
Greediness is not always a vice: Efficient discovery algorithms for
assignment problems

Downloaded from: https://research.chalmers.se, 2025-09-25 13:40 UTC

Citation for the original published paper (version of record):
Duvignau, R., Gillet, N., Klasing, R. (2026). Greediness is not always a vice: Efficient discovery
algorithms for assignment problems. Discrete Applied Mathematics, 378: 65-86.
http://dx.doi.org/10.1016/j.dam.2025.06.020

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Discrete Applied Mathematics 378 (2026) 65–86

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Greediness is not always a vice: Efficient discovery algorithms

for assignment problems
Romaric Duvignau a,∗, Noël Gillet b, Ralf Klasing c

a Dept. of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
b Univ. Orléans, INSA Centre Val de Loire, LIFO UR 4022, FR-45067 Orléans, France
c CNRS, LaBRI, Université de Bordeaux, Talence, France

a r t i c l e i n f o

Article history:
Received 22 April 2024
Received in revised form 13 June 2025
Accepted 18 June 2025

Keywords:
Discovery algorithms
Query complexity
Assignment problem
Greedy algorithms

 a b s t r a c t

Finding a maximum-weight matching is a classical and well-studied problem in com-
puter science, solvable in cubic time in general graphs. We consider the specialization
called assignment problem where the input is a bipartite graph, and introduce in this
work the ‘‘discovery’’ variant considering edge weights that are not provided as input
but must be queried, requiring additional and costly computations. We develop discovery
algorithms here to minimize the number of queried weights while providing guarantees
on the computed solution. In this work, we first show the inherent challenges of
designing discovery algorithms for general assignment problems. We then provide and
analyze several efficient greedy algorithms that can make use of natural assumptions
about the order in which the nodes are processed by the algorithms. Our motivations for
exploring this problem stem from finding practical solutions to a variation of maximum
weight matching in bipartite hypergraphs, a problem recently emerging in the formation
of peer-to-peer energy-sharing communities.
© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the most studied problems in computer science and discrete mathematics, the assignment problem, has a very
simple formulation, yet there are a plethora of solutions for its many variants and possible additional constraints or
optimization aims. Using the same nomenclature as used in the rest of the paper, the assignment problem consists of
pairing the members of a first set P , often referred to as Producers or agents in the literature, with members of a second
and disjoint set C , often referred to as Consumers or tasks. The target is to obtain a one-to-one correspondence, i.e., each
producer can be assigned to at most a single consumer and vice versa. Moreover, as not all producers may be able to serve
any particular consumer (and vice-versa), some pairs are considered non valid.1 For each possible pair (p, c) ∈ E with
E ⊆ P × C , (p, c) is associated with a positive weight w(p, c) that represents how much gain one can obtain if producer
p ∈ P is paired with consumer c ∈ C .

The assignment problem consists then in finding a one-to-one assignment M ⊆ E of the consumers to the producers in
order to maximize the total gain w(M) =

∑
(p,c)∈M w(p, c), slightly abusing the w-notation. This is a well-studied problem

where the Hungarian algorithm [20] computes an optimal solution in time O(n · m + n2 log n) for n = min{|P|, |C |} and

∗ Corresponding author.
E-mail addresses: duvignau@chalmers.se (R. Duvignau), noel.gillet@univ-orleans.fr (N. Gillet), ralf.klasing@labri.fr (R. Klasing).

1 A variant of the problem can set a weight of 0 for invalid pairs but we rule out such null weights in our formulation. The reason is that our
objective is to query as few weights as possible, and weights 0 are assumed to be already encoded in the input edge set E ∈ 2P×C .
https://doi.org/10.1016/j.dam.2025.06.020
0166-218X/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2025.06.020
https://www.elsevier.com/locate/dam
https://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2025.06.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:duvignau@chalmers.se
mailto:noel.gillet@univ-orleans.fr
mailto:ralf.klasing@labri.fr
https://doi.org/10.1016/j.dam.2025.06.020
http://creativecommons.org/licenses/by/4.0/

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Table 1
Approximation ratios shown in this work for the one-to-one assignment discovery problem over input G = (P ∪ C, E), with n = min{|P|, |C |} and
m = |E|. Each bounded ratio is shown to be achievable (upper bound) by the corresponding algorithm and for each, we show there exist instances
(input graph and assumption parameters) where the ratio is reached (lower bound). Query complexities are shown in Propositions 6 (Alg. 2), 10
(Alg. 3) and 16 (Alg. 4), where ℓ ≥ 0 is a parameter of the matching algorithms.

Algorithm Opt. Greedy Alg. 1 Alg. 2 Alg. 3 Alg. 4
Query Complexity m = |E| ≤ m 0 ≤ (ℓ+ 1) · n ≤ 3 · (ℓ+ 1) · n

No weight assumptions ∞
a

β−strong P-order (Assumption 1) 1+ βb
∞

i

γ−strong C-order (Assumption 2) 1+ γ c
∞

i

‘‘Strong orders’’ (Assumptions 1 and 2) 1 2 min{1+ β, max{1, β + γ }} d max{1, β + γ }e 2 ·max{1, β, γ }h

Ass. 1 + γℓ-ℓ-weak C-order (Ass. 3) 1+ βb
∞

j β +max{1, γℓ}
f 2 ·max{1, β, γℓ}

h

Ass. 2 + βℓ-ℓ-weak P-order (Ass. 4) 1+ γ c
∞

j γ +max{1, βℓ}
g 2 ·max{1, βℓ, γ }

h

‘‘Weak orders’’ (Assumptions 3 and 4) ∞
k 2 ·max{1, βℓ, γℓ}

h

a Proposition 3;
b Propositions 4 and 5;
c Remark 2 with Alg. 1 running over input G = (C ∪ P, E);
d Remark 3;
e Propositions 6, 8, and 11;
f Propositions 9 and 12;
g Proposition 13 on G = (C ∪ P, E);
h Propositions 16 and 17;
i Remark 4;
j Remark 8;
k Propositions 14.

m = |E|; see among others [23] for unbalanced assignment problems and [7] for linear-time bounded-approximation
algorithms. The problem can be alternatively formulated as finding a maximum-weight matching in the bipartite graph
G = (P ∪ C, E), with the two formulations being equivalent and used interchangeably hereafter for convenience.

A ‘‘discovery’’ problem is any optimization problem where the information that is the basis of the optimization is not
provided as initial input but must rather be discovered during the algorithm’s execution. We extend this notion of discovery
algorithms, introduced among others in [6,24], to assignment problems. We shall study in this work the Maximum-Weight
Matching Discovery (MWMD) problem that consists in finding a Maximum-Weight Matching (MWM) using weights that can
only be obtained through explicit calls to a computationally-expensive weight function. We denote by query complexity
the number of inspected weights used by a given algorithm to produce its solution. Since one can easily show that in
general, finding the MWM requires the computation of all possible weights in the worst case, we aim to investigate in
this paper if approximation algorithms can reach a bounded approximation ratio while requiring the calculation of only
an asymptotically subquadratic number of weights in n. Our methods apply to the assignment problems (i.e., bipartite
graph matchings) and can be further extended to solve a bipartite version of the hypergraph matching problem with
interesting practical applications in energy systems [8,9].
Contributions. Recall the greedy matching procedure: consider the edges one by one in decreasing order of weights and
add the current edge under consideration whenever both its endpoints are still available at that step of the algorithm. It is
a folklore result that the greedy matching algorithm produces a 2-approximate matching Mg compared with the optimal
algorithm, i.e., we have w(Mopt) ≤ 2 · w(Mg) where Mopt is the MWM on the input. Note that both the greedy and the
optimal matching (calculated using for instance the Hungarian algorithm) require to inspect the value of all the weights
of the input to compute their solution. The argument for the bounded approximation bound relies on two elements: (1)
the order in which the greedy algorithm considers the edges (from largest to smallest weights) and (2) the fact that for
each edge e of Mg , if e is not present in Mopt then it may only be ‘‘replaced’’ by two other edges in Mopt , from which one
deduces the approximation bound of 2.

Our main contribution is to propose a generalization of the above argument to edge sets that are only partially ordered,
hence allowing to deduce approximation bounds using problem-dependent heuristic orders on the vertex sets and this way
avoiding to inspect the values of all the weights of the input. In this work, we introduce the notion of ‘‘order oracles’’ (cf.
Section 2.2) that are capable to order nodes in specific orders concerning the weights of the edges in their neighborhood
without requiring any computation of the edge weights. This ordering assumption allows us to design efficient greedy
algorithms with bounded approximation ratio and requiring to compute only up to O(n) weights when the vertices of
each set are processed in a well-chosen heuristic order. We summarize our main results in Table 1. (‘‘Opt’’. is an optimal
matching algorithm, ‘‘Greedy’’ refers to the classical greedy algorithm as aforedescribed, while the other algorithms are
the ones developed and analyzed in this work. Parameters β , γ , γℓ, βℓ control the quality of the heuristic orders for
processing of the nodes of the input sets P and C , and are respectively specified in Assumptions 1, 2, 3 and 4.)
66

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
A short and preliminary version of our work appears in [11]. The present work extends [11] and lifts an additional
simplifying assumption about the heuristic orders (i.e. that all order parameters β , γ , γℓ, βℓ are greater than one), adds a
novel and more complex greedy procedure (Alg. 4) and its analysis, achieving a bounded-approximation using only weak
orders and a linear number of weight queries, considerations on edge orders and instantiating order oracles as well as
further details concerning extending our algorithms to the (bipartite) hypergraph matching problem.

Motivations. In the context of Peer-to-Peer energy sharing [10], the Geographical Peer Matching (GPM) problem is
introduced in [8] to efficiently compute a matching of the peers targeting the maximization of a global objective (i.e., the
total cost-savings). It relies on both geographical information about the peers as well as their local matching preferences,
and seeks to build an assignment of the peers into groups of size up to k as advocated by the application. Building on
the discovery algorithms presented and analyzed in this work, we can obtain bounded-approximation algorithms for the
GPM problem that run in linear time and use only a linear number of weight calculations, under certain assumptions
occurring in practice (see Section 4.2).
Related work. Discovery algorithms have been studied in the literature for various problems on weighted graphs.
However, as far as we are aware, they have not been investigated so far for the maximum-weight matching problem. For
any optimization problem (a.k.a. maximization or minimization problems), considering that the solution of the discovery-
variant of a given problem (i.e., assuming part of the input is obtained on the fly) is also a valid solution to the original
problem where all inputs are provided at the start of the algorithm, the time complexity required to reach an optimal
solution is always at least as large as the one for the original non-discovery problem.

Szepesvari [24] introduced the Shortest Path Discovery Problem (SPDP), in which the task is to discover in a given edge-
weighted graph a shortest path for fixed source and target nodes. An algorithm is proposed that is shown to use a small
number of queries. Experimental results on real-world instances are also presented. Caro et al. [6] generalize the SPDP
to the Optimal Path Discovery Problem. First, they consider a broader class of cost functions, and relax the constraint that
an optimal path has to be discovered, allowing the discovered path to be an α-approximation. Second, whereas in [24]
the performance of algorithms was measured with the number of queries, Caro et al. [6] propose a more fine-grained
performance measure, called the query ratio, i.e., the ratio between the number of queried edges and the least number of
edge values required to solve the problem. They prove a 1+ 4/n− 8/n2 lower bound on the query ratio and present an
algorithm whose query ratio, when it finds the optimal path, is upper bounded by 2− 1/(n− 1), where n = |V |. Finally,
they implement different algorithms and evaluate their query ratio experimentally.

Erlebach et al. [16] consider the minimum spanning tree problem with queryable uncertainty. This concept refers to
settings where the input of a problem is initially not known precisely, but exact information about the input can be
obtained at a cost using queries. An algorithm with query ratio 2 is proposed in [16] for the minimum spanning tree
problem, and it is shown that this query ratio is the best possible among deterministic algorithms. In [15], the authors
extend the framework to cheapest set problems with queryable uncertainty that englobe previously studied problems such
as the minimum spanning tree, or the minimum matroid base problem under queryable uncertainty. For the cheapest set
problems with queryable uncertainty, the authors present an algorithm that makes d · OPT + d queries, where OPT is
the optimal number of queries required to solve the problem and d is the maximum cardinality of a feasible set in a
given instance. An algorithm with query ratio 2 for the minimum matroid base problem is also provided in [15]. In [14],
algorithms for uncertainty problems are studied in which parallel queries are allowed. Round-competitive algorithms are
presented for sorting, selection, and for the minimum value problem. In [12], a survey on models and algorithms for
problems that access the input via queries can be found.

Another similar line of work considers the robust spanning tree problem with interval data. For a given graph with
weight intervals specified for its edges, the goal is to compute e.g. a spanning tree that minimizes the worst-case deviation
from the minimum spanning tree (also called the regret), over all realizations of the edge weights. This is an off-line
problem, and no query operations are involved. The problem is proved NP-hard in [1] while a 2-approximation algorithm
is given in [19]. Further work has considered heuristics or exact algorithms for the problem, see e.g. [25].

