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 a b s t r a c t

Finding a maximum-weight matching is a classical and well-studied problem in com-
puter science, solvable in cubic time in general graphs. We consider the specialization
called assignment problem where the input is a bipartite graph, and introduce in this
work the ‘‘discovery’’ variant considering edge weights that are not provided as input
but must be queried, requiring additional and costly computations. We develop discovery
algorithms here to minimize the number of queried weights while providing guarantees
on the computed solution. In this work, we first show the inherent challenges of
designing discovery algorithms for general assignment problems. We then provide and
analyze several efficient greedy algorithms that can make use of natural assumptions
about the order in which the nodes are processed by the algorithms. Our motivations for
exploring this problem stem from finding practical solutions to a variation of maximum
weight matching in bipartite hypergraphs, a problem recently emerging in the formation
of peer-to-peer energy-sharing communities.
© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the most studied problems in computer science and discrete mathematics, the assignment problem, has a very 
simple formulation, yet there are a plethora of solutions for its many variants and possible additional constraints or 
optimization aims. Using the same nomenclature as used in the rest of the paper, the assignment problem consists of 
pairing the members of a first set P , often referred to as Producers or agents in the literature, with members of a second 
and disjoint set C , often referred to as Consumers or tasks. The target is to obtain a one-to-one correspondence, i.e., each 
producer can be assigned to at most a single consumer and vice versa. Moreover, as not all producers may be able to serve 
any particular consumer (and vice-versa), some pairs are considered non valid.1 For each possible pair (p, c) ∈ E with 
E ⊆ P × C , (p, c) is associated with a positive weight w(p, c) that represents how much gain one can obtain if producer 
p ∈ P is paired with consumer c ∈ C .

The assignment problem consists then in finding a one-to-one assignment M ⊆ E of the consumers to the producers in 
order to maximize the total gain w(M) =

∑
(p,c)∈M w(p, c), slightly abusing the w-notation. This is a well-studied problem 

where the Hungarian algorithm [20] computes an optimal solution in time O(n · m + n2 log n) for n = min{|P|, |C |} and 
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E-mail addresses: duvignau@chalmers.se (R. Duvignau), noel.gillet@univ-orleans.fr (N. Gillet), ralf.klasing@labri.fr (R. Klasing).

1 A variant of the problem can set a weight of 0 for invalid pairs but we rule out such null weights in our formulation. The reason is that our 
objective is to query as few weights as possible, and weights 0 are assumed to be already encoded in the input edge set E ∈ 2P×C .
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Table 1
Approximation ratios shown in this work for the one-to-one assignment discovery problem over input G = (P ∪ C, E), with n = min{|P|, |C |} and 
m = |E|. Each bounded ratio is shown to be achievable (upper bound) by the corresponding algorithm and for each, we show there exist instances 
(input graph and assumption parameters) where the ratio is reached (lower bound). Query complexities are shown in Propositions 6 (Alg. 2), 10 
(Alg. 3) and 16 (Alg. 4), where ℓ ≥ 0 is a parameter of the matching algorithms. 

Algorithm Opt. Greedy Alg. 1 Alg. 2 Alg. 3 Alg. 4
Query Complexity m = |E| ≤ m 0 ≤ (ℓ+ 1) · n ≤ 3 · (ℓ+ 1) · n

No weight assumptions ∞
a

β−strong P-order (Assumption  1) 1+ βb
∞

i

γ−strong C-order (Assumption  2) 1+ γ c
∞

i

‘‘Strong orders’’ (Assumptions  1 and 2) 1 2 min{1+ β, max{1, β + γ }} d max{1, β + γ }e 2 ·max{1, β, γ }h

Ass. 1 + γℓ-ℓ-weak C-order (Ass. 3) 1+ βb
∞

j β +max{1, γℓ}
f 2 ·max{1, β, γℓ}

h

Ass. 2 + βℓ-ℓ-weak P-order (Ass. 4) 1+ γ c
∞

j γ +max{1, βℓ}
g 2 ·max{1, βℓ, γ }

h

‘‘Weak orders’’ (Assumptions  3 and 4) ∞
k 2 ·max{1, βℓ, γℓ}

h

a Proposition 3;
b Propositions 4 and 5;
c Remark 2 with Alg. 1 running over input G = (C ∪ P, E);
d Remark 3;
e Propositions 6, 8, and 11;
f Propositions 9 and 12;
g Proposition 13 on G = (C ∪ P, E);
h Propositions 16 and 17;
i Remark 4;
j Remark 8;
k Propositions 14.

m = |E|; see among others [23] for unbalanced assignment problems and [7] for linear-time bounded-approximation 
algorithms. The problem can be alternatively formulated as finding a maximum-weight matching in the bipartite graph 
G = (P ∪ C, E), with the two formulations being equivalent and used interchangeably hereafter for convenience.

A ‘‘discovery’’ problem is any optimization problem where the information that is the basis of the optimization is not 
provided as initial input but must rather be discovered during the algorithm’s execution. We extend this notion of discovery 
algorithms, introduced among others in [6,24], to assignment problems. We shall study in this work the Maximum-Weight 
Matching Discovery (MWMD) problem that consists in finding a Maximum-Weight Matching (MWM) using weights that can 
only be obtained through explicit calls to a computationally-expensive weight function. We denote by query complexity
the number of inspected weights used by a given algorithm to produce its solution. Since one can easily show that in 
general, finding the MWM requires the computation of all possible weights in the worst case, we aim to investigate in 
this paper if approximation algorithms can reach a bounded approximation ratio while requiring the calculation of only 
an asymptotically subquadratic number of weights in n. Our methods apply to the assignment problems (i.e., bipartite 
graph matchings) and can be further extended to solve a bipartite version of the hypergraph matching problem with 
interesting practical applications in energy systems [8,9].
Contributions. Recall the greedy matching procedure: consider the edges one by one in decreasing order of weights and 
add the current edge under consideration whenever both its endpoints are still available at that step of the algorithm. It is 
a folklore result that the greedy matching algorithm produces a 2-approximate matching Mg  compared with the optimal 
algorithm, i.e., we have w(Mopt ) ≤ 2 · w(Mg ) where Mopt is the MWM on the input. Note that both the greedy and the 
optimal matching (calculated using for instance the Hungarian algorithm) require to inspect the value of all the weights 
of the input to compute their solution. The argument for the bounded approximation bound relies on two elements: (1) 
the order in which the greedy algorithm considers the edges (from largest to smallest weights) and (2) the fact that for 
each edge e of Mg , if e is not present in Mopt then it may only be ‘‘replaced’’ by two other edges in Mopt , from which one 
deduces the approximation bound of 2.

Our main contribution is to propose a generalization of the above argument to edge sets that are only partially ordered, 
hence allowing to deduce approximation bounds using problem-dependent heuristic orders on the vertex sets and this way 
avoiding to inspect the values of all the weights of the input. In this work, we introduce the notion of ‘‘order oracles’’ (cf. 
Section 2.2) that are capable to order nodes in specific orders concerning the weights of the edges in their neighborhood 
without requiring any computation of the edge weights. This ordering assumption allows us to design efficient greedy 
algorithms with bounded approximation ratio and requiring to compute only up to O(n) weights when the vertices of 
each set are processed in a well-chosen heuristic order. We summarize our main results in Table  1. (‘‘Opt’’. is an optimal 
matching algorithm, ‘‘Greedy’’ refers to the classical greedy algorithm as aforedescribed, while the other algorithms are 
the ones developed and analyzed in this work. Parameters β , γ , γℓ, βℓ control the quality of the heuristic orders for 
processing of the nodes of the input sets P and C , and are respectively specified in Assumptions 1, 2, 3 and 4.)
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A short and preliminary version of our work appears in [11]. The present work extends [11] and lifts an additional 
simplifying assumption about the heuristic orders (i.e. that all order parameters β , γ , γℓ, βℓ are greater than one), adds a 
novel and more complex greedy procedure (Alg. 4) and its analysis, achieving a bounded-approximation using only weak 
orders and a linear number of weight queries, considerations on edge orders and instantiating order oracles as well as 
further details concerning extending our algorithms to the (bipartite) hypergraph matching problem.

Motivations. In the context of Peer-to-Peer energy sharing [10], the Geographical Peer Matching (GPM) problem is 
introduced in [8] to efficiently compute a matching of the peers targeting the maximization of a global objective (i.e., the 
total cost-savings). It relies on both geographical information about the peers as well as their local matching preferences, 
and seeks to build an assignment of the peers into groups of size up to k as advocated by the application. Building on 
the discovery algorithms presented and analyzed in this work, we can obtain bounded-approximation algorithms for the 
GPM problem that run in linear time and use only a linear number of weight calculations, under certain assumptions 
occurring in practice (see Section 4.2).
Related work. Discovery algorithms have been studied in the literature for various problems on weighted graphs. 
However, as far as we are aware, they have not been investigated so far for the maximum-weight matching problem. For 
any optimization problem (a.k.a. maximization or minimization problems), considering that the solution of the discovery-
variant of a given problem (i.e., assuming part of the input is obtained on the fly) is also a valid solution to the original 
problem where all inputs are provided at the start of the algorithm, the time complexity required to reach an optimal 
solution is always at least as large as the one for the original non-discovery problem.

Szepesvari [24] introduced the Shortest Path Discovery Problem (SPDP), in which the task is to discover in a given edge-
weighted graph a shortest path for fixed source and target nodes. An algorithm is proposed that is shown to use a small 
number of queries. Experimental results on real-world instances are also presented. Caro et al. [6] generalize the SPDP 
to the Optimal Path Discovery Problem. First, they consider a broader class of cost functions, and relax the constraint that 
an optimal path has to be discovered, allowing the discovered path to be an α-approximation. Second, whereas in [24] 
the performance of algorithms was measured with the number of queries, Caro et al. [6] propose a more fine-grained 
performance measure, called the query ratio, i.e., the ratio between the number of queried edges and the least number of 
edge values required to solve the problem. They prove a 1+ 4/n− 8/n2 lower bound on the query ratio and present an 
algorithm whose query ratio, when it finds the optimal path, is upper bounded by 2− 1/(n− 1), where n = |V |. Finally, 
they implement different algorithms and evaluate their query ratio experimentally.

Erlebach et al. [16] consider the minimum spanning tree problem with queryable uncertainty. This concept refers to 
settings where the input of a problem is initially not known precisely, but exact information about the input can be 
obtained at a cost using queries. An algorithm with query ratio 2 is proposed in [16] for the minimum spanning tree 
problem, and it is shown that this query ratio is the best possible among deterministic algorithms. In [15], the authors 
extend the framework to cheapest set problems with queryable uncertainty that englobe previously studied problems such 
as the minimum spanning tree, or the minimum matroid base problem under queryable uncertainty. For the cheapest set 
problems with queryable uncertainty, the authors present an algorithm that makes d · OPT + d queries, where OPT is 
the optimal number of queries required to solve the problem and d is the maximum cardinality of a feasible set in a 
given instance. An algorithm with query ratio 2 for the minimum matroid base problem is also provided in [15]. In [14], 
algorithms for uncertainty problems are studied in which parallel queries are allowed. Round-competitive algorithms are 
presented for sorting, selection, and for the minimum value problem. In [12], a survey on models and algorithms for 
problems that access the input via queries can be found.

Another similar line of work considers the robust spanning tree problem with interval data. For a given graph with 
weight intervals specified for its edges, the goal is to compute e.g. a spanning tree that minimizes the worst-case deviation 
from the minimum spanning tree (also called the regret), over all realizations of the edge weights. This is an off-line 
problem, and no query operations are involved. The problem is proved NP-hard in [1] while a 2-approximation algorithm 
is given in [19]. Further work has considered heuristics or exact algorithms for the problem, see e.g. [25].

Regret minimization was also considered for other combinatorial optimization problems with interval data. Indeed, 
for problems in P (including the assignment problem) there is a generic method to obtain constant approximations with 
respect to the regret [19]. On the contrary, this was shown not to be true in general for NP-hard optimization problem, 
by Ganesh et al. [17]. For that reason they developed novel techniques for regret minimization of NP-hard optimization 
problems, opening the door for a new and exciting research direction. The result is the first constant factor approximation 
algorithm for the robust setting of NP-hard optimization problems, including the classical problems TSP on metric graphs 
and Steiner Tree.

