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Graph-Based Machine Learning Estimation Methods
for Backbone Optical Network Optimization

Aleksandra Knapiriska, Member, IEEE, Jakub Derda, Franciszek Strasburger,
Szymon Wojciechowski, Jakub Klikowski, Piotr Lechowicz, and Krzysztof Walkowiak, Senior Member, IEEE

Abstract—The development of new technologies, causing an
immense increase in the amount of data transmitted through
the backbone infrastructure, triggers the growing need for new,
effective optimization methods. Routing and spectrum allocation
(RSA) algorithms are the basis of network management, and
new solutions aided by machine learning (ML) techniques are
gaining popularity within the research community. However,
broad testing is essential to validate the effectiveness of proposed
methods across diverse traffic conditions, and to set expectations
on how the network will operate in the upcoming days when
using the chosen algorithm. On the contrary, the recently-surging
solutions based on reinforcement learning (RL) fail to provide
overwhelmingly better quality while being more complex than
traditional methods. In this context, we address the problem
of predicting the performance of heuristic-operated dynamic
resource allocation algorithms in multilayer optical networks.
We show how the massive scale of the dynamic RSA problem
can be coped with using various aggregation methods to create
a regression representation of the employed algorithm. Through
broad experimental evaluation, we demonstrate the benefits of
using graph representations with various meta-features to create
versatile predictors independent of the number of connection
requests and the physical topology. The proposed methodology
allows for fast prototyping of new algorithms and quick esti-
mation of the operation of existing ones with changing traffic
conditions. The developed graph-based models achieve great
prediction quality, and statistically outperform the baselines.

Index Terms—multilayer network, resource allocation, ma-
chine learning, graph representation.

I. INTRODUCTION

Backbone optical networks are the foundation of modern
Internet communication. Enormous amounts of data are trans-
mitted every second, enabling connectivity across vast dis-
tances. As we near capacity thresholds due to escalating traffic
levels, the research community focuses on novel traffic-driven
allocation algorithms [1], [2]. These algorithms ensure system
reliability while maximizing provisioned traffic and enhancing
network stability.

The introduction of a flexible frequency grid in the early
2010s opened new possibilities for much higher transmission
capacities within the existing fibers [3] and, thus, created
the need for new optimization approaches. To decrease net-
work device’s operational complexity of heterogeneous and
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tremendous units of end-user traffic demands, optical networks
are frequently decoupled into three layers, consisting of the
IP/MPLS layer, optical transport layer, and a physical layer
such as elastic optical network (EON) or wavelength division
multiplexing (WDM) [4]. Design and planning of transmis-
sion in multi-layer infrastructure pose significant optimization
challenges. Thus, current telecommunication planning cycles
are mainly based on single-layer optimization [5]. Single-
layer planning results in per-layer resource over-provisioning
as a priori assumptions are taken regarding traffic require-
ments in other layers. Such requirements are taken based on
experience and historical data, and an additional margin is
added to account for the stochastic nature of traffic. Resource
over-provisioning can be reduced by cross-layer information
exchange during network operation and fine-tuning it to the
current short-term requirements [6].

In connection with planning, effective routing and spectrum
allocation (RSA) algorithms are required to ensure smooth
data exchange and uninterrupted operation of the networks.
That is especially crucial with the constant technology deve-
lopment bringing new data-driven network designs. However,
extensive testing is essential to validate the effectiveness of
proposed methods across diverse traffic conditions. Numerous
time-consuming simulations are necessary to cover various
potential traffic scenarios. Furthermore, assessing the algo-
rithms’ operation in the future requires additional simulations.
Unfortunately, the scale of the resource allocation problem
and its different variants in backbone networks is immense,
and broad method evaluation requires significant simulation
time and resources.

In this context, estimation methods based on machine learn-
ing (ML) techniques have great potential for predicting the
likely outcomes without the need to solve specific instances,
which is significantly faster [7], [8], [9]. Notably, algorithms
for estimation of various metrics, such as quality of transmis-
sion (QOT) [10], latency [11], or bandwidth blocking proba-
bility (BBP) [7], [12], and the benefits coming from using the
knowledge they convey, are actively researched. In particular,
QOT estimation allows a more precise path computation [13],
latency estimation enables a more informed resource alloca-
tion, and thus blocking reduction [11], and blocking prediction
facilitates better fragmentation management or modulation
format selection [14], [15]. However, successful deployment of
such models typically requires additional detailed information,
such as the quantity and positioning of active lightpaths.

In this paper, we address the problem of predicting the
performance of resource allocation algorithms in multilayer
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optical networks. We demonstrate a novel approach by de-
veloping a black-box regression model estimating a multi-
layer RSA algorithm for time-varying traffic. Particularly, our
model accurately predicts the number of active transceivers
using only the input set of connection requests without any
knowledge of the network’s underlying topology or other input
parameters. Instead, we utilize a novel virtual connection graph
formulation that allows precise traffic modeling for a 24-hour
period. Through comprehensive analysis of different problem
encodings on two large topologies, we demonstrate the efficacy
of our approach, highlighting its strong predictive capabili-
ties. Notably, we analyze the network operation in realistic
scenarios before any blocking occurs, which is the case in
real-world vendor networks. Furthermore, while giving an
idea of the network performance operating under the selected
RSA algorithm, the chosen metric of the number of active
transceivers is also a good approximation of the network’s
energy efficiency and operational costs [16], [17], [18].

The framework proposed in this work gives new possibilities
to the operators of modern networks. The developed scheme
can be used in various practical settings where quick assess-
ment of the impact of changing traffic on the expected energy
and transceiver usage is handy. In particular, several works
developed sophisticated methods for predicting the traffic itself
based on its historical data. However, our work proposes
a novel tool to assess the impact of these traffic predictions on
the network performance. Such a model would be especially
important when traffic forecasts indicate a significant change,
e.g., around important sporting events. The predicted evolution
of the bitrate in all active connections serves as an input to
our model, which predicts the upcoming transceiver utilization.
Thus, expectations regarding energy consumption can be then
set, and the necessary equipment can be prepared beforehand.
In this context, the proposed model can be integrated into
a network digital twin as part of the control loop. Another ex-
ample would be studying the impact of adding new customers
to the network, which brings additional connection requests.
The great prediction capabilities paired with an almost instant
inference time make the proposed model a good tool for fast
assessment of the expected transceiver utilization and energy
consumption of the network in changing traffic conditions.

In summary, the main contributions and novelty of this
paper are listed below.

o To address the issue of unrealistic assumptions of the
commonly-used BBP metric in dynamic optical networks,
we propose to assess their performance expressed as the
daily average number of active transceivers.

e To address the requirement for conducting multiple
time-consuming simulations to assess the operation of
heuristic-based RSA, we propose the notion of estimation
of network operation performance formulated as a regres-
sion task.

o To address the immense size of the posed regression
problem (multitude of time-varying connection requests),
we propose graph-based encodings for efficient prediction
of network operation and performance.

« To validate the proposed methodology, we conduct an
experimental evaluation of the developed methods.

The remainder of this paper is organized as follows. Sec-
tion II discusses recent related research works. Then, Section
IIT presents an overview of the proposed system, giving
a roadmap of our work, and discussing deployment possibil-
ities. Section IV details the network and traffic model, and
describes our multilayer RSA algorithm. Further, Section V
formulates our proposed ML model for network performance
estimation. Section VI describes our conducted experimental
evaluation and obtained results. Finally, Section VII concludes
this work.