Regret minimization was also considered for other combinatorial optimization problems with interval data. Indeed,
for problems in P (including the assignment problem) there is a generic method to obtain constant approximations with
respect to the regret [19]. On the contrary, this was shown not to be true in general for NP-hard optimization problem,
by Ganesh et al. [17]. For that reason they developed novel techniques for regret minimization of NP-hard optimization
problems, opening the door for a new and exciting research direction. The result is the first constant factor approximation
algorithm for the robust setting of NP-hard optimization problems, including the classical problems TSP on metric graphs
and Steiner Tree.

The network verification problem is that of establishing the accuracy of a high-level description of its physical topology,
by making as few measurements as possible on its nodes. This task can be formalized as a Network Discovery optimization
problem that, given a graph and a query model specifying the information returned by a query at a node, asks for finding
a minimum-size subset of nodes to be queried so as to univocally identify the graph. This problem has been studied with
respect to different query models, assuming that a node has some global knowledge about the network [2,3,5,13].
67

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 1. Examples of matchings: (a) Optimal with weight 23, (b) Greedy with weight 17, (c) Greedy-Local (Alg. 1) with weight 16, (d) Naive-Local
(Alg. 2) with weight 19; the 1-Greedy-Local (Alg. 3) algorithm outputs the matching (a) as well as the 1-Double-Greedy-Local (Alg. 4). Here, the
strong and weak ordering assumptions hold with β = 7/3, γ = 8, β1 = 0, γ1 = 3 and γ2 = 0.

Table 2
Symbols used throughout the paper.
 Symbol Definition Symbol Definition
 G input weighted graph G = (P ∪ C, E, w) V a vertex set, V = P ∪ C
 P a set of ‘‘agents’’ s size of P
 C a set of ‘‘tasks’’ q size of C
 E a set of edges (allowed agent-task pairs) m size of E
 M a matching of the edges n maximum matching size, n = min{s, q}
 w(e) weight associated with edge e ∈ E w(M) weight of the matching M
 σP an order over (or permutation of) P σC an order over (or permutation of) C
 A a matching algorithm ℓ a parameter of some matching algorithms
 β, βℓ parameters associated with σP γ , γℓ parameters associated with σC

Plan. In Section 2, we define the assignment discovery problem, show its inherent challenges and hence the need for
introducing order oracles to analyze the performance of discovery algorithms. In Section 3, we present several greedy
algorithms producing a matching without querying the totality of the weights, and analyze them relying on different
assumptions about the order in which the nodes are processed in regard to the weights of the edges. We further
complement the section considering orders on edges and how to instantiate order oracles using interval weights or an
approximation function in lieu of precise weights. In Section 4, we present how our algorithms extend to one-to-many
assignment problems, before concluding our work in Section 5.

2. Order oracles for the assignment discovery problem

2.1. Preliminaries

We adopt the following conventions for the notation used hereafter. Let G = (P∪C, E) denote a bipartite graph serving
as our input instance; P , a set of ‘‘agents’’ to match with ‘‘tasks’’ with s = |P| the number of considered agents; C , a set
of tasks with q = |C |; E ⊆ P × C the set of possible edges with (p, c) ∈ E if the task c can be assigned to the agent p
and m = |E|; w(e) ∈ R+ for e ∈ E is the weight of the edge e; n = min{|P|, |C |} is the maximum size of a matching in
G. We slightly abuse the w notation so as to write w(p, c) to denote as well the weight of the edge (p, c) and w(M) for
the weight of the matching M ⊆ E, i.e., w(M) =

∑
e∈M w(e). Refer to Table 2 for a quick reference to the definition of the

symbols used throughout the paper.
An isolated edge is any edge without any adjacent edges in G, i.e., e = (p, c) is isolated if ¬(∃(p, c ′) ∈ E, c ′ ̸=

c ∨ ∃(p′, c) ∈ E, p′ ̸= p). In the following, we assume that all weights are strictly positive as edges with negative or
zero weight are assumed to be removed from the considered input graph. The query complexity of an algorithm A is the
number of weights A inspects,2 in the worst-case in order to calculate its output. Examples of matchings are provided in
Fig. 1 with the discovery algorithms computing them being defined in Section 3.

Definition 1. For α ≥ 1, we refer for a given matching algorithm A as being α-approximate if and only if for all possible
inputs G ∈ G of A, the output matching of A denoted MA(G) has weight at least 1/α of the optimal matching Mopt (G) of
G, i.e., ∀G ∈ G, w(Mopt (G)) ≤ α ·MA(G).

We have chosen a weighting function w taking values in R+, however, all our results can be shown to also apply when
w is restricted to integer weights as our arguments only rely on weight orders and bounds rather than the actual values.

2 We use hereafter interchangeably the terms inspect, discover, query and compute for the same action of checking the value of the weight w(e)
of one of the input edges e ∈ E. Because such weight can easily be memorized by the algorithm, we only account for the first inspection of w(e).
68

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Hence, if not explicitly stated, w can be restricted to take only integer values. To be more precise, all our algorithms work
fine with integer weights but we have used rational weights for some graph instances within the lower bound arguments,
hence a simple scaling of all weights will entail an argument that is valid for integer weights as well.

2.2. The need for order oracles

Lower bounds for the number of discovered edges. We first show that, without additional assumptions, any algorithm
requires in the worst case the computation of all possible weights in G (discarding isolated edges) in order to reach
a bounded approximation ratio. Note if G has isolated edges, all such edges can be added safely without computing
their weights and we can assume that the considered algorithms rather start with G′, the graph obtained by stripping
all isolated edges from G. Let us first observe the following simple result that restrains the edges that are not inspected
when producing a matching for any input graph (not necessarily bipartite).

Lemma 1. Let α ≥ 1. For any input graph G, any α-approximate matching discovery algorithm A must include in its output
matching all the edges of G whose weight is never inspected by A.

Proof. Let A be an α-approximate matching discovery algorithm, G = (V , E, w) be an input graph, and M the matching
computed by A over G. Suppose there exists e ∈ E, e ̸∈ M and e’s weight is never queried by A while calculating M .
Since w(e) is not queried by A, it can be arbitrarily large, as for example w(e) = α′

∑
e′∈E\{e}w(e′) with α′ > α. Hence,

any matching of G including e is at least α′ better than any matching not including it, implying A is not α-approximate
in this case. □

One may notice that if a matching discovery algorithm A greedily adds an edge e to the output matching (after
inspecting its weight or not), then the weights of all the adjacent edges to e (i.e. those edges sharing an endpoint with e)
must have been inspected before adding the edge e to the matching. This is due to the impossibility for A to add them
later to the matching due to its greedy decision concerning e and the previous lemma (an edge whose weight is unknown
must appear in the final matching). Furthermore, we can also deduce from the previous lemma the following result.

Lemma 2. For any input graph G = (V , E, w) and α ≥ 1, any α-approximate matching discovery algorithm A examines at
least |E| − ⌊ |V |2 ⌋ edges to compute its solution.

Proof. First note that for any matching M of the edges of G, any edge e ∈ M of the matching necessarily blocks two
vertices of V from being used in the other edges of M \ {e}, thus |M| ≤ ⌊ |V |2 ⌋. Now, applying Lemma 1, any edge that is
not inspected by A must also be included in the output matching MA(G), hence at most ⌊ |V |2 ⌋ edges are not inspected. □

Corollary 1. If |E| = Ω(|V |2), any bounded approximation algorithm must query Ω(|V |2) edges of the input graph
G = (V , E, w).

For bipartite graphs of the form G = (P∪C, E), the lower bound on the number of queried edges may be slightly higher
than in Lemma 2, as any edge of the matching eliminates both a node in P and one in C , entailing |M| ≤ min{|P|, |C |}
and thus m− n edges must be queried by any bounded approximation matching discovery algorithm. Since our target is
to query at most a linear number of weights in n, there exists no such efficient discovery algorithm for general (bipartite)
graphs. We show hereafter an even tighter lower bound on m for some graph families. We clarify that the following result
appears already in [11] but the proof arguments of [11] are only explicit when G contains 2 edges.

Proposition 3. There exist unbounded graph families that do not admit a bounded-approximation algorithm A for maximum
weight matching such that A queries strictly less than m = |E| weights, for the input graph G = (V , E, w).

Proof. We give the proof for G being a star of m ≥ 2 edges, i.e., G = (P ∪ C, E) with P = {p} and C = {c1, . . . , cq} such
that E = {(p, cj) | 1 ≤ j ≤ q}.

Suppose there exists an α-approximate algorithm A that always avoids the computation of at least one weight
w(p, c) > 0 for an edge (p, c) in a given input graph Gw , i.e. the star graph G equipped with the weight function w.
Let w(p, c1) = α′ with α′ > α and w(p, cj) = 1 for 2 ≤ j ≤ q − 1 such that those edges also match in the same order
the edges whose weight is queried by A (because of symmetries in the star graph, this order is only dependent on A).
Hence, the edge (p, cq) is the edge that is never discovered by A. By Lemma 1, we know that A selects the edge (p, cq)
in its output. Hence, if e.g. w(p, cq) = 1, the matching produced by A is less than α times the optimal, that selects (p, c1)
here for a total weight of α′ > α. □
69

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Avoiding weight calculations. The above proposition claims that there exist arbitrarily large instances where a bounded
approximation algorithm has no other choice than inspecting the weight of all edges in the input graph. However, there
also exist instances where a bounded approximation can be obtained without checking the weights of all non-isolated
edges. Consider a path P4 made of 4 connected edges e1, e2, e3, e4 and the following algorithm. If w(e2) > w(e3) then
return {e4, argmaxe∈{e1,e2}w(e)} else return {e1, argmaxe∈{e3,e4}w(e)}. The algorithm always skips the calculation of one
of the weights, however, it always produces a solution that is 2-approximate (simply because in each case, it has already
accumulated at least half of the optimal without accounting for the non-queried edge). Using a disjoint union of P4 as
input, one can show that it is possible to avoid at least m/4 = Ω(|E|) weight calculations in some graph instances.
Order oracles. Proposition 3 essentially tells us that without additional assumptions, one may need to compute all m′
weights (where m′ is the number of non-isolated edges in the input). In this scenario, one can simply run the optimal
algorithm on G′ and add all isolated edges afterwards which obviously produces the optimal solution for G. To circumvent
the impossibility and aim to compute less than m′ weights, we assume that there exists an oracle that provides us with
the vertices of P and possibly of C in an order σP (or σC) which guarantees additional properties about the weights. The
matching algorithm A’s aim is to heuristically use σP and σC to avoid to query the weight of some of the edges. More
generally, one may assume that the oracle is powerful enough to provide the edges that the matching algorithm should
consider in an order σE over E so that edges with higher weights are generally considered earlier on. In such a case,
observe that for any given matching algorithm A, there exists an optimal order σA over E that optimizes the weight of
the matching produced by A (note, for some algorithms, all such orders may still produce the same result). Since our goal
is to design efficient matching algorithms that minimize the number of weight calculations, we cannot assume that edges
are processed by A in the order σA but rather the goal is to design an algorithm A′(σP , σC) which produces a matching of
bounded approximation ratio given the oracle’s orders, while calculating a hopefully limited number of weights. Assuming
there exist heuristic orders on P and C with interesting properties on the weight function stems from the settings of our
original motivating problems of peer matching among energy communities [8,9]. In the next section, we design greedy
algorithms exploiting σP and σC and show their approximation ratio. Our aim is to assume that σP and σC entail weak
properties on the weights but strong enough to be able to reach a sub-quadratic number of weight calculations in n while
keeping a bounded approximation ratio for the calculated matching. Observe that order oracles that provide us with a
total ordering of the edges are very strong, cf. Section 3.2.

3. Discovery algorithms for the one-to-one assignment problem

3.1. Order oracles for the vertex sets

3.1.1. The Greedy-Local Algorithm
Alg. 1: Greedy-Local Matching

Input : A bipartite graph G = (P ∪ C, E) with sets
P = p1, p2, . . . , ps and C = c1, c2, . . . , cq

Output: M , a matching of E;
// Initialization

1 M ← ∅ ;
2 foreach j ∈ C do
3 availablej ← True ;
// Greedy Matching Loop

4 for 1 ≤ i ≤ s do
// Array of available neighbors

5 N ← [1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej];
6 if N ̸= [] then
7 if |N| > 1 then
8 foreach j ∈ N do
9 bj ← weight(pi, cj);

10 j← argmaxj∈N bj; // Get best choicea

11 else
12 j← N[1]; // Retrieve the first value
13 availablej ← False ;
14 M ← M ∪ {pi, cj};
15 return M;

a In the case of a tie, take the smallest index j.

Alg. 2: Naive-Local Matching
1 for 1 ≤ i ≤ s do
2 N ← [1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej];
3 if N ̸= [] then
4 j← N[1] ;
5 availablej ← False;
6 M ← M ∪ {pi, cj};
7 return M;

Alg. 3: ℓ-Greedy-Local Matching
1 for 1 ≤ i ≤ s do
2 N ← [1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej];
3 if N ̸= [] then
4 if |N| > 1 then
5 N ← N[: ℓ+ 1]; // Keep the ℓ+ 1 first

values of the array N
6 foreach j ∈ N do
7 bj ← weight(pi, cj);
8 j← argmaxj∈N bj; // As in Alg. 1, line 10
9 else

10 j← N[1] ;
11 availablej ← False ; M ← M ∪ {pi, cj};
12 return M;

All 3 algorithms have the same input/output (as Alg. 1) and Alg. 2 and Alg. 3 start by the same initialization lines (1-3) as in Alg. 1.

