) Because of these ongo-
ing issues in proof assistant design and semantics, we believe it is worth documenting all of the
variants of cubical type theory that support univalence and higher inductive types.

1.2 Background on Kan operations
To explain the main aspects of our contribution in more technical detail, we must delve into
the details of cubical type theory and the syntax and semantics of uniform Kan operations. Our
understanding of the semantics was particularly influenced by Awodey (2018b), Gambino and
Sattler (2017), Orton and Pitts (2016), Sattler (2017).

Basic syntax of cubical type theory The judgments of cubical type theory are indexed by a context
� of interval (or dimension) variables x : I, whose length expresses the dimension of the judgment.
In the case of the typing judgment � ; � � a :A, the points of A are given by ·; � � a :A, lines by
x : I; � � a :A, squares by x : I, y : I; � � a :A, and so on. Semantically, � is an object of a cube
categoryC, here the Cartesian cube category (the free finite product category on an interval object
I with maps · � 0 : I and · � 1 : I). Closed types are presheaves on C (objects of Ĉ := SetsCop). In
the simple case where � is empty and a, but not A, mentions variables from � , the judgment
� � a :A represents a natural transformation from homC (−,�) to A, and hence, by the Yoneda
lemma, an element of A(�).

Substitution of the special symbols 0 and 1 for interval variables, which we write a〈0/x〉 and
a〈1/x〉, corresponds to the action of the presheaf A on the endpoint maps 0, 1 : · → I. Weakening,
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exchange, and contraction for interval variables correspond to the presheaf action on degeneracy,
symmetry, and diagonals, respectively. The basic type constructors of type theory (�, �, N, etc.)
can be interpreted in any presheaf model in such a way that their rules apply uniformly at every
dimension, allowing us to lift their rules to arbitrary interval context � ; for example, � types
support λ and application in every � ; �. This generalization gives many constructions on paths,
such as ap and function extensionality, as special cases of the rules for the basic type constructors.

Types as Kan fibrations To express that types behave like spaces (as in homotopy type theory),
we require types to be fibrations with respect to the paths given by maps from the dimension
variables/interval object I, by adding a Kan filling operation. The classical Kan condition (Kan,
1955) states that any “cubemissing one face” (e.g., one endpoint of a line, or three sides of a square)
can be “filled” to a complete cube with the given faces on its boundary. This can be rephrased as
asserting that commuting squares as indicated in the left diagram admit diagonal lifts:


 �.A

� �

p

θ

fill


; � � p :A
�; � � fillA(p) :A


; � � fillA(p)≡ p :A

The outer square specifies a fibration/dependent type (on the right), a filling problem (on the left,
e.g., the inclusion of a “cube missing one face” into a whole cube), a “whole” shape in � (on the
bottom), and a “partial” shape in �.A (on the top) lying over the whole shape (by commutativ-
ity). The dashed line indicates that the filler (on the diagonal) exists and lies over the provided
whole shape (because the lower triangle commutes) and agrees with the partial shape (because the
upper triangle commutes). The inference rule on the right expresses the same principle as a syn-
tactic Kan filling operation – which corresponds semantically to requiring chosen lifts rather than
a mere existence property. The equation 
; � � fillA(p)≡ p expresses the commutativity of the
top triangle. The bottom map θ does not appear in the inference rule, but is implicit in the sub-
stitution principles of the type theory; this is because the syntactic filling rule applies not only to
the type A, but also to any substitution instance A[θ]. By the usual definition of context extension,
any map 	→ �.A whose projection to � is some θ :	→ � is equivalently a map 	→	.A[θ]
that is a section of the projection to 	, i.e. a term 	� t :A[θ]. Thus, the map p on the top of
the diagram can be regarded as a map 
 → 
.A[θ], and the diagonal filler is a map �→�.A[θ]
(both sections of the projection). Syntactically, the former corresponds to a term 
; · � p :A[θ],
and the latter to �; · � fillA[θ](p) :A[θ], which is constructed by the filling operation for A[θ].
This shows that filling problems as given in the diagram can be derived from the inference rule.
In addition to being closed under substitutions for �, the inference rule is also implicitly closed
under substitution for the “shape” context (represented here by�), so its interpretation in cubical
sets (as in Cohen et al. 2018, Section 8.2) requires a bit more than the diagram at the left. Despite
this small mismatch, for this introduction, we will pair diagrams and inference rules like these to
explain some refinements of this general idea of Kan operations.

The fact that the rule applies to any type expresses that all types are fibrant or Kan in this sense.

Formulas for cofibrations Next, we discuss how cubical type theories choose and represent the
filling problems indicated by 
 ↪→� above. Semantically, the fibrations considered in cubical
type theories correspond (roughly) to those in cofibrantly generatedmodel categories. This means
that one first chooses a class of generating cofibrations and generating trivial cofibrations, which
describe the shapes of allowed filling problems. The fibrations are then defined to be those types
that have lifts (as described above) for any generating trivial cofibration 
 ↪→� on the left-hand
side. Semantically, cofibrations are typically subobjects/monomorphisms (e.g. in classical Cisinski
2006 model structures they are all monomorphisms), while trivial cofibrations are typically con-
tractible objects (one cannot take all subobjects of cubes as filling problems – for example, filling
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against the inclusion of the two endpoints into a line would connect any two points by a path). In
the classical Kan condition, a generating trivial cofibration is a “cube missing one face” included
into the whole cube. This can be viewed as a cofibration part consisting of two faces in every
direction except one (a “tube”), together with a single face in the remaining (“filling”) direction (a
“base” or “cap”).

Syntactically, the subobjects representing cofibrations and trivial cofibrations can be presented
using predicates on the interval variable context� , an approach introduced by Cohen et al. (2018)
and developed by Orton and Pitts (2016), Birkedal et al. (2019), Riehl and Shulman (2017). For
example, the filling problem (trivial cofibration) given by the inclusion of the left, right, and bot-
tom faces of a square into the square is represented by the formula (x= 0∨ x= 1)∨ y= 0, where
in this case the “tube” is the vertical sides (x= 0∨ x= 1), while the “cap” is the base y= 0. The
Kan filling operation specialized to this case is

x : I, y : I; x= 0; � � t0 :A x : I, y : I; x= 1; � � t1 :A x : I, y : I; y= 0; � � b :A
x : I, y : I; x= 0, y= 0; � � t0 ≡ b :A x : I, y : I; x= 1, y= 0; � � t1 ≡ b :A

x : I, y : I; (x= 0∨ x= 1)∨ y= 0; � � [[t0, t1], b] :A
x : I, y : I; � � fillA([[t0, t1], b]) :A

x : I, y : I; x= 0; � � fillA([[t0, t1], b])≡ t0 :A
x : I, y : I; x= 1; � � fillA([[t0, t1], b])≡ t1 :A
x : I, y : I; y= 0; � � fillA([[t0, t1], b])≡ b :A

The premises demand a y-path t0 at x= 0 (left), a y-path t1 at x= 1 (right), and an x-path b at y= 0
(bottom) that agree on the corners. These three paths (grouped together using [−,−]) constitute
an element of A in the context x : I, y : I; (x= 0∨ x= 1)∨ y= 0, or “the square restricted to be
the left, right, or bottom side.” The equations then assert that fill produces a square whose left,
right and bottom are t0, b, t1, respectively, as a consequence of a more general equation that when
(x= 0∨ x= 1)∨ y= 0 is true the square is equal to [[t0, t1], b], along with an equation that when
any particular disjunct is true, [[t0, t1], b] is equal to the appropriate one of t0, t1, b.

In general pairing an arbitrary cofibration α with an endpoint inclusion in a separate filling
dimension z gives a valid trivial cofibration, because the single cap face in the z direction will
connect the tube given by α. The classical Kan case is recovered by taking α to be x= 0∨ x= 1
for every dimension x except z. In this generalized form, the Kan operation allows filling a� , z : I
cube if we are given (1) the tube sides t specified by α, which may depend on the filling direction z
and (2) a cap b at z = 0, such that (3) t and b are compatible on both α and z = 0. More formally,
we have

(� .α, z : I)∨� ,z:I � � , z : I;�.A

� , z : I � , z : I;�

[t,b]

[(α,z),(0/z)]

(id� ,z:I,θ)

fill

� , z : I; � �A Type

� .α, z : I; � � t :A
� ; � � b :A〈0/z〉
� .α; � � t〈0/z〉 ≡ b :A〈0/z〉
� , z : I; � � fillA(t, b) :A

� .α, z : I; � � fillA(t, b)≡ t :A
� ; � � (fillA(t, b))〈0/z〉 ≡ b :A
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In the diagram on the left the upper-left object is the pushout of the pullback of (α, z) and 0/z,
which specifies the configuration of a tube and cap that fit together as described informally above.
That is, regarding α as a subobject � .α ↪→� , we take the pullback on the left, and then the
pushout on the right:

(� .α, z : I)×� ,z:I � � .α, z : I

� � , z : I

f

s
�

(α,z)

0/z

(� .α, z : I)×� ,z:I � � .α, z : I

� (� .α, z : I)∨� ,z:I �

f

s
�

The pushout includes into � , z : I by the universal property of the pushout applied to (α, z) and
0/z (the pushout corner map). The syntactic rule on the right expands the universal property for
mapping out of this pushout: we must give a tube t that depends on z : I but restricted to α, along
with a cap b at z = 0, which agree on the pullback, i.e. on α and when z = 0.9

This formulation of the Kan operation makes it clear that the choice of cofibrations is a param-
eter that can be varied when attempting a cubical model. For example, while the classical Kan
operation takes α to be x= 0∨ x= 1 for every dimension x in � , the refinement by Bezem et al.
(2014), allowing degeneracies of filling problems as filling problems, corresponds to allowing α to
be a disjunction of such pairs for some, but not necessarily all, variables in� . In syntax, this allows
the above inference rule to be weakened to a larger interval variable context without changing the
raw term. Cohen et al. (2018) additionally allow conjunctions of formulas as cofibrations, which
geometrically corresponds to allowing faces more than one dimension lower than the result of the
filling problem.While in a classical setting, the cofibrations can be taken to be all monomorphisms
in the presheaf category, in a constructive setting they must be decidable (in a sense explained
below) to allow the definition of “glue” types (Cohen et al., 2018; Orton and Pitts, 2018).

The additional uniformity constraint introduced by Bezem et al. (2019) states that the action
of any cube map into � commutes with the filling operation. For example, given a filling prob-
lem whose face is also a filling problem, the latter’s filler is the face of the former’s filler. This
corresponds to the typical syntactic rule for substitution for the free interval variables in fill –
i.e. when substituting for an interval variable other than z in fillA(t, b), replace all occurrences
of that variable in A, t, b with the indicated interval term. For this introductory discussion, we
elide this uniformity constraint; see (Awodey, 2018b; Gambino and Sattler, 2017) for a semantic
analysis.

Generalized trivial cofibrations Thus far, we have identified two points of variations between
different cubical models: the choice of cube category (symmetric monoidal, Cartesian, with con-
nections, . . . as discussed in Section 1.1) and the choice of cofibrations. A third is the choice of
trivial cofibrations. For example, one might also allow 1/z in place of 0/z in the previous filling
operation, a “backwards transport” along a path. For the goal of making a constructive model
of univalent type theory, the choices of cube category and (trivial) cofibrations are not indepen-
dent. If there are more maps in the cube category, then fewer cofibrations or trivial cofibrations
may be required. For instance, if the cube category contains a reversal map I→ I, then all cubical
sets (even non-Kan ones) admit reversal of paths, and it is not necessary to allow the 1/z trivial
cofibration. On the other hand, if there are more maps in the cube category, then the uniformity
conditions are harder to achieve (e.g. definition of the Kan operations from Bezem et al. 2019 are
not uniform in diagonals).

The Kan operation that we use in this paper, Coquand’s Kan operation for Cartesian cubi-
cal sets (Coquand, 2014b), generalizes the trivial cofibrations by allowing filling problems whose
cap is located at z = r (for an arbitrary map r :� → I), not only z = 0 as in the previous filling
operation:
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(� .α, z : I)∨� ,z:I � � , z : I;�.A

� , z : I � , z : I;�

[t,b]

[(α,z),(r/z)]

(id� ,z:I,θ)

� � r : I
� , z : I; � �A Type

� .α, z : I; � � t :A
� ; � � b :A〈r/z〉
� .α; � � t〈r/z〉 ≡ b :A〈r/z〉
� , z : I; � � fillz=r

A (t, b) :A
� , z : I; α; � � fillz=r

A (t, b)≡ t :A
� ; � � (fillz=r

A (t, b))〈r/z〉 ≡ b :A
The motivation for this generalization is the definition of filling for �-types: when filling in
dimension z in �x:A.B, it is natural to recursively use a contravariant filling in the domain type
A, and the cap of this filling problem is at the filling dimension dimension z.

There is one final refinement of this Kan operation that is motivated by syntactic consider-
ations: when an inference rule of a type theory would have a free variable in the conclusion, it
is typical to add an explicit substitution for that variable, so that substitution in general remains
admissible (e.g. we turn �, x :A, y : B� (x, y) :A× B into a rule that gives � � (a, b) :A× B from
� � a :A and � � b : B). The filling rules as stated above have a free variable z : I in the conclu-
sion standing for the filling dimension. Building in a substitution for z results in a composition
operation instead of a filling one. The result of the composition operation should be thought of
as “any of the faces in the z dimension of the filler.” Because such faces includes a diagonal in a
dimension z′ in which the filling problem’s data (the type, tube, and cap) is degenerate, we actually
can obtain the entire filler this way as well. Formally, for any r′ :� → I, we obtain the above filler
precomposed with the dimension substitution 〈r′/z〉:
Definition 1. Diagonal Kan composition (Coquand 2014b).

(� .α)∨� (� .r = r′) (� .α, z : I)∨� ,z:I � � , z : I;�.A

� � , z : I � , z : I;�

[inl(id,r′/z),inr(r=r′)]

[α,r=r′]

[t,b]

[(α,z),(r/z)]

(id� ,r′/z) (id� ,z:I,θ)

� � r : I � � r′ : I � , z : I; � �A Type

� .α, z : I; � � t :A � ; � � b :A〈r/z〉 � ; α; � � t〈r/z〉 ≡ b :A〈r/z〉
� ; � � comz:r→r′

A (α �→ z.t) (b) :A〈r′/z〉
� .α; � � comz:r→r′

A (α �→ z.t) (b)≡ t〈r′/z〉 :A〈r′/z〉
� .r = r′; � � comz:r→r′

A (α �→ z.t) (b)≡ b :A〈r/z〉
Note that the constraint fill〈r/z〉 ≡ b on fillers has been transformed into the constraint that

comz:r→r′
A (α �→ z.t) (b)≡ b when r = r′. (This may be vacuous, e.g., when r is 0 and r′ is 1.) In

the diagram, the pushout-of-pullback in the top left encodes both the “restricts to t on α” and the
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“restricts to b on r = r′” constraints (and compatibility on both). Because composition transports
the cap b :A〈r/x〉 to an element ofA〈r′/x〉 (while possibly also attaching some tube faces), we refer
to r as the “source” of the composition problem and r′ as the “target.”

