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Artificial Intelligence supported road vehicle suspension design
DOCTOR THESIS

YANSONG HUANG

Department of Mechanics and Maritime Sciences

Chalmers University of Technology

Abstract

This thesis presents an Al-supported framework for vehicle suspension design,
combining reinforcement learning (RL) and reverse engineering to automate
hardpoint optimization. A case study demonstrates a 50% reduction in design
lead time. The proposed framework uses RL to derive suspension kinemat-
ics targets from vehicle-level requirements and reverse engineering to convert
these targets into hardpoint configurations. The full case study demonstrates
the practical application of this integrated methodology. The findings con-
clude that Al-supported suspension design algorithms significantly enhance
both the efficiency and precision of suspension architecture development.

The wheel suspension represents one of the most architecture-intensive sys-
tems in automotive design, largely determining a vehicle’s motion characteris-
tics and performance boundaries. Increasing pressures from electrification and
intensifying global competition demand accelerated and more efficient devel-
opment of new vehicle concepts, even within traditional domains like mechan-
ical wheel suspension design. This system encompasses numerous design pa-
rameters with intricate interdependencies. Conventionally, development relies
heavily on highly specialized engineering expertise. A significant bottleneck
in modern suspension development involves balancing complex performance
requirements that currently require time-consuming iterations. Today’s de-
velopment process also involves virtual subjective assessment alongside tra-
ditional chassis engineering experience. Addressing these challenges requires
a full review of the entire development workflow—from initial target setting
through verification and subsequent optimization loops.

Keywords: Kinematics, compliance, suspension, reverse design, reinforce-
ment learning, target
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CHAPTER 1

Introduction

This chapter provides an outline of the thesis. After discussing the motivations
behind the work in detail in Section [I.I} the main research questions are
formulated in Section[I.2] The theory, methods, and limitations are presented
in Section [1.3] Finally, the main contributions are summarized in Section

1.1 Background and motivation

The automotive industry faces growing pressure to reduce costs and devel-
opment time while maintaining performance. Engineering development lead-
time has been reduced to meet time-to-market targets. The Concept Develop-
ment phase described by [1] is key to ensuring products meet market demands.
Suspension concept development is a cross-functional process addressing mul-
tiple attribute targets such as ride comfort, handling, steering (kinematics and
compliance), packaging, styling, durability, and noise and vibration (NVH),
making it time-consuming. Most of these attribute targets in concept de-
velopment are tied to suspension kinematics-hardpoint development. Having
quick suspension kinematics design iterations in the concept phase is therefore
critical for improving efficiency throughout the entire project.
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In the traditional development V-model [2], concept development and vali-
dation are two phases that ensure the end product meets targets at the com-
plete vehicle level. The process cascades targets hierarchically: from vehicle-
level to system-level, then to subsystem-level. Each level of the system has
a validation phase to make sure the design meets its corresponding target,
thereby ensuring the vehicle meets the complete vehicle level target. Prior
work [3H6] uses simplified vehicle dynamics models to cascade system and sub-
system targets efficiently. The model must balance fidelity and simplicity to
accurately capture behavior while remaining tractable for optimization. The
suspension kinematics target requires a medium to high complexity model to
capture the influence of suspension kinematics on complete vehicle behavior.
However, such a model contains a set of design parameters which might cause
the searching algorithm to fail to find the solution space due to the model
complexity.

Once suspension kinematics targets are successfully cascaded from complete
vehicle targets, suspension design engineers face the challenge of determining
optimal hardpoints that fulfill these targets. While traditional optimization
methods [7H11] facilitate hardpoint adjustment to meet suspension character-
istic behaviors, they present significant limitations. Particularly problematic
are the difficulties in formulating optimization cost functions that adequately
represent complex packaging constraints and achieve balanced performance
targets. This makes traditional optimization approaches inefficient for hard-
point configuration in complex packaging environments. Moreover, achieving
critical suspension compliance targets requires not only appropriate bushing
specifications but also the correct hardpoint setup. Consequently, suspen-
sion kinematics, compliance, and packaging must be considered holistically to
meet overall behavioral targets. This necessitates an efficient methodology ca-
pable of evaluating compliance behavior and configuring bushing compliance
parameters according to specific compliance targets.

The suspension design challenges outlined above motivate this research,
which is structured in two key parts. The first part aims to develop an efficient
approach for cascading suspension kinematics targets from complete vehicle
requirements. The second part utilizes these derived targets to systematically
configure suspension hardpoints and bushing compliance parameters.



1.1 Background and motivation

1.1.1 Traditional development process with V-model

A typical passenger car development process follows a structured flow from
project definition to production start. The widely adopted ‘V model’ effec-
tively divides this process into concept and validation phases. Figure [I.]]
illustrates the key milestones throughout this V-shaped development cycle,
highlighting three hierarchical levels: complete vehicle, subsystems, and com-
ponents.

The process begins with comprehensive simulations that establish targets
for each hierarchical level. A method called target cascading systematically
breaks down objectives from the complete vehicle level to subsystems and
components. This cascading process must ensure adequate tuning margins
while maintaining coherent relationships between targets across different lev-
els. During the validation phase, both simulations and prototype vehicles
are employed to evaluate subjective and objective targets, confirming that
requirements are met at each level |12].

The development necessarily involves iterations between concept and val-
idation phases, as significant system balancing and compromise constitute
essential parts of the process. Consequently, development timeframes typi-
cally extend to several years, depending on customer requirements and project
complexity (13} |14].

The V model facilitates effective requirement setting and verification across
all development levels. To reduce development time while maintaining preci-
sion, modern automotive development increasingly relies on simulation-based
cascading. For example, complete vehicle simulations determine appropri-
ate requirements for subsystems (such as the front axle) and subsequently
verify whether subsystem designs collectively deliver satisfactory vehicle per-
formance. Similarly, subsystem-level simulations establish component require-
ments (for links and bushings) and verify their collective performance. There-
fore, there is great potential to develop a method that can synthesize the
requirements setting and verification across subsystem and component levels.

In certain design iterations, physical testing may substitute for simulations,
utilizing test rigs, prototype vehicles, or driving simulators. Prototype vehicles
and driving simulators offer the particular advantage of allowing assessment
of subjective requirements that cannot be fully captured through simulation
alone.
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1.1.2 Finding optimal suspension kinematics targets using
reinforcement learning

Suspension kinematics targets are established based on vehicle attributes,
which are determined by vehicle dynamics that are influenced by suspension
kinematics and other vehicle subsystems. Traditionally, vehicle engineers set
these targets using their expertise and experience. While optimization tech-
niques can transform this process into a computational task, significant
challenges persist—including convergence issues, balancing exploration versus
exploitation, and computational efficiency—particularly in high-dimensional
design spaces . Expert engineers leverage accumulated knowledge from
previous experiences when proposing new designs. Drawing inspiration from
this human approach, neural network foundations enable knowledge
representation through network weights that can be updated through envi-
ronmental interaction. This principle forms the basis of reinforcement learn-
ing (RL), which has demonstrated remarkable effectiveness in solving com-
plex problems . This study addresses the absence of efficient optimization
methods for high-dimensional suspension kinematics design by employing RL
algorithm to identify optimal suspension targets.
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1.1.3 Target-driven road vehicle suspension design

Having established optimal suspension targets from we now discuss
target-based design. Current methods for verifying wheel suspension design
requirements typically rely on axle-level simulations using multi-body system
(MBS) software. These simulations parameterize suspension systems through
springs, dampers, joint and bushing locations (hardpoints), and compliance
specifications. Improvements are identified by testing various combinations
of hardpoints and bushing parameters. This process often involves manual
trial-and-error, making it inherently slow. While optimization techniques are
sometimes employed, they are challenging to configure and remain computa-
tionally expensive due to the numerous simulations required. Additionally, op-
timization setup typically demands human guidance. The workflow’s reliance
on multiple software tools further extends development time, as information
sharing between platforms consumes significant resources.

Researchers have developed various methods for calculating suspension kine-
matics [23H25|. Visualization techniques introduced in [26H28] enable engi-
neers to directly calculate and analyze kinematic performance from speci-
fied hardpoints. Compliance design primarily addresses bushing elasticity,
with established methods for simulating compliance behaviors [29-31]. These
modeling and simulation approaches transform hardpoint configurations and
bushing specifications into behavior reports, such as kinematic and compli-
ance analyses. In vehicle development projects, axle-level targets must satisfy
requirements from attribute leaders—a time-intensive process complicated by
constantly evolving targets. The iterative refinement of axle design to meet
these shifting targets represents a critical component of the overall vehicle
development process.

This project aims to develop knowledge, methods, and tools for semi-
automatically translating wheel suspension axle requirements into optimized
hardpoint and bushing configurations. The resulting tool will be designed
for suspension engineers, enabling an agile working framework with target-
based design capabilities and rapid adaptation to requirement changes. This
approach will significantly accelerate concept selection while enhancing engi-
neers’ system understanding. Consequently, more development time can be
dedicated to improving cost, quality, durability, and weight. One project ob-
jective involves quantifying both time savings and quality improvements, par-
ticularly measuring efficiency gains from requirement updates to new design
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proposals. The complete solution requires a comprehensive tool encompass-
ing the entire concept suspension development process with an intuitive user
interface.

1.2 Research question

This research fundamentally challenges the traditional simulation paradigm
by reversing the process flow from component design to performance evalu-
ation [32]. Specifically, it aims to automatically generate suspension targets
from complete vehicle requirements, and subsequently derive hardpoints and
bushing specifications from these suspension targets. The reverse algorithm
innovatively mimics human expert reasoning. Rather than iterating through
simulations, the approach establishes direct pathways from complete vehicle
targets to specific suspension requirements, and further to the precise hard-
point and bushing configurations needed to fulfill these requirements.

From a vehicle engineering perspective, this approach enables the establish-
ment of comprehensive performance targets without immediate concern for
construction details or system feasibility. Kinematically, it provides specific
hardpoint design guidelines with clearly defined linear and nonlinear targets.
The model accommodates additional targets, progressively constraining de-
sign freedom as needed. Regarding compliance, the research addresses how
to systematically determine optimal bushing stiffness specifications to meet
compliance objectives.

