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■ AIMS AND MOTIVATION

− Unusual way of interpreting traffic
− Chalmers centered development from 2020
− Multidisciplinary: math, chemistry, traffic

flow theory
− Molecules as cars? Cars as molecules?
− Joint cluster work with Mike Pereira (Mines

Paris - PSL, France), Jean Auriol (Supelec,
France), Gyorgy Liptak, Gabor Szederkenyi,
Mihaly Kovacs (Hungarian Academy of
Sciences, Pazmany P Catholic University),
Annika Lang (Mathematics, Chalmers),
Pinar Boyraz Baykas (Mechanical
Engineering, Chalmers), Sondre Wiersdalen
(Electrical Engineering, Chalmers).
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■ ROAD TRAFFIC MODELS

Two quantities of interest defined for any time t ≥ 0 and road location x ∈ R

− Density of vehicles ρ(t, x) − Flux of vehicles f(t, x)

Q2. Conservation law on the number of vehicles in a road section [x1, x2]:

∀t0 ≥ 0,
d

dt

(∫ x2

x1

ρ(t, x) dx

)∣∣∣∣
t=t0

= f(t0, x1)− f(t0, x2)
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■ (FIRST-ORDER) MACROSCOPIC TRAFFIC MODELS

PDE satisfied by the density ρ and the flux f :
∂ρ

∂t
(t, x) +

∂f

∂x
(t, x) = 0
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■ (FIRST-ORDER) MACROSCOPIC TRAFFIC MODELS

PDE satisfied by the density ρ and the flux f :
∂ρ

∂t
(t, x) +

∂f

∂x
(t, x) = 0

Flux and density are not independent variables...

Some flux/density conditions:
− They are both bounded and non-negative

∃ ρm, fm > 0, ρ ∈ [0, ρm], f ∈ [0, fm]

− No vehicles ⇒ No flux

ρ = 0 ⇒ f = 0

− Road at capacity ⇒ No flux

ρ = ρm ⇒ f = 0
Plot Flux Vs Density from measurements done in a

German highway (HighD dataset)
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■ (FIRST-ORDER) MACROSCOPIC TRAFFIC MODELS

PDE satisfied by the density ρ and the flux f :
∂ρ

∂t
(t, x) +

∂f

∂x
(t, x) = 0

Lighthill–Whitham–Richards (LWR) model
Simplest model satisfying the flux/density conditions

∃vm > 0, f ≡ f(ρ) = ρ(t, x) · vm
(
1− ρ(t, x)

ρm

)
In particular,

fm = f(ρm/2) =
vmρm

4
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■ (FIRST-ORDER) MACROSCOPIC TRAFFIC MODELS

PDE satisfied by the density ρ and the flux f :
∂ρ

∂t
(t, x) +

∂f

∂x
(t, x) = 0

LWR model → Nonlinear (hyperbolic) PDE satisfied by
the density ρ

∂ρ

∂t
+

∂

∂x
(f(ρ)) = 0

(
f(ρ) = vmρ

(
1− ρ

ρm

))
Parameters:
− Maximal density ρm

→ Directly linked to the
capacity of the road ⇒ known

− Critical speed vm
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Traffic Reaction Model
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■ FINITE-VOLUME DISCRETIZATION

∂ρ

∂t
+

∂

∂x
(f(ρ)) = 0

Discretized space
i− 1 i i+ 1

x
xi−1 xi xi+1

∆x

Finite Volume method → Approximation of cell averages ρi

ρi(t) =
1

∆x

∫ xi+∆x

xi−∆x/2

ρ(t, x) dx

Remark: ρ = density gives

ρi(t) =
Number of vehicles in the i-th cell at t

∆x
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■ FINITE-VOLUME DISCRETIZATION

i− 1 i i+ 1

x
xi−1 xi xi+1

∆x

Integration of PDE on each cell gives
dρi
dt

(t) =
1

∆x

[
f (ρ)|t,x=xi−∆x/2 − f (ρ)|t,x=xi+∆x/2

]
Finite volume scheme: replace true fluxes by approximations

dρi
dt

(t) =
1

∆x
[F (ρi−1, ρi)− F (ρi, ρi+1)]

Time discretization (Euler method) → recurrence relation

ρn+1
i ≡ ρi(tn +∆t) = ρni +

∆t

∆x

[
F (ρni−1, ρ

n
i )− F (ρni , ρ

n
i+1)

]
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■ FINITE-VOLUME DISCRETIZATION: PROPERTIES

Recall the PDE of interest
∂ρ

∂t
+

∂

∂x
(f(ρ)) = 0

Let H denote the recurrence relation of finite volume scheme, i.e.

ρn+1
i = H(ρn ; i) = ρni +

∆t

∆x

[
F (ρni−1, ρ

n
i )− F (ρni , ρ

n
i+1)

]
, n ∈ N, i ∈ Z

Consistency The scheme is consistent (with the flux function f) if

F (u, u) = f(u), ∀u
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∂ρ

∂t
+

∂

∂x
(f(ρ)) = 0

Let H denote the recurrence relation of finite volume scheme, i.e.