The rule above appears in Brunerie and Licata (2014) (but with an explicit description of tubes
rather than using formulas α); variations on this rule appear also in Angiuli et al. (2016), Angiuli
and Harper (2017). Coquand (2014b), Brunerie and Licata (2014), Angiuli et al. (2016), Angiuli
and Harper (2017) show that �, �, path, and some higher inductive base types are closed under
this Kan operation (satisfying the r = r′ constraint). However, the strict r = r′ constraint was an
obstacle to closure of these models under univalent universes.

In the DeMorgan setting, Cohen et al. (2018) adopt a special case of the above Kan composition
operation in which the source and target are fixed to 0 and 1, respectively (see Sattler 2017 for a
semantic analysis):

� .α (� .α, z : I)∨� ,z:I � � , z : I;�.A

� � , z : I � , z : I;�

inl(id,1/z)

α

[t,b]

[(α,z),(0/z)]

(id� ,1/z) (id� ,z:I,θ)

� , z : I; � �A Type

� .α, z : I; � � t :A
� ; � � b :A〈0/z〉
� .α; � � t〈0/z〉 ≡ b :A〈0/z〉

� ; � � comz.A(α �→ z.t)(b) :A〈1/z〉
� .α; � � comz.A( . . . )(b)≡ t〈1/z〉 :A〈1/z〉

This specialization has the key advantage that the r = r′ constraint disappears, because 0= 1 never
holds. Surprisingly, many operations that follow immediately fromDefinition 1 are derivable indi-
rectly from the restricted 0→ 1 composition in the presence of connections and reversals.10 In
particular, the filler (i.e., the above rule with occurrences of 1 replaced by a fresh � � z′ : I) is
definable as

comz.A〈(z′∧z)/z〉(α ∨ (z′ = 0) �→ z.[t〈(z′ ∧ z)/z〉, b])(b).
Definition 1 can be encoded in the De Morgan model (see Section 3.4), but the encoding

transforms the r = r′ constraint of Diagonal Kan composition into an instance of the regular-
ity condition that proved problematic in that model (as mentioned in Section 1.1). Regularity
states that that a composition problem where all of the paths are the identity is the identity, i.e.,
comz.A(α �→ z.t)(b)≡ b when z does not occur in A or in t. Thus, for several years it was an open
problem whether univalent and Diagonal Kan universes could be defined for the Cartesian cube
category.

1.3 Technical contributions
The main new ingredient needed to show univalent and Diagonal Kan universes can be defined,
discovered first in the computational setting by Angiuli et al. (2017b), and studied in a proof
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theory and cubical sets model in this paper, is to choose the cofibrations α to include the diagonal
map I→ I× I ofC. Geometrically, this corresponds to attaching faces on the diagonal of an open
box. Syntactically, this corresponds to adding the formula r = r′ to the collection of generating
cofibrations, for any two terms � � r : I and � � r′ : I. In a classical setting, diagonal maps are
cofibrations in Cisinski model structures, where the cofibrations are all monomorphisms. In a
constructive setting, there is an obligation that cofibrations be decidable (in a sense that will be
made precise below), but this holds for pullbacks of the diagonal because equality of maps in the
cube category is decidable.

Our Kan operation differs from the prior work (Awodey, 2018b) on constructing models of
type theory in Cartesian cubical sets by using the generating trivial cofibrations of Definition 1
rather than only the endpoint inclusions 0/z and 1/z, by taking the diagonal I→ I× I as a gener-
ating cofibration, and by not including a regularity constraint on composition. We leave a formal
comparison of the two models to future work – even though the generating (trivial) cofibrations
are different, the full class of (trivial) cofibrations, defined as those maps with the left lifting prop-
erty with respect to the fibrations, could still be the same. Our model provides univalent universes
but does not support regularity, while Awodey’s supports regularity but does not (at the time
of this writing) include univalent universes. It remains open whether one can achieve regularity
and univalent universes simultaneously – this would provide a constructive model of univalent
type theory where Martin-Löf identity types can be interpreted as the path type, rather than via a
different construction (Cavallo and Harper, 2019; Cohen et al., 2018).

In Section 2, we present a cubical type theory based on the Cartesian cube category, with �,
�, path, identity, natural number, boolean, suspension, glue, and universe types. For each type,
we give a judgmental equality rule defining that type former’s Kan operation in terms of the Kan
operations of its component types.

Orton and Pitts (2016, 2018), Birkedal et al. (2019) have developed a technique for describing
cubical models in the internal logic of a 1-topos by postulating an interval object, cofibrations, and
certain other operations. This approach is well-suited to mechanization: in principle, one should
use an extensional type theory, but in a pinch we can use Agda with function extensionality and
uniqueness of identity proofs as a substitute (Hofmann, 1995). Notably Orton and Pitts (2016)
mechanize much of the Cohen et al. (2018) model in this style. A later extension allows the inter-
nal description of universes (Licata et al., 2018), so that one can prove that they are fibrant and
univalent.

In Section 3, we describe a (mechanically verified) constructive model in Cartesian cubical sets
using the Orton–Pitts method. We have formalized the definition of diagonal Kan composition
for glue,�,�, path, identity, natural number, boolean, suspension, and universe types and shown
that the universe is univalent.11 Our mechanization postulates the definitions of the interval, �,
�, positive types, and (exact) equality in the internal logic – i.e., we obtain the formation, intro-
duction, elimination, and βη rules for these types from the metalanguage, Agda. Then we make
certain postulates about an interval type and cofibrations. Relative to the axioms of Orton and
Pitts (2016), we replace the axioms for connections on the interval with the axiom that the diago-
nal is a cofibration (i.e., that the proposition r =I r′ in the internal logic is cofibrant, for arbitrary
terms r, r′ in the interval). We also use propositional univalence (interprovable cofibrations are
equal) and the axiom that cofibrations are closed under conjunction only to construct identity
types (where J on refl satisfies an exact equality) from path types using Swan’s technique (Cohen
et al., 2018). From these assumptions, our mechanization verifies all of the details of the Kan com-
position operations for these types, e.g., checking that the constructions in Section 2.11 type check
and have the correct boundaries.

Themechanized internal language proof can be interpreted in presheaf toposes. In any presheaf
topos, let �dec be the presheaf of decidable sieves (Orton and Pitts, 2016, Definition 6.2): at each
� , �dec(�) is the set of sieves on � (precomposition-closed subsets of homC (−,�)) with the
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property that for a given map ρ :� ′ →C � it is decidable whether ρ is in the sieve.12 �dec is a
subobject of the subobject classifier�. Then the internal language construction implies:

Theorem Let C be a finite product category with an object I, with maps 0, 1 : 1→ I with 0 �= 1. In
Ĉ := SetsCop suppose Cof is a subobject of�dec, which is closed under=I,∨ and ∀x : I.−. Then there
is (for each size level i) a universe Ui classifying those semantic type families of size i equipped with
a diagonal Kan composition structure (Definition 1) for generating cofibrations classified by Cof . Ui
is closed under semantic�, �, path, and glue types, and is itself Kan (Ui+1 has a code for Ui). If Ĉ
has cubical sets corresponding to boolean, natural number, and suspension types, then Ui is closed
under those; if Cof is closed under ∧, then Ui is closed under identity types as well.

We can instantiate this theorem with the Cartesian cube category as C, and as Cof one of a
number of possibilities, ranging from a minimal collection closed under only ∨ and =I with ∀
defined by quantifier elimination, to a maximal one consisting of �dec itself. In Section 3, we
prove that the axioms used in our formalization hold in Cartesian cubical sets, using an argument
similar to that of Orton and Pitts (2016), Licata et al. (2018). We briefly sketch the the interpre-
tation of the syntax in this model, noting that the definitions of the Kan operations in the syntax
and internal language model follow each other line by line. We can also instantiate this theorem
with the De Morgan cube category, producing a second model in De Morgan cubical sets with a
different notion of generating cofibrations/trivial cofibrations than Cohen et al. (2018). The two
Kan operations are interderivable if we have both both connections (and reversal) and diagonal
cofibrations.

The features of our Kan operation, assumptions about the interval, and closure conditions for
cofibrations are used as follows:

• Path types use the fact that there is an interval with endpoints 0 and 1.
• Composition for � types use the fact that Kan filling is derivable from composition, and
that the source and target of the composition operation can be interchanged. This makes
essential use of the generalized trivial cofibrations that we consider, because interchanging a
filler results in a composite from a variable. The de Morgan model (Cohen et al., 2018) uses
essentially the same definition (specialized to composition from 0 to 1), but both of these def-
initions are quite different than the proof of fibrancy of�-types in simplicial sets (Kapulkin
and Lumsdaine, 2021).

• Composition for� types uses the fact that Kan filling is derivable from composition.
• Composition for path types use the fact that the cofibrations include x= 0 and x= 1 and are
closed under ∨.

• Composition for strict base types (natural numbers, booleans) use the connectedness axiom.
• Composition for higher inductive types uses a reduction of composition to coercion and
homogeneous composition, which in turn uses “homogenization,” another instance of our
generalized trivial cofibrations.

• Constructing glue types uses the strictification axiom, which in a constructive model requires
cofibrations to be decidable sieves.

• Composition for glue types uses closure of cofibrations under ∨, =I, and ∀.
• Composition for identity types uses closure of cofibrations under ∧ and propositional
univalence for cofibrations.

Readers who wish to learn how to use Cartesian cubical type theory can consult the redtt
library at https://github.com/RedPRL/redtt for a variety of examples; Bentzen (2019), which
derives the 1-groupoid laws, weak identity elimination, and the Eckmann–Hilton argument with
our Kan operation; Angiuli (2019, Chapter 3), which derives weak identity elimination and
discusses regularity; and the tutorials of Harper and Angiuli (2018), Harper (2018). Note that
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Section 2.16 (concerning identity types) implies that our type theory is an extension of standard
(“book”) homotopy type theory, so all constructions (for which the required inductive and higher
inductive types exist) in TheUnivalent Foundations Program, Institute for Advanced Study (2013)
can be interpreted.

Since the original draft of this article in December 2017, there have been have beenmany devel-
opments in cubical type theory, some building on the results presented here; we discuss these
further in Section 4.

2. Type Theory
2.1 Overview of judgments
Cubical type theory extends the judgments of standard Martin-Löf type theory with interval
variables and dimension formulas, represented by the following syntactic classes:

• � is a dimension context representing an object� in the cube category C.
• � � r : I is a dimension term representing a map� → I in C.
• � � φ formula is a dimension formula representing a subobject of� .
• � � α cofib is a cofibration, a special kind of dimension formula used in Kan operations.
• φ �� α is the implication ordering on subobjects of� , for� � φ formula and� � α cofib.
• � ; φ � � ctx is a (ordinary) context relative to a dimension context� and dimension formula
� � φ formula.

• � ; φ; � �A Typei is a type relative to a dimension context � , a dimension formula
� � φ formula, and a context � ; φ � � ctx. We suppress levels i throughout, but formally
types are stratified by size.

• � ; φ; � � a :A is a term of a type � ; φ; � �A Typei, relative to a dimension context � , a
dimension formula� � φ formula, and a context� ; φ � � ctx.

We also have equality judgments as follows, which are interpreted by (exact/strict) equality in
models:

• Equality of dimension terms � ; φ � r ≡ r′ : I, assuming � � r : I and � � r′ : I and
� � φ formula.

• Equality of cofibrations � ; φ � α ≡ α′ cofib, assuming � � φ formula and � � α cofib and
� � α′ cofib.

• Equality of types� ; φ; � �A≡A′ Type, assuming� ; φ; � �A Type and� ; φ; � �A′ Type.
• Equality of terms� ; φ; � � a≡ a′ :A, assuming� ; φ; � � a :A and� ; φ; � � a′ :A.

We do not define equality judgments for contexts � or φ or �, nor do we define proof terms for
the (proof-irrelevant) subobject ordering α �φ .

We interleave discussion of the syntax and discussion of the “standard” model in presheaves
on a cube category, though we plan to investigate other models as well.

2.2 Contexts
We have three kinds of contexts: dimension contexts � , dimension formula contexts φ (geomet-
rically representing subshapes of cubes), and ordinary contexts � of term variables. Dimension
contexts are nondependent; φ depends on� but φ is not internally dependent.
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� ::= · |� , x : I
φ ::= · | φ, α
� ::= · | �, x :A

The � context has no formation conditions (aside from the usual invariant that variables are
distinct, when implemented concretely), whereas φ and � require their entries to be well-formed:

� � · formula
� � φ formula � � α cofib

� � φ, α formula

� ; φ � · ctx
� ; φ � � ctx � ; φ; � �A Type

� ; φ � �, x :A ctx
We overload the letter x for both term and dimension variables, because x is traditionally used

for term variables, and writing dimension variables as x, y, z is helpful for drawing pictures. When
both are in play at once, we may write term variables as a, b, c.

2.3 Dimension terms
Dimension terms are 0, 1, and variables.

r ::= 0 | 1 | x
We write� � r : I to mean that r is either 0 or 1 or a variable from� :

� � 0 : I � � 1 : I
x : I ∈�
� � x : I

The dimension context behaves like a standard hypothetical judgment in all other judgments –
all rules treat dimension variables as placeholders, and do not, for example, inspect whether a term
is a variable, or whether two variables are different. Thus, we have silent weakening and exchange
(where the dotted line indicates an admissible rule):

� ,� ′ � J
� , x : I,� ′ � J

� , x′ : I, x : I,� ′ � J
� , x : I, x′ : I,� ′ � J

and substitution, with its usual composition law:
� , x : I,� ′ � J � � r : I

� ,� ′ � J〈r/x〉 J〈r/x〉〈r′/y〉 ≡α J〈r′/y〉〈r〈r′/y〉/x〉
Substitution of dimension terms is defined in a completely standard way (by induction on syntax,
replacing variables with terms).

Semantically, a dimension context � represents an object in the cube category C (or that
object’s Yoneda embedding in Ĉ). A dimension term � � r : I is a map � → I in C. Because all
objects of C are finite products of I, we could define an n-place substitution judgment � � σ :� ′
representing all such maps as

∣
∣� ′∣∣-tuples of terms.

The judgmental equality for interval terms is an equivalence relation:

� ; φ � r ≡ r : I
� ; φ � r′ ≡ r : I
� ; φ � r ≡ r′ : I

� ; φ � r ≡ r′ : I � ; φ � r′ ≡ r′′ : I
� ; φ � r ≡ r′′ : I

The only other way to obtain a judgmental equality of interval terms is via an equality reflection
axiom relating to the formula φ, described shortly.