Beyond technical engineering contributions, this project aims to enhance
the effective development of new vehicle concepts where suspension systems
are integral components. The originality lies in reverse-engineering method-
ologies that emulate human expertise. While current AI applications (in-
cluding machine learning and optimization) often focus on replacing com-
plex simulations in verification processes, this research takes the opposite ap-
proach—identifying patterns and equations to determine optimal inputs for
desired outputs. The research questions are articulated as follows:

e Can reverse methods improve suspension design efficiency while reducing
lead time?

e What modeling frameworks, virtual methodologies, and requirement
specifications are essential to effectively connect vehicle and suspension
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design?

o How can Al methodologies optimize suspension design within the broader
vehicle development process?

e What new modeling, simulation, requirement, and verification approaches
are necessary when integrating AI methods?

e How can human expertise and Al collaborate optimally in suspension
design?

e How can human domain knowledge effectively guide and accelerate ma-
chine learning processes?

e Which AI methodologies are most appropriate and effective for road
vehicle suspension design?

1.3 Theory, methods and limitations

This section provides an overview of the theories and methods presented in
this thesis, along with their limitations.

1.3.1 Theory and method

Papers A and B introduce a methodology that utilizes suspension kinematics
and compliance targets to determine hardpoints and bushing stiffness. For
suspension kinematics analysis, two precise computational approaches exist.
The first method, investigated by [23], analyzes kinematics from hardpoints
by formulating velocity constraints, thereby transforming specific hardpoint
configurations into general motions that express suspension kinematics. Al-
bers |24] expanded this approach to encompass broader kinematic behaviors,
including suspension steering and jounce traveﬂ maneuvers. The second
method employs Jacobian differentiation for analytical calculations. Devel-
oped by Hazem [25], this approach formulates a constraints matrix through
differentiation, offering a direct method to derive acceleration constraints by
double-differentiating position constraints. While computationally intensive,

L Jounce travel means the wheel center height change with respect to the design position -
positive named as jounce, negative named as rebound.
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it requires less modeling effort than the first approach. Kinematic calculations
can be utilized in various ways, with visualization being crucial for interpret-
ing performance through geometric features such as steering kingpin axes and
roll centers 33| 34]. Sommer III [28] demonstrates a calculation method to
visualize first and second-order instant screw features. Paper A explores novel
hardpoint control methods derived from first-order linear targets and intro-
duces additional control techniques based on higher-order targets.

The suspension compliance algorithm begins with calculating forces at vari-
ous joints and bushings. Rocca [35] and Knapczyk [36] developed a linear force
matrix using free-body diagrams by decomposing suspension systems into in-
dividual components, thus enabling force distribution calculation. Liang [37]
enhanced this approach to incorporate bushing nonlinear elasticity by seg-
menting nonlinear deformation curves into smaller linear segments—an effec-
tive yet computationally intensive method as equation complexity increases
with accuracy requirements. Paper B presents an efficient method for re-
versing compliance design based on a linearized model derived from nonlin-
ear suspension dynamics. Kang [38] describes the linearization of steady-
state suspension models using a Jacobian matrix for kinematic constraints.
The combination of each bushing’s stiffness matrix and the Jacobian matrix
forms comprehensive force equations for calculating bushing deformation. Ca-
puto [39] demonstrates how to identify each bushing’s contribution to compli-
ance targets, enabling engineers to optimize bushing parameters for balanced
compliance performance.

Papers C and D apply these methodologies alongside automatic packaging
techniques in real-world scenarios. Paper C implements Paper A’s method to
design an innovative rear-axle for electric vehicles, transforming a conventional
internal combustion engine suspension to meet electric vehicle packaging re-
quirements while maintaining driving dynamics performance. This optimiza-
tion employed an automated approach for proposing new hardpoints based
on specified requirements, using simplified models to efficiently evaluate pack-
aging feasibility. Paper D combines methodologies from Papers A and B to
design a front axle for electric vehicles, presenting an automated approach for
kinematics and elastokinematics design with integrated packaging evaluation,
significantly reducing solution development time.

Paper E introduces a reinforcement learning (RL) based approach for cas-
cading complete vehicle targets into suspension kinematics targets. This

10
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method achieves superior convergence speed and accuracy compared to tra-
ditional multi-objective optimization techniques. The implementation uses a
modified Actor-Critic framework inspired by 40|, where the RL agent maxi-
mizes rewards from a simulation environment. The reward structure is strate-
gically designed to guide suspension kinematics targets toward optimal values,
while a probabilistic model effectively captures environmental uncertainties.

This research encompasses broad domains including complete vehicle engi-
neering and suspension engineering, with methods from Papers A, B, and E
being applicable to the concept development phase. However, it is important
to acknowledge certain methodological limitations and simplifying assump-
tions.

Paper A primarily addresses suspension targets related to longitudinal and
lateral dynamics, while Paper E establishes connections between these sus-
pension targets and complete vehicle performance objectives. Consequently,
the research scope is limited to longitudinal and lateral vehicle dynamics tar-
gets. The thesis does not address subsystems such as springs, dampers, and
tyres that substantially influence vertical dynamics and ride comfort. Fur-
thermore, while Paper B presents a algorithm for suspension compliance, this
aspect is not integrated into the approach described in Paper E. The compli-
ance method in Paper B serves as a complementary tool for hardpoint design,
ensuring that suspension compliance targets can be achieved through appro-
priate hardpoint configuration and bushing compliance parameters. Paper D
demonstrates a practical application combining methodologies from Papers A
and B, though it presents a conceptual asymmetrical design that faces im-
plementation challenges with current technologies. It should also be noted
that Paper B focuses exclusively on linear compliance behavior, with bushing
preload effects remaining outside the scope of analysis.

1.4 Thesis outline and contribution

This thesis is structured as follows: Chapter 2] is divided into two principal
sections—the first elucidates the methodologies established in Papers A and
B, while the second examines the innovative approach presented in Paper
E. Chapter [3] offers a comprehensive case study demonstrating the practi-
cal implementation of these methodologies, beginning with the derivation of
suspension targets using the method from Paper E, followed by their cascad-

11
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ing transformation into specific hardpoint configurations and bushing design
parameters through the techniques developed in Papers A and B.

1.4.1 Scientific contributions

12

I. Automate the hardpoint design

Traditional suspension design methods based on trial-and-error are not
efficient. Suspension engineers must meet packaging constraints by rely-
ing on trial-and-error iterative simulations to gradually refine the kine-
matic performance. Simulating suspension behaviors is also computa-
tionally expensive. Therefore, a method that reduces the kinematic
design lead time has been proposed. The method presented primarily
addresses the kinematic design problem by reversing the traditional de-
sign procedure. The algorithm, which starts from target identification,
provides design guidelines, including linkage orientation, length, and po-
sition. The method includes calculations in two steps. The first step is
to obtain the velocity constraints and to use first-order linear targets to
calculate general motions. Then the hardpoints design guideline for the
first-order targets control is provided from the algorithm to designers
by indicating the linkage directions. The second step uses higher-order
targets (acceleration and jerk constraints), which can be obtained by par-
tial differentiation from velocity and acceleration constraints. The exact
position of the linkage can then be calculated with these higher-order
targets. The results show that the general motion, which includes veloc-
ity, acceleration, and jerk, is precisely controlled by this method. The
result also shows that the complete design can be approached simulta-
neously from a feasible packaging solution and required kinematic setup,
and eventually transfers into a solution that satisfies both packaging
and kinematic requirements. The reverse method helps design engineers
search for feasible packaging solutions more efficiently in the early design
stages. Furthermore, compared with previous optimization-based meth-
ods, the new method here always provides unique solutions, which means
that the targets and the hardpoints are uniquely correlated. Therefore,
engineers who work with CAE and CAD parts can always build clear
connections to each other by understanding the influence from both the
performance and the packaging side. (Paper A)
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II.

III.

Automate the bushing design

The traditional bushing tuning method involves an optimization process
in Adams Car or any other multi-body simulation software. Although
it provides reliable results, it is a iterative process to build models for
the complete kinematics and compliance analysis. Therefore, a method
to reduce the bushing tuning time has been proposed. It applies the
reverse algorithms to calculate the bushing stiffness values along the link
directly from the compliance targets for a given hardpoint setup and pro-
vides guidelines for the proper bushing design in the early phase of the
concept development. The method includes the calculation of motion
ratios and force distribution as a function of the hardpoint setup. So,
regardless of the compliance targets and bushing stiffness values, these
ratios remain constant as long as hardpoints are unchanged. Further,
these ratios are used to study the possible effect on the wheel orientation
if bushings are used as a bushing sensitivity study. Then the exact stiff-
ness of the bushings at the inner hardpoints is calculated by specifying
the compliance targets. (Paper B)

An application of automated hardpoint methodology for front
axle development

To meet the complex requirements, the design of a new suspension con-
cept is usually labor-intensive. The suspensions’ kinematics and packag-
ing need to be considered simultaneously since they influence each other.
A method or process for how to design for both kinematic requirements
and packaging requirements is developed and demonstrated. The goal of
this work is to invent a new suspension system for a battery electric ve-
hicle with a maximized battery volume. The underlying algorithms are
used to handle the kinematics and packaging automatically. Critical im-
provements during the development are demonstrated within showcases
and subsequently discussed. The tuning process starts from a suspen-
sion used in a traditional combustion vehicle and eventually is adapted to
the needs of a battery electric vehicle. The automatic kinematic tuning
method is used to maintain the performance targets for each iteration,
while the automatic packaging tool is used to search for a feasible pack-
aging solution. The showcases confirm the efficiency of both kinematics
and packaging methods. Eventually, the new suspension layout provides
an extra 130mm for the battery. The results prove the possibility to syn-

13
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IV.

