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Abstract—Optical networks offer an ultra-high transmission
capacity and serve various online applications (e.g., 5G, IoT,
AR/VR, telemedicine). Preventing faults that cause packet losses
or even link interruption becomes vital to ensure the reliability of
these networks and, consequently, access to vital online services.
Moreover, as the volume of telemetry data rapidly increases, data
processing is often done in the cloud, which can open up breaches
of unauthorized data access and raise concerns about scalability.
Therefore, this work proposes a decentralized federated learning
(FL)-based approach that exploits the principal component anal-
ysis (PCA) to perform confidentiality-preserving fault detection
in optical networks. Unlike centralized FL-based approaches, the
PCA is split into several local PCAs trained with subsets of the
entire telemetry dataset. Thereafter, each local model exchanges
its parameters in a peer-to-peer manner to learn the information
extracted from their local data. As local PCAs are trained with
only normal data (i.e., without faults), these models become
sensitive to data that indicate anomalies, enabling the detection
of faults. Moreover, a scrambling technique is applied to shuffle
the order of the dataset, hiding the structural dependency among
samples from malicious agents. Combining decentralized FL with
the scrambling technique can enhance data confidentiality and
cope with network scalability, as the processing of the dataset
will be distributed over several nodes, hindering the access of
malicious agents. Results on a testbed-derived dataset show no
penalties for adopting the proposed disaggregated solution, i.e.,
the performance is the same as that of the centralized solutions.

Index Terms—Decentralized federated learning, PCA, Fault
detection, Optical networks

I. INTRODUCTION

Providing accurate and rapid fault detection is vital to guar-

antee the high reliability of optical networks and uninterrupted

accessibility to online services [1]. Although effective fault

management reduces service disruptions, the confidentiality

of the telemetry data is often not taken into account [2]. As
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Technological Development (CNPq) and by the project CLEVER (Project
ID 101097560), which is supported by the Key Digital Technologies Joint
Undertaking and its members (including top-up funding by Italian Ministry
of University and Research — MUR).

the volume of telemetry data increases due to emerging data-

hungry applications, the network operators frequently utilize

the cloud’s computational power to process the vast amount

of the control data (e.g., QoT parameters). In that scenario,

once shared with the cloud, it is difficult for the operator

to guarantee the confidentiality of the control data. Hence,

the ultimate goal is effectively detecting network faults while

preserving the data confidentiality.

As the complexity of optical networks grows rapidly, con-

ventional fault management methods are limited by simplified

operational methods that hinder their scalability and effective-

ness [3]. Hence, machine learning (ML) techniques emerge

as techniques that overcome these methods by enabling auto-

mated and cognitive networks to cope with a large number of

system parameters [4]. However, most ML-based approaches

are based on supervised learning (SL) algorithms that require

a large volume of fault data for proper training, which limits

their feasibility [3].

Principal component analysis (PCA) is a widely known

unsupervised algorithm commonly used for anomaly detection,

making it suitable for optical fault detection. For instance,

authors in [5] exploited a PCA-based semi-supervised ap-

proach to perform soft failure detection in optical networks

and introduced data scrambling to ensure data confidentiality

in a homomorphic computation scheme (i.e., computation

is performed directly on the encrypted data). This is only

possible due to the PCA rotation invariant property, which

was leveraged by shuffling telemetry data to preserve the

information contained in the data. Note that this property

enables PCA to work with shuffled data without changing the

results. Similarly, [6] shows different dimensionality reduction

methods combined with a privacy-preserving approach. Only

PCA and singular value decomposition (SVD) maintain the

exact performance with and without data scrambling.