II. RELATED WORK

In this Section, we discuss recent research works related
to various aspects of this article, including the prediction
of network performance metrics and the utilization of graph
models for networking tasks.

A. Network Performance Estimation

The notion of network performance estimation instead of
conducting time-consuming simulations is a relatively new
idea in this context, and has only been addressed by a few
works, including [7], [9], [19], [12], [14]. Our previous works
[9], [19] focused on static RSA estimation, and showed how
it is possible to predict network resource utilization from the
input set of connection requests. We demonstrated how, for
static problems, the estimation is over 100 times faster than full
simulation and allows for very precise prediction of various
network performance metrics. However, these works assumed
no traffic time-variability or graph-based features. For dynamic
problems, the authors of [12] considered a binary classification
task of predicting blocking occurrence in the near future.
Additionally, their approach focused on observing network
links and their occupancy, and aimed to trigger an alarm
of an incoming blocking event. Furthermore, [7] researched
the correlation between the BBP and different transmission
distances for the available modulation formats across the
established lightpaths. The proposed regression model allowed
an accurate prediction of blocking for each variant. However,
no graph metrics were used in the discussed studies. Finally,
[14] applied blocking prediction to find its correlation with
different link weight assignments in a fragmentation metric
and to find their best possible configuration.

All the discussed studies underline that utilizing an ML
model to predict the metric allows significant time and re-
source savings, enabling a more thorough evaluation by study-
ing more instances. However, to the best of our knowledge,
the only metric to be predicted considering dynamic scenarios
in the existing literature was the BBP. Even though it is
a commonly used performance metric to evaluate dynamic
RSA algorithms, it implies an assumption of a fully- or
even over-saturated network, which is not a realistic sce-
nario. Studying other performance indicators of dynamic RSA
algorithms — assuming overprovisioned networks — remains
relatively unexplored. Furthermore, to our knowledge, no work
studied graph formulations of the connection requests and their
applicability for metric prediction.
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B. Graph-Based Models

Graph models have been, however, successfully used for
network traffic prediction and throughput forecasting. In par-
ticular, [20] focused on predicting the traffic on network links
in the upcoming time slot based on historical network state
snapshots. The study showed how prior knowledge about the
upcoming traffic improves routing decisions. Similarly, [21]
proposed a graph model for predicting the forthcoming state of
network links based on their previous states. Additionally, [22]
used a graph model to forecast the upcoming congestion of
network links. Finally, [8] researched the relationship between
the maximum achievable throughput and the network topology
using graph neural networks. However, none of these works
approached the estimation of the employed RSA algorithms. In
this context, the operation of the utilized heuristic approaches
still needed to be simulated for their broad evaluation.

C. ML Approaches to RSA

A promising approach was proposed in [23], where an ML
model was trained to find a relationship between a connec-
tion request and its route. The solution yielded optimistic
results and potentially allows to predict a routing path for an
upcoming request without the need for running a heuristic-
based algorithm. Work [24] explored a similar idea to predict
the routing for future traffic demands and achieve a trade-off
between performance optimality and worst-case performance
guarantee. Although the works contain elements of estimating
RSA heuristics, their goal is to substitute them with ML models,
which poses a risk of not provisioning some requests — the
ML-based routing accuracy is never infallible, and even with
excellent prediction quality on average, there can always be
problematic instances [25] resulting in unjustified blocking.
What is more, such algorithms are usually characterized with
much higher complexity and the performance gains might not
be worth the additional overhead [26].

D. Research Gap

This work addresses the research gaps identified above.
In particular, we propose a set of graph-based methods to
create a black-box regression model describing the relation-
ship between a set of connection requests and the resulting
transceiver utilization for the upcoming day, which is a good
estimation of network performance and energy consumption.
Our approach enables a broad heuristic evaluation for a large
number of connection request sets. At the same time, in
practical scenarios, the trained model can help inform the
operator about the expected energy usage and the required
number of transceivers for the network operated using the
employed algorithm. To the best of our knowledge, this is the
first work attempting to build a regression model to estimate
the operation of a multilayer network with time-varying traffic.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

In this Section, we give an overview of the proposed
framework, which will be discussed in detail in the following
Sections of the paper. Further, we describe how the proposed
methods can be applied in real-world systems.

A. System Overview

Figure 1 illustrates the proposed framework for optical
network performance estimation. The process begins with
network modeling, which serves as the foundation for the RSA
algorithm. Network modeling is a crucial part of the design,
as it introduces an abstraction layer necessary to represent the
backbone optical architecture within a simulation environment.
In our work, we employ a two-layer network model, illustrated
in the first column of Figure 1 and described in more detail
in Section IV-A.

Next, we design and test an RSA algorithm for the network
under various test scenarios. The algorithm, illustrated in the
second column of Figure 1, is described in Section IV-B. We
simulate its operation using multiple test traffic datasets, with
the results saved for further analysis. Details of the network
simulations conducted are presented in Section I'V-C.

Our research hypothesis is that, after conducting a se-
ries of simulations, it is possible to predict the algorithm’s
performance on unseen sets of connection requests without
needing to run new simulations. To achieve this, we propose
an ML model that frames the network optimization problem
as a regression task. This model, which extracts meta-features
from an abstract connection request graph, is illustrated in the
third column of Figure 1. We describe the model in detail in
Section V, alongside the baseline solutions considered in our
work. Section VI presents the research questions explored and
details the experimental evaluation.

B. Deployment Scenarios

We now describe two primary deployment contexts for the
proposed methodology in real-world systems. The goal of the
framework is to enable rapid and accurate estimation of the
performance of a backbone optical network operating under
a given RSA policy. Both deployment contexts leverage the
speed and precision of the ML-based model.

The first context involves monitoring and responding to
traffic evolution over time. Given the bitrate trends observed
in connection requests, the network may need to reallocate
resources during its operational lifetime. Our methodology
facilitates fast and accurate estimation of the number of re-
quired transceivers based on the expected daily bitrate of active
connections. This allows network operators to prepare the
necessary equipment in advance. The predicted bitrates may
reflect either short-term fluctuations or longer-term forecasts.

The second context concerns network expansion through the
addition of new connections. Since the model is agnostic to
the number of connection requests, it can quickly estimate the
resulting transceiver and energy requirements. This enables
operators to evaluate the impact of network growth without
relying on time-consuming simulations.

While the main focus of this work is the development of
the graph-based estimation method, we now outline potential
deployment scenarios to demonstrate its practical utility.

One such scenario is integration into a network digital
twin as part of a daily operational loop. In this setting,
traffic data from incoming connection requests is fed into
a prediction module (e.g., [27]), which forecasts future bitrates.
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Fig. 1. Overview of the multilayer network model, traffic grooming, and graph traffic representation with the extraction of meta-features.

These predictions are then passed to the proposed performance
estimation module. The resulting transceiver demand can be
used to automate sleep/wake cycles, similar to techniques in
wireless and sensor networks [28], [29]. Thanks to the model’s
low runtime and high accuracy, such automation can yield
energy savings by avoiding unnecessary equipment activation.
We plan to implement and evaluate this scenario in future
work.

Another promising application lies in network planning
and upgrades. Once trained on sufficient simulation data, the
model can serve as a fast, reliable alternative to traditional
simulators. It enables quick performance assessments across
a broad range of traffic datasets and supports rapid evaluation
of connection additions, thanks to its flexibility with varying
request volumes.

