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Abstract—Optical networks offer an ultra-high transmission
capacity and serve various online applications (e.g., 5G, IoT,
AR/VR, telemedicine). Preventing faults that cause packet losses
or even link interruption becomes vital to ensure the reliability of
these networks and, consequently, access to vital online services.
Moreover, as the volume of telemetry data rapidly increases, data
processing is often done in the cloud, which can open up breaches
of unauthorized data access and raise concerns about scalability.
Therefore, this work proposes a decentralized federated learning
(FL)-based approach that exploits the principal component anal-
ysis (PCA) to perform confidentiality-preserving fault detection
in optical networks. Unlike centralized FL-based approaches, the
PCA is split into several local PCAs trained with subsets of the
entire telemetry dataset. Thereafter, each local model exchanges
its parameters in a peer-to-peer manner to learn the information
extracted from their local data. As local PCAs are trained with
only normal data (i.e., without faults), these models become
sensitive to data that indicate anomalies, enabling the detection
of faults. Moreover, a scrambling technique is applied to shuffle
the order of the dataset, hiding the structural dependency among
samples from malicious agents. Combining decentralized FL with
the scrambling technique can enhance data confidentiality and
cope with network scalability, as the processing of the dataset
will be distributed over several nodes, hindering the access of
malicious agents. Results on a testbed-derived dataset show no
penalties for adopting the proposed disaggregated solution, i.e.,
the performance is the same as that of the centralized solutions.

Index Terms—Decentralized federated learning, PCA, Fault
detection, Optical networks

I. INTRODUCTION

Providing accurate and rapid fault detection is vital to guar-
antee the high reliability of optical networks and uninterrupted
accessibility to online services [1]. Although effective fault
management reduces service disruptions, the confidentiality
of the telemetry data is often not taken into account [2]. As
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the volume of telemetry data increases due to emerging data-
hungry applications, the network operators frequently utilize
the cloud’s computational power to process the vast amount
of the control data (e.g., QoT parameters). In that scenario,
once shared with the cloud, it is difficult for the operator
to guarantee the confidentiality of the control data. Hence,
the ultimate goal is effectively detecting network faults while
preserving the data confidentiality.

As the complexity of optical networks grows rapidly, con-
ventional fault management methods are limited by simplified
operational methods that hinder their scalability and effective-
ness [3]. Hence, machine learning (ML) techniques emerge
as techniques that overcome these methods by enabling auto-
mated and cognitive networks to cope with a large number of
system parameters [4]. However, most ML-based approaches
are based on supervised learning (SL) algorithms that require
a large volume of fault data for proper training, which limits
their feasibility [3].

Principal component analysis (PCA) is a widely known
unsupervised algorithm commonly used for anomaly detection,
making it suitable for optical fault detection. For instance,
authors in [5] exploited a PCA-based semi-supervised ap-
proach to perform soft failure detection in optical networks
and introduced data scrambling to ensure data confidentiality
in a homomorphic computation scheme (i.e., computation
is performed directly on the encrypted data). This is only
possible due to the PCA rotation invariant property, which
was leveraged by shuffling telemetry data to preserve the
information contained in the data. Note that this property
enables PCA to work with shuffled data without changing the
results. Similarly, [6] shows different dimensionality reduction
methods combined with a privacy-preserving approach. Only
PCA and singular value decomposition (SVD) maintain the
exact performance with and without data scrambling.

Although efficient, all the aforementioned works are based
on third-party centralized PCA, which does not cope with
data confidentiality as all data is shared in one location.



Moreover, considering the rapid increase in the volume of
telemetry data, data processing scalability becomes a challenge
as more data needs to be processed, consuming resources and
computational power. In that regard, in [7] we proposed a
semi-supervised disaggregated PCA approach to detect faults
in optical networks while preserving data confidentiality and
coping with network scalability. Inspired by the federated
learning (FL) scheme, this approach splits the data through
several computation nodes to partially solve the global PCA
problem. The global solution is then computed from these
partial results without direct access to the original datasets at a
single location. Moreover, to improve data confidentiality, each
portion of data shared among the several computation nodes is
randomly scrambled following the approach proposed in [5],
and [6].