14

chronize the kinematics tuning and packaging processes. Thanks to the
automatic methods, the design lead time has been dramatically reduced.
(Paper C)

An application of automated hardpoint and bushing design
methodology for rear axle development

With rising customer expectations and additional requirements stem-
ming from electrification, today’s suspensions need to fulfill an increas-
ing number of requirements: Aerodynamic efficiency targets are stricter,
driving properties are defined more specifically, and the use of carry-
over parts is growing. Moreover, the package volume has a huge effect
on the exterior design as well. This leads to complications in the pre-
development process. A typical problem is the sequence of development
steps: if a completely new suspension is designed, is it more important
to optimize the hard points and adjust the part geometry accordingly
or vice versa? The common approach of a trial-and-error method is
time-consuming since the design of a suspension concept takes days of
engineering work. To meet this dilemma, a new approach is developed.
With an automated design method for kinematics and elastokinematics
paired with an automatic packaging evaluation, it is possible to create
a first feasible solution within minutes. This concept can then be eval-
uated and improved either in terms of hard points, bushing stiffness,
or packaging. Since a much higher amount of possible suspension de-
signs can be evaluated, the probability of finding an adequate solution
rises tremendously. This approach is demonstrated for an optimized five-
link suspension for battery-electric vehicles (BEVs). The shape of the
suspension volume should be modified in a way that the height of the
engine hood can be lowered. Therefore, the aerodynamic behavior has
the potential to be improved. It is found that the design of an innovative
concept solution can be supported by using automated methods. (Paper
D)

A method to set up suspension targets

Setting up suspension kinematics targets has been a challenging task
for vehicle engineers. The challenges involve a high-dimensional search
space, non-linear relationships between the suspension kinematics and
vehicle dynamics, exploration and exploitation trade-offs, and the need



1.4 Thesis outline and contribution

for domain-specific knowledge. The traditional approach is to use multi-
objective optimization, which is computationally expensive and rarely
converges to the global optimal solution in high-dimensional cases. In
this paper, we investigate a new method to find optimal suspension kine-
matics targets using reinforcement learning. The method is based on the
accumulation of knowledge through the interaction between an intelligent
agent and a simulation environment. The agent optimizes suspension
kinematics targets by receiving rewards tied to vehicle dynamics perfor-
mance. The results show that the proposed method can find optimal
suspension kinematics targets with the help of accumulated knowledge.
The knowledge-guided learning process can replace traditional optimiza-
tion with less convergence time and better results. The proposed method
has the potential to revolutionize the way suspension kinematics targets
are set up in the automotive industry. (Paper E)

@ Paper E

Driving direction

Reverse engineering application with

kinematics FTTTTTTTTTTTTTT +  PaperC
Paper A Paper B %
i a —
RREEETEEEEEEEPER TP T -~ PaperD

Reverse engineering application
with kinematics and compliance

Figure 1.2. Interconnections among the appended papers

Figure illustrates the interconnections among the appended papers. Pa-
per E establishes a framework for determining suspension kinematics targets,
which Paper A subsequently utilizes to configure suspension hardpoints. The
practical application of Paper A’s algorithm is demonstrated through a rear

15
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suspension case study. Similarly, the suspension compliance methodology
from Paper B, which enables systematic bushing stiffness configuration, is
validated through application examples. Paper D synthesizes methodologies
from both Papers A and B, presenting a comprehensive front suspension de-
sign demonstration.

Before proceeding to subsequent chapters, it is important to emphasize
that this thesis directly addresses the challenges identified in Section[I.2] The
presented concepts, theories, and methodologies collectively aim to enhance
the efficiency of suspension design during the critical concept phase.

1.4.2 Organizational and societal contributions

The specific contributions to both organizational effectiveness and broader
societal impact are enumerated below.

I. Enhance organizational capability to develop innovative vehicle concepts
where suspension systems serve as integral components.

II. Strengthen competitive advantage in chassis design while reducing devel-
opment lead-time—particularly crucial during the industry’s transition
toward electric propulsion and autonomous driving technologies.

III. Advance knowledge in Al-supported, data-driven product development
and vehicle dimensioning, optimizing the interaction between engineering
expertise and artificial intelligence methodologies.

IV. Provide frameworks for improved system understanding and efficient
large-scale optimization in product and architectural development pro-
cesses.

V. Refine modeling approaches, virtual methodologies, and requirement
specifications for complex suspension design phenomena.

VI. Strengthen decision support and risk assessment in vehicle development
by establishing clear relationships between product requirements and
design parameters during the concept phase.
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CHAPTER 2

Method

This chapter discusses the methods that address the research question in Sec-
tion [[.2] Starting with the kinematics and compliance reverse engineering
method, followed by the reinforcement learning method. A common interface
is set for both methods. Therefore, a development method from complete
vehicle behavior to hardpoint and bushing setup is possible.

2.1 Kinematics and compliance

2.1.1 Model
2.1.1.1 Modelling of the multilink axle

The modelling part consists of velocity, acceleration and jerk analyses. Jerk
as the time derivative of acceleration is studied by I. and M. |41]. The velocity
and angular velocity at wheel center are calculated using velocity constraints.
Then Jacobian methods are used to derive the acceleration as well as the jerk
motions.
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Figure 2.1. Mulitilink rear suspension and nomenclature

Velocity constraints The velocity analysis solves the general motion V,,w,
at wheel center for jounce and steer motions. A simple model to calculate
jounce motion for multilink is demonstrated. Equation [2.I] shows the velocity
constraint for each individual link with the reference from Figure 2]

(VO + w, X Li’o) -L;y/; =0 (2].)
where,

i=AB,C,D,E
L;; = d(i,7'), d is the euclidean distance
Li’o = d(i/, O)

Equation 2.I] can be written with matrix form with generalized coordinates
G =[VT, wIT and Jacobian matrix [Cy]. Equation can be partitioned as
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2.1 Kinematics and compliance

Equation [2.3
Cl-a=0 (2.2)

[Cu] -0 = [Cy] - W =0 (2.3)
where,

u= [Vo:m Voy7 Woxy Woy woz]
w =1V,
[C.] shown in Paper A
[C\] shown in Paper A
With V,, given, & can be calculated and the general velocities at wheel

center point O are then known. The velocities of any hardpoints at knuckle
can be calculated as Equation [2:7]

V=V, +w, x Ly, (2.4)
where,
1=A,B,C,D,E

Steering motion velocity constraints follow the same derivation as Equa-
tion 2.1} Lp/p should keep length fixed while applying steering motion from
toelink Lgoro. However, the mechanism of Lp.p, Lp/r needs to be modelled
with additional generalized coordinates. The steering feature will not be fur-
ther included in the example of the present paper.

Acceleration constraints The acceleration constraints Equation [2.5| can be
derived from differentiation of the Equation [2:2}

[Cqld +[Cola =0 (2.5)

where,

[Cy] shown in Paper A
Similarly, Equation [2.5| can be partitioned as Equation [2.6

[C]ii — [Co]W + [Cylg =0 (2.6)
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where,
u = [aoxa Aoy, Qog 5 Qoy O‘oz}

Paper A shows that Cq is proportional to q. As a result, Equation
shows a linear relationship between ii and ¢? if and only if W is zero. So, W
is zero because Vp, is given as constant. Furthermore, this assumption will
simplify the derivation of the jerk motions. ii can be calculated from given q
as Equation 2.7] Then the acceleration of any hardpoints at knuckle can be
calculated as Equation [2.8]

[Culii+ [Cyla =0 (2.7)

a;. = a, + a, X Li’o + Wy X (UJo X Li’o) (28)
where,

i=A,B,C,D,E

Jerk constraints The jerk motion U is the time derivative of acceleration.
Considering derivative of Equation [2.7] with respect to time, Equation [2.9]

can be formulated. Since W is assumed to be zero, [C,]q is equal to [C,]ii.
Therefore, Equation [2.9| can be rewritten as Equation [2.10

[Cu]ﬁ + [Cu] u -+ [Cq]q + [Cq]d =0 (2~9)

2 [Cq]q + [Cu] u + [Cq]q =0 (2-10)

where,

[C,] shown in Paper A
u = [joa:a.joya ¢omv (boya ¢oz]

As a summary, 10, ii, i can be calculated with hardpoints and w which is
Vo. for the jounce motion. The general motions q, §, 4 will be used to define
targets.
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(a) (b)

Figure 2.2. Motion ratio calculation for support links(a) and spring link(b)

2.1.1.2 Motion ratio calculation

To capture the motion of wheel center O from the movement of the individual
bushing. The motion ratios need to be calculated according to kinematic con-
straints. A method-based linearized constraint was introduced by Matschin-
sky [23]. This section will modify the method and obtain the motion ratios
between the wheel center and bushing radial directions.

To model the kinematic constraints, two types of constraints are shown
in Figure 2.2l They are distinguished by the spring link and support link.
The motion at wheel Vo and & are interesting with the given velocity at
hardpoint A, B, C, D, and E. Equation shows the motion depending on
the hardpoint and input velocity at each inner hardpoint. Assume a constant
velocity v is applied on each inner hardpoint, therefore the motions at wheel
center O are proportional to v for each specific hardpoint configuration.

[V, &6] = fi(HP, V) (2.11)
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where,

i=A,B,C,D,E

To calculate the motion at the wheel center O, the velocity constraints for
the spring link and the support links need to be constructed. To simplify the
expression, the unknown parameters are Vpr, @po, and &p.

For the spring link (D — D’) in Figure

VD’ +@DXLD/D:vD:U'éD/D (212)
(VD"F@D XLF/D)'éF/FZO (213)
where,
Lpp =d(D'D), d is the euclidean distance
Lpp = d(F'D), d is the euclidean distance
ép/p is unit vector of Lp/p

&/ is unit vector of L/ p

For the toe link (C' — C") in Figure

(VD’ + [2}0 X LD’i') . Li’i = Li’i . Vi (214)

where,

L;; = d(i'i), d is the euclidean distance

i=A,B,C,E

In addition to the constraints from Equation to Equation The
rotation of link Lp/p need to be specified, for example, &p - Lp:p = 0.
The equations can be written in a matrix format with unknown parameters
®o, &p, and Vpr. The velocity at hardpoint D’ and rotational velocity can
be calculated using linear algebra. The velocity at wheel center O can be
calculated as the Equation [2.15

Vo =Vp +&o x Lop (2.15)
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For given hardpoints, the motion ratios can be obtained by given input velocity
at each inner hardpoionts.

[Vo,@0] = F(IVil = v,[Veise| = 0) (2.16)
where,
1i=A,B,C,D,E
Vo, 50] = fi(v) (2.17)
where,

i=AB,C,D,E

2.1.1.3 Force distribution

From Equations .12 2.13| and [2.15], it is possible to form a linear matrix
to solve the kinematic constraint equations to capture the motion at wheel
center O. The input velocities from A, B, C, D and E can be expressed as the
bushing deformations along the link directions for a particular load case. The

bushing deformations are calculated using Hooke’s law F = —K - x equation.
where K is the bushing stiffness and if a force F acts on the bushing, it deforms
by the amount x in the direction of the equilibrium position. Therefore, it
becomes necessary to calculate the forces acting on each bush.

The wheel suspension system can be divided into individual parts to cal-
culate the force distribution using free-body diagrams. Fp,, Fpy, Fp. and
Mpg, Mpy, Mp. be the input forces and moments at the tyre contact point
P in the tyre coordinate system. As this paper does not focus on the tyre,
the suspension knuckle and tyre can be considered as a single rigid body. The
force equilibrium equations for the knuckle:

FO+FA/ 'éA/A+FB/'éB/B+FC"éC/C+FD"éD/D+FE"éE/E =0 (218)
where,

Fpy - cos(8) + Fpy - sin(9)
Fo = | Fpy - cos(6) — Fpy - sin(9)
FPz
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() (b)

Figure 2.3. Force ratio calculation for support links(a) and spring link(b)

Taking moment equilibrium about point D’:

(MO+ (LOD/ X FO)) +FA/ . (LA’D’ X éA’A) +FB’ . (LB’D’ X éB’B)

+FC’ . (LC/D’ X éc/c) +FE’ . (LE/D’ X éE’E) = O
(2.19)
where,

MPCE
Mo = |Mpy | + (Lpo x Fo)
MPz

Notice Fp and Mo are the forces and moments at the wheel center in the
global coordinate system.
Force equilibrium equations for links can be:

—Fy by +K;-S; -84, =0 (2.20)
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where,

K, = Bushing radial stiffness at D
S; = Bushing deformation at D
i=AB,CE

Considering the forces acting along the link direction i’i the moment equations
are eliminated. However, for the spring link, the moments need to be included
due to the force Fy from the spring itself.