It is important to also consider the potential limitations
introduced by utilizing such ML-based solutions in operational
networks, the main one being the imperfect accuracy. As
black-box models are prone to occasional errors and should not
operate entirely independently [25], [30], incorporating safety
thresholds is necessary. Nonetheless, access to fast estimations
can significantly assist network operators in decision-making.

IV. NETWORK MODEL AND RSA

In this Section, we describe the network and traffic model
used in this work and our dynamic multilayer RSA algorithm.

A. Network and Traffic Model

We assume a two-layer network model consisting of an
optical (EON) physical topology at the bottom and a virtual
packet (1P) topology at the top. The packet layer is a virtual
topology of lightpaths set-up in the optical layer (for an
illustration, refer to the first column of Figure 1). The optical
network is modeled as a directed graph and operates on
a flexible grid with 320 frequency slots (FSs) of 12.5 GHz. It
utilizes coherent transceivers with reconfigurable bitrates and
various modulation formats (see Section IV-C). Both layers are
optimized together, enabling traffic grooming and multilayer
routing for better resource utilization (see Section IV-B).

The dynamic traffic is modeled as in [31] — the time-varying
connection requests of different network-based services and
applications take the form of infents [32]. In more detail,
each request represents a connection of a particular type (e.g.,
YouTube, TikTok, Zoom), and its bitrate changes throughout
the day according to the varying popularity of a given service
at different times. The daily patterns of the requests are
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based on the hourly traffic averages provided in the Sandvine
report [33]. We reconstructed the 5-minute-sampled signals
with additional noise using the Traffic Weaver package
[34]. The requests are illustrated in Figure 2. We assume
multiple requests of various types per pair of nodes, distributed
uniformly (see Section IV-C).
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Fig. 2. Illustration of daily time-varying connection request patterns in the
considered backbone optical network traffic model [31]. Their shapes are
recreated from the Sandvine report [33] using the Traffic Weaver [34].

B. Multilayer RSA Algorithm for Time-Varying Traffic

In this article, we aim to create a regression model esti-
mating solution of our multilayer RSA for time-varying traffic
proposed in [31]. In a nutshell, the proposed RSA operates
as follows. At the initial allocation, the connection requests
are sorted by their initial bitrate and processed one by one.
For each of them, the algorithm first checks if there is an
available lightpath between its source and destination with
enough spare bandwidth. If so, the request is added to this
lightpath without changing the virtual topology. Otherwise,
a new lightpath is requested in the optical layer (considering
the ten shortest paths in terms of physical length) and added
to the virtual topology to support the required bitrate. In
all succeeding iterations, all active connection requests are
sorted by their current bitrate every five minutes and processed
one by one. For each of them, the algorithm checks if they
still fit within their logical path (composed of one or more
lightpaths in the optical layer). If not, a new path is sought
for them in the packet layer, considering the three shortest
paths in terms of the number of hops. If there is not enough
spare bandwidth within the existing lightpath topology, a new
lightpath is requested from the optical layer. For an illustration,
refer to the first two columns of Figure 1.

The number of candidate paths in both layers was tuned
in preliminary experiments, providing a good balance in path
length and resource utilization. The paths in the IP layer are
sorted by their length in terms of number of hops. However,
for routing in the EON layer, we use a greedy heuristic to
minimize the spectrum usage across the ten shortest candidate
paths. In more detail, it iterates over candidate routing paths,
and on each one, it checks their possible spectrum assignments
using the First Fit heuristic [35]. The path corresponding to the
spectrum block with the lowest starting FS index is selected.
In case of a draw, the path with a shorter distance is selected.

C. Simulations

To gather the data for further experiments, we simulated
the network operation using the algorithm described above,

monitoring various parameters, including transceiver utiliza-
tion. As in a previous study [36], the transceiver usage
directly describes the number of lightpaths and is correlated
with various network performance metrics such as spectrum
usage (with overprovisioning) and blocking (after network
saturation). Thus, it can be considered a versatile network
performance descriptor. Furthermore, prior knowledge about
the transceiver utilization allows a more precise network
planning and, in consequence, cost decrease [16], [17].
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Fig. 3. Average number of active transceivers over the number of connection
requests in the conducted simulations, US26 topology.

In our simulations, we assumed the Ciena Wavelogic 5
Extreme commercial transceiver model with its specifications
as provided in [37]. After setting up and tearing down any
lightpath, we updated the number of active transceivers in the
network. After completing a simulation, we saved the daily
average and maximum to obtain data for creating the ML
models. Intuitively, the number of active transceivers increased
with the number of connection requests, as illustrated in
Figure 3.

We considered two large topologies: Euro28 and US26 [38]
(see Figure 4). For each topology, we generated 100 different
sets of requests and re-ran each simulation for various traffic
loads. The requests were uniformly distributed between node
pairs, and the bitrate of each request was in the 50-150 Gbps
range. To achieve possibly realistic scenarios, we assumed
some overprovisioning. To this end, we increased the traffic
load by increasing the number of active requests in the network
by increments of 25, starting from 100. The highest tested load
was 650 requests, corresponding to approx. 1% BBP. In turn,
we ran 2300 simulations per topology.

V. METHODS DESCRIPTION

In this Section, we describe the ideas behind the proposed
graph representations of the connection request sets.

A. Modeling Connection Requests as a Graph

The aim of this work is to create a regression model
estimating a dynamic RSA algorithm to obtain its expected
outcome for specific traffic conditions without time-consuming
simulations. Thus, the input is a set of time-varying connection
requests, and the output is a metric describing the resource
allocation (in this work, it is the number of active transceivers).
The data generation was performed through the network
simulations described in Section IV-C. In turn, each datapoint
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Fig. 4. Considered network topologies: US26 with 26 nodes and 84 links
(top) and Euro28 with 28 nodes and 82 links (bottom).

consists of a set of requests, each having a source node, desti-
nation node, and a list of bitrates throughout the day (288 per
24 hours). As an example, assuming 500 active requests in the
network, the input for the ML-based estimator of daily network
operation would consist of (1 + 1 4 288) - 500 = 145000
numbers. The very high dimensionality makes the problem
very challenging. Thus, in this part, we propose methods of
data aggregation to a more concise form to only use their
representation with regression algorithms.

The first element is to calculate the daily average bitrate
of each request, decreasing the number of values describing
it from 290 (source node, destination node, and list of 288
subsequent bitrates) to only 3 (source node, destination node,
and average bitrate). This approach makes it possible to repre-
sent time-aggregated requests in a form of directed multigraph
with weighted edges (as illustrated in Fig. 1, second and
third column). Directed multigraph G is formally defined as
quadruple:

G={V,E, ¢,w}, (D

where V' is a set of nodes and I is a multiset of edges,
¢ : E — V xV is a function mapping every edge to an
ordered pair of vertices, where u is a source and v is the
destination node, w : E — R, is a function assigning positive
real value weight to each edge. In this definition, more than
one request can have the same source and destination node.
Such multigraph can be reduced to a simple graph by replacing

multiple edges that share the same source and destination node
to one edge. Let E,, = {e € E | ¢(e) = (u,v)} denote a set
of edges from u to v in G. A simple graph G is defined as

Gs = {V) Esyws}z (2)

where By = {(u,v) € V X V|E,, # 0} is a set of
unique ordered pairs of vertices between each there is at least
one request. Let w, denote the weights for each edge in E;
according to mapping aggregation function B, defined as

ws((u,v)) = B{w(e)le € Euy}). 3)

In this work, we use summation as an aggregation func-
tion B.