Although working in a centralized FL. manner (i.e., with
a global PCA) improves data confidentiality, it still relies on
a central server. Hence, in this work, we leverage a distinct
federated configuration denominated decentralized FL [8],
which adopts a peer-to-peer (P2P) topology. Consequently,
there is no central server, as each local PCA conducts local
model training based on its local data and exchanges or
fuses its model characteristics in a P2P manner. Following
a semi-supervised approach, each local PCA is trained using
only data from the network’s normal operation conditions,
disregarding data from fault conditions, which is scarce and
difficult to collect in practical scenarios. This decentralized
FL approach eases model aggregation and updates without
relying on a central server, thereby mitigating the presence of
untrusted servers. In addition, the proposed approach achieves
the same fault detection performance as the centralized FL and
traditional centralized approaches.

II. RELATED WORK

In recent years, several ML algorithms to manage faults
in optical networks have been developed, encompassing fault
detection, identification, and localization. For instance, the
authors in [9] proposed two different finite state ML algorithms
to detect and identify the causes of several faults that degrade
the bit error rate (BER) in optical connections. Leveraging
similar fault scenarios, the same authors also investigated ML-
aided algorithms for soft failure localization [10]. Moreover,
[11] compared several ML algorithms regarding complexity
and accuracy to detect and identify equipment faults in optical
networks. They achieved approximately 98% accuracy in
identifying the equipment faults using BER traces.

In addition to BER, several approaches use different optical
parameters for the same task. The authors in [12] used a neural
network-based algorithm fed with experimental data from op-
tical power measurement under diverse fault modes to perform
fault detection. Moreover, the authors in [13] proposed a soft
failure localization technique based on a supervised neural
network applied over telemetry data from Software-defined
Networks (SDN) streams of network parameters. Similarly,
[14] proposed a soft-failure identification and localization

approach based on optical spectrum captured by optical spec-
trum analyzers (OSA). Although the aforementioned works
performed well for failure management, the ML techniques
employed follow a supervised manner, i.e., they require a large
amount of data from fault conditions to be adequately trained.
However, obtaining data from fault conditions in real-world
optical networks is unfeasible since the design of optical links
tends to be conservative and over-engineered. In this scenario,
data representing fault conditions are rare in practical systems,
while data under normal conditions are abundant.

Recent studies have focused on semi-supervised learning
approaches to make it viable to apply ML in scenarios with
scarce data representing fault conditions. Hence, these models
can address the challenge of obtaining data reported under
fault conditions in practical optical network deployments. The
authors in [15] proposed a semi-supervised approach based on
generative adversarial networks (GAN) trained with electrical
spectrum data to perform soft-failure detection and identifica-
tion. Although the GAN model was trained using only normal
samples for failure detection, the proposed approach utilized
supervised algorithms trained with failure samples to perform
failure identification. Similarly, in [16], authors proposed a
hybrid unsupervised/supervised fault detection framework that
combines density-based clustering techniques and deep neural
networks. Like the previous approaches, this one still needs
samples from failure conditions for deep neural network
training. Despite their ability to work with only data from
normal conditions, the previous semi-supervised approaches
neglect concerns related to data confidentiality. Conversely,
the authors in [5], [6] proposed dimensionality reduction-
based approaches that perform semi-supervised fault detection
while preserving the data confidentiality using the scramble
technique. Although properly coping with data confidentiality,
these works rely on third-party centralized approaches, which
are less effective regarding confidentiality and not concerned
with network scalability since all data are concentrated in one
location.

Considering that scenario, in our previous work [7], we
proposed a disaggregated confidentiality-preserving scheme
that enables fault detection through several local models by
sub-sampling the entire dataset into multiple subsets. This
approach ensures data confidentiality and handles network
scalability by avoiding the concentration of the entire telemetry
data in a single central model but leveraging several local
models that share their local data information through a global
model. However, this approach still depends on a central server
(the global model), which may be vulnerable to malicious
attacks.

