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Elastic Relaxation of Concurrent Data Structures
Kåre von Geijer and Philippas Tsigas

Abstract—The sequential semantics of many concurrent data
structures, such as stacks and queues, inevitably lead to memory
contention in parallel environments, thus limiting scalability. Se-
mantic relaxation has the potential to address this issue, increasing
the parallelism at the expense of weakened semantics. Although
prior research has shown that improved performance can be at-
tained by relaxing concurrent data structure semantics, there is no
one-size-fits-all relaxation that adequately addresses the varying
needs of dynamic executions. In this paper, we first introduce the
concept of elastic relaxation and consequently present the Lateral
structure, which is an algorithmic component capable of support-
ing the design of elastically relaxed concurrent data structures.
Using the Lateral, we design novel elastically relaxed, lock-free
queues, stacks, a counter, and a deque, capable of reconfiguring
relaxation during run-time. We establish linearizability and define
worst-case bounds for relaxation errors in our designs. Experimen-
tal evaluations show that our elastic designs match the performance
of state-of-the-art statically relaxed structures when no elastic
changes are utilized. We develop a lightweight, contention-aware
controller for adjusting relaxation in real time, and demonstrate its
benefits both in a dynamic producer-consumer micro-benchmark
and in a parallel BFS traversal, where it improves throughput and
work-efficiency compared to static designs.

Index Terms—Concurrent programming, data structures,
semantics.

I. INTRODUCTION

A S HARDWARE parallelism advances with the develop-
ment of multicore and multiprocessor systems, developers

face the challenge of designing data structures that efficiently
utilize these resources. Numerous concurrent data structures
exist [3], but theoretical results have demonstrated that many
common data structures, such as queues, have inherent scalabil-
ity limitations [4] as threads must contend for few access points.
One of the most promising solutions to tackle this scalability
issue is to relax the sequential specification of data structures [5],
which permits designs that increase the number of memory
access points, at the expense of weakened sequential semantics.

The k out-of-order relaxation formalized by Henzinger et
al. [6] is a popular relaxation type [7], [8], [9], [10] that allows
relaxed operations to deviate from the sequential order by up to
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k; for example, for the dequeue operation on a FIFO queue, any
of the first k + 1 items can be returned instead of just the head.
This error, the distance from the head for a FIFO dequeue, is
called the rank error.

While other relaxations, such as quiescent consistency [11]
are incompatible with linearizability [12], k out-of-order relax-
ation can easily be combined with linearizability, as it modifies
the semantics of the data structure rather than the consistency.
Despite extensive work on out-of-order relaxation [6], [7], [8],
[10], [13], [14], [15], [16], [17], almost all existing methods
are static, requiring a fixed relaxation degree during the data
structure’s lifetime.

In applications with dynamic workloads, such as bursts of
activity with latency constraints, it is essential to be able to
temporarily sacrifice sequential semantics for improved perfor-
mance. This paper addresses the problem of specifying and
designing data structures whose degree of relaxation can be
adjusted dynamically at run-time—a concept we term elastic
relaxation. Elastically relaxed data structures enable the de-
sign of instance-optimizing systems, an area that is evolving
rapidly across various communities [18]. The trade-off between
rank error and throughput is well demonstrated by Williams
et al. [14] and Postnikova et al. [15], whose shortest-path
benchmarks show that increased relaxation improves throughput
at the expense of work-efficiency. These relaxed designs have
outperformed state-of-the-art static approaches in parallel SSSP
on sparse high-diameter graphs [19], highlighting the potential
of further exploring the field of relaxed data structures.

Several relaxed data structures are implemented by split-
ting the original concurrent data structure into disjoint sub-
structures, and then using load-balancing algorithms to direct
different operations to different sub-structures [7], [8], [14],
[17], [20]. In this paper, we base our elastic designs on the
relaxed 2D framework [7], which has excellent scaling with both
threads and relaxation, as well as provable rank error bounds.
The key idea of the 2D framework is to superimpose a window
(Win) over the sub-structures, as seen in green in Fig. 1 for the
2D queue, where operations inside the window can linearize in
any order. The Winenq shifts upward by depthwhen full, and
Windeq similarly shifts upward when emptied, to allow further
operations. The size of the window dictates the rank error, as a
larger Win allows for more reorderings.