For cofibrations, types, and terms (i.e. the judgments that depend on interval variables and
have a corresponding judgmental equality), the following functionality principles are admissible,
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stating that substituting equal dimension terms gives equals:

� , x : I,� ′ � α cofib � ; φ � r ≡ r′ : I
� , x : I,� ′; φ, φ′〈r/x〉 � α〈r/x〉 ≡ α〈r′/x〉 cofib

� , x : I,� ′; φ, φ′; � �A Type � ; φ � r ≡ r′ : I
� , x : I,� ′; φ, φ′〈r/x〉; �〈r/x〉 �A〈r/x〉 ≡A〈r′/x〉 Type

� , x : I,� ′; φ, φ′; � � a :A � ; φ � r ≡ r′ : I
� , x : I,� ′; φ, φ′〈r/x〉; �〈r/x〉 � a〈r/x〉 ≡ a〈r′/x〉 :A〈r/x〉

2.4 Cofibrations
We use a syntactic notion of cofibration, in the style introduced by Cohen et al. (2018). Our pre-
sentation follows Riehl and Shulman (2017), and our discussion of their semantics follows Orton
and Pitts (2016), Sattler (2017).

Our type theory has a notion of dimension formula � � φ formula. Thinking of � as the
representable presheaf [�] := homC (−,�), we can regard � � φ formula in several equivalent
ways:

(1) A map [�]→� in Ĉ, where� is the subobject classifier of the presheaf topos Ĉ.
(2) A sieve on � : a set of maps into � closed under precomposition by all maps in C. In a

presheaf topos �(�) is the set of sieves on � , so this is the same as (1) by the Yoneda
lemma.

(3) A subobject (subpresheaf) of [�], i.e., another presheaf � .φ with a monic natural trans-
formation φ :� .φ ↪→ [�].13 The universal property of � expresses that this is equivalent
to (1).
A map between subobjects φ1 and φ2 is a morphism f :� .φ1 →� .φ2 that commutes with
the inclusions into [�]; such a morphism is necessarily monic. Moreover, because φ1 is
monic, any two such morphisms are equal, so the subobjects of� form a poset Sub(�).

Cofibrations are a designated subset of dimension formulas used to define Kan filling prob-
lems. We write Cofibs(�) for the category of cofibrations into � , which is a subposet of Sub(�).
Equivalently, one can define a cofibration classifier as a subobject of�. The judgment� � α cofib
is interpreted as an object α :� .α ↪→� of Cofibs(�) or as a map into the cofibration classifier.
The rules for this judgment assert that cofibrations are closed under certain operations.

Rules for Dimension Formulas Syntactically, dimension formulas are contexts φ of cofibrations
α. The empty formula context in � corresponds to id� :� ↪→� , and context extension φ, α
corresponds to the composite� .(φ, α) ↪→� of the following pullback diagram:

� .(φ, α) � .α

� .φ �

�

(The composite is monic because monomorphisms are stable under pullback and closed under
composition.) Equivalently, in any topos, this map is the product of φ and α in Sub(�), or regard-
ing φ, α as maps into�, the composition of (φ, α) with ∧ :�×�→�. It is therefore sensible to
treat φ, α as context extension.
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In contrast with Cohen et al. (2018), we do not require these pullbacks to be cofibrations, except
to construct identity types with an exact equality on refl (see Section 2.16).

Cofibrations Cofibrations are defined by the following rules:

� � r : I � � r′ : I
� � r = r′ cofib

� � α1 cofib � � α2 cofib
� � α1 ∨ α2 cofib

� , x : I� α cofib
� � ∀x : I.α cofib

These rules assert that the cofibrations into� include equality on I, and are closed under disjunc-
tion and universal quantification over I. Substitution for � , x : I� α cofib states that cofibrations
are closed under pullback along an arbitrary map in C.

It is instructive to unpack these cofibrations as monomorphisms; r = r′ is (the Yoneda embed-
ding of) a face, diagonal, or identity, or the uniquemap out of ∅ (the initial object of Ĉ), depending
on the values of r and r′:

x= 0 and 0= x x= 1 and 1= x x= y r = r 0= 1 and 1= 0
�

� , x : I
(id� ,0/x)

�

� , x : I
(id� ,1/x)

� , x : I

� , x : I, y : I
(id� ,x/y)

�

�

id

∅

�

!

Admitting x= y as a cofibration is the key ingredient used to define the diagonal Kan operation
for the universe.

The subject of the second rule, α1 ∨ α2, is the coproduct of cofibrations α1 + α2 in Sub(�). In
any topos, this unfolds to the pushout of the pullback of the maps αi :� .αi →� , which encodes
an idea of coherence when α1 and α2 are both true:

� .(α1, α2) � .α1

� .α2 �

f

s
�

α1

α2

� .(α1, α2) � .α1

� .α2 � .(α1 ∨ α2)

f

s
�

We obtain� .(α1 ∨ α2) ↪→� by the universal property of the pushout applied to α1 and α2.
The third rule, concerning ∀x : I.α, takes as argument a cofibration (� , x : I).α ↪→ (� , x :

I). In any topos, the ∀ quantifier on subobjects ∀ : Sub(� , x : I)→ Sub(�) is the right
adjoint to pullback along the weakening � , x : I→� . Our rule asserts that ∀ preserves
cofibrations.

The admissible weakening, exchange, and substitution principles for the dimension variable
context � in the judgment � � α cofib express that cofibrations are closed under pullback along
all maps in C.

For most of our development, we do not need any nontrivial equations between cofibrations,
such as (α ∨ (0= 1))≡ α or (α1 ∨ α2)≡ (α2 ∨ α1), and require only that these pairs of cofibra-
tions be interprovable. Semantically, these equations do hold by the “propositional univalence”
of the subobject classifier in a topos (i.e., interprovable propositions are equal). We do, however,
need these equations when constructing identity types from path types (see Section 2.16).

Subboundaries The judgment φ �� α states that there is a map (or entailment) φ→ α in Sub(�).
Geometrically, this expresses that φ is a subspace of α, both as subspaces of � . For example,
x= 0�x:I,y:I (x= 0)∨ (y= 1) is the inclusion of the left-hand side of a square into the left and top
sides of a square, and x= 0, y= 1�x:I,y:I x= 0 is the inclusion of the top-left corner of a square
into the left-hand side.
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Because Sub(�) is posetal, as previously discussed, we omit proof terms for this judgment in
order to identify all derivations of φ �� α.
α ∈ φ
φ �� α

φ �� β � � α cofib
φ, α �� β

φ, α �� β φ �� α
φ �� β

φ �� α � ; φ � α ≡ β cofib
φ �� β

φ �� α1
φ �� α1 ∨ α2

φ �� α2
φ �� α1 ∨ α2

φ, α1 �� β φ, α2 �� β φ �� α1 ∨ α2
φ �� β

φ �� ,x:I α
φ �� ∀x : I.α

φ �� ∀x : I.α � � r : I
φ �� α〈r/x〉

φ �� 0= 1
φ �� β

� � r : I
φ �� (r = r)

φ �� (r = r′)
� ; φ � r ≡ r′ : I

We present the rules in natural deduction style. The hypothesis rule and the admissible weakening
and substitution rule express that context extension ψ , α is a product. We also have a conver-
sion rule stating that definitional equality of cofibrations induces an entailment. The rules for ∨
and ∀ are the usual natural deduction rules for these connectives – the rules for ∨ express the
fact that α1 ∨ α2 is a coproduct in Sub(�), while the rules for ∀ express that it is right adjoint
to weakening. For the equality cofibration, we stipulate that 0 is not equal to 1, that it is reflex-
ive, and we give an equality reflection rule, stating that a proof of the proposition r = r′ entails a
judgmental equality r = r′. (Because Sub(�) is posetal, it is automatic that any proof of r = r′ is
reflexive.)

Judgmental equality of cofibrations is a congruence (we do not explicitly write the rules mak-
ing it reflexive, symmetric, and transitive, with congruence rules for ∨ and ∀) built from the
judgmental equality of interval terms in the base case of the equality cofibration:

� ; φ � r ≡ r1 : I � ; φ � r′ ≡ r′1 : I
� ; φ � (r = r′)≡ (r1 = r′1) cofib

Typical proofs of the equality cofibration use this rule together with equality reflection and conver-
sion. For example, to prove r = r′ �� r′ = r, by equality reflection we have r ≡ r′, and by symmetry
we have r′ ≡ r, so the cofibrations r = r and r′ = r are equal, and the reflexivity proof of r = r is
also a proof of r′ = r. Alternatively, one can use an admissible “transport” rule (taken as a defining
rule in the tope logic of Riehl and Shulman 2017):

� , x : I� α cofib φ �� r = r′ φ �� α〈r/x〉
φ �� α〈r′/x〉

Given the above premises, we have r ≡ r′ by equality reflection, and α〈r/x〉 ≡ α〈r′/x〉 by
the admissible functionality principle discussed previously; the conclusion follows from
conversion.

Boundaries and partial elements The type and term formation judgments take place in context
� ; φ; � � J. The (� ; φ) part can be understood as the domain of the monomorphism� .φ ↪→ [�],
or intuitively, “the subset of � on which φ holds.” Weakening, exchange, and substitution for
cofibrations are admissible for type and term judgments:

� ; φ, φ′ � J
� ; φ, α, φ′ � J

� ; φ, α, β , φ′ � J
� ; φ, β , α, φ′ � J

� ; φ, α � J φ �� α
� ; φ � J
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Most of our cofibrations are left-invertible; we give left rules for the type and term forma-
tion judgments, though we could avoid duplication if we identified types and elements of a
universe.

In an ambient context � ; φ, a partial element of a type is a term � ; φ, α � a :A for some cofi-
bration α. We will sometimes write α � a :A, leaving the ambient content implicit, allowing us
to conveniently and concisely state many judgmental equality axioms as “α � t ≡ t′.” Such rules
should be understood to mean that, in a general� ; φ; �, if t and t′ are well-formed and moreover
φ �� α, the equation holds.

We axiomatize contradiction by the rules:

φ �� 0= 1
� ; φ; � � abort :A 0= 1� u≡ abort

φ �� 0= 1
� ; φ; � � abort Type 0= 1�A≡ abort

We axiomatize ∨ using its characterization as the pushout of a pullback:

φ �� α ∨ β
� ; φ, α; � � t :A � ; φ, β ; � � u :A

� ; φ, α, β ; � � t ≡ u :A
� ; φ; � � [α �→ t, β �→ u] :A
α � [α �→ t, β �→ u]≡ t

β � [α �→ t, β �→ u]≡ u

φ �� α ∨ β
� ; φ, α; � �A Type � ; φ, β ; � � B Type

� ; φ, α, β ; � �A≡ B Type

� ; φ; � � [α �→A, β �→ B] Type

α � [α �→A, β �→ B]≡A
β � [α �→A, β �→ B]≡ B

α ∨ β � t ≡ [α �→ t, β �→ t] α ∨ β �A≡ [α �→A, β �→A]

Equality reflection and the admissible functionality rules imply admissible congruence rules
for the r = r′ cofibration (these are taken as defining rules in the tope logic of Riehl and Shulman
2017):

� ,� ′ � φ cofib � , x : I,� ′ � φ′ cofib φ �� ,� ′ r = r′ � , x : I,� ′; φ, r = x, φ′; � �A Type
� ,� ′; φ, φ′〈r/x〉; �〈r/x〉 �A〈r/x〉 ≡A〈r′/x〉 Type

� ,� ′ � φ cofib � , x : I,� ′ � φ′ cofib φ �� ,� ′ r = r′ � , x : I,� ′; φ, r = x, φ′; � � a :A
� ,� ′; φ, φ′〈r/x〉; �〈r/x〉 � a〈r/x〉 ≡ a〈r′/x〉 :A〈r/x〉

When we have a nested disjunction α1 ∨ α2 ∨ α3 ∨ . . .∨ αn, we write a nested case with the
same associativity as the cofibration as [α1 �→ t1, . . . , αn �→ tn].

2.5 Judgmental equality
Typing and term equality respect equality of types:

� ; φ; � � a :A � ; φ; � �A≡A′ Type
� ; φ; � � a :A′

� ; φ; � � a≡ a′ :A � ; φ; � �A≡A′ Type
� ; φ; � � a≡ a′ :A′
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Judgmental equality is a congruence (reflexive, symmetric, and transitive):

� ; φ; � �A Type
� ; φ; � �A≡A Type

� ; φ; � �A≡ B Type
� ; φ; � � B≡A Type

� ; φ; � �A≡ B Type � ; φ; � � B≡ C Type
� ; φ; � �A≡ C Type

� ; φ; � � a :A
� ; φ; � � a≡ a :A

� ; φ; � � a≡ b :A
� ; φ; � � b≡ a :A

� ; φ; � � a≡ b :A � ; φ; � � b≡ c :A
� ; φ; � � a≡ c :A

We also require congruence rules for each type and term constructor, using the appropriate
type or term or dimension term equality judgment for each subterm, though we do not explicitly
write these below. From these, the following functionality principles are admissible:

� ; φ; �, x :A, �′ � B≡ B′ Type � ; φ; � � a≡ a′ :A
� ; φ; �, �′[a/x]� B[a/x]≡ B′[a′/x] Type

� ; φ; �, x :A, �′ � b≡ b′ : B � ; φ; � � a≡ a′ :A
� ; φ; �, �′[a/x]� b[a/x]≡ b′[a′/x] : B[a/x]

We will often declare judgmental equality rules by simply writing u≡ v; this should be taken to
mean that the rule applies in all contexts and has typing premises for eachmeta-variable appearing
in the rule, which ensure that u and v are well-typed.

2.6 Term structural rules
Our structural rules for terms are typical – variable usage is a defining rule, while weakening,
exchange (assuming independence), and substitution are admissible:

x :A ∈ �
� ; φ; � � x :A

� ; φ; �, �′ � J
� ; φ; �, x :A, �′ � J

� ; φ; �, y : B, x :A, �′ � J
� ; φ; �, x :A, y : B, �′ � J

� ; φ; �, x :A, �′ � J � ; φ; � � a :A
� ; φ; �, �′[a/x]� J[a/x]

Composition laws for substitution hold syntactically:

u[a/x] ≡α u when x#u
u[a/x][b/y] ≡α u[b/y][a[b/y]/x]

We additionally have a composition law for term substitution and dimension substitution:

u[a/y]〈r0/x0〉 ≡α u〈r0/x0〉[a〈r0/x0〉/y]

2.7 Kan operation
All types in our syntax are Kan (or fibrant), i.e., equipped with the following composition
operation:
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� � r, r′ : I
� , z : I; φ; � �A Type

� , z : I; φ, α; � � t :A
� ; φ; � � b :A〈r/z〉
� ; φ, α; � � t〈r/z〉 ≡ b :A〈r/z〉

� ; φ; � � comz:r→r′
A (α �→ z.t) (b) :A〈r′/z〉

r = r′ � comz:r→r′
A (α �→ z.t) (b)≡ b

α � comz:r→r′
A (α �→ z.t) (b)≡ t〈r′/z〉

We read the composition notation as “compose from r to r′ in the z direction, with the tube
t (which can also depend on z) on α, starting at b.” The boundary condition on r = r′ states that
this operation is the identity when the source and target agree; the boundary condition on α states
that the composite agrees with the r′ side of the input partial element z.t. The latter ensures, for
example, that the left and right endpoints of the missing face of 
 agree with the top-left and
top-right corners of the input 
.