Before studying more efficient discovery algorithms and to introduce important ordering assumptions and proof
arguments, we first study the following simple greedy procedure Alg. 1: the vertices of the set P are processed one by one
in the oracle’s order σP where σP was designed to have earlier vertices more likely to be associated with higher gains for
a given task than vertices appearing later in the order. Each time a node is processed, its full neighborhood is examined
70

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
and the available edge with highest weight is selected to be added to the matching. In the following, during the round
where p ∈ P is considered, we refer to an edge (p, c) as being available if the endpoint c ∈ C of the edge has not been
previously blocked by adding another edge (p′, c) to the matching at an earlier stage of the algorithm (which is greedy
and never reconsiders previous choices).

We show that this Greedy-Local matching algorithm achieves a bounded approximation ratio if σP = p1, . . . , ps orders
the vertices in P such that for any 1 ≤ i < j ≤ s, the weight of (pj, c) is upper-bounded by β times the weight of
(pi, c), for any c such that both (pi, c) ∈ E and (pj, c) ∈ E. In Proposition 4, we show that Alg. 1 produces a (1 + β)-
approximate matching under the aforementioned ordering assumption (Assumption 1, referred to in the following as
‘‘β−strong P-order’’). Note that if β ≥ 1, the approximation bound is weaker than the classical greedy matching which is
2-approximate. Also, whenever weights of the input graph may be equal to each other and β ̸= 0, the ‘‘best value’’ that β
may take is 1 (i.e. β ≥ 1 because any subsequent edge sharing an endpoint in C with an edge being processed may have
an equal or strictly smaller weight). Observe that without any ordering assumptions, Alg. 1 does not produce a bounded
approximation in general as its greedy decisions do not take the ‘‘future’’ into consideration, hence adding the edge (pi, c)
to the matching might remove the possibility to add a later-to-be-processed edge (pj, c), with j > i, and whose weight
might be arbitrarily large.

Assumption 1 (β−strong P-order). Assume that β ≥ 0 and P is processed in the order σP = p1, p2, . . . , ps, so that for any
pi, pj ∈ P with 1 ≤ i < j ≤ s and c ∈ C such that (pi, c) ∈ E and (pj, c) ∈ E, we have w(pj, c) ≤ β · w(pi, c).

We can remark here that assuming a P-order is a weaker assumption than in classical greedy ordering, in the sense
that, it does not require a total order over all the edges of G. Indeed, the property is only local to each node c ∈ C , for
which we can bound the error of adding an early (pi, c) edge in the matching, without requesting the weight of the next
(pj, c) edges for j > i. All the considered node orders in this section are thus only partial edge orders, see also Remark 6.

Proposition 4. Under β-strong P-order, Alg. 1 has approximation ratio at most 1+ β .

Proof. Let M be the matching obtained by an optimal algorithm and M ′ the one by Alg. 1. The main idea behind the
proof is based on the fact that if an edge e is present in an optimal matching M but not in the matching M ′ computed
by our algorithm, it implies that there is at least one adjacent edge e′ ∈ M ′ that blocks e from being selected into M ′. We
further demonstrate that there are at most two such blocking edges for any non selected edge of M .

Let f : M → M ′ be a function that projects the edges selected by the matching M onto the edges of M ′ defined as
follows:

(1) For e ∈ M , if e ∈ M ′, then f (e) = e.
(2) For e = (pj, c) ∈ M and e ̸∈ M ′, consider the two following cases.

(a) At the beginning of pj’s turn, e was not selected in M ′ because it was already blocked. That is, e was not among
the available edges considered by Alg. 1 during pj’s turn, and since pj has not been assigned to any node in C
yet, that means there exists a blocking edge (pi, c) ∈ M ′ with i < j that has been added to M ′ before pj’s round.
Define f (e) = (pi, c) then.

(b) The complementary case is that e was not selected in M ′ during pj’s turn but it was still available to pick (that
is, e was not blocked). In this situation, Alg. 1 picks the edge with highest weight locally and since (pj, c) ̸∈ M ′
there must be another edge (pj, c ′) ∈ M ′ with c ′ ̸= c with a higher weight that has been selected instead.
Define f (e) = (pj, c ′) in this case.

By exhaustion of possible cases, every edge of M has an image in M ′. We now prove that every edge (pi, c) ∈ M ′ has
at most two preimages under the function f . If (pi, c) ∈ M , the edge has only itself as preimage as this implies that there
exist no edges in M ′ such that (p′, c) ∈ M ′ with p′ ̸= pi nor (pi, c ′) ∈ M ′ with c ′ ̸= c as M ′ is a matching of the edges; in
this case, f is prevented from applying Cases 2a and 2b and only Case 1 remains. Now, consider (pi, c) ̸∈ M . We show that
there is only a single edge e ∈ M such that Case 2a applies so that f (e) = (pi, c), and the same for Case 2b. For Case 2a to
apply, e must be of the form (pj, c) with j > i and since M is a matching there cannot exist another edge in M containing
node c . Similarly, for Case 2b to apply, we need to have (pi, c ′) ∈ M and for the same reason there cannot be another
edge in M sharing the node pi.

Note that in Case 1, we have trivially w(e) ≤ w(f (e)); in Case 2a, we have w(e) ≤ β · w(f (e)) by direct application
of Assumption 1; in Case 2b, we have w(e) ≤ w(f (e)) as the algorithm chooses f (e) as the local maximum of unblocked
edges and both e and f (e) are then unblocked. Hence, we can now bound the total weight of the matching M by a sum
of weights from edges of M ′ as follows: ∑

e∈M

w(e) ≤
∑
e∈M,
f (e)=e

w(f (e))

  
+

∑
e=(pj,c)∈M,

f (e)=(pi,c),
i<j

β · w(f (e))

  
+

∑
e=(pj,c)∈M,

f (e)=(pj,c′),
c ̸=c′

w(f (e))

  
. (1)
Case 1 Case 2a Case 2b
71

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
As each edge e′ ∈ M ′ appears either only in the first sum, or at most once in each of the last previous two sums (see
discussion above) and 1+ β ≥ 1, we get:∑

e∈M

w(e) ≤
∑

e′∈M ′|∃e∈M,f (e)=e′

(1+ β) · w(e′).

As all weights are greater than zero, we get at last:

w(M) ≤
∑
e′∈M ′

(1+ β) · w(e′) = (1+ β) · w(M ′). □

As a remark, one subtlety in the above proof is that a blocked edge e may be lighter (i.e., of lower weight) than the
blocking edge e′ it is mapped with. If w(e) ≤ w(e′), one may wonder why e is part of the optimal solution instead of e′.
The intuition is that adding e′ is not necessarily a good global choice. Indeed, if e is in M but not in M ′, one can prove that
there is a second edge e′′ ∈ M which was not selected by M ′ and with a cumulative weight w(e) + w(e′′) greater than
w(e′) such that (a) either the blocking edge e′ is also directly blocking e′′, or (b) e′′ is at distance at most 2 from e. If no
such edge e′′ exists in M , then one can freely swap e′ and e in M and improve the optimal matching.

Following Proposition 4, if σP implies that for each c ∈ C , the local neighborhood of c is totally ordered by considering
the edges in the order provided by σP , i.e., σP is so that β ≤ 1, then Alg. 1 provides a better approximation than the usual
greedy algorithm.

We note that this first algorithm may already reduce significantly the number of computed weights, as blocked edges
as well as vertices left with a single available edge do not trigger weight computation during its execution. However, in
the worst case, the algorithm does end up computing almost all weights in G. For instance if n = s = q and G is the
complete bipartite graph, n+ (n−1)+· · ·+2 = n(n+1)

2 −1 = Ω(n2) weights are eventually calculated. Even worse, if one
strips from the complete bipartite graph all edges that will eventually get blocked by the greedy choices, then a single
weight calculation is actually saved.

Remark 1. There exist instances in which Alg. 1 computes Ω(n2) weights in the worst case.

The example input given in Fig. 2 illustrates that there exist instances where Alg. 1 reaches its proven approximation
bound.

Proposition 5. Under β-strong P-order, there exist instances where Alg. 1 has an approximation ratio of at least 1+ β .

Proof. Let us consider the example input given by Fig. 2 with P = {p1, p2} and C = {c1, c2}. Assumption 1 holds on this
input as we have w(p2, c1) ≤ β ·w(p1, c1) and this is the only pair of edges where it can apply. Alg. 1 selects as matching
the pair (p1, c1) as it is the local maximum of p1 with weight 1 (tying with (p1, c2) and tie resolution favors c1), to compare
with the optimal matching which selects the two other edges with total weight 1+ β . □

We introduce the following ‘‘γ−strong C-order’’ as the symmetric assumption analogous to Assumption 1 but reversing
the sets P and C .

Assumption 2 (γ−strong C-order). Assume γ ≥ 0 and that the set C is provided in the order σC = c1, c2, . . . , cq, so that
for any ci, cj ∈ C with 1 ≤ i < j ≤ q and p ∈ P such that (p, ci) ∈ E and (p, cj) ∈ E, we have w(p, cj) ≤ γ · w(p, ci).

Remark 2. If one runs Alg. 1 with input G = (C ∪ P, E), i.e., inverting the set P and the set C in its input, Assumption 2
entails that the output is a (1+ γ)-approximation over G = (P ∪ C, E) by following Proposition 4 with β = γ . Using the
same inputs, a lower bound for the approximation ratio of 1+ γ is also obtained by applying Proposition 5.

Observe that Alg. 1 is not symmetric in P and C and the output that is produced in Remark 2 is naturally different
than the one using the original inputs. Also, when both strong ordering assumptions hold, we can bound Case 2b in Eq.
(1) by γ · w(f (e)).

For γ ≥ 1, this swap worsens the bound but for γ < 1, we obtain an approximation ratio of max{1, β + γ }, the max
being due to the case β + γ being smaller than 1 (i.e., the bound coming from Case 1 is worse then). Combining with
Proposition 4, which also applies here, leads to the following result.

Remark 3. Under both assumptions β−strong P-order and γ−strong C-order, for any β > 0 and γ > 0, Alg. 1 reaches
a min{1+ β,max{1, β + γ }} approximation.

Let us note that, according to the example used in Proposition 5, the above ratio is reached by Alg. 1 if for example
γ > 1. By the precedent remark, whenever β + γ < 1, Alg. 1 produces an optimal matching. One may also deduce from
the previous remark that running twice Alg. 1, first with G1 = (P ∪ C, E) and then with G2 = (C ∪ P, E), and keeping the
matching whose weight is maximum produces a min{1+ β, 1+ γ ,max{1, β + γ }}-approximation.
72

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 2. Example for Alg. 1.

Fig. 3. Example for Alg. 2.

3.1.2. The Naive-Local Algorithm
Previously, the introduced strong ordering assumptions allow to make greedy choices during the processing of nodes

by the matching algorithm, however, they do not always guarantee that one can omit the computation of the weight of
a single edge of the input graph whenever the assumptions are used separately. For instance for Assumption 1, consider
an arbitrarily large graph where each pi, for 1 ≤ i ≤ s, is only connected to two nodes c2i and c2i+1 and nothing else,
hence omitting the computation of a single weight of the graph may lead to an unbounded approximation as the ordering
assumption does not provide bounds on the omitted weight. Other problematic instances include star-graphs around a
single node p1 (as in Proposition 3) where Assumption 1 does not provide any constraints on the weights. Observe that
the same argument applies in a symmetric manner with Assumption 2.

Remark 4. By the above arguments and Proposition 3, even under β-strong P-order (resp. γ -strong C-order), there exist
instances where for any algorithm A such that A omits at least the computation of one weight of the input, A does not
produce a bounded approximation.

However, if both previously introduced assumptions hold in the oracle’s orders σP and σC simultaneously, then one can
actually design an algorithm (Alg. 2) computing no weights at all but achieving a bounded approximation of the optimal
matching. The algorithm simply picks at each step the edge made of the first available and selectable (i.e. having still
unmatched neighbors) node p in σP order paired with the first available node in p’s neighborhood, according to σC order.
Following a similar proof as in Proposition 4, one derives (Proposition 6) that if both strong ordering assumptions hold,
then Alg. 2 produces a max{1, β + γ }-approximate matching without calculating any weights of the input. Using the
example of Fig. 3, we also show that any matching algorithm that calculates no weights (and in particular Alg. 2) cannot
beat this approximation bound.

Proposition 6. Under both β-strong P-order and γ -strong C-order, Alg. 2 outputs a max{1, β + γ }-approximate matching
without calculating any weights.