The network verification problem is that of establishing the accuracy of a high-level description of its physical topology, 
by making as few measurements as possible on its nodes. This task can be formalized as a Network Discovery optimization 
problem that, given a graph and a query model specifying the information returned by a query at a node, asks for finding 
a minimum-size subset of nodes to be queried so as to univocally identify the graph. This problem has been studied with 
respect to different query models, assuming that a node has some global knowledge about the network [2,3,5,13].
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Fig. 1. Examples of matchings: (a) Optimal with weight 23, (b) Greedy with weight 17, (c) Greedy-Local (Alg. 1) with weight 16, (d) Naive-Local 
(Alg. 2) with weight 19; the 1-Greedy-Local (Alg. 3) algorithm outputs the matching (a) as well as the 1-Double-Greedy-Local (Alg. 4). Here, the 
strong and weak ordering assumptions hold with β = 7/3, γ = 8, β1 = 0, γ1 = 3 and γ2 = 0.

Table 2
Symbols used throughout the paper.
 Symbol Definition Symbol Definition  
 G input weighted graph G = (P ∪ C, E, w) V a vertex set, V = P ∪ C  
 P a set of ‘‘agents’’ s size of P  
 C a set of ‘‘tasks’’ q size of C  
 E a set of edges (allowed agent-task pairs) m size of E  
 M a matching of the edges n maximum matching size, n = min{s, q}  
 w(e) weight associated with edge e ∈ E w(M) weight of the matching M  
 σP an order over (or permutation of) P σC an order over (or permutation of) C  
 A a matching algorithm ℓ a parameter of some matching algorithms 
 β, βℓ parameters associated with σP γ , γℓ parameters associated with σC  

Plan. In Section 2, we define the assignment discovery problem, show its inherent challenges and hence the need for 
introducing order oracles to analyze the performance of discovery algorithms. In Section 3, we present several greedy 
algorithms producing a matching without querying the totality of the weights, and analyze them relying on different 
assumptions about the order in which the nodes are processed in regard to the weights of the edges. We further 
complement the section considering orders on edges and how to instantiate order oracles using interval weights or an 
approximation function in lieu of precise weights. In Section 4, we present how our algorithms extend to one-to-many 
assignment problems, before concluding our work in Section 5.

2. Order oracles for the assignment discovery problem

2.1. Preliminaries

We adopt the following conventions for the notation used hereafter. Let G = (P∪C, E) denote a bipartite graph serving 
as our input instance; P , a set of ‘‘agents’’ to match with ‘‘tasks’’ with s = |P| the number of considered agents; C , a set 
of tasks with q = |C |; E ⊆ P × C the set of possible edges with (p, c) ∈ E if the task c can be assigned to the agent p
and m = |E|; w(e) ∈ R+ for e ∈ E is the weight of the edge e; n = min{|P|, |C |} is the maximum size of a matching in 
G. We slightly abuse the w notation so as to write w(p, c) to denote as well the weight of the edge (p, c) and w(M) for 
the weight of the matching M ⊆ E, i.e., w(M) =

∑
e∈M w(e). Refer to Table  2 for a quick reference to the definition of the 

symbols used throughout the paper.
An isolated edge is any edge without any adjacent edges in G, i.e., e = (p, c) is isolated if ¬(∃(p, c ′) ∈ E, c ′ ̸=

c ∨ ∃(p′, c) ∈ E, p′ ̸= p). In the following, we assume that all weights are strictly positive as edges with negative or 
zero weight are assumed to be removed from the considered input graph. The query complexity of an algorithm A is the 
number of weights A inspects,2 in the worst-case in order to calculate its output. Examples of matchings are provided in 
Fig.  1 with the discovery algorithms computing them being defined in Section 3.

Definition 1.  For α ≥ 1, we refer for a given matching algorithm A as being α-approximate if and only if for all possible 
inputs G ∈ G of A, the output matching of A denoted MA(G) has weight at least 1/α of the optimal matching Mopt (G) of 
G, i.e., ∀G ∈ G, w(Mopt (G)) ≤ α ·MA(G).

We have chosen a weighting function w taking values in R+, however, all our results can be shown to also apply when 
w is restricted to integer weights as our arguments only rely on weight orders and bounds rather than the actual values. 

2 We use hereafter interchangeably the terms inspect, discover, query and compute for the same action of checking the value of the weight w(e)
of one of the input edges e ∈ E. Because such weight can easily be memorized by the algorithm, we only account for the first inspection of w(e).
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Hence, if not explicitly stated, w can be restricted to take only integer values. To be more precise, all our algorithms work 
fine with integer weights but we have used rational weights for some graph instances within the lower bound arguments, 
hence a simple scaling of all weights will entail an argument that is valid for integer weights as well.

2.2. The need for order oracles

Lower bounds for the number of discovered edges. We first show that, without additional assumptions, any algorithm 
requires in the worst case the computation of all possible weights in G (discarding isolated edges) in order to reach 
a bounded approximation ratio. Note if G has isolated edges, all such edges can be added safely without computing 
their weights and we can assume that the considered algorithms rather start with G′, the graph obtained by stripping 
all isolated edges from G. Let us first observe the following simple result that restrains the edges that are not inspected 
when producing a matching for any input graph (not necessarily bipartite).

Lemma 1.  Let α ≥ 1. For any input graph G, any α-approximate matching discovery algorithm A must include in its output 
matching all the edges of G whose weight is never inspected by A.

Proof.  Let A be an α-approximate matching discovery algorithm, G = (V , E, w) be an input graph, and M the matching 
computed by A over G. Suppose there exists e ∈ E, e ̸∈ M and e’s weight is never queried by A while calculating M . 
Since w(e) is not queried by A, it can be arbitrarily large, as for example w(e) = α′

∑
e′∈E\{e}w(e′) with α′ > α. Hence, 

any matching of G including e is at least α′ better than any matching not including it, implying A is not α-approximate 
in this case. □

One may notice that if a matching discovery algorithm A greedily adds an edge e to the output matching (after 
inspecting its weight or not), then the weights of all the adjacent edges to e (i.e. those edges sharing an endpoint with e) 
must have been inspected before adding the edge e to the matching. This is due to the impossibility for A to add them 
later to the matching due to its greedy decision concerning e and the previous lemma (an edge whose weight is unknown 
must appear in the final matching). Furthermore, we can also deduce from the previous lemma the following result.

Lemma 2.  For any input graph G = (V , E, w) and α ≥ 1, any α-approximate matching discovery algorithm A examines at 
least |E| − ⌊ |V |2 ⌋ edges to compute its solution.

Proof.  First note that for any matching M of the edges of G, any edge e ∈ M of the matching necessarily blocks two 
vertices of V  from being used in the other edges of M \ {e}, thus |M| ≤ ⌊ |V |2 ⌋. Now, applying Lemma  1, any edge that is 
not inspected by A must also be included in the output matching MA(G), hence at most ⌊ |V |2 ⌋ edges are not inspected. □

Corollary 1.  If |E| = Ω(|V |2), any bounded approximation algorithm must query Ω(|V |2) edges of the input graph 
G = (V , E, w).

For bipartite graphs of the form G = (P∪C, E), the lower bound on the number of queried edges may be slightly higher 
than in Lemma  2, as any edge of the matching eliminates both a node in P and one in C , entailing |M| ≤ min{|P|, |C |}
and thus m− n edges must be queried by any bounded approximation matching discovery algorithm. Since our target is 
to query at most a linear number of weights in n, there exists no such efficient discovery algorithm for general (bipartite) 
graphs. We show hereafter an even tighter lower bound on m for some graph families. We clarify that the following result 
appears already in [11] but the proof arguments of [11] are only explicit when G contains 2 edges.

Proposition 3.  There exist unbounded graph families that do not admit a bounded-approximation algorithm A for maximum 
weight matching such that A queries strictly less than m = |E| weights, for the input graph G = (V , E, w).

Proof.  We give the proof for G being a star of m ≥ 2 edges, i.e., G = (P ∪ C, E) with P = {p} and C = {c1, . . . , cq} such 
that E = {(p, cj) | 1 ≤ j ≤ q}.

Suppose there exists an α-approximate algorithm A that always avoids the computation of at least one weight 
w(p, c) > 0 for an edge (p, c) in a given input graph Gw , i.e. the star graph G equipped with the weight function w. 
Let w(p, c1) = α′ with α′ > α and w(p, cj) = 1 for 2 ≤ j ≤ q − 1 such that those edges also match in the same order 
the edges whose weight is queried by A (because of symmetries in the star graph, this order is only dependent on A). 
Hence, the edge (p, cq) is the edge that is never discovered by A. By Lemma  1, we know that A selects the edge (p, cq)
in its output. Hence, if e.g. w(p, cq) = 1, the matching produced by A is less than α times the optimal, that selects (p, c1)
here for a total weight of α′ > α. □
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Avoiding weight calculations. The above proposition claims that there exist arbitrarily large instances where a bounded 
approximation algorithm has no other choice than inspecting the weight of all edges in the input graph. However, there 
also exist instances where a bounded approximation can be obtained without checking the weights of all non-isolated 
edges. Consider a path P4 made of 4 connected edges e1, e2, e3, e4 and the following algorithm. If w(e2) > w(e3) then 
return {e4, argmaxe∈{e1,e2}w(e)} else return {e1, argmaxe∈{e3,e4}w(e)}. The algorithm always skips the calculation of one 
of the weights, however, it always produces a solution that is 2-approximate (simply because in each case, it has already 
accumulated at least half of the optimal without accounting for the non-queried edge). Using a disjoint union of P4 as 
input, one can show that it is possible to avoid at least m/4 = Ω(|E|) weight calculations in some graph instances.
Order oracles. Proposition  3 essentially tells us that without additional assumptions, one may need to compute all m′
weights (where m′ is the number of non-isolated edges in the input). In this scenario, one can simply run the optimal 
algorithm on G′ and add all isolated edges afterwards which obviously produces the optimal solution for G. To circumvent 
the impossibility and aim to compute less than m′ weights, we assume that there exists an oracle that provides us with 
the vertices of P and possibly of C in an order σP  (or σC ) which guarantees additional properties about the weights. The 
matching algorithm A’s aim is to heuristically use σP  and σC  to avoid to query the weight of some of the edges. More 
generally, one may assume that the oracle is powerful enough to provide the edges that the matching algorithm should 
consider in an order σE over E so that edges with higher weights are generally considered earlier on. In such a case, 
observe that for any given matching algorithm A, there exists an optimal order σA over E that optimizes the weight of 
the matching produced by A (note, for some algorithms, all such orders may still produce the same result). Since our goal 
is to design efficient matching algorithms that minimize the number of weight calculations, we cannot assume that edges 
are processed by A in the order σA but rather the goal is to design an algorithm A′(σP , σC ) which produces a matching of 
bounded approximation ratio given the oracle’s orders, while calculating a hopefully limited number of weights. Assuming 
there exist heuristic orders on P and C with interesting properties on the weight function stems from the settings of our 
original motivating problems of peer matching among energy communities [8,9]. In the next section, we design greedy 
algorithms exploiting σP  and σC  and show their approximation ratio. Our aim is to assume that σP  and σC  entail weak 
properties on the weights but strong enough to be able to reach a sub-quadratic number of weight calculations in n while 
keeping a bounded approximation ratio for the calculated matching. Observe that order oracles that provide us with a 
total ordering of the edges are very strong, cf. Section 3.2.

3. Discovery algorithms for the one-to-one assignment problem

3.1. Order oracles for the vertex sets

3.1.1. The Greedy-Local Algorithm
Alg. 1: Greedy-Local Matching

Input :  A bipartite graph G = (P ∪ C, E) with sets 
P = p1, p2, . . . , ps and C = c1, c2, . . . , cq

Output: M , a matching of E;
// Initialization

1 M ← ∅ ;
2 foreach j ∈ C do
3 availablej ← True ;
// Greedy Matching Loop

4 for 1 ≤ i ≤ s do
// Array of available neighbors

5 N ← [ 1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej ];
6 if N ̸= [] then
7 if |N| > 1 then
8 foreach j ∈ N do
9 bj ← weight(pi, cj);

10 j← argmaxj∈N bj; // Get best choicea

11 else
12 j← N[1]; // Retrieve the first value
13 availablej ← False ;
14 M ← M ∪ {pi, cj};
15 return M;

a In the case of a tie, take the smallest index j.