The main challenge of cubical type theory is to define the com operation for each type former
in terms of the com operations of its constituent types. We will make use of various lemmas and
derived forms, presented below. Note that com respects judgmental equality in the type argument,
and therefore judgmentally equal types must be assigned the same Kan operation; this is the major
challenge for glue types (equivalently, univalent universes).

Filling from composition Kan filling, as opposed to Kan composition, is the “whole cube” that
extends the input data, instead of just the “missing side.” We obtain filling by composing to a
fresh variable, or geometrically, degenerating and composing to a diagonal. When the target of a
composition is a variable z′ that does not occur in r,A, α, z.t, b, we will sometimes write:

� , z′ : I; φ; � � fillz:r→z′
A (α �→ z.t) (b) := comz:r→z′

A (α �→ z.t) (b) :A〈z′/z〉
This degenerates all components of the composition problem in a fresh direction z′ and then takes
the z′-diagonal (in this case just a renaming of variables) of the original filling direction.

One can easily verify the following boundary conditions, noting in the third case that 〈z′/z〉
acts as a renaming rather than a diagonal, because z′ does not occur in t.

(fillz:r→z′
A (α �→ z.t) (b))〈r/z′〉 ≡ b

(fillz:r→z′
A (α �→ z.t) (b))〈r′/z′〉 ≡ comz:r→r′

A (α �→ z.t) (b)
α � fillz:r→z′

A (α �→ z.t) (b) ≡ t〈z′/z〉
Extending partial elements in contractible types The usual definition of a contractible type in uni-
valent foundations is that Contractible(A) :=�x:A.�y:A.PathA (x, y) is inhabited. Fibrant types
that are contractible in this sense have the property that any partial element extends to a total
element (Cohen et al., 2018, Section 5.1). In model category theory terms, this says that fibrant
contractible types have the right lifting property against cofibrations, i.e., that they can be seen
as trivial fibrations. In more detail, given c : Contractible(A), a cofibration α, and a partial ele-
ment α � a :A, we can define the following, where, following Cohen et al. (2018), the notation
b :A[α �→ a] abbreviates the two judgments a :A and α � b≡ a :A.14

contr_extend_partial(α.a) := com_:0→1
A (α �→ z.snd(c) a z) (fst(c)) :A[α �→ a]
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Here, snd(c) a has type PathA (fst(c), a), so composing the center of contraction fst(c) with
that path on α yields a total element of A that is a on α. (See Section 2.10 for the rules for
path types.) Indeed, the property “any partial element of A extends to a total element” is itself
fibrant, a (− 1)-type, and equivalent to Contractible(A), so it could be taken to be the definition
of contractibility in a cubical type theory.

Voevodsky defines f : T → B to be an equivalence when �b:B.Contractible(HFiber(f , b)),
where HFiber(f , b) :=�t:T.PathB (f (t), b) is the homotopy fiber of f at b. We therefore obtain
the equiv operation of Cohen et al. (2018) as a corollary: if f :A→ B is an equivalence, then for
any b : B, any partial element of HFiber(f , b) extends to a total element.

Adjusting a composition structure by a partial composition structure The com operator assigns to
each type a composition operation satisfying a number of conditions. However, a particular type
may admit other terms besides comz:r→r′

A (α �→ z.t) (b) that also satisfy the typing and equality
rules of com. We call any such term a composition structure for A (of which com is an example)
and write com instead of com to (subtly) differentiate the two:

� � r, r′ : I
� , z : I; φ; � �A Type

� , z : I; φ, α; � � t :A
� ; φ; � � b :A〈r/z〉[α �→ t〈r/z〉]

� ; φ; � � comz:r→r′
A (α �→ z.t) (b) :A〈r′/z〉[α �→ t〈r′/z〉, r = r′ �→ b]

We write an inference rule with a double-line to indicate derivability – a double line is often used
for invertibility, but here we imagine it as hiding a derivation between the two lines.

Given a composition structure comA for z : I�A Type, and under a cofibration β , a partial
composition structure pcomA for z : I; β �A Type, we can define a (total) composition structure
adjust_comA for z : I�A Type that agrees with pcomA on β :

adjust_comz:r→r′
A (α �→ z.t)(b) := comz:r→r′

A [α �→ z.t, β �→ z′.pcomz:r→z′
A (α �→ z.t)(b)](b)

Homogeneous composition and coercion Following the previous definition, we say that a homoge-
neous composition (hcom) structure on a type A is a term hcomA satisfying:

� � r, r′ : I
� ; φ; � �A Type

� , z : I; φ, α; � � t :A
� ; φ; � � b :A
� ; φ, α; � � t〈r/z〉 ≡ b :A

� ; φ; � � hcomr→r′
A (α �→ z.t) (b) :A

r = r′ � hcomr→r′
A (α �→ z.t) (b)≡ b

α � hcomr→r′
A (α �→ z.t) (b)≡ t〈r′/z〉

An hcom structure is a restricted form of composition structure in which the typeA is not allowed
to depend on the filling direction.
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A coercion structure on z : I�A Type is a composition structure with no α boundary
constraint:

� � r, r′ : I
� , z : I; φ; � �A Type

� ; φ; � � b :A〈r/z〉
� ; φ; � � coez:r→r′

A (b) :A〈r′/z〉
r = r′ � coez:r→r′

A (b)≡ b

Every composition structure comA gives rise to hcom and coercion structures on A:

hcomr→r′
A (α �→ z.t) (b) := com_:r→r′

A (α �→ z.t) (b)
coez:r→r′

A (b) := comz:r→r′
A (0= 1 �→ z.abort) (b)

We write hcom and coe for the hcom and coercion structures obtained in this way from a
canonical composition structure com.

Conversely, an hcom structure and a coercion structure give rise to a composition structure:

comz:r→r′
A (α �→ z.t) (b) := hcomr→r′

A〈r′/z〉 (α �→ z′.coez:z′→r′
A (t〈z′/z〉)) (coez:r→r′

A (b))

The operation coez:z′→r′
A (t〈z′/z〉) that occurs in the tube of this definition “moves” t〈z′/z〉 from a

diagonal to r′. For example, in the case where r′ = 0 and writing t′ for t〈z′/z〉, we have z′ : I� t′ :
A〈z′/z〉, i.e., t′ is a heterogeneous path in the line A〈z′/z〉. Then z′ : I� coez:z′→0

A (t′) :A〈0/z〉 is a
homogeneous path in the fiber over 0, whose left endpoint is coez:1→0

A (t〈0/z〉) and whose right
endpoint is t〈1/z〉. So this instance of composition is a homogenization operation that turns a
heterogeneous path (“path over”) into a homogeneous-path-with-a-transport. Heterogeneous
composition uses this homogenization to move all of the pieces of the composition problem into
the target fiber r′ and then performs a homogeneous composition in that fiber.

This decomposition of composition as homogeneous composition and coercion was first used
by Coquand (2015) to define composition for higher inductive types. Some sources take hcom
and coercion as primitive instead of composition, including Angiuli et al. (2017b), and an imple-
mentation of the De Morgan model with regularity (Coquand, 2014a). Here, we adopt this
decomposition only in certain types, such as higher inductive types. Recent work on higher induc-
tives in the De Morgan model (Coquand et al., 2018) uses a similar decomposition, but coercion
must be generalized to take a cofibration on which the coercion is constant – this is not needed
in our setting because the empty-tube instance of the diagonal Kan operation already includes
homogenization (because the source r can be a variable, as described above).

Weak coercion A weak coercion structure on z : I�A Type is similar to a coercion structure,
except that on r = r′ it is only an identity function up to a path βb:

� � r, r′ : I
� , z : I; φ; � �A Type

� ; φ; � � b :A〈r/z〉
� ; φ; � �wcoez:r→r′

A (b) :A〈r′/z〉

https://doi.org/10.1017/S0960129521000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000347


Mathematical Structures in Computer Science 445

x : I; r = r′ � βb :A〈r′/z〉
r = r′ � βb〈0/x〉 ≡wcoez:r→r′

A (b)
r = r′ � βb〈1/x〉 ≡ b

Of course, any coercion structure (hence, any composition structure) gives rise to a weak coercion
structure. More surprisingly, diagonal cofibrations (and an hcom structure) allow us to improve
weak coercion structures to strict ones, a maneuver we will use in higher inductive types:

coew:s→s′
A (b) := hcom0→1

A〈s′/w〉 (s= s′ �→ x.βb) (wcoew:s→s′
A (b))

Therefore, if we have a weak coercion structure on z : I�A Type and an hcom structure for each
fiber of A, we can obtain a composition structure on z : I�A Type.

Strictly preserving homogeneous compositions Given x :A� f : B, an hcom structure on A, and a
composition structure on B, we say that f strictly preserves hcoms if

f [(hcomr→r′
A (α �→ z.t) (b))/x]

≡ comz:r→r′
B[hcomr→z

A (α �→z.t) (b)/x] (α �→ z.f [t/x]) (f [b/x]) : B[(hcomr→r′
A (α �→ z.t) (b))/x]

There is always a path between these equands; in higher inductive types, it is a judgmental equality.

2.8 � types
The formation, introduction, elimination, β , and η rules for� types are the usual ones, but apply
at any dimension; we can therefore consider pairs of not only points but also paths, squares, etc.

� ; φ; � �A Type � ; φ; �, x :A� B Type
� ; φ; � ��x:A.B Type

� ; φ; � � u :A � ; φ; � � v : B[u/x]
� ; φ; � � (u, v) :�x:A.B

� ; φ; � � u :�x:A.B
� ; φ; � � fst(u) :A

� ; φ; � � u :�x:A.B
� ; φ; � � snd(u) : B[fst(u)/x]

fst(u, v) ≡ u
snd(u, v) ≡ v

u ≡ (fst(u), snd(u))

Kan operation

comz:r→r′
�x:A.B (α �→ z.t) (b) ≡ (comz:r→r′

A (α �→ z.fst(t)) (fst(b)),
comy:r→r′

B〈y/z〉[fillz:r→y
A (α �→z.fst(t)) (fst(b))/x]

(α �→ z.snd(t)) (snd(b)))

The computation rule for composition generalizes the usual rule for transport at �-types:
push into both components, the second over the first. In the second component, we substitute
fillz:r→y

A (α �→ z.fst(t)) (fst(b)) into B〈y/z〉 for a fresh y. This makes the second component
type-check: under 〈r/y〉, the filler reduces to fst(b), which appears in the type of snd(b); on α,
the filler reduces to fst(t), which occurs in the type of snd(t); and under 〈r′/y〉, the filler is the
first component of the pair.

2.9 � types
Once again the standard rules for� types hold at any dimension.
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� ; φ; � �A Type � ; φ; �, x :A� B Type
� ; φ; � ��x:A.B Type

� ; φ; � � f :�x:A.B � ; φ; � � a :A
� ; φ; � � f a : B[a/x]

� ; φ; �, x :A� u : B
� ; φ; � � λx.u :�x:A.B

(λx.u) a ≡ u[a/x]
f ≡ λ x. f x

Kan operation

comz:r→r′
�x:A.B (α �→ z.t) (b)

≡ λa.comy:r→r′

B〈y/z〉[fillz:r
′→y

A (a)/x]
(α �→ y.t〈y/z〉 (fillz:r

′→y
A (a))) (b (coez:r′→r

A (a)))

Here, note that B〈y/z〉[fillz:r
′→y

A (a)/x] under 〈r/y〉 agrees with B〈r/z〉[coez:r′→r
A (a)/x]

(ensuring that the argument b (coez:r′→r
A (a)) has the correct type), and under 〈r′/y〉 agrees with

B〈r′/z〉[a/x] (ensuring that the result type is correct).
In Section 1, we motivated Kan composition to an arbitrary r′ as a natural way to close Kan

filling under substitution. Our definition of com from r to r′ for�-types requires the reverse coer-
cions and fillers, from r′ to r. Therefore, for �-types to be closed under our Kan operation – at
least for the present definition of composition in �-types – allowing the target of a composition
problem to be an arbitrary r′ requires us to allow the source also to be an arbitrary r′.

2.10 Path types
Paths are functions out of Iwith specified behavior on 0 and 1. The elimination rules for path types
state that an element u can be turned back into a cube in A by instantiating it with a dimension r.
When r is a dimension variable that does not occur in u, this operation simply chooses a name for
the “hidden” dimension of the path type element. When r is a dimension variable that does occur,
this operation takes a diagonal. When r is 0 or 1, u r is equal to the element specified by u’s type,
ensuring that u connects the specified points. The introduction rule inverts the elimination rules:
to give an element of the path type, one must give a higher cube with the correct boundary.

� , x : I; φ; � �A Type � ; φ; � � a0 :A〈0/x〉 � ; φ; � � a1 :A〈1/x〉
� ; φ; � � Pathx.A (a0, a1) Type

� , x : I; φ; � � u :A � ; φ; � � u〈0/x〉 ≡ a0 :A � ; φ; � � u〈1/x〉 ≡ a1 :A
� ; φ; � ��x.u : Pathx.A (a0, a1)

� ; φ; � � u : Pathx.A (a0, a1) � � r : I
� ; φ; � � u r :A〈r/x〉

u 0 ≡ a0
u 1 ≡ a1

(�x.u) r ≡ u〈r/x〉
u ≡ �x.(u x)
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Kan operation

comz:r→r′
Pathx.A (a0,a1) (α �→ z.t) (b)

≡ �x.comz:r→r′
A [α �→ z.t x, (x= 0) �→ _.a0, (x= 1) �→ _.a1] (b x)

On the right-hand side, we extend the cofibration of com by (x= 0)∨ (x= 1) to ensure that the
body of the � has the correct endpoints. Recall that the commas inside [− ] construct a partial
element under a disjunction of cofibrations; the new faces are compatible with α �→ z.t x because
t’s path type ensures that t 0 and t 1 equal a0 and a1, respectively.

2.11 Glue (equivalence extension) types
The “glue” or equivalence extension type Glue (α �→ (T, f )) (B), introduced by Coquand (2014a),
Cohen et al. (2018), is a type that is equal to the partial type T on α, given a function α � f : T → B
mapping T into the total type B. The formation, introduction, elimination, β , and η rules of Glue
types hold for arbitrary such f , but Glue types are only Kan when f is an equivalence.

