Freeway traffic management via kinetic compartmental models

S.C. Wiersdalen¹, **J. Auriol**², M. Pereira³, B. Kulcsar¹, G Szederkenyi⁴, Annika Lang¹

Chalmers University of Technology, Sweden¹ CNRS, L2S, Université Paris-Saclay, France² Mines Paris - Université PSL, France³, P Pazmany Catholic U, Budapest Hungary⁴

July 4, 2025

Outline

■ OUTLINE

- Aims and motivation
- Road traffic models
- Traffic Reaction Model
- Traffic density estimation
- Summary and future directions

Aims and motivation

AIMS AND MOTIVATION

- Unusual way of interpreting traffic
- Chalmers centered development from 2020
- Multidisciplinary: math, chemistry, traffic flow theory
- Molecules as cars? Cars as molecules?
- Joint cluster work with Mike Pereira (Mines Paris - PSL, France), Jean Auriol (Supelec, France), Gyorgy Liptak, Gabor Szederkenyi, Mihaly Kovacs (Hungarian Academy of Sciences, Pazmany P Catholic University), Annika Lang (Mathematics, Chalmers), Pinar Boyraz Baykas (Mechanical Engineering, Chalmers), Sondre Wiersdalen (Electrical Engineering, Chalmers).

Road traffic models

■ ROAD TRAFFIC MODELS

- lacktriangle Two quantities of interest defined for any time $t\geq 0$ and road location $x\in\mathbb{R}$
- Density of vehicles $\rho(t,x)$

- Flux of vehicles f(t, x)

• Q2. Conservation law on the number of vehicles in a road section $[x_1, x_2]$:

$$\forall t_0 \ge 0, \quad \frac{d}{dt} \left(\int_{x_1}^{x_2} \rho(t, x) \, \mathrm{d}x \right) \bigg|_{t=t} = f(t_0, x_1) - f(t_0, x_2)$$

■ PDE satisfied by the density ρ and the flux f:

$$\frac{\partial \rho}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x) = 0$$

■ PDE satisfied by the density ρ and the flux f:

$$\frac{\partial \rho}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x) = 0$$

Flux and density are not independent variables...

Some flux/density conditions:

- They are both bounded and non-negative $\exists \rho_m, f_m > 0, \quad \rho \in [0, \rho_m], \quad f \in [0, f_m]$
- No vehicles ⇒ No flux

$$\rho = 0 \Rightarrow f = 0$$

Road at capacity ⇒ No flux

$$\rho = \rho_m \Rightarrow f = 0$$

Plot Flux Vs Density from measurements done in a German highway (HighD dataset)

■ PDE satisfied by the density ρ and the flux f:

$$\frac{\partial \rho}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x) = 0$$

Lighthill-Whitham-Richards (LWR) model Simplest model satisfying the flux/density conditions

$$\exists v_m > 0, \quad f \equiv f(\rho) = \rho(t, x) \cdot v_m \left(1 - \frac{\rho(t, x)}{\rho_m}\right)$$

In particular,

$$f_m = f(\rho_m/2) = \frac{v_m \rho_m}{4}$$

■ PDE satisfied by the density ρ and the flux f:

$$\frac{\partial \rho}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x) = 0$$

■ LWR model \rightarrow Nonlinear (hyperbolic) PDE satisfied by the density ρ

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (f(\rho)) = 0 \qquad \left(f(\rho) = v_m \rho \left(1 - \frac{\rho}{\rho_m} \right) \right)$$

Parameters:

- Maximal density ρ_m
- Critical speed v_m

Traffic Reaction Model

I FINITE-VOLUME DISCRETIZATION

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(f(\rho) \right) = 0$$

Discretized space

■ Finite Volume method \rightarrow Approximation of cell averages ρ_i

$$\rho_i(t) = \frac{1}{\Delta x} \int_{x = \Delta x/2}^{x_i + \Delta x} \rho(t, x) \, \mathrm{d}x$$