Alg. 2: Naive-Local Matching
1 for 1 ≤ i ≤ s do
2 N ← [ 1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej ];
3 if N ̸= [] then
4 j← N[1] ;
5 availablej ← False;
6 M ← M ∪ {pi, cj};
7 return M;

Alg. 3: ℓ-Greedy-Local Matching
1 for 1 ≤ i ≤ s do
2 N ← [ 1 ≤ j ≤ q | {pi, cj} ∈ E ∧ availablej ];
3 if N ̸= [] then
4 if |N| > 1 then
5 N ← N[: ℓ+ 1]; // Keep the ℓ+ 1 first 

values of the array N
6 foreach j ∈ N do
7 bj ← weight(pi, cj);
8 j← argmaxj∈N bj; // As in Alg. 1, line 10
9 else

10 j← N[1] ;
11 availablej ← False ; M ← M ∪ {pi, cj};
12 return M;

All 3 algorithms have the same input/output (as Alg. 1) and Alg. 2 and Alg. 3 start by the same initialization lines (1-3) as in Alg. 1.

Before studying more efficient discovery algorithms and to introduce important ordering assumptions and proof 
arguments, we first study the following simple greedy procedure Alg. 1: the vertices of the set P are processed one by one 
in the oracle’s order σP  where σP  was designed to have earlier vertices more likely to be associated with higher gains for 
a given task than vertices appearing later in the order. Each time a node is processed, its full neighborhood is examined 
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and the available edge with highest weight is selected to be added to the matching. In the following, during the round 
where p ∈ P is considered, we refer to an edge (p, c) as being available if the endpoint c ∈ C of the edge has not been 
previously blocked by adding another edge (p′, c) to the matching at an earlier stage of the algorithm (which is greedy 
and never reconsiders previous choices).

We show that this Greedy-Local matching algorithm achieves a bounded approximation ratio if σP = p1, . . . , ps orders 
the vertices in P such that for any 1 ≤ i < j ≤ s, the weight of (pj, c) is upper-bounded by β times the weight of 
(pi, c), for any c such that both (pi, c) ∈ E and (pj, c) ∈ E. In Proposition  4, we show that Alg. 1 produces a (1 + β)-
approximate matching under the aforementioned ordering assumption (Assumption  1, referred to in the following as 
‘‘β−strong P-order’’). Note that if β ≥ 1, the approximation bound is weaker than the classical greedy matching which is 
2-approximate. Also, whenever weights of the input graph may be equal to each other and β ̸= 0, the ‘‘best value’’ that β
may take is 1 (i.e. β ≥ 1 because any subsequent edge sharing an endpoint in C with an edge being processed may have 
an equal or strictly smaller weight). Observe that without any ordering assumptions, Alg. 1 does not produce a bounded 
approximation in general as its greedy decisions do not take the ‘‘future’’ into consideration, hence adding the edge (pi, c)
to the matching might remove the possibility to add a later-to-be-processed edge (pj, c), with j > i, and whose weight 
might be arbitrarily large.

Assumption 1 (β−strong P-order). Assume that β ≥ 0 and P is processed in the order σP = p1, p2, . . . , ps, so that for any 
pi, pj ∈ P with 1 ≤ i < j ≤ s and c ∈ C such that (pi, c) ∈ E and (pj, c) ∈ E, we have w(pj, c) ≤ β · w(pi, c).

We can remark here that assuming a P-order is a weaker assumption than in classical greedy ordering, in the sense 
that, it does not require a total order over all the edges of G. Indeed, the property is only local to each node c ∈ C , for 
which we can bound the error of adding an early (pi, c) edge in the matching, without requesting the weight of the next 
(pj, c) edges for j > i. All the considered node orders in this section are thus only partial edge orders, see also Remark  6.

Proposition 4.  Under β-strong P-order, Alg. 1 has approximation ratio at most 1+ β .

Proof.  Let M be the matching obtained by an optimal algorithm and M ′ the one by Alg. 1. The main idea behind the 
proof is based on the fact that if an edge e is present in an optimal matching M but not in the matching M ′ computed 
by our algorithm, it implies that there is at least one adjacent edge e′ ∈ M ′ that blocks e from being selected into M ′. We 
further demonstrate that there are at most two such blocking edges for any non selected edge of M .

Let f : M → M ′ be a function that projects the edges selected by the matching M onto the edges of M ′ defined as 
follows:

(1) For e ∈ M , if e ∈ M ′, then f (e) = e.
(2) For e = (pj, c) ∈ M and e ̸∈ M ′, consider the two following cases.

(a) At the beginning of pj’s turn, e was not selected in M ′ because it was already blocked. That is, e was not among 
the available edges considered by Alg. 1 during pj’s turn, and since pj has not been assigned to any node in C
yet, that means there exists a blocking edge (pi, c) ∈ M ′ with i < j that has been added to M ′ before pj’s round. 
Define f (e) = (pi, c) then.

(b) The complementary case is that e was not selected in M ′ during pj’s turn but it was still available to pick (that 
is, e was not blocked). In this situation, Alg. 1 picks the edge with highest weight locally and since (pj, c) ̸∈ M ′
there must be another edge (pj, c ′) ∈ M ′ with c ′ ̸= c with a higher weight that has been selected instead. 
Define f (e) = (pj, c ′) in this case.

By exhaustion of possible cases, every edge of M has an image in M ′. We now prove that every edge (pi, c) ∈ M ′ has 
at most two preimages under the function f . If (pi, c) ∈ M , the edge has only itself as preimage as this implies that there 
exist no edges in M ′ such that (p′, c) ∈ M ′ with p′ ̸= pi nor (pi, c ′) ∈ M ′ with c ′ ̸= c as M ′ is a matching of the edges; in 
this case, f  is prevented from applying Cases 2a and 2b and only Case 1 remains. Now, consider (pi, c) ̸∈ M . We show that 
there is only a single edge e ∈ M such that Case 2a applies so that f (e) = (pi, c), and the same for Case 2b. For Case 2a to 
apply, e must be of the form (pj, c) with j > i and since M is a matching there cannot exist another edge in M containing 
node c . Similarly, for Case 2b to apply, we need to have (pi, c ′) ∈ M and for the same reason there cannot be another 
edge in M sharing the node pi.

Note that in Case 1, we have trivially w(e) ≤ w(f (e)); in Case 2a, we have w(e) ≤ β · w(f (e)) by direct application 
of Assumption  1; in Case 2b, we have w(e) ≤ w(f (e)) as the algorithm chooses f (e) as the local maximum of unblocked 
edges and both e and f (e) are then unblocked. Hence, we can now bound the total weight of the matching M by a sum 
of weights from edges of M ′ as follows: ∑

e∈M

w(e) ≤
∑
e∈M,
f (e)=e

w(f (e))

  
+

∑
e=(pj,c)∈M,

f (e)=(pi,c),
i<j

β · w(f (e))

  
+

∑
e=(pj,c)∈M,

f (e)=(pj,c′),
c ̸=c′

w(f (e))

  
. (1)
Case 1 Case 2a Case 2b
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As each edge e′ ∈ M ′ appears either only in the first sum, or at most once in each of the last previous two sums (see 
discussion above) and 1+ β ≥ 1, we get:∑

e∈M

w(e) ≤
∑

e′∈M ′|∃e∈M,f (e)=e′

(1+ β) · w(e′).

As all weights are greater than zero, we get at last:

w(M) ≤
∑
e′∈M ′

(1+ β) · w(e′) = (1+ β) · w(M ′). □

As a remark, one subtlety in the above proof is that a blocked edge e may be lighter (i.e., of lower weight) than the 
blocking edge e′ it is mapped with. If w(e) ≤ w(e′), one may wonder why e is part of the optimal solution instead of e′. 
The intuition is that adding e′ is not necessarily a good global choice. Indeed, if e is in M but not in M ′, one can prove that 
there is a second edge e′′ ∈ M which was not selected by M ′ and with a cumulative weight w(e) + w(e′′) greater than 
w(e′) such that (a) either the blocking edge e′ is also directly blocking e′′, or (b) e′′ is at distance at most 2 from e. If no 
such edge e′′ exists in M , then one can freely swap e′ and e in M and improve the optimal matching.

Following Proposition  4, if σP  implies that for each c ∈ C , the local neighborhood of c is totally ordered by considering 
the edges in the order provided by σP , i.e., σP  is so that β ≤ 1, then Alg. 1 provides a better approximation than the usual 
greedy algorithm.

We note that this first algorithm may already reduce significantly the number of computed weights, as blocked edges 
as well as vertices left with a single available edge do not trigger weight computation during its execution. However, in 
the worst case, the algorithm does end up computing almost all weights in G. For instance if n = s = q and G is the 
complete bipartite graph, n+ (n−1)+· · ·+2 = n(n+1)

2 −1 = Ω(n2) weights are eventually calculated. Even worse, if one 
strips from the complete bipartite graph all edges that will eventually get blocked by the greedy choices, then a single 
weight calculation is actually saved.

Remark 1.  There exist instances in which Alg. 1 computes Ω(n2) weights in the worst case.

The example input given in Fig.  2 illustrates that there exist instances where Alg. 1 reaches its proven approximation 
bound.

Proposition 5.  Under β-strong P-order, there exist instances where Alg. 1 has an approximation ratio of at least 1+ β .

Proof.  Let us consider the example input given by Fig.  2 with P = {p1, p2} and C = {c1, c2}. Assumption  1 holds on this 
input as we have w(p2, c1) ≤ β ·w(p1, c1) and this is the only pair of edges where it can apply. Alg. 1 selects as matching 
the pair (p1, c1) as it is the local maximum of p1 with weight 1 (tying with (p1, c2) and tie resolution favors c1), to compare 
with the optimal matching which selects the two other edges with total weight 1+ β . □

We introduce the following ‘‘γ−strong C-order’’ as the symmetric assumption analogous to Assumption  1 but reversing 
the sets P and C .

Assumption 2 (γ−strong C-order). Assume γ ≥ 0 and that the set C is provided in the order σC = c1, c2, . . . , cq, so that 
for any ci, cj ∈ C with 1 ≤ i < j ≤ q and p ∈ P such that (p, ci) ∈ E and (p, cj) ∈ E, we have w(p, cj) ≤ γ · w(p, ci).

Remark 2.  If one runs Alg. 1 with input G = (C ∪ P, E), i.e., inverting the set P and the set C in its input, Assumption  2 
entails that the output is a (1+ γ )-approximation over G = (P ∪ C, E) by following Proposition  4 with β = γ . Using the 
same inputs, a lower bound for the approximation ratio of 1+ γ  is also obtained by applying Proposition  5.

Observe that Alg. 1 is not symmetric in P and C and the output that is produced in Remark  2 is naturally different 
than the one using the original inputs. Also, when both strong ordering assumptions hold, we can bound Case 2b in Eq. 
(1) by γ · w(f (e)).

For γ ≥ 1, this swap worsens the bound but for γ < 1, we obtain an approximation ratio of max{1, β + γ }, the max 
being due to the case β + γ  being smaller than 1 (i.e., the bound coming from Case 1 is worse then). Combining with 
Proposition  4, which also applies here, leads to the following result. 

Remark 3.  Under both assumptions β−strong P-order and γ−strong C-order, for any β > 0 and γ > 0, Alg. 1 reaches 
a min{1+ β,max{1, β + γ }} approximation.

Let us note that, according to the example used in Proposition  5, the above ratio is reached by Alg. 1 if for example 
γ > 1. By the precedent remark, whenever β + γ < 1, Alg. 1 produces an optimal matching. One may also deduce from 
the previous remark that running twice Alg. 1, first with G1 = (P ∪ C, E) and then with G2 = (C ∪ P, E), and keeping the 
matching whose weight is maximum produces a min{1+ β, 1+ γ ,max{1, β + γ }}-approximation.
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Fig. 2. Example for Alg. 1.

Fig. 3. Example for Alg. 2.