Although efficient, all the aforementioned works are based

on third-party centralized PCA, which does not cope with

data confidentiality as all data is shared in one location.
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Moreover, considering the rapid increase in the volume of

telemetry data, data processing scalability becomes a challenge

as more data needs to be processed, consuming resources and

computational power. In that regard, in [7] we proposed a

semi-supervised disaggregated PCA approach to detect faults

in optical networks while preserving data confidentiality and

coping with network scalability. Inspired by the federated

learning (FL) scheme, this approach splits the data through

several computation nodes to partially solve the global PCA

problem. The global solution is then computed from these

partial results without direct access to the original datasets at a

single location. Moreover, to improve data confidentiality, each

portion of data shared among the several computation nodes is

randomly scrambled following the approach proposed in [5],

and [6].

Although working in a centralized FL manner (i.e., with

a global PCA) improves data confidentiality, it still relies on

a central server. Hence, in this work, we leverage a distinct

federated configuration denominated decentralized FL [8],

which adopts a peer-to-peer (P2P) topology. Consequently,

there is no central server, as each local PCA conducts local

model training based on its local data and exchanges or

fuses its model characteristics in a P2P manner. Following

a semi-supervised approach, each local PCA is trained using

only data from the network’s normal operation conditions,

disregarding data from fault conditions, which is scarce and

difficult to collect in practical scenarios. This decentralized

FL approach eases model aggregation and updates without

relying on a central server, thereby mitigating the presence of

untrusted servers. In addition, the proposed approach achieves

the same fault detection performance as the centralized FL and

traditional centralized approaches.

II. RELATED WORK

In recent years, several ML algorithms to manage faults

in optical networks have been developed, encompassing fault

detection, identification, and localization. For instance, the

authors in [9] proposed two different finite state ML algorithms

to detect and identify the causes of several faults that degrade

the bit error rate (BER) in optical connections. Leveraging

similar fault scenarios, the same authors also investigated ML-

aided algorithms for soft failure localization [10]. Moreover,

[11] compared several ML algorithms regarding complexity

and accuracy to detect and identify equipment faults in optical

networks. They achieved approximately 98% accuracy in

identifying the equipment faults using BER traces.

In addition to BER, several approaches use different optical

parameters for the same task. The authors in [12] used a neural

network-based algorithm fed with experimental data from op-

tical power measurement under diverse fault modes to perform

fault detection. Moreover, the authors in [13] proposed a soft

failure localization technique based on a supervised neural

network applied over telemetry data from Software-defined

Networks (SDN) streams of network parameters. Similarly,

[14] proposed a soft-failure identification and localization

approach based on optical spectrum captured by optical spec-

trum analyzers (OSA). Although the aforementioned works

performed well for failure management, the ML techniques

employed follow a supervised manner, i.e., they require a large

amount of data from fault conditions to be adequately trained.

However, obtaining data from fault conditions in real-world

optical networks is unfeasible since the design of optical links

tends to be conservative and over-engineered. In this scenario,

data representing fault conditions are rare in practical systems,

while data under normal conditions are abundant.

Recent studies have focused on semi-supervised learning

approaches to make it viable to apply ML in scenarios with

scarce data representing fault conditions. Hence, these models

can address the challenge of obtaining data reported under

fault conditions in practical optical network deployments. The

authors in [15] proposed a semi-supervised approach based on

generative adversarial networks (GAN) trained with electrical

spectrum data to perform soft-failure detection and identifica-

tion. Although the GAN model was trained using only normal

samples for failure detection, the proposed approach utilized

supervised algorithms trained with failure samples to perform

failure identification. Similarly, in [16], authors proposed a

hybrid unsupervised/supervised fault detection framework that

combines density-based clustering techniques and deep neural

networks. Like the previous approaches, this one still needs

samples from failure conditions for deep neural network

training. Despite their ability to work with only data from

normal conditions, the previous semi-supervised approaches

neglect concerns related to data confidentiality. Conversely,

the authors in [5], [6] proposed dimensionality reduction-

based approaches that perform semi-supervised fault detection

while preserving the data confidentiality using the scramble

technique. Although properly coping with data confidentiality,

these works rely on third-party centralized approaches, which

are less effective regarding confidentiality and not concerned

with network scalability since all data are concentrated in one

location.