Force equilibrium equations for spring link:

—Fp -épp+Ks-S-épp+Kp-Sp-épp=0 (2.21)
Taking moment equilibrium about Point D:
_FD"(LDD’ XéD’D)+KS'(LDF’ XéFIF):O (222)

From all these equations, a linear force matrix from Paper B equation can
be formed to calculate the force distribution at different joints and bushings
for a particular input load case. And the ratios FF i, FF i FF i for different

Px Py Pz
bushings are calculated.
In general, for a given hardpoint setup, the forces in the bushings can be

represented as a function of the input force at the tyre contact point or the

wheel center.
[Fi] = g:(F}) (2.23)

where,

i=A B, C,DE
j = Px, Py, Pz, Ox, Oy, Oz (Input forces at contact point P or wheel center O)

2.1.2 Target identification

This section describes the targets and their definitions used for the kinematics
and compliance reverse engineering method.

2.1.2.1 Kinematics target

The first order targets are defined using velocities and angular velocities. They
represent the change of position measurements at wheel center and contact
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point. The contact point between the tyre and ground is named P, and toe §
and camber ~ define the wheel orientation. For steering motion, the velocities
and angular velocities measured at point O are V;, w;. The velocity at contact
point can be calculated as Equation and Equation define
the targets in detail sense. The definitions are recalled from Y. [42] at reference
coordinate system.

26

Vp=V,+w, XLpo
Vp =V, +uw, x Ly

1% Bump Steer =

1** Bump Camber =

VOZ
1 3 st . Voz
(Kinematic) 1°* Anti-squat = v
i 3 st PR ‘/}DQB
(Kinematic) 1°° Anti-lift =
VPZ
Vp
1 RCH= P, - ¥
Y VPZ
Hub Trail = 7(V‘:y cos(8) + Vi, sin(9))
w;
Kingpin offsct — V,, cos(8) — V,, sin(0)
P w;
Caster trail = _(V’:I sind) + V;y cos(d))
w;
Scrub radius = Vps €08(9) — Vp sin(0)
w;
Wheel load level arm (WLLA) = —£=
Ws

(2.26)
(2.27)
(2.28)
(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



2.1 Kinematics and compliance

where,

ws = —wy tan(y) sin(d) — wy tan(y) cos(d) + w,

’

ws = —w;x tan(vy) sin(0) — w;y tan(vy) cos(d) + w;z

The second order targets are defined as the time derivative of the first order
targets with respect to time. They represent the changes of the velocities.
Notice that the second order targets are always defined as targets versus V, to
make them independent of input velocity. The derivations assume a constant
toe, camber angle and the fixed contact position to simplify the expressions.
The acceleration at contact point can be calculated as Equation [2:36]

a, =a,+ o, X Loy + wy X (W X Lgp) (2.36)

%Bump Steer g

2"1Bump Steer = =7 (2.37)
d .
" LBump camber  q,, cos(d) — qpy sin(d
2"Bump camber = 4t Vo = ( )V02z y51n(9) (2.38)
4 Anti t -
2" Anti squat = 4 nVI et _ aononS @o: Vor (2.39)
LAt lift  ap,Vp. — ap.V
2" Anti lift = 4 = P2 P2 PE BT (2.40)
Voz Vp2zvoz
d
< RCH Gpy Vi — a2V
2ndRCH — dt =P . Py "pz bz " PY (241)
Voz Y V]%ZVOZ

where,
Q5 = — 0oy tan(y) sin(d) — ay tan(y) cos(d) + ao.

For a steerable front axle, additional targets are identified here. To define
the measure of the target, the general motion at wheel center assume to be
known. The method to derive the general motion is described in Paper A.
The general motion V'7 w/, al, o’ at wheel center and V;,, a;, at contact point
can be calculated using same method.

27



Chapter 2 Method

1 o
2°d Kingpin angle = — o
b+s ™
(a,, cos(8) — a,, sin(d))w;
274 Serub Radius = —22 S
ws W,
B a;(V, cos(d) =V, sin(d))
wslw,
1 q
274 caster angle = —7 —,1’;
LW
1+ @

’

—a,, sin(6) — a,, cos(8))w,
2" Caster trail = (=4, sin ),2 Py (9))s
ww,
a:;(—Vp/I sin(d) — Vp/y cos(9))
wsw,
a, w5 —asV,
20 WLLA = 2220 072
Ws W,
where,

ws = —w,, tan(7y) sin(8) — w; tan(y) cos(8) + w,,
oy = —a; tan(y) sin(9) — a; tan(y) cos(d0) + a/z

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

Similar to the second order targets, the third order targets are defined as
the time derivative of the second order targets respect to time. Notice that
the third order targets always are defined as targets versus V2 to making them
independent of input velocity. The translational jerk at contact point can be

calculated as Equation [2.4

Jp =Jo + 0o X Lop + 20 X (wo X Lop)

+ wo X (o X Lgp) + wo X (W X (wo X Ligp))
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Bump Steer j
3"Bump Steer = % = é—‘; (2.48)

3rdBump Camber — dt2 Bump Camber _ _ Jox cos(d) — Joy sin(0)

| Ve
(2.49)
Anti Squat o
374 Anti Squat = % % (2.50)
® Anti Lift Vor = Tz Vs — Qp2Q
rd dt2 jpa: 0z JpzVox pzlox
3" Anti Lift = 72 = A
oz pz Yoz
2apz (apzvoz - apz Vox)
- (2.51)
Vp3z‘/:)2z
d? . .
3rIRCH = WRCH _ & ) JpyVoz + Qpypz — JpzVpy — apzapy
V()2Z ‘/022 ‘/1122
20y, (apy Vipr — ap2 Vi)
_ 4lpz\Opy ‘1;3 pz Vpy (2.52)
pz

where,
Js = —Jou tan(y) sin(8) — jo, tan(vy) cos(d) + Jjo-

In summary, the general motions ¢, {, g which were calculated from Sec-
tion [2.1.1.1] are transferred to the targets, and engineers use the targets to
evaluate the kinematic performance.

2.1.2.2 Compliance target

The wheel motions under certain force which applied on the tyre contact
patch are described using compliance targets. The targets describe the motion
mainly under braking force and lateral force. Table shows the selected
targets. The combined compliance effects from all the bushings need to meet
the targets in order to provide safe and stable driving behaviors. The targets
monitor the toe §, camber ~y, and other motions of wheel center O and contact
point P. The definitions are shown in the Equations [2.53}2.57]
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Table 2.1. Compliance targets

Brake steer

Longitudinal compliance

Wind-up stiffness

lateral force steer

lateral force camber

Brake steer =
pT

Longitudinal compliance =

Ox
Z0
Wind-up stiffness = Y
pT
Lateral force steer = —
pYy
Lateral force camber = =
Py

(2.53)
(2.54)
(2.55)

(2.56)

(2.57)

The targets identified above are the motion gradients from the combined
bushing effects. Therefore, the targets should be identified as time deriva-

tives from Equations [2.53

To simplify the expression, static toe and

camber angle assume to be zero. Then the targets are modified as following

expressions.
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d

2 Brake steer = —~

dt px

d

— Longitudinal compliance = Oc
dt Ox

Wy

d
— Wind-up stiffness =
dt -

d w
— Lateral force steer = ——
dt Fpy

d
%Lateral force camber = ;}—x

Py

(2.58)
(2.59)
(2.60)
(2.61)

(2.62)
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2.1.3 Target-driven reverse design method

The method is to reverse the traditional design process. The reverse algorithm
collects the performance targets as input. Then the targets are transferred to
general motions and hardpoints are proposed according to general motions.
The reverse method introduces control point concept and geometrical guide-
lines. Figure [2.4] describes the method step by step.

First order target Packaging Second and third order target

General motion Link orientation Control point Hardpoint

Figure 2.4. Kinematics reverse design process

General motions The general motions, which include jounce motion up to
third order and steering motion with first order, can be calculated from targets
which are shown in Section 2.1.2] with a symbolic solver. The relations are
already derived in Section 2.1.1]

Links orientation The design purpose is to find a setup which gives the
general motions while applying jounce and steering motions. The reverse
design starts with hardpoints at knuckle. Since the knuckle is a rigid body,
the velocities Vs s Vs of any hardpoints at the knuckle can be calculated as

Equation 2.63]

Vi =V, +& x Ly, (2.63)
where,

i=A,B,C,D,E

31



Chapter 2 Method

The links La/a,Lp g, Lp/p, Lg/g which control steering and jounce mo-
tions, are called support links. The link Le/e which controls steering mo-
tion, is called toelink, and link Lp/ g, which controls jounce motion is called
spring link. Figure [2.4] indicates the critical vectors to support links d681gn
The support link, for example B’B, should be orthogonal to Vs and V B'j
Therefore, the orientations for the support links are defined with the given
point 7’

The toe link should be perpendicular to Ve ; and the spring link should be
perpendicular to Ve ;- However, their orientations are not uniquely defined.
In order to uniquely determine the orientations of the toe link and spring
link, additional hardpoints should be given as input. For example, hardpoints
components Cgirg, Cgiry and F;, F,, F, can be used to specify the direction of
the toe link and the spring link. The hardpoint F; has great influence on the
spring ratio, therefore, the position of this point should consider the kinematic
performance and the packaging constraints simultaneously.

The control points  As Section[2.1.3]described, the orientation of the support
link L g/ g is controlled by the hardpoint B’ and the first order general motions.
A new auxiliary point B located on the support link L g g is introduced from
Figure The velocity vectors VBOj and V gog are rotating with respect to
the support link Lg/ g from the velocity vectors VB/j and V B’s because of
the proportional term @ X L;, from Equation [2.63] Therefore, the velocity
vectors of any hardpoints along the support link Lp/p are orthogonal to the
support link Lp/g. In other words, the orientation of the support link Lp/p
are controlled by the auxiliary hardpoint B° and first order general motions,
and the hardpoints B’ and B can be any points located on the link which
controlled by the auxiliary hardpoint B° and first order general motions. Thus
the auxiliary hardpoint B is named as the control point for link Lp/g.