• Remark: ρ = density gives

$$\rho_i(t) = \frac{\text{Number of vehicles in the i-th cell at t}}{\Delta x}$$

I FINITE-VOLUME DISCRETIZATION

Integration of PDE on each cell gives

$$\frac{\mathrm{d}\rho_{i}}{\mathrm{d}t}(t) = \frac{1}{\Delta x} \left[f\left(\rho\right) \big|_{t,x=x_{i}-\Delta x/2} - f\left(\rho\right) \big|_{t,x=x_{i}+\Delta x/2} \right]$$

• Finite volume scheme: replace true fluxes by approximations

$$\frac{\mathrm{d}\rho_i}{\mathrm{d}t}(t) = \frac{1}{\Delta x} \left[F(\rho_{i-1}, \rho_i) - F(\rho_i, \rho_{i+1}) \right]$$

■ Time discretization (Euler method) → recurrence relation

$$\rho_i^{n+1} \equiv \rho_i(t_n + \Delta t) = \rho_i^n + \frac{\Delta t}{\Delta x} \left[F(\rho_{i-1}^n, \rho_i^n) - F(\rho_i^n, \rho_{i+1}^n) \right]$$

■ FINITE-VOLUME DISCRETIZATION: PROPERTIES

Recall the PDE of interest

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(f(\rho) \right) = 0$$

Let ${\cal H}$ denote the recurrence relation of finite volume scheme, i.e.

$$\rho_i^{n+1} = \mathcal{H}(\rho^n; i) = \rho_i^n + \frac{\Delta t}{\Delta x} \left[F(\rho_{i-1}^n, \rho_i^n) - F(\rho_i^n, \rho_{i+1}^n) \right], \quad n \in \mathbb{N}, \quad i \in \mathbb{Z}$$

Consistency The scheme is consistent (with the flux function f) if

$$F(u, u) = f(u), \quad \forall u$$

■ FINITE-VOLUME DISCRETIZATION: PROPERTIES

Recall the PDE of interest

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(f(\rho) \right) = 0$$

Let ${\cal H}$ denote the recurrence relation of finite volume scheme, i.e.

$$\rho_i^{n+1} = \mathcal{H}(\rho^n; i) = \rho_i^n + \frac{\Delta t}{\Delta x} \left[F(\rho_{i-1}^n, \rho_i^n) - F(\rho_i^n, \rho_{i+1}^n) \right], \quad n \in \mathbb{N}, \quad i \in \mathbb{Z}$$

Monotonicity The scheme is monotone if for any $n \geq 0$,

$$\left[\forall i, \quad \rho_i^n \leq r_i^n\right] \Rightarrow \left[\forall i, \quad \rho_i^{n+1} = \mathcal{H}(\rho^n \; ; i) \leq \mathcal{H}(r^n \; ; i) = r_i^{n+1}\right]$$

(L^{∞} -)Stability The scheme is stable if

$$[\exists m, M \in \mathbb{R}, \quad \forall i \in \mathbb{Z}, \ \rho_i^0 \in [m, M]] \Rightarrow [\forall n \in \mathbb{N}, \ \forall i \in \mathbb{Z}, \ \rho_i^n \in [m, M]]$$

■ FINITE-VOLUME DISCRETIZATION: PROPERTIES

Recall the PDE of interest

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(f(\rho) \right) = 0$$

Let ${\cal H}$ denote the recurrence relation of finite volume scheme, i.e.

$$\rho_i^{n+1} = \mathcal{H}(\rho^n; i) = \rho_i^n + \frac{\Delta t}{\Delta x} \left[F(\rho_{i-1}^n, \rho_i^n) - F(\rho_i^n, \rho_{i+1}^n) \right], \quad n \in \mathbb{N}, \quad i \in \mathbb{Z}$$