3.1.2. The Naive-Local Algorithm
Previously, the introduced strong ordering assumptions allow to make greedy choices during the processing of nodes 

by the matching algorithm, however, they do not always guarantee that one can omit the computation of the weight of 
a single edge of the input graph whenever the assumptions are used separately. For instance for Assumption  1, consider 
an arbitrarily large graph where each pi, for 1 ≤ i ≤ s, is only connected to two nodes c2i and c2i+1 and nothing else, 
hence omitting the computation of a single weight of the graph may lead to an unbounded approximation as the ordering 
assumption does not provide bounds on the omitted weight. Other problematic instances include star-graphs around a 
single node p1 (as in Proposition  3) where Assumption  1 does not provide any constraints on the weights. Observe that 
the same argument applies in a symmetric manner with Assumption  2.

Remark 4.  By the above arguments and Proposition  3, even under β-strong P-order (resp. γ -strong C-order), there exist 
instances where for any algorithm A such that A omits at least the computation of one weight of the input, A does not 
produce a bounded approximation.

However, if both previously introduced assumptions hold in the oracle’s orders σP  and σC  simultaneously, then one can 
actually design an algorithm (Alg. 2) computing no weights at all but achieving a bounded approximation of the optimal 
matching. The algorithm simply picks at each step the edge made of the first available and selectable (i.e. having still 
unmatched neighbors) node p in σP  order paired with the first available node in p’s neighborhood, according to σC  order. 
Following a similar proof as in Proposition  4, one derives (Proposition  6) that if both strong ordering assumptions hold, 
then Alg. 2 produces a max{1, β + γ }-approximate matching without calculating any weights of the input. Using the 
example of Fig.  3, we also show that any matching algorithm that calculates no weights (and in particular Alg. 2) cannot 
beat this approximation bound.

Proposition 6.  Under both β-strong P-order and γ -strong C-order, Alg. 2 outputs a max{1, β + γ }-approximate matching 
without calculating any weights.

Proof.  The proof follows the same structure as the one of Proposition  4. The difference is only that the Naive-Local 
algorithm assigns the first unblocked edge (in C ’s provided order σC ) to pj whereas the Greedy-Local algorithm chooses 
the local maximum of the unblocked edges. Hence, we can define similarly f  and we have again that any edge of M ′
can only be the image by f  of at most two different preimages. By using the same arguments, the same inequalities on 
weights hold for Cases 1 and 2a. Observe now that in Case 2b with e = (pj, cx) ∈ M and f (e) = (pj, cy) ∈ M ′, we have 
x > y as cy is chosen by M ′ as the first available edge, hence, we have that w(e) ≤ γ · w(f (e)) following Assumption  2.

Summing the edges of M with the three possible subcases, we get:

w(M) =
∑
e∈M

w(e) ≤
∑
e∈M,
f (e)=e

w(f (e))

  
Case 1

+

∑
e=(pj,c)∈M,

f (e)=(pi,c),
i<j

β · w(f (e))

  
Case 2a

+

∑
e=(pj,c)∈M,

f (e)=(pj,c′),
c ̸=c′

γ · w(f (e))

  
Case 2b

.

With analogous concluding arguments to the ones in the proof of Proposition  4, we get that each edge of M ′ can either 
be also present in M and has then a unique image by f , or appear at most once in each Cases 2a and 2b, entailing:

w(M) ≤
∑
e′∈M′

∃e∈M,f (e)=e′

max{1, β + γ } · w(e′) ≤ max{1, β + γ } · w(M ′). □

As with Remark  3, it is interesting to note that the previous proof also shows the optimality of the algorithm for some 
strong heuristic orders on the input nodes.
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Remark 5.  Without computing any weights, the Naive-Local matching algorithm is optimal under β-strong P-order and 
γ -strong C-order whenever β + γ ≤ 1.

We can also show the above remark by a constructive, direct and more intuitive proof. First consider the following 
lemma:

Lemma 7.  Suppose a graph G = (V , E, w) with E = E1 ∪ E2 and E1 ∩ E2 = ∅. Denote M1
opt the optimal matching over 

G1 = (V , E1) and M2
opt the optimal matching over G2 = (V , E2), and Mopt the one over the full graph G = (V , E). Then 

w(Mopt ) ≤ w(M1
opt )+ w(M2

opt ).

Proof.  Split the edges of Mopt into two subsets M1 and M2 according to the edge partition of G, i.e. M1 = Mopt ∩ E1 and 
M2 = Mopt ∩ E2. We have w(Mopt ) = w(M1)+ w(M2) and since Mi is a valid matching over Gi, we have w(Mi) ≤ w(M i

opt )
thus w(Mopt ) ≤ w(M1

opt )+ w(M2
opt ). □

Now observe that, whenever β + γ < 1, the edge e that is greedily selected by Alg. 2 is optimal in its ‘‘neighborhood’’ 
Ne (that is all possible paths of 3 edges with e in central position). This is because for any three length path e′, e, e′′, 
w(e′) ≤ γ · w(e) and w(e′′) ≤ β · w(e) implying w(e′) + w(e′′) ≤ (γ + β) · w(e) < w(e). Hence, applying Lemma  7 with 
E1 = Ne and E2 = E \ Ne, one can show by induction that the Naive-Local matching algorithm is optimal in this case.

Also, one may note that adding both strong order assumptions with β < 1 and γ < 1 gives a strict total order on 
each of the neighborhoods, for all nodes in P and in C . However, it is noteworthy to mention that even in this situation 
with strong starting assumptions, the edge ordering is still partial and ‘‘weaker’’ than a total edge ordering (which is 
required by the classic 2-approximate greedy algorithm that scans all the edges in decreasing weight order), as stated in 
the following remark.

Remark 6.  Even under β-strong P-order and γ -strong C-order with both β < 1 and γ < 1, there exist pairs of edges 
e1, e2 for some input graphs such that it is impossible to know whether w(e1) ≤ w(e2) or not before requesting the weight 
of the respective edges.

In particular, one can consider any pair e1, e2 of edges not sharing any endpoint and such that each edge of the pair 
is the first of its neighborhood for both its endpoints, then for both considered edges, their respective weight is entirely 
unbounded by the ordering assumptions. Thus, under both strong order assumptions (not enforcing a total edge ordering) 
with β+γ < 2, the aforedefined naive ‘‘no weight calculations’’ algorithm outputs a matching with a better approximation 
guarantee than the usual greedy algorithm.

Observe that γ ≤ 1 H⇒ max{1, β + γ } ≤ min{1 + β,max{1, β + γ }}, hence Alg. 2 outputs a matching at least as 
good as Alg. 1 in this case. In addition, it is straightforward to further note that they actually both output the exact same 
matching as within a given p’s neighborhood, the first available edge in the provided C-order is also the local maximum 
according to p when γ < 1.

Remark 7.  If both β-strong P-order and γ -strong C-order assumptions hold and 0 ≤ γ < 1, Alg. 2 produces the same 
matching as Alg. 1 without calculating any weights.

At last, we note that there cannot exist a better algorithm than Alg. 2 in terms of approximation ratio when no weights 
are accessed.

Proposition 8.  Under both β-strong P-order and γ -strong C-order, any matching discovery algorithm that calculates 0 
weights cannot be better than (β + γ )-approximate.

Proof.  Let us consider the 4-nodes instance given by Fig.  3. Given the provided ordering of vertices in P and C , we 
have that both Assumptions  1 and 2 hold on the instance. Obviously, any algorithm cannot provide better than a 1-
approximation so let us assume β + γ ≥ 1. Note first that the Naive-Local matching on this instance produces {(p1, c1)}
with weight 1 whereas the optimal picks the two other edges with weight β + γ . Now, consider a matching algorithm 
A that picks (p1, c2) and (p2, c1). In that case, change the instance so that w(p1, c1) = α with α arbitrarily large and all 
other weights set to 1 to simplify (note that both our underlying assumptions still hold in this situation as well). A is 
then arbitrarily far from the optimal matching that selects (p1, c1). □

3.1.3. The ℓ-Greedy-Local Algorithm
Our first results show that the first set of assumptions that was considered may be unsatisfactory for two reasons: 

either one of the assumptions holds and all weights may end up being computed or both assumptions hold at the same 
time and absolutely no weight calculations are required to reach a bounded approximation ratio. This may indicate that 
the assumptions could be too strong in some sense. We design here weaker assumptions that only require the condition on 
one set to hold (e.g., Assumption  1) and a weaker and more local form of the other assumption: the bound holds between 
node p ∈ P and c, c ′ ∈ C if there exist at least ℓ other neighbors of p between c and c ′ when taken in σ  order. That 
C
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is, we do not control the weight of successive edges in a given node’s neighborhood but if there are ℓ other edges (p, cj)
between two edges (p, c0) and (p, cℓ+1), then the latter one must have a bounded weight in comparison to (p, c0). The 
following assumption allows us to design a matching algorithm (Alg. 3) requiring only at most ℓ+1 weight computations 
for each node in P .

Assumption 3 (γℓ-ℓ-weak C-order). Assume ℓ ≥ 0, γℓ ≥ 0 and σC = c1, c2, . . . , cq, so that for any ci, cj ∈ C with 
1 ≤ i < j ≤ q and p ∈ P such that (p, ci), (p, cj) ∈ E and |{(p, cx) ∈ E | i < x < j}| ≥ ℓ, we have w(p, cj) ≤ γℓ · w(p, ci).

In the above assumption, smaller values for ℓ make the assumption stronger, with ℓ = 0 being equivalent to γ -strong 
C-order (i.e. Assumption  2 with γ = γ0) and ℓ = ∆(GP ) − 1 = maxp∈P δ(p) − 1, with δ(p) the degree of node p, being 
always true for any input graph G = (P ∪ C, E). For fixed processing orders on the nodes, the value of γℓ decreases as ℓ
increases and reaches its ‘‘(potentially non-zero) minimum’’ at ∆(GP )− 2 (after which γℓ = 0 as the bound requirement 
does not apply to any pair of edges). Introducing a weak order allows to add weaker constraints on the edge weights 
than the ones implied by strong orders. However, obviously weak orders for ℓ ≥ 1 do not help when no weights are 
ever computed as they do not provide bounds for some edges sharing endpoints (hence any choice between the two may 
entail an arbitrarily large error). For instance, using the example of Fig.  3 under γ1-1-weak C-order, w(p1, c2) can take 
arbitrarily large values and Alg. 2 selects (p1, c1) on this instance.

Remark 8.  Under both β-strong P-order and γℓ-ℓ-weak C-order (resp. γ -strong C-order and βℓ-ℓ-weak P-order), there 
are instances where Alg. 2 has infinite approximation ratio.

Let us show how we design an efficient discovery algorithm (Alg. 3) by exploiting the assumption of a strong order 
σP  over one partition and a weak order σC  on the other one. The algorithm we introduce is similar in flavor to the first 
defined algorithm, but this time, instead of taking the edge with maximum weight over the full neighborhood of pi, only 
the ℓ+ 1 first available edges according to σC  are considered.

Proposition 9.  Under both β-strong P-order and γℓ-ℓ-weak C-order, Alg. 3 has approximation ratio at most max{1+β, β+
γℓ}.

Proof.  The proof follows the same structure as the one for Proposition  4. Define M as an optimal matching, M ′ as the 
matching produced by Alg. 3 on G, and define similarly as previously f  as a mapping of M ’s edges into M ′ with identical 
Cases 1 and 2a. For Case 2b, that is when we consider an edge e = (p, c) ∈ M such that e ̸∈ M ′ while considering that 
(p, c) is unblocked during p’s assignment round, we define f (e) as the edge with the maximum weight among the ℓ+ 1
first unblocked edges (in the same way as Alg. 3 picks the edge during p’s round). Since for each p, we assign as before 
an edge of its neighborhood by f , our previous arguments hold regarding the number of preimages by f . Now, consider 
the bound on the weight of edges in M . We know that w(e) ≤ w(f (e)) in Case 1 (trivial) and w(e) ≤ β · w(f (e)) in Case 
2a following Assumption  1.

In Case 2b, let us consider two possible subcases.
(1) If there are at most ℓ + 1 unblocked edges during p’s round, then since e is unblocked, it is among those edges. 