In summary, the combinations of the control points and the links orienta-
tions can control the first order targets. The hardpoints tuning possibilities
have been reduced by means of pre-defined performance targets. The method
is also called the linear control method because the method only controls
the kinematic behaviors at design position. In order to precisely control the
complete kinematic behaviors, the nonlinear kinematic control method is in-
troduced in the next section.
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A polynomial approach A toe curve approach with a polynomial of wheel
center height (WCH) as a single indeterminate is expressed in Equation
Figure [2.5] shows three configurations with the same first order coefficients.
The blue curve has a smaller second order coefficient compared to the black
curve, and the red curve has a larger third order coefficient than the black
curve. Figure also indicates that the second order coefficient adds a ’C-
shaped’ curve and third order coefficient adds a ’S-shaped’ curve. Therefore,
the nonlinear behaviors of the toe curve can be modified by second and third
order coefficients. The general motions of second order ¢ and third order g
introduced in Section have similar effects, but they are applied on high
dimension cases. A method using second order and third order motions to
control hardpoints will be introduced in next section.

Toe=a-WCH +b-WCH? 4 ¢-WCH? (2.64)

— setupA: a=2, b=0.5, c=0.08
m— setupB: a=2, b=-10, ¢=0.08
= setupC: a=2, b=0.5, c=0.15

-20
WCH [mm]

0 20

Toe angle [deg]

Figure 2.5. The polynomial nonlinear kinematic control approach
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Link length and position Section [2.1.1.1| shows the method to calculate
0, ii, U with given w. Equations [2.65] show the general motions i depend
on only the hardpoints layout with input velocity w. By using the similar
derivations, it can be proven that general motions 1,1 depend on only the
hardpoints layout with input velocity w as well.

u = [Clu} [_Q[Cu]ﬁ_ [Cq](l]
_ 1 -_ _[Cq]q _
= g |20 - 0]
1 [Ko]aq .
| [Ko]aq -1Cq] . .
el 2[ K] ] L€ (oA qq}
_ 1 [Kaag (K4,
_ 1] —[K3] —[K>]] .3
e [ e T a
_ 17 g L T e L1
_ 1 -_ _[K2] _ _[K2]- 3w3

where,
[K1,2,3,4] is only dependent on the hardpoint according to Paper A

The dependency proof for the second order motion ii can be derived using a
similar method. Since the matrices [C,], [Cy], [K1], [K2], [K3] and [K4] only
depend on hardpoints layout, it can be shown that % and # are constant
values with given hardpoints. Since the control points and the links’ orienta-
tions, which were introduced in section [2.1.3] can already be used to control
the first order targets, the y coordinates of each inner point ¢ and outer point
' can be used to control the second and the third order targets.

The problem can be treated as an optimization problem. The tuning pa-

rameters are the y coordinate of each inner and outer hardpoint. And the
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optimization goal is to find these y coordinates, which give the correct second
and third order motions calculated from second and third order targets. The
model in Section 2.1.1.1] is used to construct the optimization. Figure [2.4]
shows the optimized hardpoints B’, B with given targets and a control point
Be.

In summary, the second and the third order targets can be controlled by the
length of the support links and their exact positions. Together with the first
order control method, all hardpoints are unique calculated using optimization.

Compliance reverse method From Equation it is possible to get the

motion ratios Vé/vi and Qio/vi for every input at i = A,B,C,D,E. Combining

all these equations and allowing bushing deformation to be considered as the

input, it is possible to calculate the contribution of each bushing on a partic-

ular compliance target. Considering brake steer d4 as the steer effect caused

in the suspension system by the bushing at point A, it can be written as,
Woz

54 = -S4 (2.66)
va

The bushing deformation S4 can be written as Sy = Fa/Ka

WOz FA
0a = - 2.67
A A KA ( )
WOz pr -FA 1
fp= 2272~ 2. 2.68
4 vA Fpm KA ( )
04 _wo. Fa 1 (2.69)

Fpa: VA sz KA
In the equation above it can be seen that the terms wo,/va and Fu/F), are
constant as they are the motion ratio and the corresponding force distribution

ratio. The constant terms can be expressed as w2 4 for brake force load case.
) BF
A A (2.70)
sz KA

Similarly,

Wind-up stiffness:

L0y _ " (2.71)

sz Kz .
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Lateral force steer:

d; wZLZ-F
Py i
Lateral force camber:
. LF
o= (2.73)
Py i

where, i = A,B,C,D,E

For longitudinal compliance, the brake force input is considered to be acting
directly at the wheel center. So, the term corresponding to moment generated
at wheel center due to forces at tyre contact point can be ignored in the force
distribution equations for this case. Longitudinal compliance:

Xi  Voxi
FOI B Kz

(2.74)

The overall compliance target can be considered as the sum of the individual
bushing contribution. So overall brake steer is calculated as,

== == =4 — (2.75)

) wBF wBF wBF LUBF LUBF
_ rZA ZB zZC T ZD ZE (276)

Foo Ka Kp Kc Kp Kg

Considering 5 compliance targets, 5 linear equations can be formed and from
the given compliance target inputs, the bushing radial stiffness can be calcu-
lated by inverse matrix operation.
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r.,BF BF BF BF BF 7 - , - r
Wzy Wzp  Wph  Wgp  WZE 1 Brake steer
Ka
Vox, Voxs, Voxe Vox, Voxu 1 Longitudinal compliance
Kp
1
BF BF BF BF BF _ ; ;
Wya Wy Wyo Wyp  Wyg |- K|~ Wind up stiffness
1
LF LF LF LF LF -
Wiy wyip  Wie  Wip  Wig Kp Lateral force steer
LF LF LF LF LF K
| Wy WX WwWxo Wwxp wyp | LBAE Lateral force camber

2.77)

2.2 Target setup using RL

The first part of the section introduces a method that generates a suspension
property file attached to the vehicle model. The second part of the section
introduces the RL agent that interacts with the simulation environment and
proposes new suspension kinematics targets.

2.2.1 Simulation environment
2.2.1.1 Artificial suspension property file

The suspension property files use the targets for the curve-based steering
subsystem for the front axle, and the curve-based suspension subsystem for
the rear axle. For the front steering subsystem, 3D splines are used to capture
the motion of the steering knuckle. For the rear axle, 2D splines are used to
capture the motion of the non-steering knuckle. The motion includes steer
at ground, camber angle, side view angle, X-coordinate variation, and Y-
coordinate variation. The motion in the front axle depends on rack travell]
and jounce travel. The motion in the rear axle only depends on jounce travel.

To get a proper motion file, the first step is to calculate the general motion
from given suspension kinematics targets. The concept of general motions q
is described in Paper A. The relation between the general motion and the
suspension kinematics targets is described in Chapter 3.1.1 |43] for a front

IRack travel refers to the displacement of the steering rack in a rack-and-pinion steering

system.
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axle and section 3 from Paper A for a rear axle. At a given jounce position
u, the targets are given by reading the target curve. For example, the target
curve Bump Steer is shown in Equation 2.78]

Bump Steer(u) = 1*Bump Steer + 2"Bump Steer - u + 3*Bump Steer - >
(2.78)
For jounce motion, the general motion ¢q can be solved by a symbolic solver
from the given target at a specific jounce position according to the suspension
jounce target. The second step is to integrate the general motion with a small
time step At to get the next position g¢11. The targets for the new position
11 can be read again from the target curve. The process is repeated until
the end of the jounce travel. The motion file is generated by the motion q
at each jounce position. For the steering motion, the process is similar to the
jounce motion. The steering motion file is generated by the motion q at each
rack travel or steering wheel angle. To formulate the suspension property file
represented by 3D splines for the front steering subsystem, a superposition
of the steering motion and the jounce motion is used. Figure [2.6] shows the
process of generating artificial suspension property files.

B 35
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230 property file
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Suspension targets <
525
<3
2
< | l
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Figure 2.6. Generating artificial suspension property files
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2.2.1.2 RL environment

Once the suspension property files are generated, the RL environment shown
in Figure also includes a simulation environment [44], a reward function
and a pre-check function. The mechanism of the pre-check function ensures
that only the suspension property files that meet the target range can be
simulated. Invalid suspension property files will lead to a punishment in the
reward function. The shortcut path stabilizes the training process and im-
proves training efficiency.

I Reward value

Simulation results No

—
Yes

Susp. Property files T

Suspension targets ]

Figure 2.7. RL environment overview

Simulation scenarios The suspension property files are attached to an exist-
ing vehicle in this study. The vehicle is simulated in a set of driving scenarios,
including acceleration, braking, and ramp steer events. The selected driving
scenarios reflect the vehicle driving behaviors influenced by suspension kine-
matics targets. For example, the pitch angle during acceleration is influenced
by the anti-lift in the front suspension and anti-squat in the rear suspension.
The simulation scenarios aim to cover fundamental longitudinal and lateral
vehicle dynamics behaviors. The measurement of the vehicle’s performance is
based on the extrapolated simulation results.

Reward function The reward function rewards the agent by comparing the

simulation results and the target values. For each complete vehicle target ¢,
it consists of complete vehicle target ranges [€min. iy €maz,i), Maximum reward
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Rrnaz,i, and punishment gradient R;. The relation between the individual
target reward R; and the simulation result ¢; is shown in Equation[2.79] If the
suspension does not pass the pre-check in Figure @ a punishment Rpynish,i
is assigned to the reward R;.

Rmaz,iy if €min,i <€ < €mazx,i
Ri =< Riaz,i — Ri - € — €minyil, if € < é€min,i (2.79)
Rmax,z’ - R;- ‘ei - 6ma9c,i| , ife > €max,i

Equation [2.79shows that the reward R; is a linear function of the simulation
result ;. The reward R; is set to Ry,q4,; if the simulation result ; is within the
target range [€min,i, €max,i]- The reward R; decreases linearly if the simulation
result ¢; is outside the target range. The total reward R is the summation of
each individual reward R; from Equation meaning R = > | R;. The
punishment gradient R; as weight factor is adjustable for different targets and
learning tasks. The simulation environment is implemented in Python using
the OpenAl Gym framework [45]. It cooperates with a learning agent to find
the optimal suspension kinematics targets. The architecture of the learning
agent is described in the next section.

2.2.2 Learning agent

The learning agent is adapted based on the stochastic Actor-Critic frame-
work [46]. The actor part consists of multiple Gaussian distributions that
represent the suspension kinematics targets. The critic part is modeled by a
neural network function and outputs a high-dimensional value function that
estimates the expected reward. The actor gets updated by the critic part us-
ing temporal-difference learning, and the critic part gets updated by training
examples from the memory buffer. This section goes through the key elements
and describes the learning mechanism of the learning agent.