Convergence For any time horizon T>0, the discrete solution $\{\rho_i^n\}_{i,n}$ converges (in L^1) to "entropy solution" ρ of the PDE if

$$\sum_{\substack{n\in\mathbb{N}\\t_{n+1}\leq T}}\int_{t_{n}}^{t_{n+1}}\left(\sum_{j\in\mathbb{Z}}\int_{x_{i}-\Delta x/2}^{x_{i}+\Delta x/2}|\rho(t,x)-\rho_{i}^{n}|dx\right)dt\longrightarrow0\text{ as }\Delta t,\Delta x\rightarrow0$$

(with $\Delta t/\Delta x = Constant$)

■ TRAFFIC REACTION MODEL

Assumption: The flux function f can be written as

$$f(\rho) = g(\rho, \rho_m - \rho)$$

for some $g:[0,\rho_m]\times[0,\rho_m]\mapsto\mathbb{R}_+$ Lipschitz, non-decreasing w.r.t. both arguments, and satisfying $g(\rho,0)=g(0,\rho_m-\rho)=0$

- ightarrow Remark: It is enough to have $f(\rho)=g_1(\rho)g_2(\rho_m-\rho)$ where g_1,g_2 Lipschitz, non-decreasing, and satisfying $g_1(0)=g_2(0)=0$.
 - lacksquare For the LWR model, i.e. taking $f(
 ho)=v_m
 ho\left(1-rac{
 ho}{
 ho_m}
 ight)$, some choices are

$$f(\rho) = g(\rho, \rho_m - \rho) = v_m \rho \left(\frac{\rho_m - \rho}{\rho_m}\right) = D(\rho)Q(\rho_m - \rho)/f_m = \min(D(\rho), Q(\rho_m - \rho))^1$$
 with $D(\nu) = f(\min\{\nu, \frac{\rho_m}{2}\})$ and $Q(\nu) = f(\max\{\rho_m - \nu, \frac{\rho_m}{2}\})$

¹link to Cell Transmission Model

■ TRAFFIC REACTION MODEL

Using more general flux functions than the LWR flux $f(\rho) = v_m \rho \left(1 - \frac{\rho}{\rho_m}\right) = g_1(\rho)g_2(\rho - \rho_m)$:

$$f(\rho) = g(\rho, \rho_m - \rho)$$

where g is non-decreasing with respect to both its argument.

Traffic Reaction Model (TRM)

$$F(\rho_l, \rho_r) = g(\rho_l, \rho_m - \rho_r)$$

$$F_i^n(\rho_i^n, \rho_{i+1}^n) = g(\rho_i^n, \rho_m - \rho_{i+1}^n) = g_1(\rho_i^n)g_2(\rho_m - \rho_{i+1}^n)$$

- → Family of numerical schemes
- $o F_i^n(
 ho_i^n,
 ho_{i+1}^n)$ can be selected smooth (no "jumpy" nonlinear components in the ODEs)
- ightarrow Consistency, Stability, Monotonicity, Convergence imposing a Courant–Friedrichs–Lewy condition.
- → Traffic Flow Theory + Chemical Reaction Model

TRAFFIC REACTION MODEL: INTERPRETATION

- 2 "chemical species" present in each cell/compartment: Occupied slots O_i and Free slots Φ_i
 - \rightarrow Species concentrations in the *j*-th cell

Amount of Occupied slots O_j = Density of vehicles = $\rho_i(t)$ Occupied slots:

Volume of the compartment

Amount of Free slots Φ_j — Density of free space $\equiv \rho_m - \rho_j(t)$ Free slots: Volume of the compartment

■ TRAFFIC REACTION MODEL: INTERPRETATION

x_{j-1}	x_j	x_{j+1}	œ
'	'		
♣ ♣		←	
j-1	j	j+1	
O_{j-1} O_{j-1} Φ_{j-1} Φ_{j-1} Φ_{j-1} Φ_{j-1}	O_j O_j O_j O_j Φ_j	Φ_{j+1} Φ_{j+1} Φ_{j+1} O_{j+1} O_{j+1} O_{j+1}	
$\Phi_j + O_{j-1}$ -	$\rightarrow O_j + \Phi_{j-1}$ $\Phi_{j+1} + O_j -$	$\rightarrow O_{j+1} + \Phi_j$	