B. Graph Meta-Features

Having defined how to determine the graph structures, let
us now focus on feature extraction. One intuitive approach
presents the graph as an adjacency matrix. For the multigraph
G = (V,E, ¢,w), the adjacency matrix Ag € Nj*" can be
defined such that:

(AG)uw = [{e € E | ¢(e) = (u,v)}], @)

where n = |V| and (A¢)uy is the number of edges from
vertex u to vertex v.

For the simple graph G, = (V, E,,w;), the adjacency
matrix Ag € {0,1}"*"™ is typically defined as:

1 if (u,v) € Es

0 otherwise.

(AG S)uv = { (5)
Considering the edge weights, it is possible to extract
a weight matrix.
For the multigraph G = (V, E, ¢, w), let Wqg € {R;}"*"
be the matrix of weight sets for each source-destination pair.
Its elements are defined as:

(Wa)uw ={w(e) [ e € EAd(e) = (u,0)},  (6)

where each element (W), is the set of weights of all
edges from vertex u to v. If no such edges exist, (Wg)yuy = 0.
The matrix W can be seen as an n X n array where each
entry is a set of real numbers.

The weight matrix for the simple graph G, denoted as
We, € R™™™ has entries defined by the aggregated weights

Wy
ws((uvv)) if (u,v) € Es
0 otherwise.

(WGs)uv = { (7)

where each element A, ., is a set of weights between the
vertices u and v. Depending on the final structure of the graph,
this matrix can take the form of a representation with very
sparse information density. Such high-dimensional representa-
tion can lead to phenomena known as curse of dimensionality,
which, in consequence, demands more data to obtain better
models. For this reason, we decided to use a different graph
representation based on a mathematical description of the
dependencies between vertices or edges — graph meta-features.
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Since this work focuses on optimization problems with graph
representation rather than proposing new metrics to describe
the properties of a graph, below is a description of selected
state-of-the-art meta-features used in this work.

o Average node connectivity [39] of G is the average of
the maximum number of internally vertex disjoint paths
connecting each pair of vertices.

« Degree assortativity coefficient [40] and pearson corre-
lation coefficient is equal to the similarity of connected
nodes concerning their degrees.

o Density in a directed graph is described as d = %
where n is the number of nodes, and m is the number of
edges in graph.

o Edge connectivity [41] describes a minimal number of
edges that, if removed, would cause the graph to be
disconnected or trivial.

o Flow hierarchy [42] equals the fraction of edges not
participating in cycles in a directed graph.

o The global reaching centrality [43] of a weighted
directed graph is the average difference between each
node’s local centrality and the highest local centrality in
the graph.

o A directed graph is aperiodic [44] if no number (greater
than one) divides the length of every cycle in the graph.

o The feature is attracting component returns true if it
identifies an attracting component in the directed graph
G. An attracting component is a strongly connected
component with the property that, once a random walker
enters it, they will never leave.

« A graph is semiconnected if, for any pair of nodes, either
one is reachable from the other, or they are mutually
reachable.

o A directed graph is strongly connected if, and only if,
every vertex in the graph is reachable from every other
vertex.

o Node connectivity [41] is defined as the minimum
number of nodes required to be removed in order to
disconnect graph G or render it trivial. When source
and target nodes are specified, this function calculates the
local node connectivity, which is the minimum number
of nodes needed to be removed to break all paths from
the source to the target in G.

o The number of attracting components in a directed
graph G is the count of strongly connected components
where a random walker on the graph will never exit the
component after entering it.

o The number of strongly connected components in a di-
rected graph represents the count of maximal sets of
nodes where each node is reachable from every other
node in the same set.

o The overall reciprocity is calculated by dividing the
number of reciprocated edges by the total number of
edges in the graph.

o The reciprocity [45] of a directed graph is defined as the
ratio of the number of edges pointing in both directions
to the total number of edges in the graph. Formally, » =
|(u,v) € Gl(v,u) € GI/|(u,v) € G.

o The s metric [46] is the sum of the products of the degree
of node u (kdeg(u)) and the degree of node v (deg(v))
for every edge (u,v) in graph G.

VI. EXPERIMENTS

In this Section, we present the experimental evaluation
results of the proposed methods. At first, assumptions and
setup for the experiments are presented along with the fol-
lowing research questions. Afterward, the results are presented
alongside their discussion.

A. Experiment Setup

The experiment’s purpose is to investigate the feasibility
of using a graph representation of the connection requests
to estimate resource allocation in a multilayer network. The
features extracted from the processed representation were used
to train a model to solve the regression problem. Our experi-
ments were conducted for two topologies, Euro28 and US26.
The created models allow for predicting daily transceivers’
maximum and average use (max_transcivers, avg_transcivers,
respectively). The knowledge about the forecasted maximum
transceiver utilization is useful for the operator to prepare the
devices. The forecasted average transceiver utilization helps
set expectations about the expected energy usage. In turn, the
former can be used to estimate the network’s CAPEX and the
latter to estimate the network’s OPEX.

The following extraction methods based on graph structure
were used in the experiment:

o Graph Adjacency Matrix — Connections (GAM-CONN)

o Graph Adjacency Matrix— Averaged Traffic (GAM-MEAN)

o Directed Graph — Meta-features (DG-META)

o Directed Multigraph — Meta-features (MDG-META)

« reference methods: Average (MEAN), Standard Deviation

(STD), Accumulation (SUM).

The experiments are divided into a preliminary stage and
two main stages. In the preliminary stage, we establish a base
regressor that will be used in the main experiments.

In the first part of the main stage, the experiment tests the
model’s ability to make predictions within a fixed number of
requests (#requests) in a single simulation. This part allows
for a comparison between graph-based representations and
those based on attributes extracted from flow analysis —
specifically, the average, standard deviation, or accumulation
of the bitrates for each request, which serves as the reference
method. Since these representations are associated with the
#requests parameter, this is the only way to compare them to
the proposed methods. The research question for this part is:

RQ1I: Do the proposed methods for extracting graph-based
representations produce better results than reference methods
based on flow analysis?

The second part of the experiment examines the model’s
ability to make predictions with a variable number of requests,
reflecting a more typical real-world scenario where the number
of connections is not known in advance. The analysis will
assess both the quality of the predictions and attempt to
correlate these results with those from the first experiment.
The research question for this part is:
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TABLE I
RESULTS OF THE PRELIMINARY ANALYSIS, EURO28 TOPOLOGY.