Because all types in our syntax are Kan, we restrict the formation rule of Glue types to
equivalences f :A� B, defined as functions f :A→ B whose homotopy fibers are contractible,
as in Section 2.7. (We implicitly coerce equivalences to functions A→ B when necessary.) In
the semantics of Section 3, we define Glue types for any f , but the universe of Kan types only
includes codes for Glue types of equivalences. In the formalization, we show that all such Glue
types support a homogeneous composition structure.

The rules below essentially state that Glue (α �→ (T, f )) (B) consists of pairs of b : B and α � t :
T such that α � f (t)≡ b : B, with a first projection unglue. However, Glue types are stricter than
� types: under α, the Glue type is judgmentally equal to T, its elements restrict to t, and the first
projection restricts to f .

� ; φ; � � B Type � ; φ, α; � � T Type � ; φ, α; � � f : T � B
� ; φ; � � Glue (α �→ (T, f )) (B) Type

α � Glue (α �→ (T, f )) (B)≡ T

� ; φ; � � b : B
� ; φ, α; � � t : T
� ; φ, α; � � f (t)≡ b : B

� ; φ; � � glue (α �→ t) (b) : Glue (α �→ (T, f )) (B)
α � glue (α �→ t) (b)≡ t

� ; φ; � � g : Glue (α �→ (T, f )) (B)
� ; φ; � � unglue(g) : B

α � unglue(g)≡ f (g)

unglue(glue (α �→ t) (b)) ≡ b
g ≡ glue (α �→ g) (unglue(g))

The Kan operation for glue types is quite complicated, and we obtain it in multiple steps.
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Weak glue introduction The arguments of glue (α �→ t) (b) are b : B and α � t : T such that α �
f (t)≡ b : B. If we weaken this judgmental equality to a path, then the pair of t and such a path is
a (partial) element of the homotopy fiber of f at b, HFiber(f , b). Using homogeneous composition
in B, we can derive a weak version of glue that takes an element of HFiber(f , b):

b : B α � h :HFiber(f , b)
wglue′ (α �→ h) b : Glue (α �→ (T, f )) (B)

:= glue (α �→ fst(h)) (com_:1→0
B (α �→ x.snd(h) x) (b))

We adjust b by snd(h) : Path_.B (f (fst(h)), b), obtaining an element of B that is f (fst(h))
on α.

In the Kan operation for glue types, we will need a slightly stricter version ofwglue′. First, note
that if g : Glue (α �→ (T, f )) (B), then under α, g is in the fiber (and hence, homotopy fiber) of
f : T → B over unglue(g):

α � glue_to_fiber(g) :HFiber(f , unglue(g)) := (g,�_.unglue(g))
The first component of the pair is well-typed because α � Glue (α �→ (T, f )) (B)≡ T Type, and
the second is well-typed because α � unglue(g : Glue (α �→ (T, f )) (B))≡ f (g) : B.

Now, suppose we have a partial element β � g : Glue (α �→ (T, f )) (B) that agrees in the
appropriate sense with both b : B (i.e., under unglue) and α � h :HFiber(f , b) (i.e., under
glue_to_fiber). Then we can obtain a total element of the glue type that restricts on β to g:

β � g : Glue (α �→ (T, f )) (B)
b : B[β �→ unglue(g)]

α � h :HFiber(f , b)[β �→ glue_to_fiber(g)]

wglue (α �→ h) (b) (β �→ g) : Glue (α �→ (T, f )) (B)[β �→ g]
:= glue (α �→ fst(h)) (com_:1→0

B [α �→ x.snd(h) x, β �→ _.unglue(g)] (b))

Incoherent composition for glue types In the next step, we define a candidate composition
structure for glue types satisfying:
z : I�G := Glue (α �→ (T, f )) (B) Type s : I s′ : I z : I, β � u :G v :G〈s/z〉[β �→ u〈s/z〉]

icomz:s→s′
G (β �→ z.u)v :G〈s′/z〉[β �→ u〈s′/z〉, s= s′ �→ v]

However, this structure will be “incoherent” in the sense that it will not restrict to comT under α.
As a result, we will not be able to define comG ≡ icomG directly: under α, the left-hand side will
equal comT but the right-hand side will not.

We begin by constructing the filler and composite of unglue(u) and unglue(v) in B, which
form a filling problem in B because u, v form one in G by assumption:

w : I� bfill := fillz:s→w
B (β �→ z.unglue(u)) (unglue(v)) : B〈w/z〉

b′ := bfill〈s′/w〉 : B〈s′/z〉
Next, we define a partial element under α〈s′/z〉, the cofibration under which G〈s′/z〉 (the type

of icom) restricts to T〈s′/z〉. The data of the glue type G include a function:
α〈s′/z〉 � f 〈s′/z〉 : T〈s′/z〉 → B〈s′/z〉

as well as a proof feq that this function is an equivalence:

α〈s′/z〉 � feq :�b:B〈s′/z〉.Contractible(HFiber(f 〈s′/z〉, b))
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Applying feq to the composite b′ defined above, and using contr_extend_partial (Section 2.7),
we see that any partial element of HFiber(f 〈s′/z〉, b′) extends to a total one. We will apply this fact
to the following partial element:

β ∨ s= s′ � [β �→ glue_to_fiber(u〈s′/z〉), s= s′ �→ glue_to_fiber(v)] :HFiber(f 〈s′/z〉, b′)

This is well-typed because β � b′ ≡ unglue(u〈s′/z〉) and s= s′ � b′ ≡ unglue(v) by the definition
of b′ above, and β , s= s′ � u〈s′/z〉 ≡ u〈s/z〉 ≡ v by assumption. (Note that we are using the fact
that general equality on I, and hence s= s′, is a cofibration.) Summing up, we have:

α〈s′/z〉 � c :HFiber(f 〈s′/z〉, b′)[β �→ glue_to_fiber(u〈s′/z〉), s= s′ �→ glue_to_fiber(v)]
c := contr_extend_partial(feq(b′))[β �→ glue_to_fiber(u〈s′/z〉), s= s′ �→ glue_to_fiber(v)]

Finally, we construct an element of G〈s′/z〉 = Glue (α〈s′/z〉 �→ (T〈s′/z〉, f 〈s′/z〉)) (B〈s′/z〉)
using wglue, which requires an element of B〈s′/z〉 (for which we choose b′), an element of
α〈s′/z〉 �HFiber(f 〈s′/z〉, b′) (we choose c), a cofibration (we choose β ∨ s= s′), and an element
of β ∨ s= s′ �G〈s′/z〉 (we choose [β �→ u〈s′/z〉, s= s′ �→ v]). We must check two equations: first,
that β ∨ (s= s′)� b′ ≡ unglue([β �→ u〈s′/z〉, s= s′ �→ v]), which holds by the definition of b′,
and that α〈s′/z〉, β ∨ (s= s′)� c≡ glue_to_fiber([β �→ u〈s′/z〉, s= s′ �→ v]), which holds by the
definition of c. Thus, overall, we have

icomz:s→s′
G (β �→ z.u)v :=wglue (α〈s′/z〉 �→ c) (b′) [β �→ u〈s′/z〉, s= s′ �→ v]

Aligning Christian Sattler and Ian Orton (independently) analyzed the algorithm for composi-
tion in glue types given by Cohen et al. (2018) and realized that the use of the ∀ cofibration could
be isolated in a single “aligning” step that fixes an incoherent composition operation for glue types
so that it restricts appropriately to composition in T on α.

We use the same method here, applying adjust_com (Section 2.7) to a total and a par-
tial composition structure for z : I�G := Glue (α �→ (T, f )) (B) Type. For the total composition
structure, we choose icomG, for the cofibration we choose ∀z : I.α, and for the partial com-
position structure under ∀z : I.α we choose comT . The latter is a partial composition structure
for G because ∀z : I.α �G≡ T, using the fact that ∀z : I.α �z:I α. Concretely, we therefore
obtain:

comz:s→s′
Glue [α �→(T,f )] (B) (β �→ z.t) (b)

:= icomz:s→s′
G [β �→ z.t, ∀z : I.α �→ z′.comz:s→z′

T (β �→ z.t) (b)](b)

This “aligned” definition satisfies:

∀z : I.α � comz:s→s′
Glue [α �→(T,f )] (B) (β �→ z.t) (b)≡ comz:s→s′

T (β �→ z.t) (b)

and therefore the same equation holds under α (because ∀z : I.α implies α), as required by the
equation α � Glue (α �→ (T, f )) (B)≡ T.

Comparison with CCHM The CCHM algorithm inlines the wglue lemma, the adjust_com
lemma, and the aligning step; otherwise, the main difference is that here we use the diag-
onal cofibration s= s′ in contr_extend_partial to “remember” that the result should be v
on s= s′.

2.12 Universes
Depending on technical details of the intended semantics, we could define universes à la Tarski
or à la Russell; we elide the El(− ) for notational simplicity. Universes are specified by the
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usual rules:

� ; φ; � �A Typei
� ; φ; � �A : Ui

� ; φ; � �A : Ui
� ; φ; � �A Typei � ; φ; � � Ui : Ui+1

Suppose U is a universe of Kan types that is closed under glue types. For U to itself be Kan,
we need a (homogeneous) composition structure on it, which is to say that whenever B : U and
z, α � T : U with α � T〈r/z〉 ≡ B, we need a Kan type:

comz:r→r′
U (α �→ z.T) (B)

r = r′ � comz:r→r′
U (α �→ z.T) (B)≡ B

α � comz:r→r′
U (α �→ z.T) (B)≡ T〈r′/z〉

Here, following Cohen et al. (2018), we construct such a type by converting paths in the
universe to equivalences and using the fact that Glue types are Kan for equivalences. We define:

comz:r→r′
U (α �→ z.T) (B)

≡ Glue [α �→ (T〈r′/z〉, (λx.coez:r′→r
T (x), e)), r = r′ �→ (B, (λx.x, e′))] (B)

where e is a proof that coez:r′→r
T (− ) is an equivalence and e′ is a proof that λx.x is an equivalence.

We can define e′ in a standard fashion using contractibility of singletons, which follows from
composition and filling; we obtain e by transporting e′:

e := coez
′:r′→r
isEquiv(λx.coez:r′→z′

T (x))
(e′),

which agrees with e′ under r = r′ as required.
This type satisfies the required boundary equations:

r = r′ � Glue [α �→ (T〈r′/z〉, λx.coez:r′→r
T (x)), r = r′ �→ (B, λx.x)] (B) ≡ B

α � Glue [α �→ (T〈r′/z〉, λx.coez:r′→r
T (x)), r = r′ �→ (B, λx.x)] (B) ≡ T〈r′/z〉

Following Cohen et al. (2018), we can construct a proof of the univalence axiom for U, using
the fact that U is Kan and closed under glue types. An equivalence f :A� B gives rise to a path in
U as follows:

ua(f ) :=�x.Glue (x= 0 �→ (A, f ), x= 1 �→ (B, (λx.x, e′))) (B) : Path_.U (A, B)

This glue type restricts to A under x= 0 and B under x= 1 as required; both follow from the
equation α � Glue (α �→ (T, f )) (B)≡ T we obtained by alignment in Section 2.11.

By an internal argument of Licata (2016) using ideas of Egbert Rijke and Martín Escardó, the
full univalence axiom (A� B)� Path_.U (A, B) follows from ua(f ) and a term:

uaβ(f ) : Path_.A→B (comz:0→1
ua(f ) z [] (− ), f )

stating that transport along ua(f ) applies f . In our formalization, we construct uaβ by inspecting
the above definition of composition in glue types.

An alternative construction of universes, given by Angiuli et al. (2017b), is to define comU as
a type former directly (analogous to Glue) and separately to define a “V type” implementing the
ua(− ) operation above. This essentially factors Glue into two smaller type formers, operating on
types and equivalences, respectively.
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2.13 Strict booleans
The introduction and elimination rules for booleans are the usual ones:

� ; φ; � � bool Type � ; φ; � � true : bool � ; φ; � � false : bool

� ; φ; �, x : bool � C Type � ; φ; � � u : bool

� ; φ; � � v1 : C[true/x] � ; φ; � � v2 : C[false/x]
� ; φ; � � ifx.C(u, v1, v2) : C[u/x]

ifx.C(true, v1, v2)≡ v1 ifx.C(false, v1, v2)≡ v2

Our semantics in cubical sets (in particular, the connectedness of the interval) justifies “equality
reflection” for booleans:

� , x : I; φ; � � u : bool � � r, r′ : I
� ; φ; � � u〈r/x〉 ≡ u〈r′/x〉 : bool

A consequence of this rule is that p : Path_.bool (b0, b1) entails judgmental equalities b0 ≡ b1
(by taking p x for u and 0, 1 for r, r′) and p≡�_.b0 (taking 0, x for r, r′). Therefore, this
rule justifies the following definition (for bool and any other closed base type with decidable
equality):

com_:r→r′
bool (α �→ z.t) (b)≡ b

If one wants judgmental equality to be decidable, one should instead omit the above “equality
reflection” rule, and, following Cohen et al. (2018), instead define the Kan operation as:

com_:r→r′
bool (α �→ _.true) (true)≡ true

com_:r→r′
bool (α �→ _.false) (false)≡ false

A third option is to treat bool as if it were a higher inductive type, in which case its values
are not only true and false but also formal homogeneous compositions (see Section 2.15).
In this paper, such booleans would contain nonstandard points in the empty context, such as
com_:0→1

bool (0= 1 �→ _.abort) (true). Angiuli et al. (2017b) prohibit false cofibrations in the com-
position operation (and therefore rule out such spurious compositions); in exchange they must
handle ∀x : I.− specially, because it can produce false cofibrations. In their system, higher induc-
tives have only point constructors as elements in the empty context (in this case, just true and
false).

2.14 Strict natural numbers
Again, the introduction and elimination rules are standard:

� ; φ; � � nat Type � ; φ; � � zero : nat
� ; φ; � � u : nat

� ; φ; � � succ(u) : nat
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� ; φ; �, x : nat � C Type

� ; φ; � � u : nat

� ; φ; � � v0 : C[zero/x]

� ; φ; �, n : nat, r : C[n/x]� v1 : C[succ(n)/x]
� ; φ; � �N−elimx.C(u, v0, n.r.v1) : C[u/x] N−elimx.C(zero, v0, n.r.v1)≡ v0

N−elimx.C(succ(m), v0, n.r.v1)≡ v1[m/n][N−elimx.C(m, v0, n.r.v1)/r]

Analogously to bool, one way to define the Kan operation is via equality reflection:
� , x : I; φ; � � u : nat � � r, r′ : I
� ; φ; � � u〈r/x〉 ≡ u〈r′/x〉 : nat com_:r→r′

nat (α �→ z.t) (b)≡ b

2.15 Suspension types
We consider here only suspensions as an illustration of higher inductive types, noting
that suspensions and booleans suffice to construct all spheres. Higher inductive types are
treated systematically for diagonal Kan composition by Cavallo and Harper (2019) and
Cavallo (2021).