Proof. The proof follows the same structure as the one of Proposition 4. The difference is only that the Naive-Local
algorithm assigns the first unblocked edge (in C ’s provided order σC) to pj whereas the Greedy-Local algorithm chooses
the local maximum of the unblocked edges. Hence, we can define similarly f and we have again that any edge of M ′
can only be the image by f of at most two different preimages. By using the same arguments, the same inequalities on
weights hold for Cases 1 and 2a. Observe now that in Case 2b with e = (pj, cx) ∈ M and f (e) = (pj, cy) ∈ M ′, we have
x > y as cy is chosen by M ′ as the first available edge, hence, we have that w(e) ≤ γ · w(f (e)) following Assumption 2.

Summing the edges of M with the three possible subcases, we get:

w(M) =
∑
e∈M

w(e) ≤
∑
e∈M,
f (e)=e

w(f (e))

  
Case 1

+

∑
e=(pj,c)∈M,

f (e)=(pi,c),
i<j

β · w(f (e))

  
Case 2a

+

∑
e=(pj,c)∈M,

f (e)=(pj,c′),
c ̸=c′

γ · w(f (e))

  
Case 2b

.

With analogous concluding arguments to the ones in the proof of Proposition 4, we get that each edge of M ′ can either
be also present in M and has then a unique image by f , or appear at most once in each Cases 2a and 2b, entailing:

w(M) ≤
∑
e′∈M′

∃e∈M,f (e)=e′

max{1, β + γ } · w(e′) ≤ max{1, β + γ } · w(M ′). □

As with Remark 3, it is interesting to note that the previous proof also shows the optimality of the algorithm for some
strong heuristic orders on the input nodes.
73

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Remark 5. Without computing any weights, the Naive-Local matching algorithm is optimal under β-strong P-order and
γ -strong C-order whenever β + γ ≤ 1.

We can also show the above remark by a constructive, direct and more intuitive proof. First consider the following
lemma:

Lemma 7. Suppose a graph G = (V , E, w) with E = E1 ∪ E2 and E1 ∩ E2 = ∅. Denote M1
opt the optimal matching over

G1 = (V , E1) and M2
opt the optimal matching over G2 = (V , E2), and Mopt the one over the full graph G = (V , E). Then

w(Mopt) ≤ w(M1
opt)+ w(M2

opt).

Proof. Split the edges of Mopt into two subsets M1 and M2 according to the edge partition of G, i.e. M1 = Mopt ∩ E1 and
M2 = Mopt ∩ E2. We have w(Mopt) = w(M1)+ w(M2) and since Mi is a valid matching over Gi, we have w(Mi) ≤ w(M i

opt)
thus w(Mopt) ≤ w(M1

opt)+ w(M2
opt). □

Now observe that, whenever β + γ < 1, the edge e that is greedily selected by Alg. 2 is optimal in its ‘‘neighborhood’’
Ne (that is all possible paths of 3 edges with e in central position). This is because for any three length path e′, e, e′′,
w(e′) ≤ γ · w(e) and w(e′′) ≤ β · w(e) implying w(e′) + w(e′′) ≤ (γ + β) · w(e) < w(e). Hence, applying Lemma 7 with
E1 = Ne and E2 = E \ Ne, one can show by induction that the Naive-Local matching algorithm is optimal in this case.

Also, one may note that adding both strong order assumptions with β < 1 and γ < 1 gives a strict total order on
each of the neighborhoods, for all nodes in P and in C . However, it is noteworthy to mention that even in this situation
with strong starting assumptions, the edge ordering is still partial and ‘‘weaker’’ than a total edge ordering (which is
required by the classic 2-approximate greedy algorithm that scans all the edges in decreasing weight order), as stated in
the following remark.

Remark 6. Even under β-strong P-order and γ -strong C-order with both β < 1 and γ < 1, there exist pairs of edges
e1, e2 for some input graphs such that it is impossible to know whether w(e1) ≤ w(e2) or not before requesting the weight
of the respective edges.

In particular, one can consider any pair e1, e2 of edges not sharing any endpoint and such that each edge of the pair
is the first of its neighborhood for both its endpoints, then for both considered edges, their respective weight is entirely
unbounded by the ordering assumptions. Thus, under both strong order assumptions (not enforcing a total edge ordering)
with β+γ < 2, the aforedefined naive ‘‘no weight calculations’’ algorithm outputs a matching with a better approximation
guarantee than the usual greedy algorithm.

Observe that γ ≤ 1 H⇒ max{1, β + γ } ≤ min{1 + β,max{1, β + γ }}, hence Alg. 2 outputs a matching at least as
good as Alg. 1 in this case. In addition, it is straightforward to further note that they actually both output the exact same
matching as within a given p’s neighborhood, the first available edge in the provided C-order is also the local maximum
according to p when γ < 1.

Remark 7. If both β-strong P-order and γ -strong C-order assumptions hold and 0 ≤ γ < 1, Alg. 2 produces the same
matching as Alg. 1 without calculating any weights.

At last, we note that there cannot exist a better algorithm than Alg. 2 in terms of approximation ratio when no weights
are accessed.

Proposition 8. Under both β-strong P-order and γ -strong C-order, any matching discovery algorithm that calculates 0
weights cannot be better than (β + γ)-approximate.

Proof. Let us consider the 4-nodes instance given by Fig. 3. Given the provided ordering of vertices in P and C , we
have that both Assumptions 1 and 2 hold on the instance. Obviously, any algorithm cannot provide better than a 1-
approximation so let us assume β + γ ≥ 1. Note first that the Naive-Local matching on this instance produces {(p1, c1)}
with weight 1 whereas the optimal picks the two other edges with weight β + γ . Now, consider a matching algorithm
A that picks (p1, c2) and (p2, c1). In that case, change the instance so that w(p1, c1) = α with α arbitrarily large and all
other weights set to 1 to simplify (note that both our underlying assumptions still hold in this situation as well). A is
then arbitrarily far from the optimal matching that selects (p1, c1). □

3.1.3. The ℓ-Greedy-Local Algorithm
Our first results show that the first set of assumptions that was considered may be unsatisfactory for two reasons:

either one of the assumptions holds and all weights may end up being computed or both assumptions hold at the same
time and absolutely no weight calculations are required to reach a bounded approximation ratio. This may indicate that
the assumptions could be too strong in some sense. We design here weaker assumptions that only require the condition on
one set to hold (e.g., Assumption 1) and a weaker and more local form of the other assumption: the bound holds between
node p ∈ P and c, c ′ ∈ C if there exist at least ℓ other neighbors of p between c and c ′ when taken in σ order. That
C

74

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
is, we do not control the weight of successive edges in a given node’s neighborhood but if there are ℓ other edges (p, cj)
between two edges (p, c0) and (p, cℓ+1), then the latter one must have a bounded weight in comparison to (p, c0). The
following assumption allows us to design a matching algorithm (Alg. 3) requiring only at most ℓ+1 weight computations
for each node in P .

Assumption 3 (γℓ-ℓ-weak C-order). Assume ℓ ≥ 0, γℓ ≥ 0 and σC = c1, c2, . . . , cq, so that for any ci, cj ∈ C with
1 ≤ i < j ≤ q and p ∈ P such that (p, ci), (p, cj) ∈ E and |{(p, cx) ∈ E | i < x < j}| ≥ ℓ, we have w(p, cj) ≤ γℓ · w(p, ci).

In the above assumption, smaller values for ℓ make the assumption stronger, with ℓ = 0 being equivalent to γ -strong
C-order (i.e. Assumption 2 with γ = γ0) and ℓ = ∆(GP) − 1 = maxp∈P δ(p) − 1, with δ(p) the degree of node p, being
always true for any input graph G = (P ∪ C, E). For fixed processing orders on the nodes, the value of γℓ decreases as ℓ
increases and reaches its ‘‘(potentially non-zero) minimum’’ at ∆(GP)− 2 (after which γℓ = 0 as the bound requirement
does not apply to any pair of edges). Introducing a weak order allows to add weaker constraints on the edge weights
than the ones implied by strong orders. However, obviously weak orders for ℓ ≥ 1 do not help when no weights are
ever computed as they do not provide bounds for some edges sharing endpoints (hence any choice between the two may
entail an arbitrarily large error). For instance, using the example of Fig. 3 under γ1-1-weak C-order, w(p1, c2) can take
arbitrarily large values and Alg. 2 selects (p1, c1) on this instance.

Remark 8. Under both β-strong P-order and γℓ-ℓ-weak C-order (resp. γ -strong C-order and βℓ-ℓ-weak P-order), there
are instances where Alg. 2 has infinite approximation ratio.

Let us show how we design an efficient discovery algorithm (Alg. 3) by exploiting the assumption of a strong order
σP over one partition and a weak order σC on the other one. The algorithm we introduce is similar in flavor to the first
defined algorithm, but this time, instead of taking the edge with maximum weight over the full neighborhood of pi, only
the ℓ+ 1 first available edges according to σC are considered.

Proposition 9. Under both β-strong P-order and γℓ-ℓ-weak C-order, Alg. 3 has approximation ratio at most max{1+β, β+
γℓ}.

Proof. The proof follows the same structure as the one for Proposition 4. Define M as an optimal matching, M ′ as the
matching produced by Alg. 3 on G, and define similarly as previously f as a mapping of M ’s edges into M ′ with identical
Cases 1 and 2a. For Case 2b, that is when we consider an edge e = (p, c) ∈ M such that e ̸∈ M ′ while considering that
(p, c) is unblocked during p’s assignment round, we define f (e) as the edge with the maximum weight among the ℓ+ 1
first unblocked edges (in the same way as Alg. 3 picks the edge during p’s round). Since for each p, we assign as before
an edge of its neighborhood by f , our previous arguments hold regarding the number of preimages by f . Now, consider
the bound on the weight of edges in M . We know that w(e) ≤ w(f (e)) in Case 1 (trivial) and w(e) ≤ β · w(f (e)) in Case
2a following Assumption 1.

In Case 2b, let us consider two possible subcases.
(1) If there are at most ℓ + 1 unblocked edges during p’s round, then since e is unblocked, it is among those edges.

Hence, by the property that w(f (e)) is the maximum of the weights of the unblocked edges, we get w(e) ≤ w(f (e)).
(2) Suppose there are strictly more than ℓ+ 1 unblocked edges. Since if e were among the first ℓ+ 1 ones we would

also have w(e) ≤ w(f (e)), let us assume e = (p, cj) is not among these edges. By Assumption 3, recall that one cannot
bound the weights of the edges between p and its neighbors ci such that (p, ci) is among the ℓ distinct edges incident to
p directly preceding (p, cj) in σC order; note T (cj) the set of these edges. If Alg. 3 selects an edge f (e) = (p, cx) outside
T (cj), we can apply the aforementioned assumption and get w(e) ≤ γℓ · w(f (e)); recall here that f (e) is among the first
ℓ+1 available edges of p’s neighborhood hence in particular, it cannot be placed after cj in σC order. Thus, let us suppose
hereafter that Alg. 3 selects an edge (p, cx) ∈ T (cj). Observe that among the ℓ edges of T (cj), some of them might be
blocked and others unblocked. In any case, among the first ℓ+ 1 edges that are considered by the algorithm, there exists
at least one unblocked edge (p, c ′) ̸∈ T (cj) because |T (cj)| = ℓ and we assumed at least ℓ + 2 unblocked edges in p’s
neighborhood. Finally, we have w(p, c ′) ≤ w(p, cx) because the algorithm picked the edge with the best weight, and thus
w(p, cj) ≤ γℓ · w(p, c ′) by application of Assumption 3, which gives us w(e) ≤ γℓ · w(f (e)) in this case as well.

Putting together the two subcases for Case 2b, we have w(e) ≤ max{1, γℓ} · w(f (e)). By reusing analogous arguments
as in the proofs of Propositions 4 and 6, we get w(M) ≤ max{1, β+max{1, γℓ}} ·w(M ′). Since β ≥ 0 and max{1, γℓ} ≥ 1,
we get w(M) ≤ max{1+ β, β + γℓ} · w(M ′). □

Proposition 10. Alg. 3 calculates at most (ℓ+ 1) · n weights.

Proof. Note first that at each of the s iterations of the algorithm, at most ℓ + 1 weights are calculated. Also, if at least
one weight is calculated at a given iteration, then an edge is added to the constructed matching. Since at most n edges
may ever be added to the matching, there are only n iterations where at least one weight is calculated. □

Proposition 11. Under both β-strong P-order and γ -strong C-order, Alg. 3 is max{1, β + γ }−approximate.
75

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 4. Example for Alg. 3.

Proof. If γ ≥ 1, the proposition follows directly from Proposition 9 for the case ℓ = 0. For γ < 1, following the same
argument as in Remark 7, Alg. 3 degenerates and produces the same solution as the Naive-Local algorithm. □

The example of Fig. 4 can be used to show that under Assumptions 1 and 3, Alg. 3 reaches its proven approximation
bound.

Proposition 12. Under both β-strong P-order and γℓ-ℓ-weak C-order, Alg. 3 has approximation ratio at least max{1+β, β+
γℓ}.