# requests
100 300 500
extraction base regressor MAE fit time [ms] inference time [ms] MAE fit time [ms] inference time [ms] MAE fit time [ms] inference time [ms]
SVR 229 + 042 126 £ 0.13 048 + 0.04 632 + 071 1044 £ 0.94 4.10 £ 0.36 10.18 £ 1.95 10.05 £ 0.64 4.04 £ 0.20
GAM-CONN MLP 1.17 + 0.38 378.48 + 40.46 0.14 & 0.01 5.27 4 247 591.34 £ 444.23 0.26 + 0.35 9.65 & 3.17 347.01 £ 350.47 0.22 + 0.25
o CART 1.63 + 1.54 2.51 £ 0.10 0.12 + 0.04 328 + 1.12 3.70 4 0.12 0.12 & 0.06 5.16 4 3.64 4.68 + 0.39 0.09 + 0.02
KNN 2.95 4+ 0.52 1.19 4 0.53 451 + 6.66 7.09 + 1.06 1.09 &+ 0.31 2.39 + 0.99 7.32 + 1.19 1.15 + 036 270 + 1.10
SVR 273 £ 049 290 + 025 0.93 £ 0.08 6.89 + 0.70 295 + 024 094 £ 0.11 11.29 £ 1.99 351 + 235 112 & 0.66
DG-META MLP 102.44 + 54.76 2891 £ 525 0.63 £ 0.08 1273.06 £ 1121.11 3244 £ 7.67 0.63 £ 0.14 4384.20 £ 3164.85 29.11 £ 5.13 0.64 £ 0.12
CART 0.82 £ 0.29 291 £ 0.25 048 £ 0.05 2.49 £ 0.86 2.58 £ 0.22 048 £ 0.04 7.15 £ 295 274 + 0.22 047 £ 0.06
KNN 1.97 £ 033 1.04 £ 0.10 1.78 £ 0.56 3.63 £ 0.71 1.18 £ 036 1.66 £ 0.31 9.69 £ 1.51 1.01 £ 0.17 1.94 £ 0.62
SVR 2.33 4 0.40 342 4+ 043 1.44 £+ 0.10 6.24 1 0.65 541 £ 041 2.19 + 0.39 10.33 + 2.02 7.69 + 0.53 299 + 031
MEAN MLP 1202 + 11.74 182.05 £ 200.41 0.19 + 0.23 20.90 + 13.46 251.35 £ 228.46 0.24 + 0.27 29.38 + 19.39 308.46 £ 317.15 0.11 & 0.00
: ) CART 1.34 + 054 275 4+ 0.10 0.07 + 0.02 3.64 + 1.22 7.29 £+ 031 0.12 + 0.06 489 + 1.59 12.24 + 0.76 0.14 £+ 0.04
KNN 2.87 + 042 077 £ 0.23 1.89 £ 0.79 550 + 0.98 0.78 £ 0.26 1.81 £ 048 877 + 1.69 097 £ 0.29 2.64 £ 0.58

RQ2: Can the proposed methods for extracting graph-
based representations be applied to simulations with variable
number of requests, providing feasible estimations?

The experimental environment was implemented in Python,
and the repository allowing the experiment replication is
publicly available!. A 5x5 cross-validation was carried out
to prepare data partitioning, and the statistical significance of
the obtained results was tested using the t-Student test for
dependent samples. The base regressor models are following
default scikit—-learn [47] package configuration. All time
measurements were taken on a machine with an Apple M3 Pro
processor an 18GB of RAM.

To evaluate the selected methods, we use the coefficient of
determination (R?), mean absolute error (MAE), and Alloca-
tion Outside Blocking Threshold (AOBT) [48]. These metrics
can be interpreted in different ways. For example, R? reflects
the relative error, while MAE represents the actual differences
in predictions. However, neither of these metrics accounts for
the error in relation to the cost of that error. The AOBT, as
a parameterized metric, enables the assessment of networking
algorithms by incorporating domain knowledge and specific
requirements of individual operators. It includes parameters
that account for penalties for over- and underestimation, as
well as an allowed threshold. In this work, consistent with
conventional settings in the literature, we set the over- and un-
derestimation penalties to 2 (squared penalty) and the allowed
threshold to 1% (permitting up to 1% underestimation).

B. Base Regressor Selection — Preliminary Experiments

To select an appropriate base regression algorithm for the
experiments, we conducted a preliminary study to compare
the quality and inference time of several canonical regressors.
Those include: Support Vector Machine Regressor (SVR),
Multilayer Perceptron Regressor (MLP), Classification and
Regression Tree (CART), and k Nearest Neighbors Regressor
(KNN). In this part, we only report the summary of results, on
an example of the Euro28 topology and the avg_transceivers as
the target function. This limitation allows for a clear overview
and meaningful analysis without unnecessarily complicating
the results. The obtained results are presented in Table L.

As observed, in most cases (except for GAM-CONN-100,
which may be ambiguous due to the high standard deviation of

Ihttps://github.com/w4k2/gmlno

the results), the best regressor in terms of prediction accuracy,
as measured by MAE, is CART. Additionally, we find that the
fastest-to-fit model is KNN, although this comes with a higher
inference time, which is expected due to the lazy learner
nature of this algorithm.

In general, there is no direct relationship between inference
time and the number of requests. Instead, the inference time
seems to depend more on the extraction method used. This
can be explained by the complexity of the regression models
relative to the feature space, rather than the complexity of the
graph itself.

In conclusion, we selected CART as our baseline model, as it
provided the best prediction accuracy along with a reasonable
inference time (ranging from 0.09 to 0.48 ms).

C. Results Evaluation

Experiment 1: The results from the first experiment are pre-
sented in Table II. The first column indicates the number of re-
quests. The next seven columns display the results of the tested
methods for the Euro28 topology, while the following seven
columns show the results for the US26 topology. The first
23 rows correspond to the regression problem of predicting
the average number of transceivers, while the remaining rows
focus on estimating the maximum number of transceivers.
Each cell contains two pieces of information: at the bottom,
the mean value of the R? metric and its standard deviation,
and above it, numbers ranging from O to 6, representing the
method indexes. The presence of a specific number above the
mean value indicates that the method from the corresponding
column achieves a statistically significant advantage over the
i-th method. To highlight the best performing methods, the
highest mean R? values are presented in bold.

The R? metric should be maximized, with a maximum value
of 1.0. To provide a clearer understanding of the results, let us
consider a few examples. For the Euro28 topology, with 100
requests, the average number of active transceivers was 192.49,
and the best method, DG-META, predicted 193.6, yielding an
R? of 0.87. For 300 requests, the ground truth was 540.65, and
the prediction was 541.41, resulting in an R? of 0.74. These
results demonstrate that the high quality of the predictions,
based on the ML metrics, closely corresponds to real-world
applications, with only marginal differences between the actual
and predicted values.
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TABLE II
METRIC R? FOR MAXIMUM AND AVERAGE TRANSCEIVERS.

T Euro28 USs26

- 0 1 2 3 4 5 6 0 1 2 3 4 5 6
GAM-CONN GAM-MEAN DG-META MDG-META MEAN STD SUM GAM-CONN GAM-MEAN DG-META MDG-META MEAN STD Sum

avg_transceivers

=3 45 1456 4 6 46 01456 01456

T 036+ 1.8 072023 087 £ 008 063 £ 058 048 £ 062 035+ 078 055+ 0.54 -0.03 4 048  0.08 £ 044 044 £+ 038 028 + 042 -036 £ 0.87 -026 £ 1.22 -045 £ 0.98

] 3456 0

T 044 £ 141 037 £ 216 081 + 0.18  0.66 + 039  0.64 £ 040 0.16 £ 1.50  0.62 £ 043 0.04 £ 087  0.05 £ 061 034 + 0.88 015+ 063 017 £ 044 0.4 £ 056  0.11 £ 0.54