The introduction forms are the usual higher inductive constructors, plus a free homogeneous
composition structure vhcom; the eliminator computes strictly on all of these:

� ; φ; � �A Type
� ; φ; � ��A Type � ; φ; � � north :�A � ; φ; � � south :�A

� � r : I � ; φ; � � u :A
� ; φ; � � meridr(u) :�A merid0(u)≡ north merid1(u)≡ south

� � r, r′ : I
� ; φ; � �A Type

� , z : I; φ, α; � � t :�A

� ; φ; � � b :�A

� ; φ, α; � � t〈r/z〉 ≡ b :�A

� ; φ; � � vhcomr→r′
�A (α �→ z.t) (b) :�A

r = r′ � vhcomr→r′
�A (α �→ z.t) (b)≡ b

α � vhcomr→r′
�A (α �→ z.t) (b)≡ t〈r′/z〉

� ; φ; �, a :�A� C Type

� ; φ; � � u :�A

� ; φ; � � v0 : C[north/a]

� ; φ; � � v1 : C[south/a]

� , z : I; φ; �, b :A� v2 : C[meridz(b)/a]

� ; φ; �, b :A� v2〈0/z〉 ≡ v0 : C[north/a]

� ; φ; �, b :A� v2〈1/z〉 ≡ v1 : C[south/a]

� ; φ; � ��a.C
elim(v0; v1; z.b.v2; u) :A[u/a]
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�a.C
elim(v0; v1; z.b.v2; north) ≡ v0

�a.C
elim(v0; v1; z.b.v2; south) ≡ v1

�a.C
elim(v0; v1; z.b.v2; meridr(u)) ≡ v2〈r/z〉[u/b]

�a.C
elim(v0; v1; z.b.v2; vhcomr→r′

�A (α �→ z.t) (b))
≡ comz

′:r→r′
C[vhcomr→z′

�A (α �→z.t) (b)/a]
(α �→ z.E(t)) (E(b))

In the last equationwewrite E(x) for�a.C
elim(v0; v1; z.b.v2; x); it states that E strictly preserves hcoms,

sending vhcom�A to comC judgmentally.
In the semantics we define �A as the least cubical set satisfying the introduction rules above;

the elimination rule then holds for any type family fibrant over �A (i.e., for which a :�A�
C Type has a composition operation) (Coquand, 2015). To define a composition structure on
�A, we decompose composition into homogeneous composition and coercion, and coercion into
weak coercion and homogeneous composition (Section 2.7). We take vhcomr→r′

�A (α �→ z.t) (b) as
the homogeneous composition structure.

To obtain a weak coercion structure, we first define the following operation:
� � r, r′ : I � , z : I; φ; � �A Type � ; φ; � � b :�(A〈r/z〉)

� ; φ; � � wcoez:r→r′
�A (b) :�(A〈r′/z〉)

wcoez:r→r′
�A (north) ≡ north

wcoez:r→r′
�A (south) ≡ south

wcoez:r→r′
�A (merids(u)) ≡ merids(coez:r→r′

A (u))
wcoez:r→r′

�A (vhcoms→s′
�A (α �→ z′.t) (b)) ≡ vhcoms→s′

�A (α �→ z′.wcoez:r→r′
�A (t)) (wcoez:r→r′

�A (b))

Note that we cannot define wcoe�A as an instance of �elim, because we do not know that �A is
fibrant – that is what we are trying to show! We can, however, define it by external induction on
the elements of�A.

To show that wcoez:r→r′
�A (− ) is a weak coercion structure, we must show that it is homotopic

to the identity when r = r′, again by induction on the elements of�A:
� � r : I � , z : I; φ; � �A Type � ; φ; � � b :�A〈r/z〉

� ; φ; � � η(b) : Path_.�A〈r/z〉 (wcoez:r→r
�A (b), b)

η(north) ≡ �_.north

η(south) ≡ �_.south

η(merids(u)) ≡ �_.(merids(u))

η(vhcoms→s′
�A (α �→ z′.t) (b))

≡ �x.vhcoms→s′
�A [α �→ z′.η(t) x, x= 0 �→ z′.wcoez:r→r

�A (t), x= 1 �→ z′.t] (η(b) x)

2.16 Identity types
Cohen et al. (2018) use an idea of Andrew Swan to construct identity types (that is, with a judg-
mental equality for the J eliminator on refl) from path types (which model J only up to a path).
The same construction applies in our model, though the definition of J is a bit more complex. In
both cases, J follows from transport and contractibility of singleton types; in CCHM, the latter
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is an immediate consequence of connections, but here it requires Kan composition. Cavallo and
Harper (2019) give an alternate construction of identity types that takes certain transports in the
identity type to be constructors, analogously to taking certain homogeneous compositions to be
values for higher inductive types.

For this section only we add the following cofibration rules:

φ, α �� β φ, β �� α
� ; φ � α≡ β cofib

� � α cofib � � β cofib
� � α ∧ β cofib

φ �� α φ �� β
φ �� α ∧ β

φ �� α ∧ β � ; φ, α, β � J
� ; φ � J

The first rule is “propositional univalence” (interprovable cofibrations are equal); the others state
that cofibrations are closed under conjunction.

An element of the identity type is a path together with a cofibration remembering where the
path is judgmentally constant:

� ; φ; � �A Type � ; φ; � � a0 :A � ; φ; � � a1 :A
� ; φ; � � IdA(a0, a1) Type

� ; φ; � � p : Path_.A (a0, a1) � ; φ, α; � � p≡�_.a0 : Path_.A (a0, a1)
� ; φ; � � (α, p) : IdA(a0, a1)

� ; φ; � �A Type

� ; φ; � � a0, a1 :A
� ; φ; � � p : IdA(a0, a1)
� ; φ; �, u :�x:A.IdA(x, a1)� C Type

� ; φ; � � c : C[(a1, refla1 )/u]
� ; φ; � � Ju.C(p, c) : C[(a0, p)/u]

Ju.C(p, c)≡ transportu.C(scontr(a0, p), c)

In the above we write refla for (0= 0,�_.a). We reduce J to transport and singleton con-
tractibility in the standard way; the computation rule for J follows from the fact that transport
judgmentally sends refl to the identity function, and singleton contractibility judgmentally sends
refl to refl. We define transport as

x :A� C Type (α, p) : IdA(a0, a1) b : C[a0/x]
transportx.C((α, p), b) := comz:0→1

C[p z/x] (α �→ _.b) (b) : C[a1/x]
To see that the com is well-typed, note that z : I; α � b : C[p z/x] because α � p≡�_.a0. By
inspection, transport on (0= 0,�_.a0) sends b to b.

Write S(a1) for the singleton type�x:A.IdA(x, a1). We define singleton contractibility as:

a0 :A (α, p) : IdA(a0, a1)
scontr(a0, (α, p)) := (α,�x.(s〈0/y〉, ((x= 0∨ α),�y.s))) : IdS(a1)((a1, refla1 ), (a0, (α, p)))

where x : I, y : I� s := hcom1→y
A [x= 0 �→ _.a1, x= 1 �→ y.p y, α �→ _.a1] (a1)
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Because scontr outputs the same cofibration α as the input path, it sends refl to refl. Thus, J
on refl cancels judgmentally.

Kan operation

comz:r→r′
IdA(a0,a1) (α �→ z.(αt , t)) (αb, b)

≡ ((α ∧ αt〈r′/z〉)∨ (r = r′ ∧ αb), comz:r→r′
Path_.A (a0,a1) (α �→ z.t) (b))

It is straightforward to see that the second component is constant on (α ∧ αt〈r′/z〉)∨ (r = r′ ∧
αb): under α ∧ αt〈r′/z〉, we have α � com ≡ t〈r′/z〉 and z : I; αt � t ≡�_.a0, and under r = r′ ∧ αb
we have r = r′ � com ≡ b and αb � b≡�_.a0.

We must also check that this element of the identity type has the correct boundary under α
and under r = r′. Under r = r′, it must equal (αb, b), which requires the following cofibrations to
be equal:

r = r′ � ((α ∧ αt〈r′/z〉)∨ (r = r′ ∧ αb))≡ αb

This is a consequence of propositional univalence for cofibrations. The reverse implication is clear
(by proving the right disjunct); the forward implication follows from α � αt〈r/z〉 ≡ αb, which we
have from the original composition problem. Under α, the argument is analogous: we need

α � ((α ∧ αt〈r′/z〉)∨ (r = r′ ∧ αb))≡ αt〈r′/z〉,
which follows from propositional univalence and the fact that α, r = r′ � αt〈r′/z〉 ≡ αb.

3. Semantics
The syntactic presentation in Section 2 is intended to admit a model in Cartesian cubical sets
and other presheaf categories with suitable structure. We construct our model using the internal
language of the topos of Cartesian cubical sets, a technique first investigated by Orton and Pitts
(2016, 2018), Birkedal et al. (2019). Following Orton and Pitts (2016, 2018), we use the Agda
proof assistant to simulate the internal language of Cartesian cubical sets, using the modal or flat
features of Agda (developed by Andrea Vezzosi) to internally describe fibrant universes (Licata
et al., 2018).

3.1 Overview of the formalization
We begin by describing the main definitions in our Agda formalization, explain what is
proved, and give a sample proof. The formalization is browsable in HTML format at https://
dlicata.wescreates.wesleyan.edu/pubs/abcfhl/agda/ABCFHL-MSCS.html and can be
downloaded from https://dlicata.wescreates.wesleyan.edu/pubs/abcfhl/abcfhl.
tar.gz.

3.1.1 Assumptions
We make Agda into a pseudo-extensional type theory by postulating function extensional-
ity (Lib.λ=) and a (− 1)-truncated/squashed disjunction (Proposition.Or) written α1 ∨ α2. We
define Proposition.Proposition as the type of strict propositions, types P paired with proofs that
(x y : P) � x = y.15 (The formalization uses universe polymorphism, so there are propositions in
each universe.)

Next, we make several postulates that are a subset of those of Orton and Pitts (2016), except for
Cofibs.isCofib=, which allows diagonal cofibrations. In Interval, we postulate an interval type
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I : Set
‘0 : I
‘1 : I

which is non-trivial
iabort : ‘0 = ‘1� ⊥ { lzero}

and connected
iconnected : {� : Level} (P : I� Proposition {�})

� ((i : I)� (fst (P i)∨ (fst (P i)� ⊥ {�})))
� (((i : I)� fst (P i))∨ ((i : I)� (fst (P i))� ⊥ {�}))

In Cofibs, we postulate a type of cofibrations closed under ∀, ∨, and = of elements of I:
isCofib : Set� Set
isCofib⊥ : isCofib⊥
isCofib∨ : ∀ {α1 α2} � isCofib α1� isCofib α2� isCofib (α1∨ α2)
isCofib= : ∀ {r r’ : I} � isCofib (r = r’)
isCofib∀ : ∀ {α : I� Set} � ((x : I)� isCofib (α x))� isCofib ((x : I)� α x)

When α is a cofibration and t : α � A is a partial element of A, we write (Cofibs.extends)
A [ α �→ t ] = �[b : A] (pα : α)� t pα = b

for an element of A that restricts on α to t, and we use an analogous binary version of this notation.
In Strictify, we add an axiom stating that given a type B and a partial equivalence with A, we can

make a type B’ that is isomorphic to B and strictly A on α (and the isomorphism with B restricts to
the provided t). This is used to construct glue types.
strictify : {α : Set} {cα : Cofib α } (A : α � Set l) (B : Set l)

� (i : (pα : α)� Iso B (A pα))
��[B’ : Set l [ α �→ A ] ]
Iso B (fst B’) [ α �→ (λ pα � eqIso (snd B’ pα) ◦iso i pα) ]

Following Licata et al. (2018), we also postulate that the interval is tiny, i.e., that exponentiation
by the interval has a right adjoint (illustrated in Figure 1 of that paper). In our formalization, tini-
ness justifies our construction of universes of fibrant types in Section 3.1.5, which follows Theorem
5.2 of Licata et al. (2018).

Finally, our construction of identity types (Section 2.16) requires three additional postulates
in Id: any two proofs that a type is a cofibration are equal, cofibrations are closed under ∧, and
interprovable cofibrations are equal.
isCofib-prop : ∀ {A : Set} � (p q : Cofib A)� p = q
isCofib∧ : ∀ {α } {α’ : α � Set} � isCofib α � ((x : α)� isCofib (α’ x))� isCofib (� α’)
Cofib-propositional-univalence : ∀ {α α’} {{cα : Cofib α }} {{cα’ : Cofib α’}}

� (α � α’)� (α’� α)� α = α’

3.1.2 Kan operation
We represent the diagonal Kan operation in much the same way that Orton and Pitts (2016)
represent the CCHM Kan operation. In Kan.hasCom, we define composition structures for an
I-indexed family (of Sets, which here is a universe of cubical sets), following the rule in Section 2.7:
hasCom : ∀ {�} � (I� Set �)� Set (lsuc lzero 
 �)
hasCom A = (r r’ : I) (α : Set) {{ : Cofib α }}

� (t : (z : I)� α � A z)
� (b : A r [ α �→ t r ])
� A r’ [ α �→ t r’ , (r = r’) �→ ⇒ (fst b) ]
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The ⇒ stands for transport along the Agda equality type, which would be silent in an actual
extensional type theory; here, (fst b) : A r but the partial element must have type (r = r’) � A r’.

Then, for a type A dependent on �, a composition structure relative to � (Kan.relCom) is a
composition structure in the above sense for all paths in �:
relCom : ∀ {�1 �2} {� : Set �1} (A : � � Set �2)� Set (lsuc lzero 
 �1 
 �2)
relCom {� = � } A = (p : I� �)� hasCom (A o p)

This matches the diagrams in Section 1, because pmay have free variables besides the bound I.

3.1.3 Path types
Path types (Path.PathO) are defined as pairs of functions from the interval with proofs of the
boundary constraints.
PathO : {� : Level} (A : I� Set �) (a0 : A ‘0) (a1 : A ‘1)� Set �
PathO A a0 a1 = � [p : (x : I)� A x] ((p ‘0 = a0)× (p ‘1 = a1))

This validates the formation, introduction, and elimination rules of Section 2.10, except that in
Agda we have explicit proofs of the boundary conditions, which in our rules appear only in
derivations, not terms.