III. DECENTRALIZED FEDERATED LEARNING APPROACH

Typically, PCA is used for dimensionality reduction and can
also be applied in anomaly detection tasks. PCA refers to a
method that replaces a set of m original variables with a set
of d latent variables [17], where |m/| > |d|. The set d is called
principal components (PCs) and is obtained by multiplying
the original data matrix by the eigenvectors of its covariance
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Fig. 1: Overview of the decentralized FL-based PCA approach for fault detection.

matrix. The dimensionality of d is defined by the number of
eigenvectors used. Each PC retains a part of the variance of
the original data. The quality of the d set approximation can
be measured by the sum of the variances associated with the
retained PCs. The eigenvectors of the covariance matrix of
m can be computed using SVD. Applying SVD to m leads
m = UKV, from which the covariance matrix can be written
as m'm = VK2V, where V are the eigenvectors and K>
the eigenvalues associated with the eigenvectors. The original
data matrix can be reconstructed by applying i = QV ' + E,
where I is the error matrix. Training the PCA model using
only normal data results in a reconstruction model where errors
for data from faulty conditions increase, depending on the level
of fault.

All the concepts mentioned above are based on a centralized
approach. However, in this paper, leveraging our previous work
[7], we propose a decentralized FL-based PCA approach for
fault detection. The main difference between the centralized
and the proposed here decentralized FL-based approaches
lies in the model aggregation architecture. In the centralized
approach, all the local PCAs share their model information
through a global PCA. On the other hand, in the decentralized
one, all the local PCAs exchange their model information
directly with each other, following a P2P fashion.

The main idea within this distributed PCA-based approach
is to calculate the principal components (PCs) over partitioned
data. The entire dataset is firstly partitioned into several subsets
(local data). Then, local PCs are calculated for each subset
of data, and instead of communicating with a central server
as made in [7], these local PCs are exchanged between all
local PCAs. Then, each local PCA, now containing informa-
tion about all the other ones, estimates a global covariance

matrix. Correspondingly, this matrix is used to obtain the
global PCs. In the end, all local data is projected into these
global parameters. By splitting the entire dataset into several
local nodes, unauthorized access to the data by a potentially
malicious third-party actor may be prevented, as it does not
have access to the entire dataset.

Additionally, as made in [7], we leverage the advantages of
distributed learning and homomorphic encryption by integrat-
ing the decentralized FL-based PCA with the data scrambling
technique proposed in [5]. This technique modifies the order
of the features of the dataset, i.e., it changes the order of the
optical parameters in the dataset, making it less intelligible in
the event of a data breach attack (e.g., the man in the middle
[18]), adding an extra layer of protection to this decentralized
learning scheme. Since PCA is rotationally invariant, it does
not depend on the actual order of the data. We can train the
PCA model over the scrambled data in a homomorphic fashion
without performance degradation or losing generality [5].

In that regard, the proposed decentralized FL-based PCA
approach takes some procedures to perform fault detection, as
shown in Fig. 1. This scheme comprises an operator and cloud
components. The operator side is composed of homomorphic
encryption and decision-making components. The cloud side
comprises the ML components. The training and operation
phases are described below:

Training phase:

Step I: As the proposed approach works in a semi-
supervised manner, only telemetry data from normal condi-
tions are sent to the scramble/de-scramble block, where the
data is scrambled and zero-centered following a permutation
key.

Step 2: The scrambled data is split and distributed with the



cloud-located local PCAs. Then, each local model calculates
its respective PCs using its local data.

Step 3: Every local PCA exchanges its respective local PCs
with the others. Then, the global PCs are calculated and saved
by each local PCA. Using these global PCs, the reconstruction
errors can be computed. These errors represent the difference
between the original data and the reconstructed data and can
be used as Fault Indicators (FIs). One can expect these Fls to
present small values for data under normal conditions, as only
data from such conditions were used for model training. The
training of models is finished in this step, as every local PCA
has been trained and got their global PCs.