Considering that scenario, in our previous work [7], we

proposed a disaggregated confidentiality-preserving scheme

that enables fault detection through several local models by

sub-sampling the entire dataset into multiple subsets. This

approach ensures data confidentiality and handles network

scalability by avoiding the concentration of the entire telemetry

data in a single central model but leveraging several local

models that share their local data information through a global

model. However, this approach still depends on a central server

(the global model), which may be vulnerable to malicious

attacks.

III. DECENTRALIZED FEDERATED LEARNING APPROACH

Typically, PCA is used for dimensionality reduction and can

also be applied in anomaly detection tasks. PCA refers to a

method that replaces a set of m original variables with a set

of d latent variables [17], where |m| > |d|. The set d is called

principal components (PCs) and is obtained by multiplying

the original data matrix by the eigenvectors of its covariance
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Fig. 1: Overview of the decentralized FL-based PCA approach for fault detection.

matrix. The dimensionality of d is defined by the number of

eigenvectors used. Each PC retains a part of the variance of

the original data. The quality of the d set approximation can

be measured by the sum of the variances associated with the

retained PCs. The eigenvectors of the covariance matrix of

m can be computed using SVD. Applying SVD to m leads

m = UKV ⊤, from which the covariance matrix can be written

as m⊤m = V K2V ⊤, where V are the eigenvectors and K2

the eigenvalues associated with the eigenvectors. The original

data matrix can be reconstructed by applying m̂ = QV ⊤
+E,

where E is the error matrix. Training the PCA model using

only normal data results in a reconstruction model where errors

for data from faulty conditions increase, depending on the level

of fault.

All the concepts mentioned above are based on a centralized

approach. However, in this paper, leveraging our previous work

[7], we propose a decentralized FL-based PCA approach for

fault detection. The main difference between the centralized

and the proposed here decentralized FL-based approaches

lies in the model aggregation architecture. In the centralized

approach, all the local PCAs share their model information

through a global PCA. On the other hand, in the decentralized

one, all the local PCAs exchange their model information

directly with each other, following a P2P fashion.

The main idea within this distributed PCA-based approach

is to calculate the principal components (PCs) over partitioned

data. The entire dataset is firstly partitioned into several subsets

(local data). Then, local PCs are calculated for each subset

of data, and instead of communicating with a central server

as made in [7], these local PCs are exchanged between all

local PCAs. Then, each local PCA, now containing informa-

tion about all the other ones, estimates a global covariance

matrix. Correspondingly, this matrix is used to obtain the

global PCs. In the end, all local data is projected into these

global parameters. By splitting the entire dataset into several

local nodes, unauthorized access to the data by a potentially

malicious third-party actor may be prevented, as it does not

have access to the entire dataset.

Additionally, as made in [7], we leverage the advantages of

distributed learning and homomorphic encryption by integrat-

ing the decentralized FL-based PCA with the data scrambling

technique proposed in [5]. This technique modifies the order

of the features of the dataset, i.e., it changes the order of the

optical parameters in the dataset, making it less intelligible in

the event of a data breach attack (e.g., the man in the middle

[18]), adding an extra layer of protection to this decentralized

learning scheme. Since PCA is rotationally invariant, it does

not depend on the actual order of the data. We can train the

PCA model over the scrambled data in a homomorphic fashion

without performance degradation or losing generality [5].

In that regard, the proposed decentralized FL-based PCA

approach takes some procedures to perform fault detection, as

shown in Fig. 1. This scheme comprises an operator and cloud

components. The operator side is composed of homomorphic

encryption and decision-making components. The cloud side

comprises the ML components. The training and operation

phases are described below:

Training phase:

Step 1: As the proposed approach works in a semi-

supervised manner, only telemetry data from normal condi-

tions are sent to the scramble/de-scramble block, where the

data is scrambled and zero-centered following a permutation

key.

Step 2: The scrambled data is split and distributed with the



cloud-located local PCAs. Then, each local model calculates

its respective PCs using its local data.