Proof. Consider first the example of Fig. 2. Following the same arguments as in the proof of Proposition 5, we get that
Alg. 3 (which is equivalent to Alg. 1 on that example) produces a (1+β)-approximate matching. Suppose β+γℓ > 1+β ,
that is γℓ > 1, and let us use the example of Fig. 4 where p1 has ℓ+ 2 neighbors with w(p1, cj) = 0.5 for 2 ≤ j ≤ ℓ+ 1.
In this example, Assumption 1 only applies to (p1, c1) versus (p2, c1) and Assumption 3 to (p1, c1) versus (p1, cℓ+2). In the
example, the algorithm picks (p1, c1) for a weight of 1 whereas the optimal matching picks (p1, cℓ+2) and (p2, c1) for a
weight of β + γℓ > 1. □

We use Assumption 4 to obtain symmetric results (Proposition 13).

Assumption 4 (βℓ-ℓ-weak P-order). Assume ℓ ≥ 0, βℓ ≥ 0 and σP = p1, p2, . . . , ps, so that for any pi, pj ∈ P with
1 ≤ i < j ≤ s and c ∈ C such that (pi, c) ∈ E and (pj, c) ∈ E and such that |{(px, c) ∈ E | i < x < j}| ≥ ℓ, we have
w(pj, c) ≤ βℓ · w(pi, c).

Proposition 13. Under both γ -strong C-order and βℓ-ℓ-weak P-order, Alg. 3 is max{1+ γ , βℓ + γ }-approximate on input
G = (C ∪ P, E).

Inverting P and C in Proposition 12, one can show that the bound in the previous proposition is reached by Alg. 3 on
some instances.
Limitation of greedy-choice algorithms. We explain briefly here why lifting Assumption 1 controlling the order in which
vertices of P are processed and replacing it by a bounded variant tolerating edges that are out-of-order such as Assumption
4 leads to impossibility to approximate the optimal matching by a greedy-choice algorithm (picking each round the
available edge with maximum observed weight). As a counter-example, one can consider a path as an instance and can
derive that any algorithm inspecting only a bounded number of edges before adding irreversibly the observed edge with
greatest weight to the matching (hence, allowing to pick some edges whose neighborhood is not completely explored),
may fail to provide a bounded-approximation. This is due to the fact that the algorithm has no control on the weight
of the edges connected to some of the inspected edges on the input path. We also note that on a path, both weak
assumptions with ℓ ≥ 1 do not apply to any pair of edges and thus all weights are unrestrained in this case. We note
that the formulation of the claim as it appeared in [11] does not make explicit the notion of greediness that is being used,
which we clarify in the below proposition.

Proposition 14. Fix ℓ ≥ 1. Suppose βℓ-ℓ-weak P-order and γℓ-ℓ-weak C-order hold. Consider now a greedy-choice matching
algorithm A (i.e., that greedily adds the examined edge with highest weight) that always decides to add an edge after querying
at most kℓ edges for some kℓ ≥ 1. Then A does not provide a bounded approximation ratio.

Proof. The idea behind the proof is that in general, it is possible to force having the edge with highest weight neighboring
a non-queried edge by the time the algorithm has to greedily add an edge. To rule out the constraints on weights stemming
from the weak orders when ℓ ≥ 1, we assume a graph of degree at most 2 where the weak ordering assumptions do
not apply. Without loss of generality, let us consider as a counter example a path made of at least 2kℓ edges. The weights
of the edges forming the path needs to be assigned ‘‘online’’ depending in which order A examines the edges’ weight:
upon examining the ith edge with 1 ≤ i ≤ kℓ, if A inspects an edge within the current longest sub-path made only of
undiscovered edges (denoted Pi) then we set w(e) = i, otherwise w(e) = 0.1.

Under these circumstances, let us show that the edge e with highest weight after i ≤ kℓ steps is always neighboring
an undiscovered edge. We can show by induction that the highest weight after i edges have been inspected is always
adjacent to a sub-path of undiscovered edges of length at least 2kℓ−i. This is because, at each step, either the highest
weight does not change (an edge outside P was discovered) or it changes and it splits P in two parts S and S with
i i 1 2

76

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 5. Example of execution for Alg. 4 using orders σP = p1, p2, p3 , σC = c1, c2, c3, c4 and ℓ = 1: (a) Ordered input; (b) Constructed greedy path
starting from p1 with forward edges as plain lines, non-selected edges (because not local maximum) as dotted and backward edges as dashed; (c)
Selected edges as optimal matching over the greedy path. Alg. 4 does not run another greedy path procedure as all nodes in P are then made
unavailable and outputs M = {(p1, c2), (p3, c4), (p2, c3)} with total weight w(M) = 23.

max{|S1|, |S2|} ≥ Pi/2. After kℓ inspections, the highest weight is thus adjacent to a sub-path of undiscovered edges of
size at least 20

= 1. To conclude, we set an arbitrarily large weight to the adjacent undiscovered edge. □

By the previous claim, it is fruitless in general to try to design a bounded-approximation greedy-choice algorithm that
discovers, at each of its iteration, a bounded number of edges. However, as we show in the next section, it is possible
to design a bounded-approximation algorithm assuming weak orders on both input sets and that uses only on average a
bounded number of discovery queries per edge in the output matching.

3.1.4. Double-Greedy Algorithm
Proposition 14 basically indicates that the strategies used so far in order to develop greedy matchings based on heuristic

orders fail for the situation where two weak orders are used. In this situation, a greedy-choice algorithm is not possible
in order to reach a bounded approximation and one has to consider an algorithm that explores more of the input before
taking even a single decision. This is the case for our last greedy algorithm (Alg. 4) that only requires weak node orders
to get a bounded approximation ratio. The algorithm is the following. At a given iteration, considering the next node pi
in σP order that is still available then, it starts first by building a (oriented) greedy path U starting initially from node
u = pi. The greedy path is obtained by adding at each step the edge (u, v) with highest weight within u’s ‘‘bounded local
neighborhood’’ Nℓ(u) (i.e., the ℓ+1 first available edges in the heuristic order related to the node u, that is σC if u ∈ P and
σP if u ∈ C), and continuing the next attempt to extend the path from node v and so on. At each step, edges sharing an
endpoint with a node that is already part of the constructed path (referred hereafter to as ‘‘backward edges’’) are discarded
from being included in Nℓ(u), while we refer to all other available edges that connect to the endpoint of the greedy path
as forward edges (as defined by line 27 in Alg. 4). The greedy path ends when the bounded local neighborhood (without
backward edges) of the last processed node u is empty. Then Alg. 4 picks an optimal solution OptimalPath(U) for the
path U and adds it to the constructed matching. The algorithm continues until the exhaustion of available nodes in P from
which a greedy path can be initiated. An example of an execution of the algorithm is illustrated in Fig. 5. Before proving
the correctness of Alg. 4, we demonstrate a more elementary result comparing the weight of the optimal matching Uopt
over any path U with the weight of the edges in U \ Uopt that are not selected in the optimal.

Lemma 15. Let U = e1, . . . , em be a sequence of pairs of distinct nodes u, v ∈ V 2 that defines a path (i.e., for all 2 ≤ i ≤ m,
ei ∩ ei−1 ̸= ∅ and |ei ∩

⋃
1≤j≤i−1 ej| = 1), and Uopt the optimal matching over U. We have then w(Uopt) ≥

∑
e∈U\Uopt

w(e).

Proof. Let U ′ = U \ Uopt . Hereafter for clarity we explicitly state a matching as ‘‘proper’’ to refer to a valid matching of
the edges (i.e., without adjacent edges) and improper for any other set of edges. If U ′ is a proper matching then the result
is trivial. Let us analyze the different possibilities for Uopt . To ease the notation, we will use the following convention: a
subset M of a subpath ej, . . . , ej+k of U (for 1 ≤ j ≤ m − k + 1) formed by k consecutive edges is denoted by a word
u1 . . . uk over the alphabet {×,✓}, such that for 1 ≤ i ≤ k, ui = ✓ if ej+i ∈ M and ui = × otherwise. In the following, we
use the word u = u1 . . . um to denote the edges selected by Uopt and the word u = u1 . . . um to denote the edges in U ′.
First, observe that Uopt does not omit three (or more) consecutive edges ej, ej+1 and ej+2 (a pattern denoted as ××× in
u) as adding ej+1 makes a better matching than Uopt in this case (recall weights are strictly positive here). Uopt may omit
two consecutive edges. By the previous argument, both the adjacent edges to the omitted ones must be in Uopt , i.e., u
can contain the pattern (...)✓ × ×✓(...) that we will refer as a hole in U and the reversed pattern as an antihole in U ′
(i.e., a subsequence ×✓✓× in u containing two consecutive selected edges). Note the path itself cannot end in a double
omission as the last edge could then be freely added to Uopt . Observe that antiholes are the only pattern preventing U ′
from being a proper matching.

Now, let us iteratively define a proper matching U ′′ based on U ′ and with greater weight than w(U ′) =
∑

e∈U ′ w(e),
extending the w notation to improper matchings. For this, set U ′ = U ′. Let i ≥ 0. We will remove the last antihole
0

77

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Hi = ej, ej+1, ej+2, ej+3 in U ′i to produce a new set U ′i+1 such that: (1) U ′i+1 has one antihole less than U ′i , (2) the part of
U ′i ‘‘before Hi’’ is identical in U ′i+1 and (3) w(U ′i+1) ≥ w(U ′i). Since by hypothesis the edges of Hi have not been ‘‘modified’’
in U ′i , the induction argument is proven by considering how the antihole Hi appears in Uopt and what follows it in the
optimal matching.

Formally, let j be the starting position of the antihole Hi and u(i) the word representing U ′i . We construct the next word
u(i+1) as follows:

u(i+1)
= u(i)

1 · · · u(i)
j · u

(i)
j+1 · uj+2 · uj+3  

✓××✓ in Uopt and ×✓✓× in U ′i

· · · um.

By construction of u(i+1), both (1) and (2) hold.
Denote Xi = {er ∈ Uopt | r ≥ j + 2} and X ′i = {er ∈ U ′i | r ≥ j + 2}. Let us verify now that w(Xi) ≥ w(X ′i). Suppose

the cumulative weight of the edges of X ′i is greater than w(Xi), then since by hypothesis u(i)
j+2 · · · u

(i)
m does not contain

any antiholes and we have uj+1 = ×, the set Uopt \ Xi ∪ X ′i is a proper matching with greater weight than Uopt , hence a
contradiction. Thus, w(U ′i+1) = w(U ′i)− w(X ′i)+ w(Xi) ≥ w(U ′i).

Therefore, all three induction hypotheses hold: (1) u(i+1) contains one antihole less than u(i), (2) u(i+1)
r = u(i)

r for
1 ≤ r ≤ j, and (3) the weight condition w(U ′i+1) ≥ w(U ′i).

Denote U ′′ the set obtained after purging all antiholes from U ′ by the above procedure, i.e. U ′′ = U ′k where k is the
initial number of antiholes in U ′. By definition, U ′′ is a proper matching of U and we have w(U ′′) ≥ w(U ′) by induction.
This concludes the proof because U ′′ as a proper matching also entails w(U ′′) ≤ w(Uopt). □

Alg. 4: ℓ-Double-Greedy Matching
Input : A bipartite graph G = (P ∪ C, E) with sets

P = p1, p2, . . . , ps and C = c1, c2, . . . , cq
Output: M , a matching of E;
// Initialization of the procedure

1 M, i← ∅, 1 ;
2 foreach x ∈ P ∪ C do
3 availablex ← True ;
// Loop till all nodes in P are matched

4 while i ≤ s do
5 if availablei then
6 U ← []; // initialize the greedy path
7 u← pi; // endpoint of the path U
8 repeat

// try to extend the path
9 v← next_edge_greedy_path(u,U) ;

10 if v ̸= 0 then
11 U .append((u, v));// add edge (u, v) to U
12 u← v; // continue then from v
13 until v = 0;
14 if |U | = 0 then
15 i← i+ 1;
16 else
17 Mp ← OptimalPath(U);
18 foreach (px, cy) ∈ Mp do
19 availablex, availabley ← False, False;
20 M ← M ∪ {(px, cy)};
21 else
22 i← i+ 1;
23 return M;

// Uses inputs & variable availablex from Alg. 4
22 Function next_edge_greedy_path(u,U)

// Find next edge from node u on the greedy
path U

23 if u ∈ P then
24 k← q;
25 else
26 k← s;

// Consider all possible ‘‘forward’’ edges
27 N ← [1 ≤ x ≤ k | {u, x} ∈ E ∧ availablex ∧ ̸

∃y, {x, y} ∈ U];
28 if N ̸= [] then
29 if |N| > 1 then

// Keep the ℓ+ 1 first values
30 N ← N[: ℓ+ 1] ;
31 foreach x ∈ N do

// Get w(u, x) when u ∈ P otherwise
w(x, u)

32 bx ← weight(u, x);
// As in Alg. 1, line 10

33 j← argmaxx∈N bx;
34 else
35 j← N[1]; // 1st value
36 else

// 0 stands for ‘‘end of path’’
37 j← 0;

// Returns next endpoint
38 return j ;

Proposition 16. Under both βℓ-ℓ-weak P-order and γℓ-ℓ-weak C-order assumptions, Alg. 4 is (2·max{1, βℓ, γℓ})-approximate
and computes at most 3 · (ℓ+ 1) · n weights.