- 2 "chemical species" present in each cell/compartment: Occupied slots O_j and Free slots Φ_j
 - Reaction model for vehicle transfer between cells

$$\Phi_j + O_{j-1} \xrightarrow{k_{j-1} \to j} O_j + \Phi_{j-1} \qquad \Phi_{j+1} + O_j \xrightarrow{k_{j} \to j+1} O_{j+1} + \Phi_j$$

where $k_{j\to j+1}=g(\rho_i,\rho_m-\rho_{i+1})/\Delta x=$ reaction rate depending on the "concentrations" ρ_i (of occupied space in i) and $\rho_m-\rho_{i+1}$ (of free space in i+1)

• (Discretized) Reaction kinetics then give

$$\rho_{j}^{n+1} = \rho_{j}^{n} + \frac{\Delta t}{\Delta x} \left[g(\rho_{j-1}^{n}, \rho_{m} \rho_{j}^{n}) - g(\rho_{j}^{n}, \rho_{m} - \rho_{j+1}^{n}) \right]$$

→ Finite-volume scheme!

Traffic Density Estimation

■ PROBLEM STATEMENT

Estimation Problem: Consider a stretch of highway with the length L>0 km represented by the interval [a,b]. Let $\rho(x,t)$ denote the density at time t and point x on the highway. Given the density of $\rho(t,x)$ for $t\geq 0$ and x in the vicinity of the points a and b, we seek an approximation $\mu(t,x)$ such that

$$\mu(x,t) \approx \rho(x,t) \text{ for } t \ge 0 \text{ and } x \in [a,b].$$
 (1)

Initial Assumption: The density on the highway is governed by the LWR model and the flux function f can be written as

$$f(\rho) = \rho v(\rho), \quad \rho \in \mathbb{R}$$
 (2)

where the function \boldsymbol{v} is Lipschitz, nonincreasing and such that

$$v(\rho_{\rm max}) = 0 \text{ and } v(\rho) > 0, \quad \rho < \rho_{\rm max}.$$
 (3)

■ PROPOSED SOLUTION PART 1 (SEMI-DISCRETIZATION)

We discretize the LWR model (in space) over n+2 consecutive cells $\{C_i\}_{i=0}^{N+1}$ covering [a,b]:

$$\dot{\rho}_i = \frac{1}{\Lambda r} (\rho_{i-1} v(\rho_i) - \rho_i v(\rho_{i+1})), \quad i = 1, \dots, N$$
(4)

$$d_i = \frac{1}{\Delta x} \int_{C_i} \rho(x, 0) dx, \quad i = 1, \dots, N$$
(5)

The cells C_0 , C_{N+1} are centered about the points a,b and we define

$$\rho_0(t) := \int_{C_0} \rho(x, t) dx, \quad \rho_{N+1}(t) := \int_{C_{N+1}} \rho(x, t) dx, \quad t \ge 0$$
 (6)

which by assumption are measured. If the spatial discretization length Δx is small (corresponding with large N), then

$$\rho_i(t) \approx \frac{1}{\Delta x} \int_{C_i} \rho(x, t) dx, \quad t \ge 0, \quad i = 1, \dots, N.$$
(7)

■ PROPOSED SOLUTION PART 2 (THE ESTIMATE)

(8)

Now we define (μ_1, \dots, μ_n) to be **any** solution to (4) starting in $[0, \rho_{\text{max}}]^N$ and set

$$\mu(x,t) := \mu_i(t), \quad t \ge 0, \quad x \in C_i.$$

If there exists $\bar{\rho}$ such that

$$\rho_{N+1}(t) \le \bar{\rho} < \rho_{\text{max}}, \quad t \ge 0, \tag{9}$$

then there exist $\lambda > 0$, $\gamma \geq 1$ such that

$$\sum_{i=1}^{N} |\rho_i(t) - \mu_i(t)| \le \gamma e^{-\lambda t} \sum_{i=1}^{N} |\rho_i(0) - \mu_i(0)|, \quad t \ge 0.$$
 (10)

This solves the proposed estimation problem, granted the additional assumption (9).