2.2.2.1 Agent critic

The critic neural network is used to estimate values V' for individual suspen-
sion kinematics targets according to certain states shown in Figure 2.8] The
weight vector W includes scale weight w and bias term b. The states are
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observations from the simulation environment. The critic neural network is
implemented using PyTorch with customized layers and sizes. To stabilize
the training process, batch normalization is applied to the critic network. The
gradient of each layer, which is used for training, is trimmed automatically
based on the connections between layers. The critic neural network aims to
generate values that update the policy in the actor part. A well-trained critic
network should provide a good estimation of the expected reward, which leads
to the convergence of the policy in the actor part.

Hidden

Input

Output
State 1
State 2
State 3

Figure 2.8. Critic network architecture

2.2.2.2 Agent actor

The actor is supposed to generate suspension kinematics targets based on the
policy. The policy 7 is a set of Gaussian distributions with mean 0; and
standard deviation ] as shown in Equation

__ 1 _(a—p(6))?
m(a|@) = 7(0)2 exp ( 3007 ) (2.80)

where:
a is the action

ne) =90,
o0 =6
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To update the policy, the gradient with action a is expressed in Equations[2.81

and from [46],

v nr(al6) = ez (o= 4(0)) (2.81)
-
v Inn(al6,) = -(0)? 1 (2.82)

2.2.2.3 Training with Temporal-difference learning

The training process is based on the temporal-difference learning algorithm
with average reward [48]. The temporal-difference & is a multi-dimensional
scale vector that is broadcasted by one-dimensional reward and multi-dimensional
predicted values, as shown in Equation [2.83]

§=Ri1—R+ V(S ,W)—V(S,W) (2.83)
where:

R and R are one-dimensional scales reflecting total reward

V is a multi-dimensional vector from the critic network output

The weight update includes three steps for the average reward, critic, and
actor parts. The average reward is updated by the temporal-difference § times
the learning rate of. The gradient is essentially the key to weight updates
together with the temporal-difference and learning rate. The gradient of the
critic network can be obtained thanks to the PyTorch Autograd feature, and
the actor part is calculated from Equations and The process of

weight update is shown in Equations [2.84] 2.85], and [2.86]

R+ R+aR6 (2.84)
W W+ a7 VI(S,W) (2.85)
0 0+a% <7 inm(Al0) (2.86)

2.2.2.4 Agent learning mechanism

The learning mechanism is shown in Figure 2.9 and Algorithm [} The agent
starts with an initial state, policy parameters 6, and randomly initialized value
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2.2 Target setup using RL

network parameters W. The batch actions are sampled from the current pol-
icy distribution and fed into the simulation environment. The simulation
experience is stored in the memory buffer. The action which has the high-
est reward will be used to update the actor weight factors. The experience
in memory buffers is used to train the critic network with the help of the
temporal-difference error shown in Equation [2.83] The memory buffer repre-
sents the historical experience. Notice that replay training with the memory
buffer improves training efficiency. With the current state, a value can be
estimated by the updated critic network and provide an updated TD-error.
Then, the policy parameters 8 can be updated by the gradient of the policy
from Equations and [2:82] A clip function is applied to the policy param-
eters to avoid gradient explosion. If all actions generated by the policy fail to
pass the pre-check function, the agent resets the state, average reward, and
policy parameters. The agent repeats the process until the end of the training
episode.

observations

4 Greedy algorithm

Batch Training with TD
Action Memory
buffer
batch Replay
Poli dat
—
clip TD with value

Figure 2.9. Agent learning mechanism
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Algorithm 1 Agent learning algorithm based on Actor-Critic framework

Initialize policy parameters 8, value network parameters W, initial state sg,
and initial average reward R
Initialize learning rates ap and ayy for actor and critic
Initialize average reward learning rate af?
for each of episode: do
while All batch action A not pass Pre-check do
Sample batch action A ~ 7(:|#) {Select action according to current
policy}
Execute action a; € A, observe reward r; and next state s;
Store transition (s;, a;, i, s;) in memory buffer
while end of replay: do
Sample the experience with batch size
Compute TD error: § = R — R+ V(S |W) — V(S|W) {d € R}
Update critic: W < W + o, 8 VV (S, W)
end while
Select action a4, with the highest reward and update actor part with

(Smax7 Omaxs Tmax, Smagj) B R , .

Compute TD error: § = R— R+ V(S |W) - V(S|W) {§ € R°}
Update actor: 8 < 0 4+ ayg I 8 VIn7m(amaz|0)

Clip 0, with interval [@7", §mar]

R+ R+aR Omaz

I—~1

S % s;nacb

end while

reset state so, average reward R, and policy parameters 6, I « 1

end for
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Case study

Chapter overview

This chapter presents a comprehensive case study demonstrating the applica-
tion of the proposed methodology. The investigation begins by establishing
14 complete vehicle targets, which serve as input for the reinforcement learn-
ing (RL) algorithm to determine the optimal 30 suspension targets as shown
from vehicle level to subsystem level in Figure 3.I] Subsequently, a reverse
kinematic algorithm (KDT) transforms these suspension targets into a feasi-
ble hardpoint configuration s shown from subsystem level to component level
in Figure |3.1}] For validation purposes, a simulatable suspension property
file is generated from the derived hardpoints using VI-SuspensionGen. The
complete vehicle targets are then simulated in VI-CarRealTime, enabling sys-
tematic verification that the design meets the specified performance criteria
through compare shown in Figure [3.1} Furthermore, Figure illustrates
the case study workflow, which aligns with the 'V development process’ de-
picted in Figure [1.1] with synthesize mindset. The KDT target phase (with
blue rectangle) represents the progression from complete vehicle targets to
suspension targets at the subsystem level, while the KDT suspension phase
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(with black rectangle) demonstrates the transition from suspension targets to
hardpoints at the component level. Both levels undergo verification through
artificial suspension property files as described in Section [2:2.1.1 and through
VI-SuspensionGen. The outcomes of both the KDT target and KDT suspen-
sion phases are evaluated against the original target specifications.
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Figure 3.1. Case study flow overview aligned with the V development process
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3.1 Complete vehicle target setup

Table summarizes the selected complete vehicle targets across various
driving scenarios. For acceleration and braking scenarios, pitch angles are
measured at three distinct levels of longitudinal acceleration to capture the
suspension kinematics during both minor and significant wheel travel. This
approach specifically influences higher-order targets such as 2" and 3"¢ Anti-
lift coeflicients. Roll motion is evaluated using a ramp steer scenario, with
targets established for roll, pitch, and jacking motion. These parameters pri-
marily influence kinematic targets like Roll Center Height (RCH). Addition-
ally, understeer gradient is incorporated as a complete vehicle target to reg-
ulate suspension kinematics parameters, particularly Bump Steer and Bump
Camber characteristics.

Table 3.1. Complete vehicle targets*

Acceleration scenario

Pitch angle @0.1g [deg] Pitch angle @0.35¢
Pitch angle @0.5¢g

Braking scenario

Pitch angle @-0.1g [deg] Pitch angle @-0.35¢g
Pitch angle @-0.6g

Ramp steer scenario for roll

Roll angle @-0.2g [deg] Roll angle @-0.5g

Ramp steer scenario for pitch

Pitch angle @-0.2g [deg] Pitch angle @-0.6g

Ramp steer scenario for Jacking

Vertical displacement @-0.4g [mm)] Vertical displacement @-0.7g

Handling diagram from ramp steer

Understeer gradient @0.1g [deg/g] Understeer gradient @0.5g

*These are example targets for a test vehicle used for the concept study
at Volvo Cars.
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This case study focuses on suspension targets related to jounce motion, as
detailed in Table [3:3] Using the methodology outlined in Section [2:2] the
primary objective is to determine the optimal suspension jounce targets that
fulfill the complete vehicle requirements. To facilitate front suspension model
that can be simulate, additional steering targets are listed as fixed parameters,
as presented in Table

The suspension kinematics targets outlined in Tables [3.3] and [3.2] are in-
corporated into the artificial suspension property file as described in Sec-
tion Subsequently, the algorithms detailed in Section [2.2.2.4] are ap-
plied to determine the optimal suspension targets from Table that align
vehicle performance most effectively with the complete vehicle targets speci-
fied in Table B.11

Table 3.2. Steering targets for the front suspension

First order Second order Third order

Front suspension steering target

1%t Caster angle 2nd Caster angle 374 Caster angle
[deg] [deg/25deg] [deg/25deg?

1%t Kingpin angle 274 Kingpin angle 374 Kingpin angle
[deg] [deg/25deg] [deg/25deg?]

15t Caster trail 27 Caster trail 374 Caster trail
[mm] [mm/25deg] [mm/25deg?]

1% Scrub radius 274 Scrub radius 374 Scrub radius
[mm] [mm/25deg] [mm/25deg?]

15t WLLA 27 WLLA 374 WLLA

[mm] [mm/25deg] [mm/25deg?]

Front suspension steering geometry target
61, [deg] Or [deg] R [mm]

WLLA: Wheel load level arm

dr: Maximum steering angle to the left
dr: Maximum steering angle to the right
R,: Maximum rack travel
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Table 3.3. Jounce targets selected to generate suspension property file

First order Second order

Third order

Front suspension jounce target

1%t Bump Steer 274 Bump Steer

[deg/m] [(deg/m)/dm]

1%* Bump Camber 274 Bump Camber
[deg/m] [(deg/m)/dm]

1%t Anti-dive 274 Anti-dive

%] [%6/dm]

15t Anti-lift 2nd Anti-lift

[%] [0/ dm]

1%t RCH 2nd RCH

[mm] [mm/dm]

3'd Bump Steer
[(deg/m) /dm?]
374 Bump Camber
(deg/m) /dm?]
3rd Anti-dive
[%/dm?]

3rd Anti-lift

%/ dm?]

37 RCH
[mm/dm?]

Rear suspension jounce target

1%* Bump Steer 274 Bump Steer

[deg/m] [(deg/m)/dm]

1%* Bump Camber 274 Bump Camber
[deg/m] [(deg/m)/dm]

1%t Anti-squat 274 Anti-squat

(7] [V6/dm]

15t Anti-lift 2nd Anti-lift

(%] [%/dm]

15 RCH 2md RCH

[mm] [mm/dm)]

3'4 Bump Steer
[(deg/m)/dm?]
3¢ Bump Camber
[(deg/m)/dm?]
374 Anti-squat

% /dm?]

3rd Anti-lift
[[%/dm?]