Hence, by the property that w(f (e)) is the maximum of the weights of the unblocked edges, we get w(e) ≤ w(f (e)).
(2) Suppose there are strictly more than ℓ+ 1 unblocked edges. Since if e were among the first ℓ+ 1 ones we would 

also have w(e) ≤ w(f (e)), let us assume e = (p, cj) is not among these edges. By Assumption  3, recall that one cannot 
bound the weights of the edges between p and its neighbors ci such that (p, ci) is among the ℓ distinct edges incident to 
p directly preceding (p, cj) in σC  order; note T (cj) the set of these edges. If Alg. 3 selects an edge f (e) = (p, cx) outside 
T (cj), we can apply the aforementioned assumption and get w(e) ≤ γℓ · w(f (e)); recall here that f (e) is among the first 
ℓ+1 available edges of p’s neighborhood hence in particular, it cannot be placed after cj in σC  order. Thus, let us suppose 
hereafter that Alg. 3 selects an edge (p, cx) ∈ T (cj). Observe that among the ℓ edges of T (cj), some of them might be 
blocked and others unblocked. In any case, among the first ℓ+ 1 edges that are considered by the algorithm, there exists 
at least one unblocked edge (p, c ′) ̸∈ T (cj) because |T (cj)| = ℓ and we assumed at least ℓ + 2 unblocked edges in p’s 
neighborhood. Finally, we have w(p, c ′) ≤ w(p, cx) because the algorithm picked the edge with the best weight, and thus 
w(p, cj) ≤ γℓ · w(p, c ′) by application of Assumption  3, which gives us w(e) ≤ γℓ · w(f (e)) in this case as well.

Putting together the two subcases for Case 2b, we have w(e) ≤ max{1, γℓ} · w(f (e)). By reusing analogous arguments 
as in the proofs of Propositions  4 and 6, we get w(M) ≤ max{1, β+max{1, γℓ}} ·w(M ′). Since β ≥ 0 and max{1, γℓ} ≥ 1, 
we get w(M) ≤ max{1+ β, β + γℓ} · w(M ′). □

Proposition 10.  Alg. 3 calculates at most (ℓ+ 1) · n weights.

Proof.  Note first that at each of the s iterations of the algorithm, at most ℓ + 1 weights are calculated. Also, if at least 
one weight is calculated at a given iteration, then an edge is added to the constructed matching. Since at most n edges 
may ever be added to the matching, there are only n iterations where at least one weight is calculated. □

Proposition 11.  Under both β-strong P-order and γ -strong C-order, Alg. 3 is max{1, β + γ }−approximate.
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Fig. 4. Example for Alg. 3.

Proof.  If γ ≥ 1, the proposition follows directly from Proposition  9 for the case ℓ = 0. For γ < 1, following the same 
argument as in Remark  7, Alg. 3 degenerates and produces the same solution as the Naive-Local algorithm. □

The example of Fig.  4 can be used to show that under Assumptions  1 and 3, Alg. 3 reaches its proven approximation 
bound.

Proposition 12.  Under both β-strong P-order and γℓ-ℓ-weak C-order, Alg. 3 has approximation ratio at least max{1+β, β+
γℓ}.

Proof.  Consider first the example of Fig.  2. Following the same arguments as in the proof of Proposition  5, we get that 
Alg. 3 (which is equivalent to Alg. 1 on that example) produces a (1+β)-approximate matching. Suppose β+γℓ > 1+β , 
that is γℓ > 1, and let us use the example of Fig.  4 where p1 has ℓ+ 2 neighbors with w(p1, cj) = 0.5 for 2 ≤ j ≤ ℓ+ 1. 
In this example, Assumption  1 only applies to (p1, c1) versus (p2, c1) and Assumption  3 to (p1, c1) versus (p1, cℓ+2). In the 
example, the algorithm picks (p1, c1) for a weight of 1 whereas the optimal matching picks (p1, cℓ+2) and (p2, c1) for a 
weight of β + γℓ > 1. □

We use Assumption  4 to obtain symmetric results (Proposition  13).

Assumption 4 (βℓ-ℓ-weak P-order). Assume ℓ ≥ 0, βℓ ≥ 0 and σP = p1, p2, . . . , ps, so that for any pi, pj ∈ P with 
1 ≤ i < j ≤ s and c ∈ C such that (pi, c) ∈ E and (pj, c) ∈ E and such that |{(px, c) ∈ E | i < x < j}| ≥ ℓ, we have 
w(pj, c) ≤ βℓ · w(pi, c).

Proposition 13.  Under both γ -strong C-order and βℓ-ℓ-weak P-order, Alg. 3 is max{1+ γ , βℓ + γ }-approximate on input 
G = (C ∪ P, E).

Inverting P and C in Proposition  12, one can show that the bound in the previous proposition is reached by Alg. 3 on 
some instances.
Limitation of greedy-choice algorithms. We explain briefly here why lifting Assumption  1 controlling the order in which 
vertices of P are processed and replacing it by a bounded variant tolerating edges that are out-of-order such as Assumption 
4 leads to impossibility to approximate the optimal matching by a greedy-choice algorithm (picking each round the 
available edge with maximum observed weight). As a counter-example, one can consider a path as an instance and can 
derive that any algorithm inspecting only a bounded number of edges before adding irreversibly the observed edge with 
greatest weight to the matching (hence, allowing to pick some edges whose neighborhood is not completely explored), 
may fail to provide a bounded-approximation. This is due to the fact that the algorithm has no control on the weight 
of the edges connected to some of the inspected edges on the input path. We also note that on a path, both weak 
assumptions with ℓ ≥ 1 do not apply to any pair of edges and thus all weights are unrestrained in this case. We note 
that the formulation of the claim as it appeared in [11] does not make explicit the notion of greediness that is being used, 
which we clarify in the below proposition.

Proposition 14.  Fix ℓ ≥ 1. Suppose βℓ-ℓ-weak P-order and γℓ-ℓ-weak C-order hold. Consider now a greedy-choice matching 
algorithm A (i.e., that greedily adds the examined edge with highest weight) that always decides to add an edge after querying 
at most kℓ edges for some kℓ ≥ 1. Then A does not provide a bounded approximation ratio.

Proof.  The idea behind the proof is that in general, it is possible to force having the edge with highest weight neighboring 
a non-queried edge by the time the algorithm has to greedily add an edge. To rule out the constraints on weights stemming 
from the weak orders when ℓ ≥ 1, we assume a graph of degree at most 2 where the weak ordering assumptions do 
not apply. Without loss of generality, let us consider as a counter example a path made of at least 2kℓ  edges. The weights 
of the edges forming the path needs to be assigned ‘‘online’’ depending in which order A examines the edges’ weight: 
upon examining the ith edge with 1 ≤ i ≤ kℓ, if A inspects an edge within the current longest sub-path made only of 
undiscovered edges (denoted Pi) then we set w(e) = i, otherwise w(e) = 0.1.

Under these circumstances, let us show that the edge e with highest weight after i ≤ kℓ steps is always neighboring 
an undiscovered edge. We can show by induction that the highest weight after i edges have been inspected is always 
adjacent to a sub-path of undiscovered edges of length at least 2kℓ−i. This is because, at each step, either the highest 
weight does not change (an edge outside P  was discovered) or it changes and it splits P  in two parts S  and S  with 
i i 1 2
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Fig. 5. Example of execution for Alg. 4 using orders σP = p1, p2, p3 , σC = c1, c2, c3, c4 and ℓ = 1: (a) Ordered input; (b) Constructed greedy path 
starting from p1 with forward edges as plain lines, non-selected edges (because not local maximum) as dotted and backward edges as dashed; (c) 
Selected edges as optimal matching over the greedy path. Alg. 4 does not run another greedy path procedure as all nodes in P are then made 
unavailable and outputs M = {(p1, c2), (p3, c4), (p2, c3)} with total weight w(M) = 23.

max{|S1|, |S2|} ≥ Pi/2. After kℓ inspections, the highest weight is thus adjacent to a sub-path of undiscovered edges of 
size at least 20

= 1. To conclude, we set an arbitrarily large weight to the adjacent undiscovered edge. □

By the previous claim, it is fruitless in general to try to design a bounded-approximation greedy-choice algorithm that 
discovers, at each of its iteration, a bounded number of edges. However, as we show in the next section, it is possible 
to design a bounded-approximation algorithm assuming weak orders on both input sets and that uses only on average a 
bounded number of discovery queries per edge in the output matching.

3.1.4. Double-Greedy Algorithm
Proposition  14 basically indicates that the strategies used so far in order to develop greedy matchings based on heuristic 

orders fail for the situation where two weak orders are used. In this situation, a greedy-choice algorithm is not possible 
in order to reach a bounded approximation and one has to consider an algorithm that explores more of the input before 
taking even a single decision. This is the case for our last greedy algorithm (Alg. 4) that only requires weak node orders 
to get a bounded approximation ratio. The algorithm is the following. At a given iteration, considering the next node pi
in σP  order that is still available then, it starts first by building a (oriented) greedy path U starting initially from node 
u = pi. The greedy path is obtained by adding at each step the edge (u, v) with highest weight within u’s ‘‘bounded local 
neighborhood’’ Nℓ(u) (i.e., the ℓ+1 first available edges in the heuristic order related to the node u, that is σC  if u ∈ P and 
σP  if u ∈ C), and continuing the next attempt to extend the path from node v and so on. At each step, edges sharing an 
endpoint with a node that is already part of the constructed path (referred hereafter to as ‘‘backward edges’’) are discarded 
from being included in Nℓ(u), while we refer to all other available edges that connect to the endpoint of the greedy path 
as forward edges (as defined by line 27 in Alg. 4). The greedy path ends when the bounded local neighborhood (without 
backward edges) of the last processed node u is empty. Then Alg. 4 picks an optimal solution OptimalPath(U) for the 
path U and adds it to the constructed matching. The algorithm continues until the exhaustion of available nodes in P from 
which a greedy path can be initiated. An example of an execution of the algorithm is illustrated in Fig.  5. Before proving 
the correctness of Alg. 4, we demonstrate a more elementary result comparing the weight of the optimal matching Uopt
over any path U with the weight of the edges in U \ Uopt that are not selected in the optimal.

Lemma 15.  Let U = e1, . . . , em be a sequence of pairs of distinct nodes u, v ∈ V 2 that defines a path (i.e., for all 2 ≤ i ≤ m, 
ei ∩ ei−1 ̸= ∅ and |ei ∩

⋃
1≤j≤i−1 ej| = 1), and Uopt the optimal matching over U. We have then w(Uopt ) ≥

∑
e∈U\Uopt

w(e).

Proof.  Let U ′ = U \ Uopt . Hereafter for clarity we explicitly state a matching as ‘‘proper’’ to refer to a valid matching of 
the edges (i.e., without adjacent edges) and improper for any other set of edges. If U ′ is a proper matching then the result 
is trivial. Let us analyze the different possibilities for Uopt . To ease the notation, we will use the following convention: a 
subset M of a subpath ej, . . . , ej+k of U (for 1 ≤ j ≤ m − k + 1) formed by k consecutive edges is denoted by a word 
u1 . . . uk over the alphabet {×,✓}, such that for 1 ≤ i ≤ k, ui = ✓ if ej+i ∈ M and ui = × otherwise. In the following, we 
use the word u = u1 . . . um to denote the edges selected by Uopt and the word u = u1 . . . um to denote the edges in U ′. 
First, observe that Uopt does not omit three (or more) consecutive edges ej, ej+1 and ej+2 (a pattern denoted as ××× in 
u) as adding ej+1 makes a better matching than Uopt in this case (recall weights are strictly positive here). Uopt may omit 
two consecutive edges. By the previous argument, both the adjacent edges to the omitted ones must be in Uopt , i.e., u
can contain the pattern (...)✓ × ×✓(...) that we will refer as a hole in U and the reversed pattern as an antihole in U ′
(i.e., a subsequence ×✓✓× in u containing two consecutive selected edges). Note the path itself cannot end in a double 
omission as the last edge could then be freely added to Uopt . Observe that antiholes are the only pattern preventing U ′
from being a proper matching.

Now, let us iteratively define a proper matching U ′′ based on U ′ and with greater weight than w(U ′) =
∑

e∈U ′ w(e), 
extending the w notation to improper matchings. For this, set U ′ = U ′. Let i ≥ 0. We will remove the last antihole 
0
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Hi = ej, ej+1, ej+2, ej+3 in U ′i  to produce a new set U ′i+1 such that: (1) U ′i+1 has one antihole less than U ′i , (2) the part of 
U ′i  ‘‘before Hi’’ is identical in U ′i+1 and (3) w(U ′i+1) ≥ w(U ′i ). Since by hypothesis the edges of Hi have not been ‘‘modified’’ 
in U ′i , the induction argument is proven by considering how the antihole Hi appears in Uopt and what follows it in the 
optimal matching.