Step 4: The training-derived FIs are sent to the scramble/de-
scramble block, which reorders the dataset into its original
form using the permutation key.

Step 5: Finally, a threshold is computed based on a specific
percentile of the Fls, i.e., all the FIs are ordered, and the
value from a particular percentile of position is chosen as the
threshold.

Operation phase:

Step I: Both data from normal and failure conditions are
sent to the scramble/de-scramble block.

Step 2: The scrambled data is split and distributed with the
trained cloud-located local PCAs. Each local model computes
the FI for each sample from its respective local test data. No
parameter information is exchanged in the testing phase, as all
the local PCAs have been trained.

Step 3: The computed FIs are sent to the scramble/de-
scramble block, which reorders the dataset into its original
form using the permutation key.

Step 4: Finally, the operator receives the FIs in the original
order, and the decision-making process is then carried out by
comparing the FIs against the threshold. Samples with FIs
lower than the threshold are classified as samples from normal
condition samples. Otherwise, samples with FIs higher than
the threshold are classified as fault-condition samples.

IV. RESULTS
A. Experimental Setup and Data Acquisition

The telemetry dataset described in [19] is leveraged to eval-
uate the proposed approach. The considered testbed includes
two Ericsson Special Purpose Outlet (SPO) 1400 devices,
one Wavelength Selective Switch (WSS), and four EDFA
amplifiers. At the end of the WSS, a 10 dB attenuator is
installed to simulate attenuation or failures, as shown in Fig.
2. The dataset is collected during 10 hours. In the first 8 hours,
two normal operation conditions were simulated: a stationary
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Fig. 2: Optical network testbed.

InputPower_EDFA1 InputPower_EDFA2

-15.4

=20

-15.5

dB

-30

-15.6

InputPower_EDFA3 InputPower EDFA4

-16.7 -22.8
-22.9
5-16.8
—— Training —23.0
—— Testing

< o«
o SV
MR
AP0 A

-16.9

«
eyl
o
©

-23.1

A\
ey
o
©

6“9\"(\6‘\"61«\
K

Fig. 3: Optical dataset split into training and testing sets. Approximately the
first 8 hours of data are used for training, and the remaining 2 hours for
testing.

normal behavior during the first 6 hours, and a noisy normal
behavior in the remaining 2 hours by randomly changing the
attenuation at the range from O to 18 dB. In the remaining
2 hours, the same behavior as during the last 8 hours is
simulated, but a 25dB attenuation is added every 40 seconds,
putting the network in a failure condition for 10 seconds.
After that, the WSS is reconfigured so that the network starts
working correctly again.

The optical connection comprised three 80 km spans be-
tween the SPO-TX and SPO-RX. The data is collected ev-
ery 3.5 seconds and consists of 4 features corresponding to
the input power at each of the 4 EDFAs. An interpolation
technique was employed due to missing values in the original
data set generated at the end of 13,948 samples. Among the
samples, the first 80% of data are used for training, and the
following 20% are for testing. Notably, failure conditions were
exclusively part of the test phase data. The decentralized FL-
based scheme configuration is shown in Fig. 1, which in
our study has four local PCA nodes, and each of them is
trained with 25% of the training dataset (approximately 2,789
samples). Similarly, in the testing phase, 25% of the testing
dataset is used for each node (approximately 697 samples).
The linear threshold is defined as the value corresponding to
the 99th percentile position computed from the training Fls.
This value is chosen by looking for a good trade-off between
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Fig. 4: Cumulative explained variance per number of components for PCA.
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Fig. 5: Confusion matrices of the compared scenarios. The diagonal elements represent the percentage of points for which the predicted label is equal to the
true label, while off-diagonal elements are those that are mislabeled by the model, i.e., the Type I and Type II errors.

false-positive and false-negative errors in the operation phase.
To promote clear visualization of the dataset, Fig. 3 presents
the four used features, partitioned into training and testing sets.