Proof. The proof follows a different proof schema as the previous ones and we shall this time directly bound each edge
of the optimal solution. First, let us note Mopt for the optimal matching of the edges of E and M for the matching obtained
by the algorithm. During the algorithm execution, we refer to any edge e ∈ E as being ‘‘eliminated’’ once the edge
cannot be selected in subsequent steps of the algorithm; i.e., the edge (px, cy) is eliminated whenever we have either
availablex = False or availabley = False. Since endpoints are never reconsidered in the algorithm, an eliminated
edge stays eliminated till the end of the algorithm. In the first part of the proof, we show that any edge e ∈ Mopt is
eventually eliminated (as any other edge of E). In the second part, we prove the bound on the weight of the produced
78

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
matching following at its core the same argument behind Algorithm 3’s bounded approximation (cf. Proposition 9). The
last part deals with the number of computed weights.

Termination of the algorithm. Let us show that any edge e ∈ E is eventually eliminated by the algorithm. For the sake
of contradiction, suppose there exists an edge e = (px, cy) that is not eliminated by the end of the algorithm and let us
consider the first loop iteration when i = x. Since the edge is not eliminated, we have availablei = True, so the greedy
path subroutine is executed with pi as a starting endpoint. First, note that the condition set at line 27 in the subroutine
forces the creation of a path: cycles are forbidden as any edge sharing an endpoint with a previously considered node of U
(designated as backward edges) is discarded from being chosen by the procedure. Now observe that, since the algorithm
adds at line 17 all edges belonging to the optimal solution for the path, there cannot be an edge of U that is not eliminated
(i.e., in the optimal solution all non-selected edges have at least one of its adjacent edges being selected, cf. the proof of
Lemma 15). Thus, (px, cy) must be different from the first edge (in σC order) of U not to be eliminated at this step, however,
note that this step always eliminates at least one edge in px’s neighborhood. Hence, the only way for the starting edge
not to be eventually eliminated is for the algorithm never to set availablex = False (and thus increase the value for
i) during the greedy path’s subroutine and hence to loop forever on it. However, since one edge in px’s neighborhood is
eliminated every loop iteration, eventually the edge (px, cy) will be part of the greedy path (or no edges are available but
this contradicts that e is still available) and will eventually be eliminated, leading to a contradiction. Observe that this
also shows that the algorithm always terminates as for every 1 ≤ i ≤ s, each time pi is processed by the greedy path
subroutine, the size of its ‘‘available neighborhood’’ |N| strictly decreases at each while-loop iteration, eventually reaching
|U | = 0 when the algorithm jumps to the next iteration.
Bounded approximation. Since any edge e ∈ Mopt is eventually eliminated, let us associate to each edge e ∈ Mopt the
while-loop iteration iter(e) where it becomes eliminated. Let M i

opt be the set of edges of the optimal matching that are
eliminated during the ith loop iteration, i.e. M i

opt = {e ∈ Mopt | iter(e) = i}. Also, denote Mi the set of edges that are added
to M during the ith iteration, and Ui the value of U at the end of the greedy iterative loop (by line 14) during the same
iteration. By the above claim, the algorithm always terminates, in let us say r loop iterations, so we have Mopt =

⋃r
i=1 M

i
opt

and M =
⋃r

i=1 Mi. Now, let us consider the possible reasons for the edges of Mopt to be eliminated during a given iteration
I (with i being the value of the algorithm’s variable i during that iteration):

(1) If the edge e ∈ Mopt is selected by the algorithm during the execution of line 17, it becomes eliminated. Note that
in that case, e ∈ M as well.

(2) Suppose the edge e ∈ Mopt is not selected by the optimal path calculation at line 17. Let us differentiate two
subcases:

a. The edge e was added to the iteratively constructed greedy path U . Then, by the above termination arguments,
it is also eliminated along all the other non-selected edges forming U .

b. The edge e was not added to U . Here, e is eliminated because it shares an endpoint with one of the selected
edges that belong to the path U .

Let us bound the weight of e for each of the possible situations. To ease with the notations, denote UI = e1, . . . , ek the
edges forming UI in the same order as they are added during iteration I (note UI is possibly empty when all pi’s neighbors
are not available at iteration I ’s start). We define the function f : M I

opt → UI projecting the edges of the optimal matching
onto the ones of the greedy path.

In Case (1), we set f (e) = e and obviously have w(e) ≤ w(f (e)).
In Case (2).a, e ∈ UI but e is not selected by Alg. 4; in that case, we also set f (e) = e.
At last let us consider the remaining Case (2).b. Denote e′ the first edge of UI that eliminated e during I (thus, e′ shares

an endpoint with e). By definition, e is a forward edge at the step when e′ is added to the greedy path as otherwise e′
would not be the first edge eliminating e. Let us write e′ = (u, v) so that u was the endpoint that was the first parameter
of next_edge_greedy_path (also noted u in the algorithm) and v the node returned by the procedure. We reason now
on the following three cases:

1. e′ ∩ e = {u}. Set f (e) = e′. According to the algorithm, (u, v) has the maximum weight among Nℓ(u), the first ℓ+ 1
available edges of u, following the order σP (resp. σC) of nodes in P (resp. C) if u ∈ C (resp. u ∈ P). Suppose e is
among Nℓ(u), then w(e) ≤ w(e′) as e′ has the local maximum weight. Suppose e was not among Nℓ(u), then we
have:

• if u ∈ P , then v ∈ C and w(e) ≤ γℓ ·w(e′′) where e′′ is an edge in Nℓ(u) that is at least ℓ edges away from e′ in
σC order (the fact that e′′ exists relies on the same arguments used in the proof of Proposition 9, refer to the
proof for further details). Since w(e′′) ≤ w(e′), we get w(e) ≤ γℓ · w(e′).
• Analogously, we get that if u ∈ C , then v ∈ P and w(e) ≤ βℓ · w(e′) by a symmetric argument to the above

subcase.

Hence, we have w(e) ≤ max{1, γ , β } · w(f (e)) regardless if e was in N (u) or not.
ℓ ℓ ℓ

79

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
2. e′ ∩ e = {v} and so that e′ = ej with 1 ≤ j ≤ k − 1. In other words, e′ is not the last edge of U . Observe that
because ej ∈ M , we have ej+1 ̸∈ M . We can obtain similar bounds as in the first case but using this time the edge
f (e) = ej+1, that is the edge that was returned after calling next_edge_greedy_path with first parameter v, and
since j < k such an edge appears in UI . Observe that e ∩ f (e) = {v} and e cannot be a backward edge as e′ is the
first edge eliminating e, and thus the same arguments as in Case 1 above hold but this time with ej+1. Hence, we
also have w(e) ≤ max{1, γℓ, βℓ} · w(f (e)).

3. e′ ∩ e = {v} and e′ = ek, i.e., e′ is the last edge of the greedy path UI and is selected by the algorithm. This case
is not possible for two reasons: e is available at that iteration by hypothesis, and e is not a backward edge for e′.
Hence it is a forward edge in v’s neighborhood, but then the greedy path subroutine would have continued to build
UI selecting e on the path if such an edge existed in v’s neighborhood.

Hence, for every eliminated edge e of the optimal matching, one can bound its weight in regard to an edge ej of the
greedy path and that is ‘‘responsible’’ for the elimination of e. Importantly, f is an injection by analyzing the different
cases:

• Cases (1) and (2).a. Since f (e) = e, there cannot be another optimal edge e′ ∈ M I
opt with e′ ̸= e also projecting on e

as for any edge x ∈ M I
opt , x and f (x) always share an endpoint (in all 3 cases) by construction, forbidding such e′ in

Mopt .
• Case (2).b. Suppose there exist two distinct edges e1 ∈ M I

opt and e2 ∈ M I
opt so that e′ = f (e1) = f (e2) (obviously

e′ is distinct from both e1 and e2). Since for every edge x ∈ M I
opt we have f (x) ∩ x ̸= ∅, the three edges e1, e′ and

e2 must form a path of 3 edges with e′ in the center. Since f (x) is always an edge of UI in all 3 cases, e′ ∈ UI and
thus e′ = (u, v) with (u, v) being a forward edge and u the first node processed by the greedy path subroutine;
w.l.o.g. assume u ∈ e1. Recall, by definition of f , if e2 = (v, y) is a forward edge but is not selected in U , then f (e2) is
necessarily the next selected edge e′′ = (v, y′) ̸= e′, while if e2 is a backward edge then f (e2) is an edge appearing
before e2 on the greedy path which cannot be e′. Hence, this contradicts f (e1) = f (e2).

At last, observe that since Mp is chosen optimally among the edges of UI , necessarily we have w(MI) ≥
∑

e∈UI\MI
w(e)

by applying Lemma 15 on the path UI .
We are ready to combine the different elements of the proof to obtain a general bound:

w(M I
opt) ≤

∑
e∈M I

opt

w(e) ≤
∑

e∈M I
opt

max{1, γℓ, βℓ} · w(f (e))

≤ max{1, γℓ, βℓ}

⎛⎝∑
e′∈MI

w(e′)+
∑

e′∈UI\MI

w(e′)

⎞⎠
≤ max{1, γℓ, βℓ} · 2 · w(MI).

Summing over all iterations of the algorithm, we obtain:

w(Mopt) ≤
r∑

i=1

w(M i
opt) ≤

r∑
i=1

2 ·max{1, βℓ, γℓ} · w(Mi) ≤ 2 ·max{1, βℓ, γℓ} · w(M).

Number of weight calculations. Let us analyze how many weights are calculated by all iterations. Obviously, if pi is not
available, no further weights are calculated and the algorithm moves to the next iteration. Otherwise, a greedy path is
constructed. To do so, for a greedy path of k edges, (ℓ + 1) · k weights are at most calculated: ℓ + 1 for each starting
endpoint u of each edge (u, v) of the path and 0 for the last call to next_edge_greedy_path as the path ends when the
set N of candidates for the next edge is empty (weights are only calculated when |N| ≥ 2).

Over all calculated weights, at least ⌊ k2⌋ edges are added to the matching as an optimal matching Mp is always maximal
over U (all edges of U have endpoints in Mp). Doing so makes as many nodes in P and nodes in C non-available and such
nodes will not trigger any subsequent weight computation for any of its adjacent edges. Hence, noting ki = |Ui| the length
(in edges) of the greedy path at the ith iteration (potentially zero), we get that in total the number of weight calculations
is at most (ℓ+ 1)

∑r
i=1 ki.

In the worst case (in terms of number of weight calculations), ki = 3 and at each iteration a single edge is added to
the matching. Thus, we have

∑r
i=1 ki ≤ 3 · |M| and since |M| ≤ n, we get that at most 3 · (ℓ + 1) · n = O(ℓ · n) weights

are ever calculated. □

We would like to highlight that, in Alg. 4, we have chosen to use an identical value for the constant ℓ used to explore
the local neighborhood in an analogous way whether one deals with a node from P or a node from C (and assuming both
weak orders also hold for the same value of ℓ). This choice simplifies both the algorithm’s design and its proof, while
reaching the target of a linear number of weight calculations (whenever ℓ is constant). The algorithm could be extended
to use two different values ℓ1 and ℓ2 for each set P and C , with all arguments being valid when setting ℓ = max{ℓ1, ℓ2}.

We finally show the lower bound for the presented algorithm.
80

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 6. Example for the lower bound on the approximation ratio of Alg. 4.

Proposition 17. There exist βℓ > 0, γℓ > 0 and graph instances and heuristic orders where, under both βℓ-ℓ-weak P-order
and γℓ-ℓ-weak C-order assumptions, Alg. 4 is at best (2 ·max{1, βℓ, γℓ})/(1+ ε)-approximate for any ε > 0.

Proof. We consider the example presented by Fig. 6, with the following heuristic orders: σP = p1, . . . , pℓ+3 and
σC = c1, . . . , cℓ+2. In this example, all edges of the form (p1, cj) for 2 ≤ j ≤ ℓ + 1 and (c1, pj) for 3 ≤ j ≤ ℓ + 2
have all weight 0.5.

First, let us calculate the weight of the output of Alg. 4. The algorithm starts by considering p1 and builds the greedy
path U = p1, c1, p2 as those edges {(p1, c1), (c1, p2)} are the maxima in the (ℓ+ 1) local neighborhood of each considered
node. Then, Alg. 4 selects the best matching over U as (p1, c1) with weight 1+ ε which eliminates all edges of the graph.
Whenever βℓ + γℓ ≥ 1 + ε, the optimal matching is, however, the one formed by selecting (p1, cℓ+2) and (pℓ+3, c1) of
weight βℓ + (1 + ε) · γℓ. By considering the case βℓ = (1 − ε) · γℓ with γℓ > 1 + ε, the optimal matching has weight
2 · γℓ = 2 ·max{βℓ, γℓ, 1} to compare with 1+ ε for Alg. 4’s matching, hence retrieving the desired lower bound for the
approximation ratio of Alg. 4. □

Let us note that ε was only introduced in the above proposition so not to have to make the algorithm for choosing
the optimal path explicit, and to avoid introducing several examples depending on the chosen matching. If ties were
explicitly broken in the calculation of the optimal matching over path (i.e., one always includes the first edge from the
path’s ‘‘start’’), then we can replace in Fig. 6’s example w(p1, c1) by 1, w(p1, cℓ+2) by γℓ and lift 1+ ε from Proposition 17.