ρn+1
i = H(ρn ; i) = ρni +

∆t

∆x

[
F (ρni−1, ρ

n
i )− F (ρni , ρ

n
i+1)

]
, n ∈ N, i ∈ Z

Monotonicity The scheme is monotone if for any n ≥ 0,

[∀i, ρni ≤ rni ] ⇒
[
∀i, ρn+1

i = H(ρn ; i) ≤ H(rn ; i) = rn+1
i

]
(L∞-)Stability The scheme is stable if[

∃m,M ∈ R, ∀i ∈ Z, ρ0i ∈ [m,M ]
]
⇒ [∀n ∈ N, ∀i ∈ Z, ρni ∈ [m,M ]]
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■ FINITE-VOLUME DISCRETIZATION: PROPERTIES

Recall the PDE of interest
∂ρ

∂t
+

∂

∂x
(f(ρ)) = 0

Let H denote the recurrence relation of finite volume scheme, i.e.

ρn+1
i = H(ρn ; i) = ρni +

∆t

∆x

[
F (ρni−1, ρ

n
i )− F (ρni , ρ

n
i+1)

]
, n ∈ N, i ∈ Z

Convergence For any time horizon T > 0, the discrete solution {ρni }i,n converges (in L1) to
“entropy solution” ρ of the PDE if∑

n∈N
tn+1≤T

∫ tn+1

tn

∑
j∈Z

∫ xi+∆x/2

xi−∆x/2

|ρ(t, x)− ρni |dx

 dt −→ 0 as ∆t,∆x → 0

(with ∆t/∆x =Constant)
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■ TRAFFIC REACTION MODEL

Assumption: The flux function f can be written as

f(ρ) = g(ρ, ρm − ρ)

for some g : [0, ρm]× [0, ρm] 7→ R+ Lipschitz, non-decreasing w.r.t. both arguments, and
satisfying g(ρ, 0) = g(0, ρm − ρ) = 0

→ Remark: It is enough to have f(ρ) = g1(ρ)g2(ρm − ρ) where g1, g2 Lipschitz, non-decreasing,
and satisfying g1(0) = g2(0) = 0.

For the LWR model, i.e. taking f(ρ) = vmρ
(
1− ρ

ρm

)
, some choices are

f(ρ) = g(ρ, ρm − ρ) = vmρ

(
ρm − ρ

ρm

)
= D(ρ)Q(ρm − ρ)/fm = min(D(ρ), Q(ρm − ρ))1

with D(ν) = f(min{ν, ρm

2 }) and Q(ν) = f(max{ρm − ν, ρm

2 })

1link to Cell Transmission Model

14 / 27



■ TRAFFIC REACTION MODEL

Using more general flux functions than the LWR flux f(ρ) = vmρ

(
1− ρ

ρm

)
= g1(ρ)g2(ρ− ρm):

f(ρ) = g(ρ, ρm − ρ)

where g is non-decreasing with respect to both its argument.

Traffic Reaction Model (TRM)

F (ρl, ρr) = g(ρl, ρm − ρr)

Fn
i (ρ

n
i , ρ

n
i+1) = g(ρni , ρm − ρni+1) = g1(ρ

n
i )g2(ρm − ρni+1)

→ Family of numerical schemes
→ Fn

i (ρni , ρ
n
i+1) can be selected smooth (no "jumpy" nonlinear components in the ODEs)

→ Consistency, Stability, Monotonicity, Convergence imposing a Courant–Friedrichs–Lewy condition.
→ Traffic Flow Theory + Chemical Reaction Model
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■ TRAFFIC REACTION MODEL: INTERPRETATION

x

xj−1 xj xj+1

Φj +Oj−1→Oj + Φj−1 Φj+1 +Oj →Oj+1 + Φj

j − 1 j j + 1

Oj
Oj Oj

Φj Φj

Oj Oj
Oj−1 Φj−1

Oj−1
Φj−1Φj−1

Oj−1 Φj−1 Φj+1
Φj+1

Oj+1Φj+1

Φj+1 Oj+1

2 “chemical species” present in each cell/compartment: Occupied slots Oj and Free slots Φj

→ Species concentrations in the j-th cell

Occupied slots :
Amount of Occupied slots Oj

Volume of the compartment
= Density of vehicles = ρj(t)

Free slots :
Amount of Free slots Φj

Volume of the compartment
= Density of free space ≡ ρm − ρj(t)
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■ TRAFFIC REACTION MODEL: INTERPRETATION

x

xj−1 xj xj+1

Φj +Oj−1→Oj + Φj−1 Φj+1 +Oj →Oj+1 + Φj

j − 1 j j + 1

Oj
Oj Oj

Φj Φj

Oj Oj
Oj−1 Φj−1

Oj−1
Φj−1Φj−1

Oj−1 Φj−1 Φj+1
Φj+1

Oj+1Φj+1

Φj+1 Oj+1

2 “chemical species” present in each cell/compartment: Occupied slots Oj and Free slots Φj