374 RCH

[mm/dm?]
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3.2 RL learning process

Figure[3.2]illustrates the training progression, depicting the best reward achieved
per episode. The learning curve exhibits both rapid advancement phases
and periods of incremental improvement. The training process concluded at
episode 93, reaching an optimal reward value of -83. This termination thresh-
old was established based on comprehensive experimental validation. For this
case study, the early stopping criteria also play a role in preventing overfitting.

RL Training Progress - Best Reward per Episode
0

“—
Best: -82.966
—-250

-500

—750

Reward

—1000

—1250

—e— Reward per Episode
® Best Result: -82.966 at Episode 93
--- Reward upper bound

—-1500

0 20 40 60 80
Episode

Figure 3.2. Reward for each episode during the RL training process

Figure illustrates the learning progression for each individual complete
vehicle target. Throughout the training process, the reinforcement learning
agent effectively balances these multiple targets, achieving convergence by the
final episode. The convergence characteristics of the suspension targets will
be examined in detail in the following section.
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Chapter 3 Case study

3.3 Learning curve for suspension targets

In alignment with the complete vehicle target learning curve illustrated in
Figure [3:3] the suspension target learning process is characterized by two
key parameters: mean p and standard deviation o per episode, as shown in
Figures and These parameters correspond to the policy parameters
defined in Equation While some subfigures demonstrate convergence of
both the mean value and its variation, others exhibit only partial convergence.
As established in Equation 278} the nonlinear suspension target incorporates
coefficients up to the third order. Consequently, the learning outcomes for
each coefficient, expressed in terms of p and o, must be transformed into a
comprehensive target range that accounts for their nonlinear interdependen-
cies. The methodology for this transformation will be detailed in the following
section.
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3.4 Suspension target representation (KDT Target)

3.4 Suspension target representation (KDT
Target)

Section outputs suspension targets as mean (u) + standard deviation
(o) up to third order. The hardpoint are not fully specified by the suspension
targets. We will use the control point[2.1.3]to fullfill the additional wishes, such
as geometrical packaging constraints. To facilitate the suspension hardpoint
design process, a comprehensive envelope encompassing all viable coefficient
combinations is essential. Algorithm [2|transforms these statistical parameters
(1 and o) shown in Figures and into the boundary envelopes presented
in Figure 3.6l To maintain coefficient consistency across both positive and
negative wheel travel regions, the Polynomial Coefficient Envelope algorithm
initially identifies the coeflicient set that maximizes the envelope area in the
positive wheel travel region. These identified coeflicients are then extend to
the negative region to ensure coefficient continuity. Similarly, the algorithm
determines a second set of coefficients that maximize the envelope area in
the negative wheel travel region and extends them to the positive region.
Consequently, each target is bounded by two distinct envelopes representing
the coeflicient sets optimized for the positive and negative wheel travel regions
respectively.

Figure [3.6] illustrates the target envelopes comprising both positive and
negative wheel travel regions, along with the reference curve derived from the
mean (u) values obtained through reinforcement learning. These envelopes
establish the design constraints for the subsequent hardpoint configuration
process. The primary objective is to ensure that the actual suspension kine-
matic performance, denoted as KDT suspension in Figure [3.6 remains within
at least one of the envelope boundaries, either in the positive(blue shaded) or
negative(red shaded) wheel travel region.
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Chapter 3 Case study

Algorithm 2 Polynomial Coefficient Envelope algorithm

Require: 154, 2", 37, 150, 2740, 370
Ensure: Coefficient combinations for envelopes
combinations < {} {Generate all possible coefficient combinations}
for a € {1t — 1%t0, 15t + 1%'0’} do
for b € {27y — 2ndg 27y 4+ 2"dg) do
for c € {37 — 370,37 + 3740} do
Add (a, b, ¢) to combinations
end for

end for
end for
Initialize pos__max__area < —oo, pos_min__area < 400
Initialize neg _maz_ area < —oo,neg_min__area < 400
for each combo € combinations do
pos__area < Y polynomial(xz_pos, combo) {Evaluate in positive region}

if pos_area > pos_max__area then
POS__Max__area < pos__area
end if
if pos_area < pos_min_ area then
POS_MiIn__area < pos__area
end if
neg_area < Y polynomial(x_neg,combo) {Evaluate in negative re-
gion}
if neg _area > neg_max_area then
neg_mar_ area < neg_ area
end if
if neg_area < neg_min_area then
neg_min_ area < neg_ area
end if
end for
return pos_max__area,pos_min__area,
neg_max__area,neg_min_area {These define the upper and
lower envelope boundaries}
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3.5 Hardpoint setup (KDT Suspension)

The hardpoint design applies Section [2.1.3]s methodology to the targets in Ta-
bles [3:31[3-2]and parameters from Figures This design process strategi-
cally balances packaging constraints and performance requirements within the
envelope constraints discussed in Section [3:4 The resulting hardpoint con-
figuration exhibits only minor deviations from the Rear Camber gain target.
Figures and illustrate the hardpoint configurations for the front and
rear axles, respectively. The actual kinematic performance of this configura-
tion is represented by the blue line labeled "KDT suspension" in Figure [3.6
Notably, the actual camber gain slightly exceeds the target envelope during
significant rebound travel. This deviation exemplifies a fundamental limita-
tion of the artificial suspension concept described in Section[2.2.1.1] which does
not inherently account for physical packaging constraints. Nevertheless, the
Al-supported algorithms significantly reduce the design iteration time while
effectively optimizing both packaging feasibility and kinematic performance
criteria.

With the established hardpoint configuration, VI-SuspensionGen generates
a comprehensive suspension property file for VI-CarRealTime simulations.
These simulation results provide critical validation by enabling direct compar-
ison against the original target specifications. The following section presents
a detailed comparison between the initial target parameters and the simula-
tion outcomes from the actual suspension design implemented through the
proposed methodology.

3.6 Closing the design loop

Figure demonstrates that both the target learning algorithm and hard-
point design algorithms effectively achieved their intended purposes. The
verification focuses on comparing the performance against the original targets
established in Table The blue dashed line (KDT_ Target) represents the
artificial suspension model with optimized kinematic targets before hardpoint
implementation, while the black solid line (KDT_ Suspension) represents the
performance of the actual hardpoint configuration. This comparison confirms
the successful translation from vehicle-level targets to physical suspension ge-
ometry.
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3.6 Closing the design loop

el

(a) Front perspective view (b) Front side view (¢) Front top view

(d) Front isometric view

Figure 3.7. Front suspension hardpoint configuration showing different view-
ing angles
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(a) Rear perspective view (b) Rear side view (c) Rear top view

(d) Rear isometric view

Figure 3.8. Rear suspension hardpoint configuration showing different view-
ing angles
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3.7 Summary

This chapter has demonstrated the complete design workflow from vehicle
targets to suspension hardpoints. The process began with 14 complete vehicle
targets that were used by the reinforcement learning algorithm to establish
30 suspension kinematic targets. Additionally, some fixed values were given,
such as vehicle data and some fixed suspension parameters, e.g., wheel rate,
which was not allowed to vary in the design. These suspension targets guided
the hardpoint configuration using the KDT algorithm.
Key findings from this case study include:

e The reinforcement learning algorithm effectively converged on optimal
suspension targets that fulfilled the specified complete vehicle perfor-
mance requirements

o The kinematic reverse design (KDT) algorithm successfully transformed
the abstract suspension targets into a physically feasible hardpoint con-
figuration, exhibiting only minimal deviation in rear camber gain char-
acteristics

e The implemented design demonstrated excellent correlation with the
original vehicle targets across all evaluated performance metrics

e The automated methodology substantially reduced the design iteration
cycle while maintaining precise adherence to performance specifications

This case study provides validation of the methodology described in Chap-
ters 1 and 2, demonstrating its robustness and practical efficacy in real-world
automotive suspension design applications. The results confirm that the pro-
posed approach successfully bridges the gap between theoretical vehicle dy-
namics targets and physically implementable suspension geometries.
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CHAPTER 4

Conclusion

This chapter synthesizes the key findings, discusses their broader implications,
and outlines future research directions that emerge from this work.

4.1 Summary of research contributions

This thesis has developed a comprehensive Al-supported framework for road
vehicle suspension design that transforms the traditional development pro-
cess. By reversing the conventional design flow, from component-level design
to performance verification, this research has established methodologies that
efficiently derive suspension solutions directly from vehicle-level requirements.
The integrated approach consists of two major innovations:

First, a reinforcement learning framework efficiently translates complete ve-
hicle targets into specific suspension kinematics targets, effectively navigating
the complex, high-dimensional design space that has traditionally challenged
optimization approaches. This methodology demonstrates superior conver-
gence properties and accuracy, largely due to its ability to accumulate ex-
periential knowledge through environmental interactions and mirroring the
learning process of human experts.
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Second, a reverse engineering methodology transforms these suspension tar-
gets into precise hardpoint configurations and bushing specifications. This
automated translation eliminates conventional trial-and-error processes, pro-
viding suspension engineers with clear design guidelines that simultaneously
satisfy performance requirements and packaging constraints. The mathemat-
ical foundation ensures unique correlations between performance targets and
physical implementations, enabling engineers to build clear connections be-
tween performance expectations and design parameters.

The case study presented in Chapter [3] validates the practical effectiveness
of this integrated methodology. The reinforcement learning algorithm success-
fully derived 30 suspension kinematic targets from 14 complete vehicle tar-
gets, which were subsequently translated into viable hardpoint configurations
through the KDT algorithm. The resulting design demonstrated excellent
concordance with the original vehicle targets, with only minor deviations in
specific parameters.

4.2 Significance and impact

The significance of this research extends beyond its methodological contribu-
tions to encompass substantial practical benefits for automotive development.
This work bridges the theoretical-practical divide by transforming abstract
vehicle dynamics principles into implementable design frameworks. The inno-
vations presented not only advance the academic understanding of suspension
design but also address critical industry challenges related to development
efficiency, product performance, and organizational collaboration. By pro-
viding a systematic approach to translate vehicle-level requirements directly
into physical design parameters, this research fundamentally restructures the
suspension development workflow, allowing manufacturers to respond more
effectively to rapidly evolving market demands while maintaining engineering
excellence. The practical implications manifest across multiple dimensions of
the automotive development ecosystem, see the following sections.

4.2.1 Efficiency enhancements

The framework developed in this research cuts development time by approx-
imately 50%, as shown in the papers. This significant time saving is vital in
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today’s automotive industry. Car manufacturers face growing pressure from
electrification demands and global competition. The new methodology auto-
mates complex design calculations that previously required extensive manual
effort. It eliminates the need for repeated simulation cycles that traditionally
consumed substantial engineering resources. Engineers can now test many
more design alternatives in a shorter timeframe. This efficiency allows design
teams to explore a wider range of solutions while meeting increasingly tight
project deadlines. The time saved can be redirected to other critical develop-
ment activities or used to further refine suspension designs. For automotive
companies operating in competitive markets, this acceleration of the design
process that provides competitive advantage.