Step 3: Every local PCA exchanges its respective local PCs

with the others. Then, the global PCs are calculated and saved

by each local PCA. Using these global PCs, the reconstruction

errors can be computed. These errors represent the difference

between the original data and the reconstructed data and can

be used as Fault Indicators (FIs). One can expect these FIs to

present small values for data under normal conditions, as only

data from such conditions were used for model training. The

training of models is finished in this step, as every local PCA

has been trained and got their global PCs.

Step 4: The training-derived FIs are sent to the scramble/de-

scramble block, which reorders the dataset into its original

form using the permutation key.

Step 5: Finally, a threshold is computed based on a specific

percentile of the FIs, i.e., all the FIs are ordered, and the

value from a particular percentile of position is chosen as the

threshold.

Operation phase:

Step 1: Both data from normal and failure conditions are

sent to the scramble/de-scramble block.

Step 2: The scrambled data is split and distributed with the

trained cloud-located local PCAs. Each local model computes

the FI for each sample from its respective local test data. No

parameter information is exchanged in the testing phase, as all

the local PCAs have been trained.

Step 3: The computed FIs are sent to the scramble/de-

scramble block, which reorders the dataset into its original

form using the permutation key.

Step 4: Finally, the operator receives the FIs in the original

order, and the decision-making process is then carried out by

comparing the FIs against the threshold. Samples with FIs

lower than the threshold are classified as samples from normal

condition samples. Otherwise, samples with FIs higher than

the threshold are classified as fault-condition samples.

IV. RESULTS

A. Experimental Setup and Data Acquisition

The telemetry dataset described in [19] is leveraged to eval-

uate the proposed approach. The considered testbed includes

two Ericsson Special Purpose Outlet (SPO) 1400 devices,

one Wavelength Selective Switch (WSS), and four EDFA

amplifiers. At the end of the WSS, a 10 dB attenuator is

installed to simulate attenuation or failures, as shown in Fig.

2. The dataset is collected during 10 hours. In the first 8 hours,

two normal operation conditions were simulated: a stationary
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normal behavior during the first 6 hours, and a noisy normal

behavior in the remaining 2 hours by randomly changing the

attenuation at the range from 0 to 18 dB. In the remaining

2 hours, the same behavior as during the last 8 hours is

simulated, but a 25dB attenuation is added every 40 seconds,

putting the network in a failure condition for 10 seconds.

After that, the WSS is reconfigured so that the network starts

working correctly again.

The optical connection comprised three 80 km spans be-

tween the SPO-TX and SPO-RX. The data is collected ev-

ery 3.5 seconds and consists of 4 features corresponding to

the input power at each of the 4 EDFAs. An interpolation

technique was employed due to missing values in the original

data set generated at the end of 13,948 samples. Among the

samples, the first 80% of data are used for training, and the

following 20% are for testing. Notably, failure conditions were

exclusively part of the test phase data. The decentralized FL-

based scheme configuration is shown in Fig. 1, which in

our study has four local PCA nodes, and each of them is

trained with 25% of the training dataset (approximately 2,789

samples). Similarly, in the testing phase, 25% of the testing

dataset is used for each node (approximately 697 samples).

The linear threshold is defined as the value corresponding to

the 99th percentile position computed from the training FIs.

This value is chosen by looking for a good trade-off between
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Fig. 5: Confusion matrices of the compared scenarios. The diagonal elements represent the percentage of points for which the predicted label is equal to the
true label, while off-diagonal elements are those that are mislabeled by the model, i.e., the Type I and Type II errors.

false-positive and false-negative errors in the operation phase.

To promote clear visualization of the dataset, Fig. 3 presents

the four used features, partitioned into training and testing sets.

As expected among the EDFA features, only the input power

of EDFA1 presents variations in the testing set, as the 10 dB

attenuator is placed at the link between WSS and EDFA1.