3.2. Order oracles on the edge set

Alg. 5: Naive-Edge Matching
Input : A graph G = (V , E) with ordered

edge set E = e1, . . . , em
Output: M , a matching of E;
// Initialization steps

1 M ← ∅ ;
2 foreach x ∈ V do
3 availablex ← True;
// Process edges one by one

4 for 1 ≤ i ≤ m do
5 (u, v)← ei;
6 if availableu and availablev then
7 M ← M ∪ {u, v};
8 availableu ← False;
9 availablev ← False;

10 return M;

Alg. 6: Local-Edge Matching
1 i← 1;
2 while i ≤ m do
3 (u, v)← ei;
4 if availableu ∧ availablev then
5 N ← [ej = (x, y) ∈ E | i ≤ j ≤ i+ ℓ+ 1∧ availablex ∧ availabley];
6 j← i ;
7 if |N| > 1 then
8 N ← N[: ℓ+ 1];
9 foreach ej ∈ N do

10 bj ← weight(ej);
11 j← argmaxj∈N bj;
12 M ← M ∪ {ej};
13 (u, v)← ej;
14 availableu, availablev ← False, False;
15 else
16 i← i+ 1;
17 return M;

Alg. 6 has the same inputs/outputs and initialization steps as in Alg. 5.

We briefly show here that reasoning in terms of edge order is not as interesting as order oracles over nodes. We will
present assumptions enforcing an order among all edges, hence, all algorithms presented in this section do not require a
bipartite graph as input (thus, they solve the more general graph matching problem rather than the assignment problem).

3.2.1. Strong edge order
Consider the following strong ordering assumption on the edges.

Assumption 5 (ζ−strong E-order). Assume ζ ≥ 0 and the edge set E is ordered by σE = e1, . . . , em, so that for any
ei, ej ∈ E with 1 ≤ i < j ≤ m, we have w(ej) ≤ ζ · w(ei).

Proposition 18. Under ζ−strong E-order, Alg. 5 is (2 ·max{1, ζ })-approximate without calculating any weights.
81

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Proof. The proof is simple and follows the main structure as the proof of Proposition 16. Consider that every selected
edge e ∈ M eliminates up to 2 edges of the optimal Mopt , each of weight bounded by ζ · w(e). Hence overall, w(Mopt) ≤
2 ·max{1, ζ } · w(M). □

It is interesting to note that one can retrieve the approximation bound of 2 for the classic greedy algorithm from the
previous proposition, as it uses an order over the edges (ranked from highest to lowest weight) that guarantees ζ ≤ 1.
As previously mentioned, the edge order imposes here to be capable to compare any pair of edges, which is significantly
more constraining than any of the other orders studied before (in particular, see Remark 6). Also, one may observe that
contrary to Alg. 1, Alg. 2 and Alg. 3 which output an optimal solution whenever strong enough node orders are provided
(i.e., when β + γ ≤ 1), the introduced algorithm that exploits the strong edge order is shown not to be better than
2-approximate even when ζ < 1. In particular, considering for instance the graph of Fig. 3, the condition β + γ ≤ 1
cannot be encoded as a strong edge order.

3.2.2. Weak edge order
One can also consider a weak version for the edge order as follows:

Assumption 6 (ζℓ-ℓ-weak E-order). Assume ℓ ≥ 0, ζℓ ≥ 0 and the edge set E is ordered by σE = e1, . . . , em, so that for
any ei, ej ∈ E with 1 ≤ i and i+ ℓ < j ≤ m , we have w(ej) ≤ ζℓ · w(ei).

Proposition 19. Under ζℓ-ℓ-weak E-order, Alg. 6 is (2 ·max{1, ζℓ})-approximate.

Proof. Similarly as previously, one can note that selecting a certain edge e ∈ M at a given iteration I eliminates up to 2
edges e′, e′′ of the optimal Mopt . Denote ei the first edge (always available) considered during I and call two edges ei, ej ∈ E
close if |j− i| ≤ ℓ. The edges e′, e′′ are still available at the iteration that e is added, hence the weight of e′ is either (1)
smaller than the one of e if e′ and ei are close in σE order, (2) smaller than ζℓ times the weight of e if ei and e′ are far in
σE order. The second case is due to the fact that when ei is available, we have w(e′) ≤ ζℓ · w(ei) ≤ ζℓ · w(e). The same
arguments apply for the weight of e′′. Overall, considering cases (1) and (2), we get w(Mopt) ≤ 2 ·max{1, ζℓ} · w(M). □

In Alg. 6, since there cannot be more than |V |/2 edges added in total in M , and that for all iterations i where ei is still
available an edge is added to M , we deduce that there cannot be more than (ℓ + 1) · |V |/2 calls to the weight function.
As with strong edge order, the imposed order is very restrictive as it forces to be able to compare almost all edges with
each other, forbidding only a small constant number of comparisons for each edge. Hence, it is significantly stronger than
weak orders on the nodes that only ‘‘locally’’ order the edges. In the following section, we provide possible instantiations
of order oracles and show that edge orders are obtained at the cost of significantly increasing the constants ζ and ζℓ in
the required assumptions.

3.3. Instantiations of order oracles

We propose here how order oracles can be built based on partial or approximate apriori knowledge on the weights. As
before, our setting is that the exact weights are always accessible but costly to query. Hence, based on knowledge on the
particular problem that is being studied, some information can be available to generate a rough estimate of each weight
before querying it. We study here a few such instantiations and how strong and weak order oracles can be built upon
those approximations.

Strong orders based on interval approximation. Suppose that for every edge e ∈ E, there exists an interval I(e) = [ae, be]
with ae, be ∈ R+ so that one has always the guarantee that ae ≤ w(e) ≤ be. For I(e) = [ae, be], denote Il(e) = ae the
interval’s lower bound and Ir (e) = be the interval’s upper bound. Using such approximation, and without more information
on the distribution of weights within their possible intervals for guidance, we can define three possible ordering of the
edges:

1. ‘‘Optimistic’’: order the edges by the highest possible value they can take, i.e., by decreasing value of Ir (e).
2. ‘‘Centered’’: order the edges by the center of their intervals, i.e., by decreasing value of (Il(e)+ Ir (e))/2.
3. ‘‘Pessimistic’’: order the edges by the lowest possible value they can take, i.e., by decreasing value of Il(e).

For any given pair of edges e1 and e2, given an order σE that places e1 before e2, we can associate a maximum possible
relative error for the order and the given pair as error(e1, e2)σE = Ir (e2)/Il(e1). Hence, the order σE = e1, . . . , em entails
a ζ -strong E-order (Assumption 5) with ζ = maxei,ej∈E, j>i error(ei, ej)σE . For example, using the intervals of Fig. 7, one
can compute a bound of ζ = 9.1/4.9 ≈ 1.85 achieved by the pair (e4, e5). In general, one can bound the maximum
error of using such heuristic order. Since in the worst case the maximum overlap includes a full interval, the maximum
error between two edges is bounded by the maximum over all e ∈ E of Ir (e)/Il(e) ≤ (Il(e) + Imax)/Il(e) with Imax
the maximum length of an interval according to I . Since (Il(e) + Imax)/Il(e) is a decreasing function in Il(e), we have
(Il(e) + Imax)/Il(e) ≤ (wmin + Imax)/wmin where wmin is the minimum value possible for the weights, i.e., the minimum
of I (e). This gives a bound of e.g. ζ = I + 1 if w = 1.
l max min

82

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Fig. 7. Example of associated intervals to weights following the (yet to be discovered) input of Fig. 5 and the edges ordered according to the
optimistic or centered order; in this example, intervals have been set using original weights ±30%.

Fig. 8. Bounds on the error associated to each node in P (i.e. according to C-order) following the example of Fig. 7.

Now, assume we define the following orders σP and σC on P and C: number vertices as they appear in σE . For example,
using the intervals of Fig. 7, σP = p1, p2, p3 and σC = c3, c2, c1, c4. Using such node order, one can compute similarly
bounds on the maximum ‘‘error’’ that the order can imply, but this time only edges sharing an endpoint do produce
errors (in P if considering σP , and in C if considering σC). Using the same example as previously, we obtain a bound
of β = γ ≈ 1.65 because of the pairs {(p1, c3), (p1, c2)} for γ and {(p1, c3), (p2, c3)} for β (see Fig. 8). In particular,
this example illustrates well that based on the exact same approximation information (interval weights), order oracles
on nodes may entail tighter bounds for the discovery algorithms than using an edge order based on the same interval
weight approximation.

Weak orders based on interval approximation. Define the overlap count (OC) as the maximum number of overlapping edges
for any given edge, i.e., OC is calculated as

OC(E, I) = maxe∈E |{e′ | e′ ∈ E ∧ e′ ̸= e ∧ Il(e′) < Ir (e) ∧ Ir (e′) > Il(e)}|.

For a given set of interval weights, we have ζℓ-ℓ-weak E-order holding with ζℓ ≤ 1 whenever ℓ = OC(E, I). Under all
aforedefined edge orders σE that are based on intervals (Centered, Pessimistic or Optimistic),3 we have the property that
for any given edge e in σE , all edges appearing beyond the overlap count will have at most a strictly smaller weight than
the lowest possible value for e. Observe that the same property holds for weak node orders: we have βℓ-ℓ-weak P-order
holding with βℓ ≤ 1 whenever ℓ = OCC (E, I). Here, OCC (E, I) ≤ OC(E, I) is the overlap count only accounting for edges
sharing the same endpoint in C (that is the maximum overlap count for any c). Symmetrically, we have γℓ-ℓ-weak C-order
holding with γℓ ≤ 1 when ℓ = OCP (E, I).

For example, using the intervals of Fig. 7 and ℓ = 1, we obtain ζ1 ≈ 1.65, ζ2 ≈ 1.62, ζ3 ≈ 1.44, ζ4 ≈ 0.82 etc, whereas
β1 = 0, γ1 ≈ 1.44 and γ2 = 0, illustrating again how tighter bounds are obtained when node orders are used for the
same value of the overlap count.

3 The only condition required on the order is that two non-overlapping edges are placed in the order of their endpoints.

83

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
That means, assuming an overlap count of ℓ for both P and C weak node orders, only O(n ·ℓ) edges are examined with
Alg. 4 to guarantee a 2-approximation for the produced matching (i.e., we have βℓ, γℓ ≤ 1 then, cf. Proposition 16). That
is, whenever we have m = |E| = Ω(n2) and interval weights with a constant overlap count, only O(

√
m) edges have to

be queried to generate a 2-approximate matching.

Function approximation. Suppose there exists a function f that provides an approximation of the weighting function w,
such as w(e)−∆ ≤ f (e) ≤ w(e)+∆ or (1− ε) · w(e) ≤ f (e) ≤ (1+ ε) · w(e) for some ∆ ≥ 0 (resp. ε ≥ 0). In this case,
one can set I(e) = [f (e) − ∆, f (e) + ∆] (absolute error guarantee) or I(e) = [f (e) · (1 − ε), f (e) · (1 + ε)] (relative error
guarantee) so that all previous results on interval weights hold on approximate weights, including the implications based
on the value of the overlap count.

For example, in the relative error guarantee, by the precedent arguments, the maximum error based on the Optimistic
order is bounded by (1 + ε)/(1 − ε), e.g. the error is less than 2 if ε ≤ 1/3. This entails that the Naive-Edge Matching
algorithm is 2-approximate without calculating any weights whenever the heuristic order of the edges is so that each
approximated weight is within 77%− 133% of its real value (using Proposition 18).

In addition, depending on how much overlap there is in the estimations, tighter approximation ratios can be obtained
by calculating the exact value of some of the weights using our discovery algorithms. In the best scenario, the local
approximations do not overlap at all (at least when considering only the edges in the neighborhood of each node) and
Alg. 2 outputs a 2-approximation of the optimal without calculating any weights.

4. Extensions to one-to-many assignment problems and applications

We extend our results in this section to one-to-many assignment problems, i.e., when each member of the set P can
be matched with up to k ≥ 2 different members of the set C instead of only one in the previously studied one-to-one
assignment problem. Assignments where p ∈ P may be allowed to be paired with up to k elements of C can take two
forms: either the assignment of p to many tasks follow the same weighting function as in the one-to-one assignment,
or the weight of assigning p to a subset X of tasks is different from the sum of assigning p to the individual tasks from
X , that is w({p} ∪ X) ̸=

∑
c∈X w(p, c), extending the weighting function to subsets of P ∪ C . In the former case that

we hereafter refer to as simple one-to-many assignment problem, the problem is a straightforward generalization of the
one-to-one assignment problem, whereas in the latter case, the problem corresponds to a form of bipartite hypergraph
matching, a significantly more challenging problem.