3.1.4 Glue types
The cubical sets underlying glue types are parametrized by a cofibration α, a partial type T defined
on α, a total type B, and a partial function f (under α) from T to B:
{� : Level} (α : Set)
{{ : Cofib α }}
(T : α � Set �)
(B : Set �)
(f : (u : α)� T u� B)

Following Orton and Pitts (2016), we define glue types as a strictification of pairs of partial
elements t of T with elements of B that agree with f t on α:
� [t : (pα : α)� T pα] (B [ α �→ (λ pα � f pα (t pα)) ])

In Glue, we define the following terms (each parametrized additionally by the above α, T, B, f),
which correspond to the rules in Section 2.11:
Glue : Set �
Glue-α : (u : α)� Glue α T B f = T u
glue : (top : ((u : α)� T u))

(base : B [ α �→ (λ u� f u (top u)) ])
� Glue α T B f

glue-α : (top : ((u : α)� T u))
(base : B [ α �→ (λ u� f u (top u)) ])
(u : α)� coe (Glue-α α T B f u) (glue α T B f top base) = top u

unglue : Glue α T B f� B
unglue-α : (g : Glue α T B f)� (u : α)� f u (coe (Glue-α u) g) = unglue g
Glueβ : (top : ((u : α)� T u))
(base : B [ α �→ (λ u� f u (top u)) ])
� unglue (glue α T B f top base) = fst base

Glueη : (g : Glue α T B f)
� g = (glue α T B f (λ u� coe (Glue-α α T B f u) g) (unglue g , unglue-α g))

Here, coe : A = B � A � B is transport along the Agda equality type.
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3.1.5 Universes
When we unfold the internal language of Cartesian cubical sets, Agda’s universes Set � correspond
to Hofmann–Streicher universes of cubical sets (Hofmann and Streicher, 1997). To model the
cubical type theory of Section 2 in which types are Kan cubical sets, we must find universes U that
classify cubical sets equipped with Kan operations. That is, maps A : � � U should correspond
to types fibrant over �, or families A’ : � � Set equipped with a choice of Kan structure of type
relCom A’.

We cannot describe such a universe directly in pure Agda for reasons described by Licata et al.
(2018, Theorem 3.1), but we can describe it using a recently-added modal extension of Agda,
implemented by Andrea Vezzosi, that allows one to talk about “closed” or “external” elements of
a type.16 This extension allows us to write f : (@� x : A) � B (x) for a “function with a flat domain”;
the force of this restriction is that f can only be applied to terms that have no free variables (or only
flat variables free).

When we unfold the internal language, a (closed) Agda type A denotes a cubical set, while
� A denotes (the discrete cubical set on) the set of 0-cells of A. Licata et al. (2018) describe the
flat variable mechanism in more detail; the main thing to understand for this paper is that Agda
checks that the following axioms obey the modal typing discipline.

In universe.Universe, we axiomatize universes of fibrant types as follows (parametrized by
{@� � : Level}), using an unpacked version of Licata et al. (2018, (16)):
U : Set (�2 
 lsuc �)
El : U� Set �
comEl : relCom El
code : {@� �1 : Level} (@� � : Set �1) (@� A : � � Set �) (@� comA : relCom A)

� � � U
code-El : {@� �1 : Level} {@� � : Set �1} {@� A : � � Set �} {@� comA : relCom A}

� (x : �)� El ((code � A comA) x) = A x
comEl-β : {@� �1 : Level} {@� � : Set �1} {@� A : � � Set �} {@� comA : relCom A}

� (comEl’ (code � A comA)) = comA
code-η : {@� �1 : Level} {@� � : Set �1} (@� A : � � U)

� A = code � (El’ A) (comEl’ A)

The first line says that U is an Agda type (of universe level at least 2—because the Kan operation
quantifies over cofibrations, which are sets of level zero, we represent types by Agda universes of
level at least 1). The second gives the decoding function El that interprets each element of U as an
Agda type. The third says that El is Kan; because being Kan is closed under precomposition, this
implies that for any function A : � � U, El o A is Kan (universe.Universe.U.comEl’):
comEl’ : { l1 : Level} {� : Set l1} (A : � � U)� relCom (El o A)

The fourth is the introduction rule for the universe, which pairs a type family with a composition
structure. Themodal annotations here ensure that code is only applied to “closed” families. That is,
A is not allowed to have other free variables besides �; if it did, the resulting map into the universe
would allow proving that it is Kan relative to them, which is not justified by the introduction rule.
Finally, we have β and η rules: El and comEl’ project the arguments of code, and modal maps into
the universe are determined by their type family and composition structure.

These universes are open-ended, in the sense that code includes in U any type for which a Kan
operation can be defined—it is not necessary to fix a collection of types when defining the universe.

3.1.6 Suspensions
To define suspensions (Susp), we postulate the underlying cubical set (introduction, elimina-
tion, and computation rules), and define a composition structure following the argument in
Section 2.15. The postulates are:
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Susp : (A : Set �)� Set �
north : {A : Set �} � Susp A
south : {A : Set �} � Susp A
merid : {A : Set �} � A� I� (Susp A)
merid0 : {A : Set �} (x : A)�merid x ‘0 = north
merid1 : {A : Set �} (x : A)�merid x ‘1 = south
fcomSusp : {A : Set �} � hasCom (λ � Susp A)
Susp-elim : {� �’ : Level} {A : Set �}

(C : Susp A� Set �’)
(comC : relCom C)
(n : C north)
(s : C south)
((a : A)� PathO (λ x� C (merid a x)) n s)
(x : Susp A)� C x

This asserts a suspension type Susp.Susp with point constructors north and south, path con-
structor merid with specified boundary, and a homogeneous composition constructor fcomSusp,
which freely adds homogeneous composites in Susp A (represented by asserting that the constant
family Susp A is Kan). Finally, we postulate an elimination rule, which eliminates into any type
family that is Kan over Susp A (along with computation rules, which we omit here). Other higher
inductive types follow a similar pattern.

3.1.7 Main theorem
Theorem 1. Each universe U {�+1} has codes for � (universe.Pi), � (universe.Sigma), Path (uni-
verse.Path), Id (universe.Id and Id), Nat (universe.Nat), Bool (universe.Bool), Glue (universe.Glue),
U { l} (universe.U), and Susp (universe.Susp) types, and is univalent (universe.Univalence). That is,
for all {@� �1 �2 : Level}, we have the following:
�code : {� : Set �1} (A : � � U {�2}) (B : � (El o A)� U {�2})� (� � U {�2})
El-�code : {� : Set �1} (A : � � U {�2}) (B : � (El o A)� U {�2})

� (θ : �)� El (�code A B θ) = ((x : El (A θ))� El (B (θ , x)))
�code : {� : Set �1} (A : � � U {�2}) (B : � (El o A)� U {�2})� (� � U {�2})
El-�code : {� : Set �1} (A : � � U {�2}) (B : � (El o A)� U {�2})

� (θ : �)� El (�code A B θ) = (� [x : El (A θ) ] El (B (θ , x)))
Path-code : {� : Set �1} (A : �× I� U {�2})

(a0 : (θ : �)� El (A (θ , ‘0))) (a1 : (θ : �)� El (A (θ , ‘1)))� � � U {�2}
El-Path-code : {� : Set �1} (A : �× I� U {�2})
(a0 : (x : �)� El (A (x , ‘0))) (a1 : (x : �)� El (A (x , ‘1)))
(θ : �)� El (Path-code A a0 a1 θ) = PathO (λ x� El (A (θ , x))) (a0 θ) (a1 θ)

Id-code : {� : Set �1} (A : � � U {�2})
(a0 : (θ : �)� El (A θ)) (a1 : (θ : �)� El (A θ))� � � U { lsuc lzero 
 �2}

refl : (A : Set �1) (a0 : A)� Id A a0 a0
J : (A : U {�1})� (a0 : El A)

(C : (� [a : El A] Id (El A) a a0)� U {�2})
(c : El (C (a0 , refl (El A) a0)))
�� [f : (a1 : El A) (p : Id (El A) a1 a0)� El (C (a1 , p)) ]
f a0 (refl (El A) a0) = c

Nat-code : {� : Set �2} � (� � U {�1})
Nat-code-El : {� : Set �2} � (θ : �)� El (Nat-code θ) = Nat
Bool-code : {� : Set �2} � (� � U {�1})
Bool-code-El : {� : Set �2} � (θ : �)� El (Bool-code θ) = Bool
Glue-code’ : {� : Set �1} (α : � � Set) (cα : (θ : �)� Cofib (α θ))

(T : (θ : �)� α θ � U {�2}) (B : � � U {�2})
(f : (θ : �) (pα : α θ)� El (T θ pα)� El (B θ))
(feq : (θ : �) (pα : α θ)� isEquivFill (f θ pα))
� � � U {�2}
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Glue-code-El : {� : Set �1} (α : � � Set) (cα : (θ : �)� Cofib (α θ))
(T : (θ : �)� α θ � U {�2}) (B : � � U {�2})
(f : (θ : �) (pα : α θ)� El (T θ pα)� El (B θ))
(feq : (θ : �) (pα : α θ)� isEquivFill (f θ pα))
(θ : �)� El (Glue-code’ α cα T B f feq θ) =
Glue (α θ) {{cα θ }} (El o (T θ)) (El (B θ)) (f θ)

U-code : {@� � : Level} � U {�2 
 lsuc �}
U-code-El : {@� � : Level} � El (U-code {�}) = U
ua : {A B : U {�1}} (e : Equiv (El A) (El B))� Path U A B
uaβ : {A B : U {�1}} (e : Equiv (El A) (El B)) (a : El A)

� Path (coePathU (ua { } {A} {B} e) a) (fst e a)
Susp-code : {� : Set �1} � (� � U {�2})� � � U {�2}
Susp-code-El : {� : Set �1} � (A : � � U {�2}) (θ : �)� El (Susp-code A θ) = Susp (El (A θ))

For each type, we show that there is a code in the universe(s) U of fibrant types which satisfies
the correct type formation rule, and whose elements are the corresponding Agda type (which
implies that the necessary cubical set constructs exist; for example,� decodes to Agda’s�-types,
and so has λ and application). Id types satisfy refl and J with an exact equality for J on refl. ua
states that an equivalence can be turned into a path in the universe, while uaβ gives a path between
coercing along ua and the input equivalence.

3.1.8 Proof
The main work in establishing this theorem is to define the Kan operation of each type. These
definitions in our formalization follow exactly the same steps as the equations for each type given
in Section 2. We show the definition for� types (universe.Pi) as an example.

The formation rule of a�-type takes an element of the universe and a family over that type:
�Data : (@� � : Level)� Set
�Data � = � [A : U {�} ] (El A� U {�})

This determines the obvious�-type:
�-from-data : ∀ {@� l : Level} ��Data �� Set
�-from-data (A , B) = (x : El A)� El (B x)

In Section 2.9, we showed that �-from-data is Kan with the following term:

λa′.comy:r→r′

B〈y/z〉[fillz:r
′→y

A (a′)/x]
(α �→ y.t〈y/z〉 (fillz:r

′→y
A (a′))) (b (coez:r′→r

A (a′)))

This definition makes crucial use of the Diagonal Kan operation’s generalized source—the source
of the contravariant coercion/filling in A is r′, which might be a variable, not an endpoint 0 or 1.

In Agda, this is rendered as
com� : ∀ {@� � : Level} � relCom {� = (�Data �)}�-from-data
com� AB r r’ α t b =

(λ a’� ... (fst (forward a’))) ,
... ,
...where
A = λ z� fst (AB z)
B = λ za� snd (AB (fst za)) (snd za)
fillback : (a’ : ) (y : I)�

fillback a’ y = coeU (λ z� A z) r’ y a’
forward : (a’ : )�

forward a’ = comEl (λ y� B (y , (fst (fillback a’ y)))) r r’
α (λ y pα � t y pα (fst (fillback a’ y)))
(fst b (fst (fillback a’ r)) , ...)
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fillback corresponds to the fill in the type of the B composition and in the tube, and fillback a’ r to
coez:r′→r

A (a′). The ellipses elide Agda proof terms for propositional equalities, which witness that
the restrictions of the output are correct (on α, it restricts to t r’, and on r=r’, it restricts to b), and
the boundary condition required by the composition in B in forward.

From this, we define a “universal” code for�-types, i.e., a type constructor A :U, B :A→U �
�AB :U:
�code-universal : ∀ {@� � : Level} ��Data �� U {�}
�code-universal {�} = code (�Data �) (λ AB� (x : El (fst AB))� El (snd AB x)) com�

Finally, precomposing into the universal code gives a more standard� formation rule:
�code : {� : Set �1} (A : � � U {�2}) (B : � (El o A)� U {�2})� (� � U {�2})
�code A B = �code-universal o (λ θ � (A θ , λ x� B (θ , x)))

3.2 Validating the axioms
Externally, the above internal language formalization implies the theorem mentioned in
Section 1.3:

Theorem 2. Let C be a finite product category with an object I, with maps 0, 1 : 1→ I with 0 �= 1.
In Ĉ := SetsCop suppose Cof is a subobject of �dec, which is closed under =I, ∨ and ∀x : I.−. Then
there is (for each size level i) a universe Ui classifying those semantic type families of size i equipped
with a diagonal Kan composition structure (Definition 1) for generating cofibrations classified by
Cof . Ui is closed under semantic �, �, path, and glue types, and is itself Kan (Ui+1 has a code for
Ui). If Ĉ has cubical sets corresponding to boolean, natural number, and suspension types, then Ui is
closed under those; if Cof is closed under ∧, then Ui is closed under identity types as well.

Proof. We interpret the logical framework in Ĉ in essentially the same way as in Orton and
Pitts (2016): Agda’s � and � correspond to the dependent product and dependent sum of the
presheaf topos Ĉ. In Agda we have written propositions using � (for ∀), � (for ∧), equality
types (with postulated function extensionality and uniqueness of identity proofs), and a (postu-
lated) “squashed” disjunction; we interpret these constructions using the subobject classifier of the
presheaf topos, as outlined in Section 2.4. (Note that our Agda development is predicative, so we
do not need the full power of the subobject classifier.) Finally, the Agda datatypes Nat and Bool
are interpreted as the discrete cubical sets whose 0-cells are the natural numbers and booleans
respectively.

It remains to validate the axioms used in the formalization. Relative to Orton and Pitts (2016),
we have modified ax5 (by making r = r′ a cofibration), omitted axioms ax3/ax4 (which stipu-
late connections), and only use ax7 (which states that cofibrations are closed under ∧) in our
construction of Id types with a judgmental computation rule on refl. We have also changed
the base category of the presheaves, though most of the theorems in Orton and Pitts (2016) are
phrased in sufficient generality that they still apply.

• Connectedness says that decidable propositions are constant on the interval:
∀P : I→ Prop, (∀i : I.P(i)∨ ¬(P(i)))→ (∀i : I.P(i))∨ (∀i : I.¬(P(i)))

In our formalization, this is used only for defining the Kan operations for strict base types
(natural numbers, booleans), but it may also be used for (or implied by other axioms used
for) the universe. To see that it is true in Ĉ, the argument in Orton and Pitts (2018) applies to
presheaves on any category C that is inhabited (in this case by ·) and has finite products.

• Non-triviality: 0 �= 1 : I. The interval is interpreted as the Yoneda embedding of the interval
I of C, and we assumed (0/x) �= (1/x) as maps� → I in C.
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• Strictification: (Orton–Pitts ax8) This axiom is used only once, to construct glue types from
�-types in such a way that on α they are equal to T. Theorem 6.3 of Orton and Pitts (2016)
shows that strictification holds in any presheaf topos, if the cofibrations are a subset of the
decidable sieves. So the result carries over because we assumed that cofibrations are decidable
sieves, i.e. that Cof is a subobject of�dec.