PROOF: MAIN STEPS

$$\sum_{i=1}^{N} |\rho_i(t) - \mu_i(t)| \le \gamma e^{-\lambda t} \sum_{i=1}^{N} |\rho_i(0) - \mu_i(0)|, \quad t \ge 0.$$
(11)

Step 0: The Traffic Reaction Model gives rise to a cooperative system of ODEs associated with the statespace $[0, \rho_{\max}]^N$.

Step 1: The exponential convergence (11) is shown directly with a linear Lyapunov function whenever $0 \le \rho_i(0) \le \mu_i(0) \le \rho_{\max}$ for $i=1,\ldots,n$.

Step 2: The exponential convergence (11) can be shown to hold for all initial conditions in $[0, \rho_{\max}]^N$ owing to step 1 and the fact that the system is cooperative².

²See Theorem 2 in Wiersdalen, S. (2025). *Incremental Stability of Traffic Reaction Models* [Licentiate Thesis, Chalmers University of Technology]

■ NUMERICAL EXPERIMENT

Greenshields flux function

$$f(\rho) = v_{\text{max}}\rho(1 - \frac{\rho}{\rho_{\text{max}}}), \quad v_{\text{max}} = 110\frac{\text{km}}{\text{h}}, \quad \rho_{\text{max}} = 200\frac{\text{veh}}{\text{km}}$$
 (12)

We take the initial condition

$$u(x) = \begin{cases} 0, & x \le 0\\ 150, & 0 < x \le 1\\ 50, & 1 < x \le 2\\ 200, & x > 2 \end{cases}$$
 (13)

and simulate for 30 seconds and provide an estimate $\mu(x,t)$ of $\rho(x,t)$ for $x\in[a,b]=[0.25,0.75]$ and $t\geq0$ $(\Delta x=5$ meters).

■ DENSITY PROFILES

23 / 27

■ HEAT MAP

Summary and future directions

■ SUMMARY

- family of finite volume discretization: nonnegatity, capacity inherited by the ODEs.
- $f(\rho)$ can be over-parametrized by the dual variable $\rho_m-\rho$ via $g(\rho,\rho_m-\rho)$ to gate the transfer of the conserved quantity.
- mass kinetic discretization, equivalence to chemical reaction networks
- open loop traffic state estimation

■ FUTURE WORK

- PDEs on a network
- Controlled TRM: change of the reaction rate
- Stochastic TRM

REFERENCES

- Auriol, J., Pereira, M., and Kulcsar, B. (2023). Mean-square exponential stabilization of coupled hyperbolic systems with random parameters. *IFAC World Congress*.
- Pereira, M., Baykas, P., , Kulcsár, B., and Lang, A. (2022a). Parameter and density estimation from real-world traffic data: A kinetic compartmental approach. *Transportration Research Part B*.
- Pereira, M., Kulcsár, B., Lipták, G., Kovács, M., and Szederkényi, G. (2024). The traffic reaction model: A kinetic compartmental approach to road traffic modeling. *Transportration Research Part C.*
- Pereira, M., Lang, A., and Kulcsár, B. (2022b). Short-term traffic prediction using physics-aware neural networks. *Transportration Research Part C.*
- Wiersdalen, S. (2025). Incremental stability of traffic reaction models. *Licentiate Thesis, Chalmers University of Technology*.
- Wiersdalen, S., Pereira, M., Auriol, J., Szederkenyi, G., Lang, A., and Kulcsár, B. (2024). Stability analysis of compartmental and cooperative systems. to revise, Transactions on Automatic Control.