Formally, let j be the starting position of the antihole Hi and u(i) the word representing U ′i . We construct the next word 
u(i+1) as follows:

u(i+1)
= u(i)

1 · · · u(i)
j · u

(i)
j+1 · uj+2 · uj+3  

✓××✓ in Uopt and ×✓✓× in U ′i

· · · um.

By construction of u(i+1), both (1) and (2) hold.
Denote Xi = {er ∈ Uopt | r ≥ j + 2} and X ′i = {er ∈ U ′i | r ≥ j + 2}. Let us verify now that w(Xi) ≥ w(X ′i ). Suppose 

the cumulative weight of the edges of X ′i  is greater than w(Xi), then since by hypothesis u(i)
j+2 · · · u

(i)
m  does not contain 

any antiholes and we have uj+1 = ×, the set Uopt \ Xi ∪ X ′i  is a proper matching with greater weight than Uopt , hence a 
contradiction. Thus, w(U ′i+1) = w(U ′i )− w(X ′i )+ w(Xi) ≥ w(U ′i ).

Therefore, all three induction hypotheses hold: (1) u(i+1) contains one antihole less than u(i), (2) u(i+1)
r = u(i)

r  for 
1 ≤ r ≤ j, and (3) the weight condition w(U ′i+1) ≥ w(U ′i ).

Denote U ′′ the set obtained after purging all antiholes from U ′ by the above procedure, i.e. U ′′ = U ′k where k is the 
initial number of antiholes in U ′. By definition, U ′′ is a proper matching of U and we have w(U ′′) ≥ w(U ′) by induction. 
This concludes the proof because U ′′ as a proper matching also entails w(U ′′) ≤ w(Uopt ). □

Alg. 4: ℓ-Double-Greedy Matching
Input :  A bipartite graph G = (P ∪ C, E) with sets 

P = p1, p2, . . . , ps and C = c1, c2, . . . , cq
Output: M , a matching of E;
// Initialization of the procedure

1 M, i← ∅, 1 ;
2 foreach x ∈ P ∪ C do
3 availablex ← True ;
// Loop till all nodes in P are matched

4 while i ≤ s do
5 if availablei then
6 U ← []; // initialize the greedy path
7 u← pi; // endpoint of the path U
8 repeat

// try to extend the path
9 v← next_edge_greedy_path(u,U) ;

10 if v ̸= 0 then
11 U .append((u, v));// add edge (u, v) to U
12 u← v; // continue then from v
13 until v = 0;
14 if |U | = 0 then
15 i← i+ 1;
16 else
17 Mp ← OptimalPath(U);
18 foreach (px, cy) ∈ Mp do
19 availablex, availabley ← False, False;
20 M ← M ∪ {(px, cy)};
21 else
22 i← i+ 1;
23 return M;

// Uses inputs & variable availablex from Alg. 4
22 Function next_edge_greedy_path(u,U)

// Find next edge from node u on the greedy 
path U

23 if u ∈ P then
24 k← q;
25 else
26 k← s;

// Consider all possible ‘‘forward’’ edges
27 N ← [ 1 ≤ x ≤ k | {u, x} ∈ E ∧ availablex ∧ ̸

∃y, {x, y} ∈ U ];
28 if N ̸= [] then
29 if |N| > 1 then

// Keep the ℓ+ 1 first values
30 N ← N[: ℓ+ 1] ;
31 foreach x ∈ N do

// Get w(u, x) when u ∈ P otherwise 
w(x, u)

32 bx ← weight(u, x);
// As in Alg. 1, line 10

33 j← argmaxx∈N bx;
34 else
35 j← N[1]; // 1st value
36 else

// 0 stands for ‘‘end of path’’
37 j← 0;

// Returns next endpoint
38 return j ;

Proposition 16.  Under both βℓ-ℓ-weak P-order and γℓ-ℓ-weak C-order assumptions, Alg. 4 is (2·max{1, βℓ, γℓ})-approximate 
and computes at most 3 · (ℓ+ 1) · n weights.

Proof.  The proof follows a different proof schema as the previous ones and we shall this time directly bound each edge 
of the optimal solution. First, let us note Mopt for the optimal matching of the edges of E and M for the matching obtained 
by the algorithm. During the algorithm execution, we refer to any edge e ∈ E as being ‘‘eliminated’’ once the edge 
cannot be selected in subsequent steps of the algorithm; i.e., the edge (px, cy) is eliminated whenever we have either 
availablex = False or availabley = False. Since endpoints are never reconsidered in the algorithm, an eliminated 
edge stays eliminated till the end of the algorithm. In the first part of the proof, we show that any edge e ∈ Mopt is 
eventually eliminated (as any other edge of E). In the second part, we prove the bound on the weight of the produced 
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matching following at its core the same argument behind Algorithm 3’s bounded approximation (cf. Proposition  9). The 
last part deals with the number of computed weights.

Termination of the algorithm. Let us show that any edge e ∈ E is eventually eliminated by the algorithm. For the sake 
of contradiction, suppose there exists an edge e = (px, cy) that is not eliminated by the end of the algorithm and let us 
consider the first loop iteration when i = x. Since the edge is not eliminated, we have availablei = True, so the greedy 
path subroutine is executed with pi as a starting endpoint. First, note that the condition set at line 27 in the subroutine 
forces the creation of a path: cycles are forbidden as any edge sharing an endpoint with a previously considered node of U
(designated as backward edges) is discarded from being chosen by the procedure. Now observe that, since the algorithm 
adds at line 17 all edges belonging to the optimal solution for the path, there cannot be an edge of U that is not eliminated 
(i.e., in the optimal solution all non-selected edges have at least one of its adjacent edges being selected, cf. the proof of 
Lemma  15). Thus, (px, cy) must be different from the first edge (in σC  order) of U not to be eliminated at this step, however, 
note that this step always eliminates at least one edge in px’s neighborhood. Hence, the only way for the starting edge 
not to be eventually eliminated is for the algorithm never to set availablex = False (and thus increase the value for 
i) during the greedy path’s subroutine and hence to loop forever on it. However, since one edge in px’s neighborhood is 
eliminated every loop iteration, eventually the edge (px, cy) will be part of the greedy path (or no edges are available but 
this contradicts that e is still available) and will eventually be eliminated, leading to a contradiction. Observe that this 
also shows that the algorithm always terminates as for every 1 ≤ i ≤ s, each time pi is processed by the greedy path 
subroutine, the size of its ‘‘available neighborhood’’ |N| strictly decreases at each while-loop iteration, eventually reaching 
|U | = 0 when the algorithm jumps to the next iteration.
Bounded approximation. Since any edge e ∈ Mopt is eventually eliminated, let us associate to each edge e ∈ Mopt the 
while-loop iteration iter(e) where it becomes eliminated. Let M i

opt be the set of edges of the optimal matching that are 
eliminated during the ith loop iteration, i.e. M i

opt = {e ∈ Mopt | iter(e) = i}. Also, denote Mi the set of edges that are added 
to M during the ith iteration, and Ui the value of U at the end of the greedy iterative loop (by line 14) during the same 
iteration. By the above claim, the algorithm always terminates, in let us say r loop iterations, so we have Mopt =

⋃r
i=1 M

i
opt

and M =
⋃r

i=1 Mi. Now, let us consider the possible reasons for the edges of Mopt to be eliminated during a given iteration 
I (with i being the value of the algorithm’s variable i during that iteration):

(1) If the edge e ∈ Mopt is selected by the algorithm during the execution of line 17, it becomes eliminated. Note that 
in that case, e ∈ M as well.

(2) Suppose the edge e ∈ Mopt is not selected by the optimal path calculation at line 17. Let us differentiate two 
subcases:

a. The edge e was added to the iteratively constructed greedy path U . Then, by the above termination arguments, 
it is also eliminated along all the other non-selected edges forming U .

b. The edge e was not added to U . Here, e is eliminated because it shares an endpoint with one of the selected 
edges that belong to the path U .

Let us bound the weight of e for each of the possible situations. To ease with the notations, denote UI = e1, . . . , ek the 
edges forming UI in the same order as they are added during iteration I (note UI is possibly empty when all pi’s neighbors 
are not available at iteration I ’s start). We define the function f : M I

opt → UI projecting the edges of the optimal matching 
onto the ones of the greedy path.

In Case (1), we set f (e) = e and obviously have w(e) ≤ w(f (e)).
In Case (2).a, e ∈ UI but e is not selected by Alg. 4; in that case, we also set f (e) = e.
At last let us consider the remaining Case (2).b. Denote e′ the first edge of UI that eliminated e during I (thus, e′ shares 

an endpoint with e). By definition, e is a forward edge at the step when e′ is added to the greedy path as otherwise e′
would not be the first edge eliminating e. Let us write e′ = (u, v) so that u was the endpoint that was the first parameter 
of next_edge_greedy_path (also noted u in the algorithm) and v the node returned by the procedure. We reason now 
on the following three cases:

1. e′ ∩ e = {u}. Set f (e) = e′. According to the algorithm, (u, v) has the maximum weight among Nℓ(u), the first ℓ+ 1
available edges of u, following the order σP  (resp. σC ) of nodes in P (resp. C) if u ∈ C (resp. u ∈ P). Suppose e is 
among Nℓ(u), then w(e) ≤ w(e′) as e′ has the local maximum weight. Suppose e was not among Nℓ(u), then we 
have:

• if u ∈ P , then v ∈ C and w(e) ≤ γℓ ·w(e′′) where e′′ is an edge in Nℓ(u) that is at least ℓ edges away from e′ in 
σC  order (the fact that e′′ exists relies on the same arguments used in the proof of Proposition  9, refer to the 
proof for further details). Since w(e′′) ≤ w(e′), we get w(e) ≤ γℓ · w(e′).
• Analogously, we get that if u ∈ C , then v ∈ P and w(e) ≤ βℓ · w(e′) by a symmetric argument to the above 

subcase.

Hence, we have w(e) ≤ max{1, γ , β } · w(f (e)) regardless if e was in N (u) or not.
ℓ ℓ ℓ
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2. e′ ∩ e = {v} and so that e′ = ej with 1 ≤ j ≤ k − 1. In other words, e′ is not the last edge of U . Observe that 
because ej ∈ M , we have ej+1 ̸∈ M . We can obtain similar bounds as in the first case but using this time the edge 
f (e) = ej+1, that is the edge that was returned after calling next_edge_greedy_path with first parameter v, and 
since j < k such an edge appears in UI . Observe that e ∩ f (e) = {v} and e cannot be a backward edge as e′ is the 
first edge eliminating e, and thus the same arguments as in Case 1 above hold but this time with ej+1. Hence, we 
also have w(e) ≤ max{1, γℓ, βℓ} · w(f (e)).

3. e′ ∩ e = {v} and e′ = ek, i.e., e′ is the last edge of the greedy path UI and is selected by the algorithm. This case 
is not possible for two reasons: e is available at that iteration by hypothesis, and e is not a backward edge for e′. 
Hence it is a forward edge in v’s neighborhood, but then the greedy path subroutine would have continued to build 
UI selecting e on the path if such an edge existed in v’s neighborhood.

Hence, for every eliminated edge e of the optimal matching, one can bound its weight in regard to an edge ej of the 
greedy path and that is ‘‘responsible’’ for the elimination of e. Importantly, f  is an injection by analyzing the different 
cases:

• Cases (1) and (2).a. Since f (e) = e, there cannot be another optimal edge e′ ∈ M I
opt with e′ ̸= e also projecting on e

as for any edge x ∈ M I
opt , x and f (x) always share an endpoint (in all 3 cases) by construction, forbidding such e′ in 

Mopt .
• Case (2).b. Suppose there exist two distinct edges e1 ∈ M I

opt and e2 ∈ M I
opt so that e′ = f (e1) = f (e2) (obviously 

e′ is distinct from both e1 and e2). Since for every edge x ∈ M I
opt we have f (x) ∩ x ̸= ∅, the three edges e1, e′ and 

e2 must form a path of 3 edges with e′ in the center. Since f (x) is always an edge of UI in all 3 cases, e′ ∈ UI and 
thus e′ = (u, v) with (u, v) being a forward edge and u the first node processed by the greedy path subroutine; 
w.l.o.g. assume u ∈ e1. Recall, by definition of f , if e2 = (v, y) is a forward edge but is not selected in U , then f (e2) is 
necessarily the next selected edge e′′ = (v, y′) ̸= e′, while if e2 is a backward edge then f (e2) is an edge appearing 
before e2 on the greedy path which cannot be e′. Hence, this contradicts f (e1) = f (e2).