4.1. Simple one-to-many assignment problem

One can reduce any simple one-to-many assignment problem to a one-to-one assignment problem in the following
manner. For each p ∈ P , make k copies p1, . . . , pk of node p, while keeping the original weights, i.e., ∀c ∈ C, w(pj, c) =
w(p, c). Finally, solve the maximum matching in bipartite graphs problem with the input P ′k = {pj | j ∈ [1..k], p ∈ P}
and C . This reduction allows to extend all our results to simple one-to-many assignment problems with all bounds shown
in Table 1 still holding the same way over G = (P ′k ∪ C, E) using the algorithms we have introduced in this work (upon
using appropriate order oracles).

In detail, we can re-use all the discovery algorithms that have been introduced so far and adapt if needed how the
original order oracles translate to this situation. That is, assuming order oracles σP and σC are available for P and C , one
has to extend σP to σP ′k

.
Let us consider three intuitive strategies:

1. Round Robin places all vertices in P first {p1i | pi ∈ P} ordering them in σP , then cycle k − 1 more times over the
other copies of P according to σP each time;

2. Single Pass places first all copies of p1 before moving to all copies of p2, etc;
3. Classic Greedy orders all edges (including the copies) in the usual decreasing order of edge weights.

Here, Single Pass preserves Assumption 1 with identical value for β (albeit enforcing β ≥ 1 as edge weights are
identical between copies). This is because pairs of edges involving the ‘‘new edges’’ are either involving a node in P and
one of its copies or two distinct nodes in P but appearing in σP ′k

 in the same order as in σP .
Since Round Robin shuffles how nodes appear in σP ′k

, it does not preserve the original assumption bounds.
At last, Classic Greedy provides a ζ -strong edge order albeit enforcing ζ = 1 when k ≥ 2 because of the copies. The

weak order assumption does not hold with identical βℓ value because of the presence of the copies while assumptions
relating to σC are not affected by them.

4.2. General one-to-many assignment problem

Following our original motivations stemming from energy systems [9], we further explain here how to extend our
results to the bipartite hypergraph matching problem.
84

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
Bipartite hypergraph matching problem. Contrary to usual graphs where the definition of bipartiteness is rather intuitive
and unique, the notion accepts several variants for its hypergraph equivalent [21]. One natural extension of bipartition to
hypergraphs assumes for the vertex set V of the hypergraph G to be partitioned into two disjoint sets P and C , such that
every hyperedge of G contains at least one vertex from P and one from C . To match the setting of a general one-to-many
assignment problem, we rather restrict hyperedges to have exactly one vertex from P (and since hyperedges contain at
least two vertices, this is a subset of the bipartite hypergraphs in the wider definition).

The k-BHM-Discovery problem seeks, given a bipartite hypergraph G = (P∪C, E), to find the maximum-weight matching
of the hyperedges of E where hyperedges are of size at most k. As with the previous discovery problems, hyperedge
weights are not given as input and must be individually queried. For k ≥ 4 and if no weight assumptions are provided,
the k-BHM-Discovery problem is not approximable within a factor of o(k/ log k) in polynomial time, unless P = NP (cf. [9],
based on a reduction to the k-bounded hypergraph matching problem [18]). By calculating the weight of all O(Nk) possible
hyperedges with N = max{|P|, |C |}, the best approximation algorithms [4,22] achieve slightly less than a (k + 1)/2
approximation ratio.
Approximation bounds for the peer-to-peer energy sharing application. As with simple one-to-many assignments, we can
re-use all the discovery algorithms that have been introduced in this work by simply running them on the input
G = (P ′k−1 ∪ C, E), with E = P ′k−1 × C , assuming we can calculate pairwise weights w(p, c) that provide indications
for the weight of hyperedges containing both p and c , and w(p, c) = 0 if p and c do not appear in any hyperedges of the
original input G = (P ∪ C, E). The output hypergraph matching is then obtained by merging together the different copies
so to create groups of size up to k. In this general setting, our results do not carry over because the weight w({p} ∪ X) of
a hyperedge {p} ∪ X ∈ E is different from the sum of the individual pairwise weights, i.e.,

∑
c∈X w(p, c).

However, it is shown in [9] that if for any hyperedge e = {p} ∪ X of the input its weight is bounded in relation to the
sum of pairwise weights, i.e., if we have

α1(k) ≤
w(e)∑

c∈X w(p, c)
≤ α2(k)

then an r-approximate matching discovery algorithm entails an algorithm with an r ·α2(k)/α1(k) approximation ratio for
the k-BHM-Discovery problem.

For the practical application of ‘‘Peer-To-Peer Energy Sharing’’ considered in [9], bounds of α1(k) = 1
k−1 and α2(k) = 1

are proven. This thus entails discovery algorithms of approximation ratio (k − 1) · ε where ε corresponds to the bound
as shown in Table 1, depending on the chosen matching algorithm and strength of the involved order oracles. In this
application, the clear advantage of using discovery algorithms for the bipartite hypergraph matching problem instead of
one based on exhaustively enumerating all hyperedges resides in calculating at most O(n) weights (e.g. using Alg. 3 or
Alg. 4 with a constant value for ℓ) instead of |E| = O(s ·qk−1) where s = |P|, q = |C |, n = min{s, q}. Our results thus entail
that those efficient greedy algorithms also provide proven approximation guarantees depending only on the quality of
the heuristic orders used to process the input.

5. Conclusions

We have in this work extended the notion of discovery algorithms to assignment problems, and we believe our work
provides useful theoretical bounds for algorithms that are efficient in practice. The algorithms that we have developed
require only weaker assumptions on processing orders for the nodes than a total ordering of all edges and achieve
a bounded approximation ratio depending only on the quality of the heuristic orders used. Furthermore, to provide
a bounded-approximation solution to practical applications, we also discuss here extensions of the greedy algorithms
introduced earlier to one-to-many assignments and further study their performances based on assumptions stemming
from real-world data. We note that for a given input, processing order and with access to all weights, one can compute
efficiently the exact values of the heuristic parameters which can become good estimations for bounds on larger instances
in a given application. Our findings open up for further rehabilitation of greedy algorithms in theoretical analysis, and
advocate that greedy algorithms do not only often provide computationally-efficient solutions to hard problems but can
also be formally analyzed within the scope of concrete applications.

Acknowledgments

Romaric Duvignau is partially supported by the TANDEM project within the framework of the Swedish Electric-
ity Storage and Balancing Centre (SESBC), funded by the Swedish Energy Agency, Sweden together with five aca-
demic and twenty-six non-academic partners. Ralf Klasing is partially supported by the ANR project TEMPOGRAL
(ANR-22-CE48-0001).

Data availability

No data was used for the research described in the article.
85

R. Duvignau, N. Gillet and R. Klasing Discrete Applied Mathematics 378 (2026) 65–86
References

[1] I.D. Aron, P. Van Hentenryck, On the complexity of the robust spanning tree problem with interval data, Oper. Res. Lett. 32 (1) (2004) 36–40.
[2] E. Bampas, D. Bilò, G. Drovandi, L. Gualà, R. Klasing, G. Proietti, Network verification via routing table queries, J. Comput. System Sci. 81 (1)

(2015) 234–248.
[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák, L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun.

24 (12) (2006) 2168–2181.
[4] P. Berman, A d/2 approximation for maximum weight independent set in d-claw free graphs, in: Scandinavian Workshop on Algorithm Theory,

Springer, 2000, pp. 214–219.
[5] D. Bilò, T. Erlebach, M. Mihalák, P. Widmayer, Discovery of network properties with all-shortest-paths queries, Theoret. Comput. Sci. 411 (14–15)

(2010) 1626–1637.
[6] C.T. Caro, J. Doncel, O. Brun, Optimal path discovery problem with homogeneous knowledge, Theory Comput. Syst. 64 (2) (2020) 227–250.
[7] R. Duan, S. Pettie, Linear-time approximation for maximum weight matching, J. ACM 61 (1) (2014) 1–23.
[8] R. Duvignau, V. Gulisano, M. Papatriantafilou, Efficient and scalable geographical peer matching for P2P energy sharing communities, in:

Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 187–190.
[9] R. Duvignau, V. Gulisano, M. Papatriantafilou, R. Klasing, Geographical peer matching for P2P energy sharing, IEEE Access 13 (2025) 9718–9738.

[10] R. Duvignau, V. Heinisch, L. Göransson, V. Gulisano, M. Papatriantafilou, Benefits of small-size communities for continuous cost-optimization
in peer-to-peer energy sharing, Appl. Energy 301 (2021) 117402.

[11] R. Duvignau, R. Klasing, Greediness is not always a vice: Efficient discovery algorithms for assignment problems, Procedia Comput. Sci. 223
(2023) 43–52.

[12] T. Erlebach, Algorithms that access the input via queries, in: T. Bures, R. Dondi, J. Gamper, G. Guerrini, T. Jurdzinski, C. Pahl, F. Sikora, P.W.H.
Wong (Eds.), SOFSEM 2021: Theory and Practice of Computer Science - 47th International Conference on Current Trends in Theory and Practice
of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings, in: Lecture Notes in Computer Science, vol. 12607,
Springer, Cham, 2021, pp. 3–12.

[13] T. Erlebach, A. Hall, M. Mihalák, Approximate discovery of random graphs, in: J. Hromkovic, R. Královic, M. Nunkesser, P. Widmayer (Eds.),
Stochastic Algorithms: Foundations and Applications, 4th International Symposium, SAGA 2007, Zurich, Switzerland, September 13-14, 2007,
Proceedings, in: Lecture Notes in Computer Science, vol. 4665, Springer, Berlin, Heidelberg, 2007, pp. 82–92.

[14] T. Erlebach, M. Hoffmann, M.S. de Lima, Round-competitive algorithms for uncertainty problems with parallel queries, Algorithmica 85 (2)
(2023) 406–443.

[15] T. Erlebach, M. Hoffmann, F. Kammer, Query-competitive algorithms for cheapest set problems under uncertainty, Theoret. Comput. Sci. 613
(2016) 51–64.

[16] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, R. Raman, Computing minimum spanning trees with uncertainty, in: S. Albers, P. Weil (Eds.),
STACS 2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France, 2008, Proceedings, in: LIPIcs, vol. 1, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, Germany, 2008, pp. 277–288.

[17] A. Ganesh, B.M. Maggs, D. Panigrahi, Robust algorithms for TSP and Steiner tree, ACM Trans. Algorithms 19 (2) (2023) 12:1–12:37.
[18] E. Hazan, S. Safra, O. Schwartz, On the complexity of approximating k-set packing, Comput. Complexity 15 (1) (2006) 20–39.
[19] A. Kasperski, P. Zieliński, An approximation algorithm for interval data minmax regret combinatorial optimization problems, Inform. Process.

Lett. 97 (5) (2006) 177–180.
[20] H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. Q. 2 (1–2) (1955) 83–97.
[21] L. Lovász, M.D. Plummer, Matching Theory, vol. 367, American Mathematical Soc., Providence, RI, 2009.
[22] M. Neuwohner, Passing the limits of pure local search for weighted k-set packing, in: N. Bansal, V. Nagarajan (Eds.), Proceedings of the 2023

ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, 2023, SIAM, Philadelphia, PA, 2023, pp. 1090–1137.
[23] L. Ramshaw, R.E. Tarjan, On minimum-cost assignments in unbalanced bipartite graphs, 2012, HP Labs, Palo Alto, CA, USA, Tech. Rep.

HPL-2012-40R1.
[24] C. Szepesvári, Shortest path discovery problems: A framework, algorithms and experimental results, in: D.L. McGuinness, G. Ferguson (Eds.),

Proc. 19th National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, 2004, San
Jose, California, USA, AAAI Press / The MIT Press, Palo Alto, CA, USA, 2004, pp. 550–555.

[25] H. Yaman, O.E. Karaşan, M.Ç. Pınar, The robust spanning tree problem with interval data, Oper. Res. Lett. 29 (1) (2001) 31–40.
86

http://refhub.elsevier.com/S0166-218X(25)00336-1/sb1
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb2
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb2
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb2
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb3
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb3
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb3
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb4
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb4
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb4
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb5
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb5
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb5
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb6
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb7
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb8
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb8
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb8
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb9
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb10
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb10
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb10
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb11
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb11
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb11
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb12
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb13
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb13
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb13
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb13
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb13
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb14
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb14
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb14
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb15
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb15
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb15
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb16
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb16
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb16
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb16
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb16
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb17
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb18
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb19
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb19
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb19
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb20
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb21
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb22
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb22
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb22
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb23
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb23
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb23
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb24
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb24
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb24
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb24
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb24
http://refhub.elsevier.com/S0166-218X(25)00336-1/sb25

	Greediness is not always a vice: Efficient discovery algorithms for assignment problems
	Introduction
	Order Oracles for the Assignment Discovery Problem
	Preliminaries
	The Need for Order Oracles

	Discovery Algorithms for the One-to-One Assignment Problem
	Order Oracles for the Vertex Sets
	The Greedy-Local Algorithm
	The Naive-Local Algorithm
	The �-Greedy-Local Algorithm
	Double-Greedy Algorithm

	Order Oracles on the Edge Set
	Strong Edge Order
	Weak Edge Order

	Instantiations of Order Oracles

	Extensions to One-to-Many Assignment Problems and Applications
	Simple One-to-many Assignment Problem
	General One-to-many Assignment Problem

	Conclusions
	Acknowledgments
	Data availability
	References