As expected among the EDFA features, only the input power
of EDFA1 presents variations in the testing set, as the 10 dB
attenuator is placed at the link between WSS and EDFAL.
Moreover, within the training set, two distinct distributions can
be observed across all features. The first 6 hours are composed
of data under stationary normal conditions, while the remain-
ing 2 hours contain data under normal conditions with typical
variations to simulate real-world traffic. These variations are
included to improve model generalization, as they provide
information about regular network traffic conditions, distinct
from the initial stationary period.

Furthermore, the performance of PCA depends on the
number of PCs chosen to reduce the dimensionality of the
data. The ultimate goal is to find a number that can reduce
the dimensionality while retaining the maximum variance. In
that sense, different values of PCs were evaluated, as shown
in Fig. 4.

Note that when PCA reduces the dimensionality of the data
to one single dimension, more than 99.98% of the entire data
variance is retained. Therefore, the PCA model compressed a
4-dimensional original space into a 1-dimensional space with
minimum loss of information.

B. Fault Detection Results

In this subsection, fault detection performance results are
presented. We compare our proposed approach with three dif-
ferent scenarios: Traditional PCA, Traditional PCA+Scramble,
and Centralized FL-based PCA+Scramble. Typically, two eval-
uation metrics are used for anomaly detection approaches:
Type I and Type II errors (also known as false positive and
false negative errors, respectively). In that regard, there are
important considerations. In our scenario, which focuses on
optical network fault management, reducing Type II errors is
more critical than reducing Type I errors, i.e., it is more impor-
tant to correctly classify an actual fault than to misclassify a
normal sample as from a fault condition, as the consequences
of these two types of misclassification differ significantly.
While Type I errors refer to false alarms leading to time and

money waste, Type II errors refer to real failures in the network
that are missed by the model and directly affect network QoT,
leading to several SLA violations until the network operator
manually notices it. In that regard, Fig. 5 condenses the failure
detection results (Type I/II errors) for the four tested scenarios.
Firstly, Fig. 5a refers to the most common application of PCA
for anomaly detection. On the other hand, Fig. 5b presents
the PCA combined with the data scrambling technique. As
shown in the work [6], this approach does not change the result
compared to the traditional PCA due to its rotation invariant
property. Moreover, Fig. 5S¢ shows the results of our previous
work that leverages a centralized FL-based PCA approach
with scrambling. One can note that, although the dataset is
distributed following the configuration of four local nodes and
one global node, the results do not change compared to the
two previous traditional PCA approaches. Fig. 5d presents the
results of the decentralized FL-based approach. One can note
that even working in a fully distributed manner (i.e. no global
node was used), this proposed approach achieved the same
results as the other compared scenarios: 93.44% accuracy,
3.39% Type I error, and 3.17% Type II error. That fact is
significantly desired, as we increased the data confidentially in
terms of the absence of a central server, meanwhile providing
the same failure detection accuracy.

Fig. 6 highlights the fault detection performance of the
proposed approach. The black dots, representing the baseline
condition (BC) training samples, are primarily located below
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the threshold line, as this parameter was derived from those
respective training samples. Note that some black dots are
above the threshold line due to the 99th percentile position,
which allows for up to 1% of Type I errors in the training
phase. In the testing phase, most of the actual samples from
fault conditions (FC) represented by red dots are presented
above the threshold line, indicating the correct failure detection
by the model. In addition, the aforementioned values of Type
I and Type II errors in Fig. 5d can be noted as the few blue
dots above the threshold line (Type I errors) and the few red
dots below the threshold line (Type II errors), respectively.

V. CONCLUSION

This work employed a decentralized federated learning-
based approach that leverages a principal component analysis
model to detect faults in optical networks. Three scenar-
ios were compared to the proposed approach, showing that
although the approach operates in a decentralized manner
to improve data confidentiality, it achieves the same fault
detection performance as centralized approaches. Having a
detection accuracy of 93.44%, the decentralized FL-based
PCA approach exhibits satisfactory fault detection perfor-
mance while improving data confidentiality and decreasing
the risk of malicious attacks by functioning in a peer-to-peer
architecture.
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