Moreover, within the training set, two distinct distributions can

be observed across all features. The first 6 hours are composed

of data under stationary normal conditions, while the remain-

ing 2 hours contain data under normal conditions with typical

variations to simulate real-world traffic. These variations are

included to improve model generalization, as they provide

information about regular network traffic conditions, distinct

from the initial stationary period.

Furthermore, the performance of PCA depends on the

number of PCs chosen to reduce the dimensionality of the

data. The ultimate goal is to find a number that can reduce

the dimensionality while retaining the maximum variance. In

that sense, different values of PCs were evaluated, as shown

in Fig. 4.

Note that when PCA reduces the dimensionality of the data

to one single dimension, more than 99.98% of the entire data

variance is retained. Therefore, the PCA model compressed a

4-dimensional original space into a 1-dimensional space with

minimum loss of information.

B. Fault Detection Results

In this subsection, fault detection performance results are

presented. We compare our proposed approach with three dif-

ferent scenarios: Traditional PCA, Traditional PCA+Scramble,

and Centralized FL-based PCA+Scramble. Typically, two eval-

uation metrics are used for anomaly detection approaches:

Type I and Type II errors (also known as false positive and

false negative errors, respectively). In that regard, there are

important considerations. In our scenario, which focuses on

optical network fault management, reducing Type II errors is

more critical than reducing Type I errors, i.e., it is more impor-

tant to correctly classify an actual fault than to misclassify a

normal sample as from a fault condition, as the consequences

of these two types of misclassification differ significantly.

While Type I errors refer to false alarms leading to time and

money waste, Type II errors refer to real failures in the network

that are missed by the model and directly affect network QoT,

leading to several SLA violations until the network operator

manually notices it. In that regard, Fig. 5 condenses the failure

detection results (Type I/II errors) for the four tested scenarios.

Firstly, Fig. 5a refers to the most common application of PCA

for anomaly detection. On the other hand, Fig. 5b presents

the PCA combined with the data scrambling technique. As

shown in the work [6], this approach does not change the result

compared to the traditional PCA due to its rotation invariant

property. Moreover, Fig. 5c shows the results of our previous

work that leverages a centralized FL-based PCA approach

with scrambling. One can note that, although the dataset is

distributed following the configuration of four local nodes and

one global node, the results do not change compared to the

two previous traditional PCA approaches. Fig. 5d presents the

results of the decentralized FL-based approach. One can note

that even working in a fully distributed manner (i.e. no global

node was used), this proposed approach achieved the same

results as the other compared scenarios: 93.44% accuracy,

3.39% Type I error, and 3.17% Type II error. That fact is

significantly desired, as we increased the data confidentially in

terms of the absence of a central server, meanwhile providing

the same failure detection accuracy.

Fig. 6 highlights the fault detection performance of the

proposed approach. The black dots, representing the baseline

condition (BC) training samples, are primarily located below

Fig. 6: Fault detection performance over time when in operation mode.



the threshold line, as this parameter was derived from those

respective training samples. Note that some black dots are

above the threshold line due to the 99th percentile position,

which allows for up to 1% of Type I errors in the training

phase. In the testing phase, most of the actual samples from

fault conditions (FC) represented by red dots are presented

above the threshold line, indicating the correct failure detection

by the model. In addition, the aforementioned values of Type

I and Type II errors in Fig. 5d can be noted as the few blue

dots above the threshold line (Type I errors) and the few red

dots below the threshold line (Type II errors), respectively.

V. CONCLUSION

This work employed a decentralized federated learning-

based approach that leverages a principal component analysis

model to detect faults in optical networks. Three scenar-

ios were compared to the proposed approach, showing that

although the approach operates in a decentralized manner

to improve data confidentiality, it achieves the same fault

detection performance as centralized approaches. Having a

detection accuracy of 93.44%, the decentralized FL-based

PCA approach exhibits satisfactory fault detection perfor-

mance while improving data confidentiality and decreasing

the risk of malicious attacks by functioning in a peer-to-peer

architecture.
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