= all 135 46 1456 46

T 036097 042+£067 085 £ 015 045059 051 £ 080 042 £ 048 070 &+ 0.39 040 £ 039 018 £ 052 056 4= 031 040 + 039  0.09 £ 052  0.18 £ 062 020 £ 041

ke 14 1 01456 01456

— 039 £ 1.30 0.49 + 049 0.75 + 0.22 0.64 + 0.37 0.56 + 0.39 0.67 + 0.33 044 + 1.25 0.17 & 0.63 0.15 + 0.46 0.69 + 0.18 0.52 &+ 0.39 0.14 + 047 0.27 £ 0.38 0.22 + 047

=1 4 01345 1 all 1456

019 4+ 1.32 0.49 + 0.63 0.82 + 0.13 0.60 + 0.32 0.27 + 094 0.33 + 0.87 -0.02 £ 2.06 0.30 + 0.37 0.15 + 042 0.66 + 0.20 042 + 0.34 0.09 + 0.55 0.08 + 0.50 0.15 + 047

a 0456 4 4 01456 46 4 4

047 + 048 0.49 £ 0.55 0.70 + 0.25 0.57 + 0.44 0.40 + 0.49 043 + 0.61 0.44 £+ 0.50 0.22 + 047 0.20 + 0.41 0.54 + 0.29 0.40 + 0.36 -0.02 £+ 051 0.23 + 0.46 0.09 + 0.48

2 6 6 146 13456 146 146

0534063  052+055 065+ 028 056+ 035 056+ 031 051 £ 0.65  0.38 £ 0.53 043 £ 036 016 £ 050 054 4 036 040 + 039  0.07 £ 059 040 £ 038  0.06 £ 0.54

Iy 6 046 46 046 all 6 46

0374+ 056 051 £ 056 069 + 035 0624033 035+£058 066+ 037 017 & 091 0.18 £ 049 0254+ 042  0.66 + 021 036 + 036  0.04 £ 0.71 039 £ 047 001 % 0.63

S 01346 046 6 all

<038 + 052 049 £ 0.44 0.74 £ 0.21 0.58 £ 0.30 0.38 £ 047 0.56 £ 0.42 040 + 042 027 £ 035 028 £ 047 047 £ 0.31 024 + 0.52 020 £ 0.39 024 £ 048 0.12 £ 037

Q 046 456 3456 6

045 £ 038 0.39 + 0.74 0.59 + 043 047 + 0.50 0.33 + 057 0.48 + 0.51 0.32 + 0.56 0.35 + 031 0.35 + 037 031 + 0.64 0.16 + 0.50 -0.03 £ 0.61 0.10 + 0.49 -0.06 + 0.50

= 01 01 456 456 456

' 0.14 4 0.80 0.29 + 049 0.57 £ 0.40 0.29 + 0.74 0.52 £ 0.51 0.40 + 0.89 0.56 + 0.33 0.26 + 0.44 0.12 + 0.52 0.28 + 045 0.25 + 047 -0.13 4+ 0.68  -0.02 + 047 -0.12 &+ 0.70

n 13 0135 0135 12456 4 12456

0394053 033 +£047 054+ 042 041 £053 063 £ 026 031 £ 056  0.63 + 0.25 028 £ 036 001 043 -0.13 £ 087 037 £ 035 -033 £ 075 -0.11 £ 062 -027 £ 0.65

3 05 05 456 456 6

S

¥ 0524038 037 £090 065+ 023 0634027 044 £ 060 038 + 047 053 £ 043 0.14 + 052 004 + 050 002 £ 068 -0.14 &= 0.83  -0.26 4= 0.68 -0.24 + 0.84 -0.34 £ 0.96

q 1 16 1

<051 4 0.60 0.38 £ 0.48 0.63 + 0.35 0.70 £+ 0.25 041 + 0.65 0.54 &+ 0.39 0.51 + 0.33 -0.09 4 1.07  -0.06 & 0.43 0.01 + 044  -0.14 & 0.61 -022 4+ 0.83  -0.04 + 0.58  -0.24 + 0.68

< 46 4 46 6 236 23

Al

¥ 0.68 4 030 0.60 £ 0.32 0.61 &+ 0.31 0.57 + 0.33 0.39 + 042 036 £+ 1.25 0.39 + 0.57 0.19 + 0.52 0.09 + 0.44 -047 + 145 -026 + 072  -0.04 £ 065 -0.09 £ 072 -0.14 £ 0.61

o 1 1 1 456 35 3456

¥ 0.56 4 0.39 0.37 £ 0.55 043 + 0.57 0.50 + 0.46 0.53 + 0.37 0.62 + 0.20 0.52 + 0.39 0.14 + 037 0.09 + 0.61 0.14 + 0.55 -0.14 £+ 071 -0.17 £ 050 -020 + 0.60  -0.16 + 0.49

=3 2 2 2 2 2 1456 46 46

0304+ 135 054+ 039 0024158 047 £052 029+ 136 036+ 1.00 054 + 0.35 0.06 £+ 0.62 -026 + 054 -001 £ 057 000 + 051 -041 £ 080 -033 £ 086 -041 £ 0.75

o] 135 16 3456 46 6

059 + 039 034 +£049 058 £ 034 046 + 054 048 £ 045 044 £+ 048 047 + 0.39 027 + 039 007 + 033 000 £ 060 -033 £ 1.19 -040 + 086 -0.12 + 0.61  -0.35 £ 0.62

2 3 36 146 456 146

el

0524028 030 £072 050042 0294057 037 £048 038+ 062 0324053 0.02 £ 057 0344075 0064052 014 = 073 -055 £ 1.06 -0.71 = 1.85 -0.70 & 1.33

ke 3 345 13456 456 3456 5

058 £ 0.25 0.58 + 0.33 0.31 & 0.68 0.38 + 0.46 0.46 + 0.36 0.31 4 0.82 048 + 0.34 0.27 + 039 0.09 + 0.34 0.12 + 0.34 -022 + 076  -048 £+ 1.05 -0.63 £ 0.70  -0.64 £ 1.60

S 346 36 36 45 456 5 456

024 4 1.34 0.60 + 0.23 0.35 + 0.60 0.16 + 0.65 0.24 + 045 041 £+ 059 0.07 + 0.88 -027 + 063  -023 + 044 -028 + 1.11  -0.09 £+ 0.56 -0.61 £ 056 -1.62 4+ 2.57 -0.52 & 0.51

0 5 356

047 £ 032 0.47 £ 0.30 0.50 + 031 0.18 + 1.04 0.42 + 0.48 0.28 + 0.52 042 + 041 -038 £ 1.06 -042 4+ 0.84 -0.17 + 091 -091 £+ 1.77 -0.67 £ 130 -1.07 + 146 -1.06 + 1.61

2 4 2 45

bl

°

0.38 £ 0.41 025 050 -0.11 £ 1.40 021 £ 0.61 0.18 £ 0.61 038 £ 0.87  0.29 £ 0.56 048 + 096 047 225 -0.73 £208 -0.16 £ 081 -1.01 £ 1.75 -124 + 1.79  -0.66 + 1.34

max_tr:

Q
= 0.17 £ 0.73 0.26 £ 0.37 0.41 0:!:40.48 0.490:(:40.60 0.01 £ 0.78 0.36 :‘l’: 0.44 025 £ 0.54 -0.10 £ 0.47 -0.074:5 049 -023 £053 -026£079 -038£059 -028 £ 050 -045 £ 0.88
el

= 034 £ 043 0.39 £ 0.39 033 £ 0.36 0.36 £ 0.49 033 £ 041 027 £ 0.68 0.25 £ 0.60 -0.15 + 058  -0.08 + 052 0.00 £ 0.64  -0.03 S: 0.63  -0.16 3: 048  0.05 :?: 0.63  -0.29 + 0.67
2