Reaction model for vehicle transfer between cells

Φj +Oj−1
kj−1→j−→ Oj +Φj−1 Φj+1 +Oj

kj→j+1−→ Oj+1 +Φj

where kj→j+1 = g(ρi, ρm − ρi+1)/∆x = reaction rate depending on the “concentrations” ρi
(of occupied space in i) and ρm − ρi+1 (of free space in i+ 1)

(Discretized) Reaction kinetics then give

ρn+1
j = ρnj +

∆t

∆x

[
g(ρnj−1, ρmρnj )− g(ρnj , ρm − ρnj+1)

]
→ Finite-volume scheme!
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Traffic Density Estimation
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■ PROBLEM STATEMENT

Estimation Problem: Consider a stretch of highway with the length L > 0 km represented by the
interval [a, b]. Let ρ(x, t) denote the density at time t and point x on the highway. Given the
density of ρ(t, x) for t ≥ 0 and x in the vicinity of the points a and b, we seek an approximation
µ(t, x) such that

µ(x, t) ≈ ρ(x, t) for t ≥ 0 and x ∈ [a, b]. (1)

Initial Assumption: The density on the highway is governed by the LWR model and the flux
function f can be written as

f(ρ) = ρv(ρ), ρ ∈ R (2)

where the function v is Lipschitz, nonincreasing and such that

v(ρmax) = 0 and v(ρ) > 0, ρ < ρmax. (3)
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■ PROPOSED SOLUTION PART 1 (SEMI-DISCRETIZATION)

We discretize the LWR model (in space) over n+ 2 consecutive cells {Ci}N+1
i=0 covering [a, b]:

ρ̇i =
1

∆x

(
ρi−1v(ρi)− ρiv(ρi+1)

)
, i = 1, . . . , N (4)

di =
1

∆x

∫
Ci

ρ(x, 0)dx, i = 1, . . . , N (5)

The cells C0, CN+1 are centered about the points a, b and we define

ρ0(t) :=

∫
C0

ρ(x, t)dx, ρN+1(t) :=

∫
CN+1

ρ(x, t)dx, t ≥ 0 (6)

which by assumption are measured. If the spatial discretization length ∆x is small (corresponding
with large N), then

ρi(t) ≈
1

∆x

∫
Ci

ρ(x, t)dx, t ≥ 0, i = 1, . . . , N. (7)
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■ PROPOSED SOLUTION PART 2 (THE ESTIMATE)

Now we define (µ1, . . . , µn) to be any solution to (4) starting in [0, ρmax]
N and set

µ(x, t) := µi(t), t ≥ 0, x ∈ Ci. (8)

If there exists ρ̄ such that
ρN+1(t) ≤ ρ̄ < ρmax, t ≥ 0, (9)

then there exist λ > 0, γ ≥ 1 such that
N∑
i=1

|ρi(t)− µi(t)| ≤ γe−λt
N∑
i=1

|ρi(0)− µi(0)|, t ≥ 0. (10)

This solves the proposed estimation problem, granted the additional assumption (9).
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■ PROOF: MAIN STEPS

N∑
i=1

|ρi(t)− µi(t)| ≤ γe−λt
N∑
i=1

|ρi(0)− µi(0)|, t ≥ 0. (11)

Step 0: The Traffic Reaction Model gives rise to a cooperative system of ODEs associated with the
statespace [0, ρmax]

N .
Step 1: The exponential convergence (11) is shown directly with a linear Lyapunov function
whenever 0 ≤ ρi(0) ≤ µi(0) ≤ ρmax for i = 1, . . . , n.
Step 2: The exponential convergence (11) can be shown to hold for all initial conditions in
[0, ρmax]

N owing to step 1 and the fact that the system is cooperative2.

2See Theorem 2 in Wiersdalen, S. (2025). Incremental Stability of Traffic Reaction Models [Licentiate Thesis,
Chalmers University of Technology]
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■ NUMERICAL EXPERIMENT

Greenshields flux function

f(ρ) = vmaxρ(1−
ρ

ρmax
), vmax = 110

km

h
, ρmax = 200

veh

km
(12)

We take the initial condition

u(x) =


0, x ≤ 0

150, 0 < x ≤ 1

50, 1 < x ≤ 2

200, x > 2

(13)

and simulate for 30 seconds and provide an estimate µ(x, t) of ρ(x, t) for
x ∈ [a, b] = [0.25, 0.75] and t ≥ 0 (∆x = 5 meters).
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■ DENSITY PROFILES
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■ HEAT MAP
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Summary and future directions
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■ SUMMARY

family of finite volume discretization: nonnegatity, capacity inherited by the ODEs.
f(ρ) can be over-parametrized by the dual variable ρm − ρ via g(ρ, ρm − ρ) to gate the transfer
of the conserved quantity.
mass kinetic discretization, equivalence to chemical reaction networks
open loop traffic state estimation
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■ FUTURE WORK

PDEs on a network
Controlled TRM: change of the reaction rate
Stochastic TRM
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