At last, observe that since Mp is chosen optimally among the edges of UI , necessarily we have w(MI ) ≥
∑

e∈UI\MI
w(e)

by applying Lemma  15 on the path UI .
We are ready to combine the different elements of the proof to obtain a general bound:

w(M I
opt ) ≤

∑
e∈M I

opt

w(e) ≤
∑

e∈M I
opt

max{1, γℓ, βℓ} · w(f (e))

≤ max{1, γℓ, βℓ}

⎛⎝∑
e′∈MI

w(e′)+
∑

e′∈UI\MI

w(e′)

⎞⎠
≤ max{1, γℓ, βℓ} · 2 · w(MI ).

Summing over all iterations of the algorithm, we obtain:

w(Mopt ) ≤
r∑

i=1

w(M i
opt ) ≤

r∑
i=1

2 ·max{1, βℓ, γℓ} · w(Mi) ≤ 2 ·max{1, βℓ, γℓ} · w(M).

Number of weight calculations. Let us analyze how many weights are calculated by all iterations. Obviously, if pi is not 
available, no further weights are calculated and the algorithm moves to the next iteration. Otherwise, a greedy path is 
constructed. To do so, for a greedy path of k edges, (ℓ + 1) · k weights are at most calculated: ℓ + 1 for each starting 
endpoint u of each edge (u, v) of the path and 0 for the last call to next_edge_greedy_path as the path ends when the 
set N of candidates for the next edge is empty (weights are only calculated when |N| ≥ 2).

Over all calculated weights, at least ⌊ k2⌋ edges are added to the matching as an optimal matching Mp is always maximal 
over U (all edges of U have endpoints in Mp). Doing so makes as many nodes in P and nodes in C non-available and such 
nodes will not trigger any subsequent weight computation for any of its adjacent edges. Hence, noting ki = |Ui| the length 
(in edges) of the greedy path at the ith iteration (potentially zero), we get that in total the number of weight calculations 
is at most (ℓ+ 1)

∑r
i=1 ki.

In the worst case (in terms of number of weight calculations), ki = 3 and at each iteration a single edge is added to 
the matching. Thus, we have 

∑r
i=1 ki ≤ 3 · |M| and since |M| ≤ n, we get that at most 3 · (ℓ + 1) · n = O(ℓ · n) weights 

are ever calculated. □

We would like to highlight that, in Alg. 4, we have chosen to use an identical value for the constant ℓ used to explore 
the local neighborhood in an analogous way whether one deals with a node from P or a node from C (and assuming both 
weak orders also hold for the same value of ℓ). This choice simplifies both the algorithm’s design and its proof, while 
reaching the target of a linear number of weight calculations (whenever ℓ is constant). The algorithm could be extended 
to use two different values ℓ1 and ℓ2 for each set P and C , with all arguments being valid when setting ℓ = max{ℓ1, ℓ2}.

We finally show the lower bound for the presented algorithm.
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Fig. 6. Example for the lower bound on the approximation ratio of Alg. 4.

Proposition 17.  There exist βℓ > 0, γℓ > 0 and graph instances and heuristic orders where, under both βℓ-ℓ-weak P-order 
and γℓ-ℓ-weak C-order assumptions, Alg. 4 is at best (2 ·max{1, βℓ, γℓ})/(1+ ε)-approximate for any ε > 0.

Proof.  We consider the example presented by Fig.  6, with the following heuristic orders: σP = p1, . . . , pℓ+3 and 
σC = c1, . . . , cℓ+2. In this example, all edges of the form (p1, cj) for 2 ≤ j ≤ ℓ + 1 and (c1, pj) for 3 ≤ j ≤ ℓ + 2
have all weight 0.5.

First, let us calculate the weight of the output of Alg. 4. The algorithm starts by considering p1 and builds the greedy 
path U = p1, c1, p2 as those edges {(p1, c1), (c1, p2)} are the maxima in the (ℓ+ 1) local neighborhood of each considered 
node. Then, Alg. 4 selects the best matching over U as (p1, c1) with weight 1+ ε which eliminates all edges of the graph. 
Whenever βℓ + γℓ ≥ 1 + ε, the optimal matching is, however, the one formed by selecting (p1, cℓ+2) and (pℓ+3, c1) of 
weight βℓ + (1 + ε) · γℓ. By considering the case βℓ = (1 − ε) · γℓ with γℓ > 1 + ε, the optimal matching has weight 
2 · γℓ = 2 ·max{βℓ, γℓ, 1} to compare with 1+ ε for Alg. 4’s matching, hence retrieving the desired lower bound for the 
approximation ratio of Alg. 4. □

Let us note that ε was only introduced in the above proposition so not to have to make the algorithm for choosing 
the optimal path explicit, and to avoid introducing several examples depending on the chosen matching. If ties were 
explicitly broken in the calculation of the optimal matching over path (i.e., one always includes the first edge from the 
path’s ‘‘start’’), then we can replace in Fig.  6’s example w(p1, c1) by 1, w(p1, cℓ+2) by γℓ and lift 1+ ε from Proposition  17.

3.2. Order oracles on the edge set

Alg. 5: Naive-Edge Matching
Input :  A graph G = (V , E) with ordered 

edge set E = e1, . . . , em
Output: M , a matching of E;
// Initialization steps

1 M ← ∅ ;
2 foreach x ∈ V do
3 availablex ← True;
// Process edges one by one

4 for 1 ≤ i ≤ m do
5 (u, v)← ei;
6 if availableu and availablev then
7 M ← M ∪ {u, v};
8 availableu ← False;
9 availablev ← False;

10 return M;

Alg. 6: Local-Edge Matching
1 i← 1;
2 while i ≤ m do
3 (u, v)← ei;
4 if availableu ∧ availablev then
5 N ← [ ej = (x, y) ∈ E | i ≤ j ≤ i+ ℓ+ 1∧ availablex ∧ availabley ];
6 j← i ;
7 if |N| > 1 then
8 N ← N[: ℓ+ 1];
9 foreach ej ∈ N do

10 bj ← weight(ej);
11 j← argmaxj∈N bj;
12 M ← M ∪ {ej};
13 (u, v)← ej;
14 availableu, availablev ← False, False;
15 else
16 i← i+ 1;
17 return M;

Alg. 6 has the same inputs/outputs and initialization steps as in Alg. 5.

We briefly show here that reasoning in terms of edge order is not as interesting as order oracles over nodes.  We will 
present assumptions enforcing an order among all edges, hence, all algorithms presented in this section do not require a 
bipartite graph as input (thus, they solve the more general graph matching problem rather than the assignment problem). 

3.2.1. Strong edge order
Consider the following strong ordering assumption on the edges.

Assumption 5 (ζ−strong E-order). Assume ζ ≥ 0 and the edge set E is ordered by σE = e1, . . . , em, so that for any 
ei, ej ∈ E with 1 ≤ i < j ≤ m, we have w(ej) ≤ ζ · w(ei).

Proposition 18.  Under ζ−strong E-order, Alg. 5 is (2 ·max{1, ζ })-approximate without calculating any weights.
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Proof.  The proof is simple and follows the main structure as the proof of Proposition  16. Consider that every selected 
edge e ∈ M eliminates up to 2 edges of the optimal Mopt , each of weight bounded by ζ · w(e). Hence overall, w(Mopt ) ≤
2 ·max{1, ζ } · w(M). □

It is interesting to note that one can retrieve the approximation bound of 2 for the classic greedy algorithm from the 
previous proposition, as it uses an order over the edges (ranked from highest to lowest weight) that guarantees ζ ≤ 1. 
As previously mentioned, the edge order imposes here to be capable to compare any pair of edges, which is significantly 
more constraining than any of the other orders studied before (in particular, see Remark  6). Also, one may observe that 
contrary to Alg. 1, Alg. 2 and Alg. 3 which output an optimal solution whenever strong enough node orders are provided 
(i.e., when β + γ ≤ 1), the introduced algorithm that exploits the strong edge order is shown not to be better than 
2-approximate even when ζ < 1. In particular, considering for instance the graph of Fig.  3, the condition β + γ ≤ 1
cannot be encoded as a strong edge order.

3.2.2. Weak edge order
One can also consider a weak version for the edge order as follows:

Assumption 6 (ζℓ-ℓ-weak E-order). Assume ℓ ≥ 0, ζℓ ≥ 0 and the edge set E is ordered by σE = e1, . . . , em, so that for 
any ei, ej ∈ E with 1 ≤ i and i+ ℓ < j ≤ m , we have w(ej) ≤ ζℓ · w(ei).

Proposition 19.  Under ζℓ-ℓ-weak E-order, Alg. 6 is (2 ·max{1, ζℓ})-approximate.

Proof.  Similarly as previously, one can note that selecting a certain edge e ∈ M at a given iteration I eliminates up to 2
edges e′, e′′ of the optimal Mopt . Denote ei the first edge (always available) considered during I and call two edges ei, ej ∈ E
close if |j− i| ≤ ℓ. The edges e′, e′′ are still available at the iteration that e is added, hence the weight of e′ is either (1) 
smaller than the one of e if e′ and ei are close in σE order, (2) smaller than ζℓ times the weight of e if ei and e′ are far in 
σE order. The second case is due to the fact that when ei is available, we have w(e′) ≤ ζℓ · w(ei) ≤ ζℓ · w(e). The same 
arguments apply for the weight of e′′. Overall, considering cases (1) and (2), we get w(Mopt ) ≤ 2 ·max{1, ζℓ} · w(M). □

In Alg. 6, since there cannot be more than |V |/2 edges added in total in M , and that for all iterations i where ei is still 
available an edge is added to M , we deduce that there cannot be more than (ℓ + 1) · |V |/2 calls to the weight function. 
As with strong edge order, the imposed order is very restrictive as it forces to be able to compare almost all edges with 
each other, forbidding only a small constant number of comparisons for each edge. Hence, it is significantly stronger than 
weak orders on the nodes that only ‘‘locally’’ order the edges. In the following section, we provide possible instantiations 
of order oracles and show that edge orders are obtained at the cost of significantly increasing the constants ζ  and ζℓ in 
the required assumptions.

3.3. Instantiations of order oracles

We propose here how order oracles can be built based on partial or approximate apriori knowledge on the weights. As 
before, our setting is that the exact weights are always accessible but costly to query. Hence, based on knowledge on the 
particular problem that is being studied, some information can be available to generate a rough estimate of each weight 
before querying it. We study here a few such instantiations and how strong and weak order oracles can be built upon 
those approximations.

Strong orders based on interval approximation. Suppose that for every edge e ∈ E, there exists an interval I(e) = [ae, be]
with ae, be ∈ R+ so that one has always the guarantee that ae ≤ w(e) ≤ be. For I(e) = [ae, be], denote Il(e) = ae the 
interval’s lower bound and Ir (e) = be the interval’s upper bound. Using such approximation, and without more information 
on the distribution of weights within their possible intervals for guidance, we can define three possible ordering of the 
edges:

1. ‘‘Optimistic’’: order the edges by the highest possible value they can take, i.e., by decreasing value of Ir (e).
2. ‘‘Centered’’: order the edges by the center of their intervals, i.e., by decreasing value of (Il(e)+ Ir (e))/2.
3. ‘‘Pessimistic’’: order the edges by the lowest possible value they can take, i.e., by decreasing value of Il(e).