3 0.18 £ 0.99 035 £ 0.51 042 £ 050 042 £ 0.65 0.04 £ 1.13 032 & 047 0.16 £ 1.00 -0.01 & 0.61  -0.06 = 047 0.173;‘:50?39 -0.07 £ 057 -027 £ 071 -025 £ 1.04 -0.25 £ 0.66
v

= 0.16 £ 0.99 0.17 £ 070  -0.12 & 1.02 0.302i60.46 0.01 £ 0.68 0.08 + 0.61 -0.24 £+ 1.07 0.264160.42 0.214:160.35 0.344:160.31 0.00 + 1.38 032 + 091 -028 + 0.85 -0.16 & 0.75
=3 4 4 456 456 4 4 0456

000+ 063 -001 £ 067 020 £ 041 0.14 £ 047  -057 £ 129 -0.06 £ 0.50 -0.48 £ 1.33 -0.12 £ 0.63  0.16 £ 0.40 029 £ 029 0.13 £ 049 025 £+ 098 -0.08 = 0.89 -0.04 & 0.62
v

& 0.13 i 0.67 008 £ 052  -0.12 + 132 -0.03 £ 093 -037 £ 1.69 -0.12 £ 072 -0.55 £ 1.68 0.13 £ 045 0.36 £ 0.28 0.10 £ 0.46 0.16 £ 047 007 £ 0.84 006 £ 0.74  -0.10 & 0.87
2

a 0.18 £ 0.65 021 £ 0.52 0.40 £ 0.31 0.30 £ 0.54 025 £+ 0.79 031 £ 043 027 £ 0.63 0.18 &+ 0.66  0.18 + 045 -0.06 £ 090 0.13 £ 067 -0.07 &+ 1.08 -0.01 £ 0.66 -0.05 £ 1.01
0

S 0.422i50.26 029 £ 0.36 0.18 £ 046  -0.01 = 1.00 033 £ 0.37 0.15 £ 0.72 0.31 £ 045 0.25 £ 0.46 0.30 :?: 0.37 0.13 £ 0.65 0.05 + 0.71 -0.26 + 140 0.16 £ 039 -0.14 £ 0.93
§ 0.08 £ 0.59 0.01 £ 0.62 0.20 j: 033 012 £ 082 0.5+ 052 0.02 & 0.78 0.19 £ 0.38 0.254j5:60.44 0.224i60.45 -0.22 + 233 0.095:{:60.47 -0.26 4+ 1.11  -0.47 &+ 134 -041 £ 1.33
v

&« 020 £ 032 -047 240  0.07 £ 0.70 0.04 £ 1.21 0.26 £ 0.36 0.13 + 0.58 0.10 £ 0.86 0.08 :jt 0.74 0.19 :5t 0.56 0.12 :SE 0.62 0.12 :jt 048  -0.16 £ 0.87  -0.46 £ 0.90  -0.06 ft 0.74
2 23 3 3 46 46 46 456

025 + 037 0.09 £ 047  -0.04 £ 069 -036 £ 1.41 023 £ 0.36 0.11 £ 0.93 021 £ 037 0.19 £+ 083  -005+ 1.13  0.05 & 049 0.14 £ 054 -1.17 £ 220 045 & 133 -0.78 & 1.68
v

- 0.14 £ 058 -0.09 + 049 025 :1t 0.44 015 £0.52  -0.04 =122 0.19 :It 047  -043 £ 191 -0.41 + 2.04 0.204i60.35 -04134:5 0.83 0.122:160.58 -0.62 = 0.96 -0.194:ttS 081  -0.77 £ 1.28
Q

¥ 031 £ 0.65 034 £ 0.52 037 £ 0.58 0.35 £ 0.55 042 £ 029 036 £ 042 0.40 £ 0.35 0.1%) 4:!:5 3.55 -0.06 4:!: 118 -023 +0.73  0.07 4:!:6 056  -0.52 4+ 0.88 -0.18 =079  -0.57 &£ 091
v

s 040 £ 043 0.38 £ 0.32 0.52 i 0.33 0.39 £ 045 0.55’:150.23 037 £ 0.51 0.52 i 0.25 0.142160.47 -0.05 + 086  -0.45 + 1.05 -0.13 £ 0.82 -047 £ 094 -063 £ 1.95 -0.39 £ 0.88
E 0.65 ]:t30.23 043 £ 035 0.63 I:EO.ZO 044 £ 047 0.54 £ 0.52 0.58 :IE 0.27 053 £ 0.52 0.44 ‘11 021  -0.09 + 056 -0.22 &+ 0.60 -0.074:5 078 -041 £ 074 -040 £ 121 -049 £ 097
v

5 0.53 £ 0.28 046 £ 0.42 0.63 :jt 0.19 048 £ 0.40 044 £ 0.63 043 + 0.67 0.50 £ 0.33 -0‘03435 040 -020 + 055 -042+076 -0.11 ft 041  -051 £ 094 -043 £ 066 -0.39 £ 0.85
Q

a 0.58 £ 0.31 047 £ 0.40 0.221 :3t40f§19 0.58 £ 0.28 0.50 £ 0.55 0.46 £ 0.87 048 £ 0.68 -0.115:5 056  -020 = 046  -0.19 £ 051 -024 £ 069 -0.23 6:t 053  -043 £ 075 -0.44 £ 0.69
el

@ 045 £ 0.76 040 £ 0.54 048 £ 0.41 0.49 £ 0.37 0.53 + 0.38 041 + 0.36 0.48 £ 0.44 -0‘0182:(‘:‘ f}.32 -0.44 4+ 0.64  -0.36 + 0.40 70.145 150,37 -0.26 + 050  -0.56 + 0.72  -0.19 j: 0.41
2

a 0.5’73:(:5((15.21 0.47 j: 0.29 0.45 j: 0.59 0.12 £ 0.74 043 £ 042 0.43 j: 0.31 0.40 £ 045 -0.19 3: 0.56 -0.36 + 059 -026 + 055 -032 £ 065 -032+£ 063 025+ 064 -041 £ 0.65
v

- 049 £ 0.38 046 £ 0.25 0.61’3&50.25 046 £ 031 0.6?1 ]:t33.17 041 + 041 0.62’150.24 —O.OSZ:E 0.55 -(l.l)lzzé 030  -030 + 054 -025 £ 048 -0.14 £ 039 -0.15 £ 050 -0.11 £ 0.35
Q

e 0.42 + 0.65 0.36 :4t 0.28 0.424j:60.29 0.35 j: 0.29 0.16 £ 0.42 029 £ 0.34 0.18 £ 0.46 »0.071:5 045 -023 £ 048 -0.16 :6E 0.32 -0.05435 031 -022 ft 033 -026 + 073 -0.43 £ 051
v

© 0.24 £ 0.56 0.11 £ 0.69 0.40 1i40.39 022 £ 0.56 0.14 £ 0.52 025 + 041 0.19 £ 0.50 -0.31 £ 0.64 -0.1: 160,59 -O.If 160.48 -0.39 £ 063 -0.65 & 082 -0.56 + 055 -0.61 £ 0.78
=) 346 3 23456 23456 3456

© 047 £ 019 0.16 £ 0.81 035 £ 047 0.18 £ 0.62 0.26 £ 0.45 0.22 £ 0.71 028 £ 0.38 0.13 £ 037 0.16 + 031  -0.10 £ 031  -046 £ 0.61 -045 4+ 047 -037 + 059 -043 £ 053

In many cases, a correlation can be observed between a it is generally observed that models perform better with fewer
higher number of requests and a lower R? metric value. While requests. Additionally, the standard deviation tends to increase
there are some instances where the value fluctuates suddenly, significantly with higher request numbers. Methods based on
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Fig. 5. Metric MAE over the number of requests for maximum and average transceivers.
graph structures show a noticeable improvement over other TABLE III

reference methods.