• Flat variables: Licata et al. (2018, Remark 4.1) argue that Agda’s modal/flat/crisp type theory
can be interpreted in any presheaf topos whose base category has a terminal object.

• Tininess (right adjoint to exponentiation by I): in presheaves whose base category has finite
products, all representables are tiny, and I is interpreted as yI.

• Cofibrations: we have assumed that Cof is closed under the cofibrations assumed in the
formalization, =I, ∨ and ∀x : I.−, and to construct identity types, ∧.

• Finally, our postulated Susp type in Section 3.1.6 corresponds to an initial algebra for the
introduction rules of Section 2.15. Coquand et al. (2018, Section 2.4) explicitly construct
a number of very similar initial algebras, including a suspension type, for the CCHM Kan
operation, using a constructive version of the small object argument (Swan, 2016).

The Cartesian cube category, C, is freely generated by finite products and an interval object I,
with maps 0, 1 : 1→ Iwith 0 �= 1. So, to show that the above theorem applies toC, all that remains
is to check that the assumed object of cofibrationsCof can be constructed. Classically, one can take
Cof to be�, using the usual logical operations of=,∨,∧, ∀ for the subobject classifier of the topos.
But because we work in a constructive metatheory, we must check that that there is an object of
decidable sieves that is closed under these operations.

One way to do this, following Cohen et al. (2018) and Orton and Pitts (2016), is to use a “face
lattice”:

Proposition 1. For the Cartesian cube category C, Ĉ contains an object Cof that is a subobject of
�dec, which is closed under =I, ∨, ∧, and ∀x : I.−.

Proof. Recall (Orton and Pitts, 2016, Definition 6.2) that �dec(�) is the set of precomposition-
closed collections of maps into � with the property that for a given map ρ :� ′ →C � it is
decidable whether ρ is in the collection.

We define a “face lattice” to be the subobject of � closed under only =I and ∨ and ∧, and
observe that ∀x : I.− is admissible for this fragment by a quantifier elimination argument, as in
Cohen et al. (2018): define ∀x : I.x= x to be true, ∀x : I.x= r to be false if x �= r, ∀x : I.r = r′ to be
r = r′ if x �= r, r′, and ∀x : I.(α ∨ β)= (∀x : I.α)∨ (∀x : I.β) and ∀x : I.(α ∧ β)= (∀x : I.α)∧ (∀x :
I.β).

To see that this face lattice is a subobject of �dec, the main idea is that r = r′ is a decidable
sieve, because homC (� , I) has decidable equality (as equality of maps is just syntactic identity
of � � r : I terms), and ∧ and ∨ of decidable sieves are always decidable. Orton and Pitts (2018)
give an argument that (for the Cohen et al. 2018 notion of cofibration) this definition satisfies
Cof ↪→�dec.

At the other extreme, we can take Cof to be�dec itself.

Proposition 2. Suppose C is a finite product category with an object I, and that for any object�, the
hom-set homC (� , I) has decidable equality. Then in Ĉ,�dec is closed under =I, ∨, ∧, and ∀x : I.−.

Proof. First,=I lands in decidable sieves because it denotes equality of morphisms in homC (� , I),
and ∧ and ∨ preserve decidability. Thus, it remains to check that �dec is closed under ∀x : I.−.
An alternate characterization of �dec is that it classifies monomorphisms m :A⇒Ĉ B such that
for all � , A(�)⇒ B(�) has a decidable image, i.e., one can decide whether a given b ∈ B(�) is
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in the image of m(�). Sattler (2017) has shown that cofibrations are closed under ∀ iff they are
closed under exponentiation by I (i.e., if A ↪→ B is a cofibration then AhomC (−,I) ↪→ BhomC (−,I) is
a cofibration). Therefore, we must show that if m :A ↪→ B has decidable image for all � , then so
doesmhomC (−,I) :AhomC (−,I) ↪→ BhomC (−,I). But this is true because

mhomC (−,I)(�) :AhomC (−,I)(�) ↪→ BhomC (−,I)(�)=m(� × I) :A(� × I) ↪→ B(� × I)
is just a dimension shift.

3.3 Interpreting the syntactic type theory
While we do not give a formal interpretation of the syntax from Section 2 in the model from
Section 3, the intended interpretation in the internal language is as follows:

• Dimension contexts� are interpreted as In where n= |�|.
• Dimension terms� � r : I are interpreted as functions [[�]]→ I.
• Dimension formulas� � φ formula are interpreted as functions [[�]]→ Set.
• Cofibrations� � α cofib are interpreted as functions α : [[�]]→ Set such that for all x : [[�]],
Cofib(α(x)).

• φ �� α is interpreted as a function�x:[[�]].[[φ]](x)→ [[α]](x).
• � ; φ � � ctx are interpreted as functions (�x:[[�]].[[α]](x))→ Seti.
• � ; φ; � �A Typei are interpreted as functions (�y:(�x:[[�]].[[α]](x)).[[�]](y))→ Ui.
• � ; φ; � � a :A are interpreted as functions�z:(�y:(�x:[[�]].[[α]](x)).[[�]](y)).El(A(z)).
• Judgmental equality is interpreted by equality in the internal language (which we represent
in Agda using propositional equality).

Every judgment is interpreted as flat/crisp/closed terms of the above types. The internal lan-
guage’s formation, introduction, elimination, and βη rules for the interpretations of the types then
match the syntactic formation, introduction, elimination, and βη rules; the equations for the Kan
operations correspond to the definitions used in the proof of Theorem 1.

3.4 Connection to the De Morgan Kan operation
The assumptions of the argument in Section 3.2 continue to hold if we add connections to our
cube category (subject to the laws of a distributive lattice), and in the De Morgan cube category
(which further adds reversal and De Morgan laws) of Cohen et al. (2018); in both cases, the cube
category has finite products and an interval with appropriate structure. We can therefore interpret
our construction in presheaves over either of these categories and compare our Kan operation to
the CCHM Kan operation in the same setting.

Consider De Morgan cubical sets, and take r =I r′, ∨, ∧, and ∀x : I.− to be cofibrations for
both Kan operations, so that we have the structure needed to carry out both our model and that of
Cohen et al. (2018). In the terminology of this paper, the CCHMKan operation is comz:0→1

A (α �→
t) (b); call a type endpoint-Kan if it is equipped with such an operation, and diagonal-Kan if it is
equipped with our composition operation (Definition 1).

If a type is diagonal-Kan, then it is immediately endpoint-Kan as a special case. Conversely,
using connections and reversal, define:

if (r = 0, r1, r2) := (r ∨ r1)∧ ((1− r)∨ r2)∧ (r1 ∨ r2)
if (0= 0, r1, r2)≡ r1
if (1= 0, r1, r2)≡ r2
if (r = 0, r1, r1)≡ r1
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Then we obtain diagonal Kan composition comz:r→r′
A (α �→ t) (b) for endpoint-Kan types by:

comz:0→1
A〈if (z=0,r,r′)/z〉 (α �→ z.t〈if (z = 0, r, r′)/z〉, (r = r′) �→ _.b) (b)

Notice the use of a diagonal cofibration – without it, this definition would not satisfy the strict
r = r′ constraint (unless regularity holds).

Because any two composites of the same filling problem are homotopic, these two transla-
tions must be mutually inverse (up to paths), and this should lead to an equivalence between the
universe of endpoint-Kan types and the universe of diagonal-Kan types, in a setting where both
exist.

4. Recent and Future Work
Cubical type theories and cubical models of homotopy type theory have continued to receive a
great deal of attention from the community since the original draft of this article in December
2017.

Regarding their syntactic metatheory, Huber (2019) and Angiuli (2019) proved canonicity for
the De Morgan and Cartesian cubical type theories (respectively), while Sterling and Angiuli
(2021) have recently proved the more challenging normalization property for Cartesian cubical
type theory, an open-term analogue of canonicity that justifies the sophisticated type checking
algorithms used by nearly all proof assistants for cubical type theory.

In extensions of the work in this article, Cavallo et al. (2020) have devised a common generaliza-
tion of the diagonal Kan and DeMorgan Kan operations in which the r = r′ equation is weakened
to a path, extending the ideas in Section 3.4 to provide a more detailed comparison between the
two. Weaver and Licata (2020) integrate ideas from our model and the De Morgan model to give
a directed bicubical type theory in the style of Riehl and Shulman (2017), in which this paper’s
cubical type theory takes the place of homotopy type theory for the “space-like” indexing direction.

Work on Cartesian cubical type theory continues as well. Higher inductive types in cubical type
theory have been studied inmore generality, in the Cartesian setting by Cavallo andHarper (2019),
who define a schema for higher inductive types, and also in the De Morgan setting by Coquand
et al. (2018). Sterling et al. (2019) developed XTT, a Cartesian cubical type theory satisfying judg-
mental uniqueness of identity proofs, intended to give access to good extensionality principles in
the absence of equality reflection; their work uses a variation of diagonal Kan composition that
satisfies regularity (but not univalence).

Recently, the cooltt prototype proof assistant for Cartesian cubical type theory
(https://github.com/RedPRL/cooltt) has added support for � types indexed over I and Cof
(with judgmental propositional univalence), in essence exposing more of the Orton–Pitts lan-
guage of Section 3 in the syntax. Coupled with extension types in the style of Riehl and Shulman
(2017), the resulting theory can fully internalize the type of com.

At a recent Dagstuhl seminar (Bauer et al., 2019), a team including some of the authors used the
Agda formalization described here to check a new lemma designed for optimizing the Kan oper-
ation for the universe. Although being Kan is a homotopy proposition, there are different ways
to define composition up to judgmental equality, and these differ in efficiency of implementation.
(In fact, Coquand et al. 2019a establish homotopy canonicity for De Morgan cubical type theory
without type-specific judgmental equalities for Kan composition, showing that these choices differ
only up to judgmental equality.)

Another major area of future work is to compare the various cubical models with each other,
and with traditional settings for homotopy theory, such as simplicial sets. Such comparisons can
be formulated using Quillen equivalence of model structures because each Kan composition oper-
ation gives rise to a type-theoretic model structure (Sattler, 2017). One interesting question is
whether the Cartesian cubical type theory defined here coincides with the one defined in Awodey
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(2018a,b) – this might provide insight into whether the regularity condition on the Kan opera-
tion influences the model structure. Another important question is whether the model structure
defined by the type theory is Quillen equivalent to the Kan model structure on simplicial sets,
which implies that all synthetic homotopy theory in the cubical type theory can be transferred to
facts about a standard notion of spaces. Coquand and Sattler have shown that the Cartesian and
De Morgan model structures obtained in this way are not equivalent to simplicial sets (Sattler,
2018). However, Awodey, Cavallo, Coquand, Riehl, Sattler have recently shown that Cartesian
cubical sets can be equipped with an “equivariant” Kan operation inducing a model structure
that is Quillen equivalent to simplicial sets (Riehl, 2019). This work, which draws on the work
of Awodey (2018a,b) and ourselves, extends composition from the z : r → r′ scenario considered
here to simultaneous compositions (z1, . . . , zn) : (r1, . . . , rn)→ (r′1, . . . , r′n) modulo permutation.
The type theory in Section 2 admits a semantics in this equivariant Cartesian setting, viewing our
com rule as a necessary but not sufficient condition of semantic fibrancy.

A different way to show that a cubical type theory is a suitable setting for synthetic homo-
topy theory would be to seek an interpretation in all ∞-toposes, which would not only imply an
interpretation in simplicial sets, but justify a number of additional applications as well. Coquand
et al. (2019b) make some progress on expanding the models of cubical type theory by giving a
constructive definition of a class of sheaf models. Though they use the De Morgan model as the
base category of spaces, it is also possible to use the Cartesian model for at least the special case of
these models corresponding to the cobar construction (Weaver and Licata, 2020), and we plan to
investigate the general case in future work.
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Note
1 https://github.com/simhu/cubical.
2 https://arend-lang.github.io/.
3 See the post https://goo.gl/btFxZ4 from 5/31/2015 on the Homotopy Type Theory mailing list.
4 https://github.com/mortberg/cubicaltt.
5 https://github.com/RedPRL/sml-redprl.
6 We describe Kan composition as a single operation, rather than decomposing it into two simpler operations of coercion
and homogeneous composition; we use the “glue type” construction of to simultaneously make the universes univalent and
Kan, rather than treating composition in the universe as a primitive.
7 https://github.com/mortberg/yacctt.
8 https://github.com/RedPRL/redtt.
9 The required semantic filling condition is actually more general than the diagram here, which illustrates a special case that
corresponds more directly to the syntactic rule. In general, the left side of the diagram may take place in a different context
� ′; that is, the left map is (� ′.α, z : I)∨� ′ ,z:I � ′ →� ′, z : I and the bottommapmay not be of the form (id, θ). In syntax, the
general case is obtained by precomposing the given rule with a dimension substitution. We make the same simplification in
subsequent diagrams.
10 In the De Morgan model reversals are needed to derive “composition from 1” from “composition from 0,” but the model
also works (Orton and Pitts, 2016) in a cube category with only connections (and diagonals, faces, and degeneracies) by
explicitly adding a second composition operation 1→ 0 – i.e. taking 1/z in addition to 0/z as a trivial cofibration, but in both

https://doi.org/10.1017/S0960129521000347 Published online by Cambridge University Press

https://github.com/simhu/cubical
https://arend-lang.github.io/
https://goo.gl/btFxZ4
https://github.com/mortberg/cubicaltt
https://github.com/RedPRL/sml-redprl
https://github.com/mortberg/yacctt
https://github.com/RedPRL/redtt
https://doi.org/10.1017/S0960129521000347


466 C. Angiuli et al.

cases fixing the target as well as the source. The minor differences between this “connections model” and the De Morgan
model are not relevant to this paper.
11 Our Agda formalization can be found at https://dlicata.wescreates.wesleyan.edu/pubs/abcfhl/ agda/ABCFHL-MSCS.html,
and type checks using Agda version 2.6.1.
12 This not the same as a proposition being decidable (φ ∨ ¬φ) in the internal logic of the topos.
13 A subobject is technically an isomorphism class of such monomorphisms, identifying (A, h) and (B, k) when there is an
isomorphism between A and B that sends h to k.
14 We write “_” for a bound dimension variable that does not appear in its scope.
15 At the time of this writing, there is a bug in some PDF readers onMacOS that prevents the links directly to Agda identifiers
in files from working. To work around this bug, please either use Acrobat Reader, or click the link and then change %23 to #.
16 The code accompanying Licata et al. (2018) uses a prototype implementation of this extension in a branch of Agda named
agda-flat, but as of Agda version 2.6.1 the modal features are included in the main branch.
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