4.2.2 Cross-functional collaboration

The methodology significantly enhances cross-departmental collaboration by
establishing a shared technical language. Vehicle dynamics engineers focus on
defining vehicle behavior requirements, while design engineers concentrate on
packaging constraints. Traditionally, these specialized groups have struggled
to communicate effectively due to their differing technical perspectives. The
framework presented in this thesis bridges this communication gap.

The system automatically converts performance requirements into specific
geometry constraints. These constraints are clear and precise. Packaging
engineers receive exact boundaries for their design work. Vehicle dynamics
engineers can clearly express their needs in terms that directly guide physical
design.

This shared understanding reduces conflicts between departments. It elim-
inates the back-and-forth iterations that waste time in traditional processes.
Teams can work in parallel with confidence. The design engineers know they
are working within the right parameters. The vehicle dynamics engineers can
trust that their performance targets will be met. This collaborative approach
fosters a more efficient development environment.

4.2.3 Improved design quality

The methodologies developed in this research enhance the quality of suspen-
sion designs. By automating the translation of performance targets into hard-
point configurations, the framework minimizes human error and subjective

65



Chapter 4 Conclusion

interpretation. The mathematical relationships established between vehicle-
level requirements and component specifications ensure that designs are not
only feasible but also optimized for performance. This leads to more consistent
and reliable suspension systems that meet or exceed performance expectations.
The ability to explore a wider range of design alternatives also contributes to
improved design quality, as engineers can evaluate multiple configurations and
select the most effective solutions.

4.2.4 Balance between Al and human expertise

The framework developed in this research establishes a balanced relationship
between artificial intelligence and human engineering expertise. Rather than
attempting to replace human judgment, the AI methodologies serve as so-
phisticated tools that augment the capabilities of suspension engineers. The
reinforcement learning algorithm handles the computationally intensive explo-
ration of the design space while engineers run the reverse engineering process
to derive hardpoint configurations with packaging constraints.

This balanced approach acknowledges that effective suspension design re-
quires both quantitative optimization and qualitative engineering judgment.
The AT components manage the mathematical complexity of translating vehicle-
level requirements into component specifications, freeing engineers to focus on
higher-level considerations such as vehicle character, brand DNA, and subjec-
tive performance qualities that remain difficult to fully quantify. By automat-
ing routine calculations and parameter correlations, the framework allows en-
gineers to devote more attention to innovative solutions and edge cases that
benefit from human creativity and experience.

Meanwhile, the system maintains transparency in its operations, allowing
engineers to understand and trace the AI’s learning process. This trans-
parency builds trust in the automated components while simultaneously cre-
ating educational opportunities for junior engineers to observe the systematic
relationships between design decisions and performance outcomes. The result
is a symbiotic relationship where AI handles the computational burden while
engineers apply contextual understanding and domain expertise to guide and
refine the process.
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4.2.5 Holistic system understanding

By establishing clear mathematical relationships between vehicle-level require-
ments, suspension targets, and component specifications, the research en-
hances system understanding across organizational hierarchies. This compre-
hensive view enables more effective requirement management and system-level
optimization throughout the development process.

The framework creates a traceable path from customer-oriented perfor-
mance metrics to specific engineering parameters, illuminating previously ob-
scured correlations in the complex suspension system. This traceability serves
both educational and practical purposes—junior engineers can quickly grasp
system interdependencies that traditionally required years of experience to
internalize, while senior engineers gain quantitative validation for their expe-
riential knowledge.

Furthermore, the mathematical formalization transforms what was once
predominantly tacit knowledge into explicit, documented understanding. This
codification of suspension design principles creates organizational resilience by
reducing dependency on individual expertise and establishing a foundation for
continuous improvement. The quantifiable relationships between design de-
cisions and performance outcomes also facilitate more objective communica-
tion with non-technical stakeholders, improving alignment between engineer-
ing teams and broader business objectives.

Most significantly, this holistic framework enables engineers to anticipate
the cascading effects of design changes across the vehicle system. When modi-
fications become necessary due to packaging constraints or other requirements,
the impact on vehicle performance can be immediately assessed without exten-
sive simulation cycles, allowing for more agile and informed decision-making
throughout the development process.

4.3 Limitations and future research directions

This thesis has important limitations that should be addressed. These limi-
tations are not just constraints. They are opportunities for future research.
Our methods work well within their scope. Yet they face several theoreti-
cal and practical limits. These limits come from simplified models, comput-
ing constraints, and our focused research goals. The sections below describe
these limitations. They also outline promising research directions. Future re-
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searchers can build on our work by addressing these opportunities. This will
expand both the theory and practice of Al-supported suspension design:

4.3.1 Scope expansion

The current methodology primarily addresses longitudinal and lateral dynam-
ics, with limited consideration of vertical dynamics and ride comfort. Future
research should extend the framework to incorporate additional subsystems
such as springs, dampers, and particularly tyres, creating a more comprehen-
sive approach to suspension design that addresses all primary vehicle dynamics
domains.

The inclusion of tyre dynamics represents an especially critical extension.
Tyres constitute the sole contact point between vehicle and road, functioning
as the fundamental medium through which all suspension forces are ultimately
transmitted. The current framework treats tire behavior in as fixed model
without parameterization, which simplifies the design process. Future work
should integrate sophisticated tire models that capture these nonlinearities,
including load sensitivity, combined slip conditions, and transient behavior.

Moreover, the interconnected nature of tire-suspension dynamics creates
a coupled optimization problem that cannot be fully addressed through se-
quential design approaches. A comprehensive framework would consider how
suspension geometry affects dynamic tire loading, and conversely, how tire
characteristics influence optimal suspension response. This bi-directional re-
lationship necessitates simultaneous optimization of both systems, potentially
through reinforcement learning algorithms capable of navigating this expanded
design space.

4.3.2 Integration of compliance and kinematics

While the thesis presents methodologies for both kinematics and compliance
design, these approaches are not fully integrated within a unified optimiza-
tion framework. Developing a reinforcement learning approach that simulta-
neously optimizes kinematics and compliance targets would yield more bal-
anced designs that better reflect real-world performance requirements. The
current sequential approach—optimizing kinematics first, followed by compli-
ance—cannot capture the complex interdependencies between these domains.
Future research should focus on creating a holistic optimization framework
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where the agent can learn to balance trade-offs between kinematic and compli-
ance characteristics in a single design process. Such integration would better
reflect the physical reality of suspension systems, where kinematic motion and
compliant deformation occur simultaneously rather than independently. This
approach could potentially uncover novel design solutions that are overlooked
when these domains are treated separately, particularly for vehicles with de-
manding performance requirements across multiple operating conditions.

4.3.3 Nonlinear compliance behavior

The compliance methodology focuses exclusively on linear behavior, whereas
real-world suspension systems often exhibit significant non-linearities of the
design variables, particularly under large articulations. Extending the KDT
algorithm to incorporate nonlinear bushing behavior would enhance the fi-
delity of the compliance design process.

The current linear approximation works well within limited operating ranges
but becomes increasingly inaccurate as suspension systems experience larger
displacements and forces. Real automotive bushings typically demonstrate
progressive stiffness characteristics. Initially compliant to absorb minor dis-
turbances but becoming progressively stiffer to maintain stability under ex-
treme conditions. This nonlinear behavior serves crucial functions: it provides
ride comfort during normal driving while ensuring robust handling during
emergency maneuvers or when carrying varying loads.

From a mathematical perspective, incorporating these nonlinearities presents
significant challenges. The KDT algorithm would need to evolve from simple
stiffness matrices to more sophisticated representations capable of capturing
hysteresis loops, progressive rate functions, and coupled directional effects.
This would require developing inverse modeling techniques that can derive
nonlinear bushing specifications from desired force-displacement characteris-
tics across the entire operating range.

4.3.4 Transfer learning and knowledge reuse

The current methodology requires training reinforcement learning agents from
scratch for each new vehicle program, which is computationally expensive
and time-consuming. A significant opportunity exists in developing robust
transfer learning capabilities that leverage knowledge across different vehicle
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platforms and suspension configurations. Pre-trained models could capture
fundamental suspension physics and design principles that remain consistent
across vehicles, dramatically accelerating the optimization process for new
applications.

Transfer learning in this context would involve identifying invariant relation-
ships between design parameters and performance outcomes that transcend
specific vehicle characteristics such as mass, wheelbase, or target market. For
example, the fundamental influence of roll center height on body roll behav-
ior follows consistent physical principles regardless of vehicle type. An agent
trained on sedan suspension dynamics could transfer this knowledge when
designing SUV suspensions, requiring only fine-tuning rather than complete
retraining.

Several promising research directions emerge from this limitation. First, de-
veloping modular learning architectures that separate vehicle-specific knowl-
edge from universal suspension principles would enable more effective knowl-
edge transfer. Second, meta-learning approaches could be investigated to
develop agents that "learn how to learn" suspension design, becoming pro-
gressively more efficient with each new vehicle program. Third, knowledge
distillation techniques could compress insights from multiple vehicle designs
into compact, transferable models that serve as starting points for new opti-
mization problems.

The potential benefits extend beyond computational efficiency. Transfer
learning could capture tacit engineering knowledge that might otherwise be
lost during organizational changes or retirements. It could also facilitate
cross-platform standardization by identifying common design patterns that
work well across multiple vehicle types, potentially reducing manufacturing
complexity while maintaining performance differentiation. Furthermore, a
transfer learning framework would create a systematic mechanism for contin-
uous organizational learning, where each completed vehicle design enriches
the knowledge base for future projects.

4.4 Concluding remarks
In conclusion, this thesis has established a robust foundation for Al-supported

suspension design that significantly enhances both efficiency and precision in
automotive development. The methodologies developed demonstrate the po-
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tential to revolutionize suspension development, particularly during the crit-
ical concept phase. By transforming the conventional design process from a
component-to-performance approach to a performance-to-component method-
ology, this research enables engineers to establish comprehensive vehicle-level
targets without immediate concern for construction details or system feasibil-
ity.

The 50% reduction in lead time and improved precision demonstrate the
framework’s potential for industrial adoption. As the industry continues to
navigate transitions toward electrification and autonomous driving technolo-
gies, such efficiency gains in foundational mechanical systems like suspension
design become increasingly valuable. The frameworks established in this thesis
not only address immediate engineering challenges but also provide a template
for how AI methodologies can be effectively integrated into complex engineer-
ing domains where human expertise remains indispensable.
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