When estimating the average number of transceivers, the
DG-META method consistently achieves the best metric value
for both topologies, often with a statistically significant advan-
tage over other approaches. Specifically, DG-META performs
particularly well with request numbers ranging from 100 to
325. However, in the case of estimating the maximum number
of transceivers, the advantage of DG-META becomes less
pronounced, as it performs similarly to the MDG-META method
for lower numbers of requests in the US26 topology.

Experiment 2: In the next step, methods based on graph
representation were tested using the complete set of available
simulations. Due to the characteristics of the data, the variance
of the objective function is significantly increased. This is also
evident in Figure 5, where the MAE of graph-based models
increases as the number of requests grows. As a result, the
R? metric values are omitted in the following report, as they
often approach 1.0, making them less useful for assessing the
model’s actual quality.

Therefore, the results of Experiment 2 are presented using
the MAE and AOBT metrics in Table III. As seen with the
US26 set, the lowest error is consistently achieved by MDG-
META. However, for the Euro28 set, it cannot be definitively
concluded that MDG-META outperforms DG-META, although
the average values for both MAE and AOBT across both
objective functions tend to show lower errors. It is also worth
noting that all models achieve lower errors when estimating
the average number of transceivers. Finally, except for the
max_transceivers case in the US26 topology, the AOBT error
does not exceed 200, which is an excellent result from a
practical standpoint.

It is important to note that the error obtained is significantly
lower compared to the errors observed at higher values of
#requests. This effect is likely due to the increase in the

METRIC MAE AND AOBT FOR MAXIMUM AND AVERAGE TRANSCEIVERS.

metric

topology

GAM-CONN GAM-MEAN

DG-META

MDG-META

avg_transceivers

2

12

12

Euro28 6.62 £ 0.75 1061 %+ 1.12 4.04 £ 034 3.90 + 031
MAE 2 12 123
Us26 17.15 £ 148 2201 4 1.33 7.25 + 044 6.17 £ 026
2 12
Euro28 49826 + 274.17 873.53 + 473.06 12049 & 37.66  101.01 + 26.81
AOBT 2 12 123
Us26 1630.81 4 540.46 2251.18 4 549.54 284.64 & 49.01  180.13 & 24.60
max_transceivers
2 12 12
Euro28 9.17 4 0.85 13.68 % 0.74 6.68 £ 0.37 6.52 + 036
MAE 2 12 123
Us26 2121 + 130 2598 4 1.44 11.74 4 0.56 9.69 4 034
2 12 12
Euro28 666.52 + 427.47 99216 4 207.76  197.23 + 37.97 17946 + 37.06
AOBT 2 12 3
Us26 2404.49 + 575.63 2895.53 4= 837.82 601.69 + 7837  341.02 4 40.59

number of observations in the training set, which helped
reduce the overall error of the models.

The results from the experiments lead to the conclusion
that meta-features extracted from the graph representation
enable predictions that, while subject to some error, remain
consistent with the actual values. Therefore, these predictions
can successfully be used to estimate transceiver utilization for
the following day, offering a viable alternative to running a
full simulation.

In response to RQl, we showed that the graph methods
improve the prediction for a given number of #requests.
Furthermore, in response to RQ2, we can say that the proposed
methods can be used effectively for a variable number of
#requests.

To further investigate the advantages of the proposed
methodology, we conducted a time analysis comparing simula-
tion times with the estimation times. The results are presented
in Figure 6. Since the inference time of the regression models
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Fig. 6. Time complexity comparison of simulation times and meta-features extraction.
is relatively low (as discussed in Section VI-B), the main
factor contributing to the complexity of the proposed methods
is the feature extraction process. This is particularly relevant ﬁ
for MDG-META and DG-META, while GAM-CONN and GAM-
MEAN use existing graph representations. ¢

In the presented results, we observe that simulation time s ﬂ E E
(Figure 6a) increases exponentially, while feature extraction @@f PN T
time (Figure 6b) rises more steadily. The time difference o 58 o o S R
grows significantly with higher numbers of requests in the o+ B EEEE i
simulation. To better analyze the complexity of meta-feature
extraction, we present each property separately in Figure 6¢ B oo R o o o2 547 o0 6
(note the logarithmic y-scale). From this, we see that the ﬂ
key factors contributing to the accumulated time are average AYARPSRIITENRRS - o2 oo o] o R s 0
node connectivity and node connectivity, which are calculated
using the Edmonds-Karp algorithm, resulting in an O(|V||€|?) I
complexity. g

To explore potential reductions in time cost for MDG-
META and DG-META feature extraction, we examine Figure 7,
which shows the correlation between features and target func-
tions. It is evident that some features strongly correlate with
one another and with the objective functions. This suggests
that reducing the meta-feature pool could lower the overall
computational complexity. However, this reduction may also
compromise model quality, highlighting a potential area for
further research into feature selection or the development of
hybrid models.

VII. CONCLUSIONS

In this paper, we tackled the problem of estimating the op-
eration of multilayer network optimization with time-varying
traffic expressed as the forecasted transceiver utilization. The
proposed approach allows the operator to avoid conducting full
simulations of the network operated by a chosen algorithm in
various traffic conditions. Instead, our methodology allows for
the prediction of the average and maximum number of active
transceivers just from the input set of time-varying connection
requests. Next to the algorithm effectiveness examination in
a realistic setting of resource overprovisioning, the obtained
knowledge can help the operators assess the expected energy
usage and operational costs.

We proposed a scheme employing various graph meta-
features extracted from created connection request graphs.
Through broad experimental analysis, we demonstrated the

Fig. 7. Correlation matrix of meta-feautres with target functions.

effectiveness of the proposed approach. First, we showed how
the proposed methods of extracting graph-based representa-
tions produce better results than the reference methods based
on flow analysis for a constant number of connection requests.
Furthermore, we demonstrated how the graph-based repre-
sentations can also be applied to simulations with a variable
number of connection requests, providing feasible estimations.
Considering the conducted literature review, this work is the
first attempt to the estimation of multilayer network operation
with time-varying traffic. The results obtained are very promis-
ing, emphasizing the applicability of the proposed approach
for a broader assessment of network optimization algorithms,
considering more traffic conditions. Thus, our proposal allows
a broad "what-if" analysis, as it is often performed in the
context of network digital twins [49], [50]. Furthermore, our
methodology allows studying the effectiveness of algorithms
without the typical artificial network oversaturation to achieve
bandwidth blocking, expressing the network performance as
the number of active transceivers. However, the proposed
approach can be extended to estimate other metrics.
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In the future, we plan to explore the feature selection for the
proposed methods based on the conducted correlation analysis.
Furthermore, we aim to investigate the applicability of graph
neural networks for the studied problem. Finally, we intend
to research per-node transceiver utilization estimation and to
study the impact of network topology changes and traffic
pattern variations.
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