For any given pair of edges e1 and e2, given an order σE that places e1 before e2, we can associate a maximum possible 
relative error for the order and the given pair as error(e1, e2)σE = Ir (e2)/Il(e1). Hence, the order σE = e1, . . . , em entails 
a ζ -strong E-order (Assumption  5) with ζ = maxei,ej∈E, j>i error(ei, ej)σE . For example, using the intervals of Fig.  7, one 
can compute a bound of ζ = 9.1/4.9 ≈ 1.85 achieved by the pair (e4, e5). In general, one can bound the maximum 
error of using such heuristic order. Since in the worst case the maximum overlap includes a full interval, the maximum 
error between two edges is bounded by the maximum over all e ∈ E of Ir (e)/Il(e) ≤ (Il(e) + Imax)/Il(e) with Imax
the maximum length of an interval according to I . Since (Il(e) + Imax)/Il(e) is a decreasing function in Il(e), we have 
(Il(e) + Imax)/Il(e) ≤ (wmin + Imax)/wmin where wmin is the minimum value possible for the weights, i.e., the minimum 
of I (e). This gives a bound of e.g. ζ = I + 1 if w = 1.
l max min
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Fig. 7.  Example of associated intervals to weights following the (yet to be discovered) input of Fig.  5 and the edges ordered according to the 
optimistic or centered order; in this example, intervals have been set using original weights ±30%.

Fig. 8. Bounds on the error associated to each node in P (i.e. according to C-order) following the example of Fig.  7. 

Now, assume we define the following orders σP  and σC  on P and C: number vertices as they appear in σE . For example, 
using the intervals of Fig.  7, σP = p1, p2, p3 and σC = c3, c2, c1, c4. Using such node order, one can compute similarly 
bounds on the maximum ‘‘error’’ that the order can imply, but this time only edges sharing an endpoint do produce 
errors (in P if considering σP , and in C if considering σC ). Using the same example as previously, we obtain a bound 
of β = γ ≈ 1.65 because of the pairs {(p1, c3), (p1, c2)} for γ  and {(p1, c3), (p2, c3)} for β (see Fig.  8). In particular, 
this example illustrates well that based on the exact same approximation information (interval weights), order oracles 
on nodes may entail tighter bounds for the discovery algorithms than using an edge order based on the same interval 
weight approximation.

Weak orders based on interval approximation. Define the overlap count (OC) as the maximum number of overlapping edges 
for any given edge, i.e., OC is calculated as

OC(E, I) = maxe∈E |{e′ | e′ ∈ E ∧ e′ ̸= e ∧ Il(e′) < Ir (e) ∧ Ir (e′) > Il(e)}|.

For a given set of interval weights, we have ζℓ-ℓ-weak E-order holding with ζℓ ≤ 1 whenever ℓ = OC(E, I). Under all 
aforedefined edge orders σE that are based on intervals (Centered, Pessimistic or Optimistic),3 we have the property that 
for any given edge e in σE , all edges appearing beyond the overlap count will have at most a strictly smaller weight than 
the lowest possible value for e. Observe that the same property holds for weak node orders: we have βℓ-ℓ-weak P-order 
holding with βℓ ≤ 1 whenever ℓ = OCC (E, I). Here, OCC (E, I) ≤ OC(E, I) is the overlap count only accounting for edges 
sharing the same endpoint in C (that is the maximum overlap count for any c). Symmetrically, we have γℓ-ℓ-weak C-order 
holding with γℓ ≤ 1 when ℓ = OCP (E, I).

For example, using the intervals of Fig.  7 and ℓ = 1, we obtain ζ1 ≈ 1.65, ζ2 ≈ 1.62, ζ3 ≈ 1.44, ζ4 ≈ 0.82 etc, whereas 
β1 = 0, γ1 ≈ 1.44 and γ2 = 0, illustrating again how tighter bounds are obtained when node orders are used for the 
same value of the overlap count.

3 The only condition required on the order is that two non-overlapping edges are placed in the order of their endpoints.
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That means, assuming an overlap count of ℓ for both P and C weak node orders, only O(n ·ℓ) edges are examined with 
Alg. 4 to guarantee a 2-approximation for the produced matching (i.e., we have βℓ, γℓ ≤ 1 then, cf. Proposition  16). That 
is, whenever we have m = |E| = Ω(n2) and interval weights with a constant overlap count, only O(

√
m) edges have to 

be queried to generate a 2-approximate matching.

Function approximation. Suppose there exists a function f  that provides an approximation of the weighting function w, 
such as w(e)−∆ ≤ f (e) ≤ w(e)+∆ or (1− ε) · w(e) ≤ f (e) ≤ (1+ ε) · w(e) for some ∆ ≥ 0 (resp. ε ≥ 0). In this case, 
one can set I(e) = [f (e) − ∆, f (e) + ∆] (absolute error guarantee) or I(e) = [f (e) · (1 − ε), f (e) · (1 + ε)] (relative error 
guarantee) so that all previous results on interval weights hold on approximate weights, including the implications based 
on the value of the overlap count.

For example, in the relative error guarantee, by the precedent arguments, the maximum error based on the Optimistic 
order is bounded by (1 + ε)/(1 − ε), e.g. the error is less than 2 if ε ≤ 1/3. This entails that the Naive-Edge Matching 
algorithm is 2-approximate without calculating any weights whenever the heuristic order of the edges is so that each 
approximated weight is within 77%− 133% of its real value (using Proposition  18).

In addition, depending on how much overlap there is in the estimations, tighter approximation ratios can be obtained 
by calculating the exact value of some of the weights using our discovery algorithms. In the best scenario, the local 
approximations do not overlap at all (at least when considering only the edges in the neighborhood of each node) and 
Alg. 2 outputs a 2-approximation of the optimal without calculating any weights.

4. Extensions to one-to-many assignment problems and applications

We extend our results in this section to one-to-many assignment problems, i.e., when each member of the set P can 
be matched with up to k ≥ 2 different members of the set C instead of only one in the previously studied one-to-one 
assignment problem. Assignments where p ∈ P may be allowed to be paired with up to k elements of C can take two 
forms: either the assignment of p to many tasks follow the same weighting function as in the one-to-one assignment, 
or the weight of assigning p to a subset X of tasks is different from the sum of assigning p to the individual tasks from 
X , that is w({p} ∪ X) ̸=

∑
c∈X w(p, c), extending the weighting function to subsets of P ∪ C . In the former case that 

we hereafter refer to as simple one-to-many assignment problem, the problem is a straightforward generalization of the 
one-to-one assignment problem, whereas in the latter case, the problem corresponds to a form of bipartite hypergraph 
matching, a significantly more challenging problem.

4.1. Simple one-to-many assignment problem

One can reduce any simple one-to-many assignment problem to a one-to-one assignment problem in the following 
manner. For each p ∈ P , make k copies p1, . . . , pk of node p, while keeping the original weights, i.e., ∀c ∈ C, w(pj, c) =
w(p, c). Finally, solve the maximum matching in bipartite graphs problem with the input P ′k = {pj | j ∈ [1..k], p ∈ P}
and C . This reduction allows to extend all our results to simple one-to-many assignment problems with all bounds shown 
in Table  1 still holding the same way over G = (P ′k ∪ C, E) using the algorithms we have introduced in this work (upon 
using appropriate order oracles).

In detail, we can re-use all the discovery algorithms that have been introduced so far and adapt if needed how the 
original order oracles translate to this situation. That is, assuming order oracles σP  and σC  are available for P and C , one 
has to extend σP  to σP ′k

.
Let us consider three intuitive strategies:

1. Round Robin places all vertices in P first {p1i | pi ∈ P} ordering them in σP , then cycle k − 1 more times over the 
other copies of P according to σP  each time;

2. Single Pass places first all copies of p1 before moving to all copies of p2, etc;
3. Classic Greedy orders all edges (including the copies) in the usual decreasing order of edge weights.

Here, Single Pass preserves Assumption  1 with identical value for β (albeit enforcing β ≥ 1 as edge weights are 
identical between copies). This is because pairs of edges involving the ‘‘new edges’’ are either involving a node in P and 
one of its copies or two distinct nodes in P but appearing in σP ′k

 in the same order as in σP .
Since Round Robin shuffles how nodes appear in σP ′k

, it does not preserve the original assumption bounds.
At last, Classic Greedy provides a ζ -strong edge order albeit enforcing ζ = 1 when k ≥ 2 because of the copies. The 

weak order assumption does not hold with identical βℓ value because of the presence of the copies while assumptions 
relating to σC  are not affected by them.

4.2. General one-to-many assignment problem

Following our original motivations stemming from energy systems [9], we further explain here how to extend our 
results to the bipartite hypergraph matching problem.
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Bipartite hypergraph matching problem. Contrary to usual graphs where the definition of bipartiteness is rather intuitive 
and unique, the notion accepts several variants for its hypergraph equivalent [21]. One natural extension of bipartition to 
hypergraphs assumes for the vertex set V  of the hypergraph G to be partitioned into two disjoint sets P and C , such that 
every hyperedge of G contains at least one vertex from P and one from C . To match the setting of a general one-to-many
assignment problem, we rather restrict hyperedges to have exactly one vertex from P (and since hyperedges contain at 
least two vertices, this is a subset of the bipartite hypergraphs in the wider definition).

The k-BHM-Discovery problem seeks, given a bipartite hypergraph G = (P∪C, E), to find the maximum-weight matching 
of the hyperedges of E where hyperedges are of size at most k. As with the previous discovery problems, hyperedge 
weights are not given as input and must be individually queried. For k ≥ 4 and if no weight assumptions are provided, 
the k-BHM-Discovery problem is not approximable within a factor of o(k/ log k) in polynomial time, unless P = NP (cf. [9], 
based on a reduction to the k-bounded hypergraph matching problem [18]). By calculating the weight of all O(Nk) possible 
hyperedges with N = max{|P|, |C |}, the best approximation algorithms [4,22] achieve slightly less than a (k + 1)/2
approximation ratio.
Approximation bounds for the peer-to-peer energy sharing application. As with simple one-to-many assignments, we can 
re-use all the discovery algorithms that have been introduced in this work by simply running them on the input 
G = (P ′k−1 ∪ C, E), with E = P ′k−1 × C , assuming we can calculate pairwise weights w(p, c) that provide indications 
for the weight of hyperedges containing both p and c , and w(p, c) = 0 if p and c do not appear in any hyperedges of the 
original input G = (P ∪ C, E). The output hypergraph matching is then obtained by merging together the different copies 
so to create groups of size up to k. In this general setting, our results do not carry over because the weight w({p} ∪ X) of 
a hyperedge {p} ∪ X ∈ E is different from the sum of the individual pairwise weights, i.e., 

∑
c∈X w(p, c).

However, it is shown in [9] that if for any hyperedge e = {p} ∪ X of the input its weight is bounded in relation to the 
sum of pairwise weights, i.e., if we have

α1(k) ≤
w(e)∑

c∈X w(p, c)
≤ α2(k)

then an r-approximate matching discovery algorithm entails an algorithm with an r ·α2(k)/α1(k) approximation ratio for 
the k-BHM-Discovery problem.

For the practical application of ‘‘Peer-To-Peer Energy Sharing’’ considered in [9], bounds of α1(k) = 1
k−1  and α2(k) = 1

are proven. This thus entails discovery algorithms of approximation ratio (k − 1) · ε where ε corresponds to the bound 
as shown in Table  1, depending on the chosen matching algorithm and strength of the involved order oracles. In this 
application, the clear advantage of using discovery algorithms for the bipartite hypergraph matching problem instead of 
one based on exhaustively enumerating all hyperedges resides in calculating at most O(n) weights (e.g. using Alg. 3 or 
Alg. 4 with a constant value for ℓ) instead of |E| = O(s ·qk−1) where s = |P|, q = |C |, n = min{s, q}. Our results thus entail 
that those efficient greedy algorithms also provide proven approximation guarantees depending only on the quality of 
the heuristic orders used to process the input.

5. Conclusions

We have in this work extended the notion of discovery algorithms to assignment problems, and we believe our work 
provides useful theoretical bounds for algorithms that are efficient in practice. The algorithms that we have developed 
require only weaker assumptions on processing orders for the nodes than a total ordering of all edges and achieve 
a bounded approximation ratio depending only on the quality of the heuristic orders used. Furthermore, to provide 
a bounded-approximation solution to practical applications, we also discuss here extensions of the greedy algorithms 
introduced earlier to one-to-many assignments and further study their performances based on assumptions stemming 
from real-world data. We note that for a given input, processing order and with access to all weights, one can compute 
efficiently the exact values of the heuristic parameters which can become good estimations for bounds on larger instances 
in a given application. Our findings open up for further rehabilitation of greedy algorithms in theoretical analysis, and 
advocate that greedy algorithms do not only often provide computationally-efficient solutions to hard problems but can 
also be formally analyzed within the scope of concrete applications.
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