The algorithmic design concept we propose in this paper is the
Lateral structure, which we use to extend the 2D framework to
encompass elastic relaxation. This Lateral is a strict concurrent
version of the relaxed data structure—so for a relaxed queue,
it is a strict queue—maintained alongside the substructures
to track elastic changes. The Lateral is visualized for one of
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Fig. 1. The 2D queue has two windows defining the operable area for the
enqueue and dequeue operations.

Fig. 2. By adding a Lateral to the 2D queue, changes in width at Winenq

can be tracked and adjusted to by Windeq . This depicts a possible state in the
elastic LpW queue.

our elastic queues in Fig. 2. We show two generic designs for
incorporating the Lateral into the window mechanism of the 2D
framework while achieving deterministic rank error bounds, one
of which is simple, and one more complicated with better elastic
capabilities. Although using the 2D framework as the base for
our designs, the Lateral can also accommodate other designs,
such as the distributed queues by Haas et al. [8], the k-queue [9],
and the k-stack [6].

Contributions: This work takes crucial steps toward designing
reconfigurable relaxed concurrent data structures with determin-
istic error bounds, capable of adjusting relaxation levels during
run-time.
� We introduce the concept of elastic relaxation, allowing

rank errors to change over time. Furthermore, we introduce
the Lateral component for efficiently enhancing relaxed
data structures with elasticity.

� We elastically extend the 2D framework, deriving elastic
queues, stacks, a counter, and a deque using the Lateral,
and establish both correctness and rank error bounds. Our
Lateral-based designs are grouped into two paradigms:
Lateral-plus-Window (LpW), which can be applied to other
relaxed structures with minimal modification, and Lateral-
as-Window (LaW), which are simpler, but specially tai-
lored for the 2D framework.

� We evaluate the scalability of our proposed data structures
against both non-relaxed and relaxed data structures. These

evaluations show that the elastic designs significantly
outscale non-relaxed data structures, and perform as well
as the best statically relaxed ones, while simultaneously
supporting elastic relaxation.

� Finally, we demonstrate the elastic capabilities of our
designs by implementing a lightweight, contention-aware
controller for adjusting relaxation. We evaluate it in two
dynamic settings: a producer-consumer benchmark, where
it adapts relaxation over time, and a BFS traversal, where
it improves both runtime and work-efficiency compared to
static configurations.

Structure: Section II presents the preliminaries, focusing on
the 2D framework. Section III introduces elastic relaxation and
our novel data structures, which we then prove correct and
provide worst-case bounds for in Section IV. Section V exper-
imentally evaluates the new algorithms. Section VI discusses
related work. Section VII concludes the paper.

II. PRELIMINARIES

An out-of-order relaxed data structure relaxes the sequential
specification of the underlying data structure to allow operations
to linearize [12] out of order. The concept was formalized by
Henzinger et al. [6] in their theoretical framework quantitative
relaxation, which defines relaxation errors based on transition
costs in the linearized history. In the case of a FIFO queue, if
the third item is dequeued, the out-of-order error would be 2,
as one would need to remove the enqueue operations of the
two first items for the operation to be correct. Recent relaxed
queue designs [14], [17] distinguish rank errors and delay errors,
where rank errors are the errors described above, and the delay
when dequeuing an item is the number of earlier dequeues that
returned items of lower rank; items which were enqueued later
in a FIFO queue.

The algorithm descriptions in this paper assume a sequentially
consistent [21] programming model for simplicity. However,
efficient implementations, such as ours for the evaluation [2],
should use less restrictive memory orderings where possible.
The algorithms also utilize the atomic compare-and-swap in-
struction, where CAS(loc, exp, new) atomically sets the
memory atloc equal tonew if the previous value atloc equals
exp.

A. Static 2D Framework

The 2D framework for k out-of-order relaxed data struc-
tures [7] (hereby called the static 2D framework) unifies designs
across FIFO queues, stacks, deques, and counters. Furthermore,
its implementations outscale other relaxed implementations
from the literature with deterministic error bounds [6], [8], [9]
and its throughput scales monotonically with k. It achieves
its good performance by distributing operations across disjoint
sub-structures – reducing contention – as well as having threads
return to the same sub-structure for several successive operations
– increasing data locality.

The 2D framework can be seen as a two-dimensional grid,
where the columns are concurrent sub-structures, and the rows
are indexes within those sub-structures. In this view, a normal
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Algorithm 1: Core of the Static 2D Queue.

(strict) queue would be a single column, where one inserts items
at rows 0, 1, 2 . . ., and removes them in the same order. The core
of the 2D framework is to superimpose a 2D window (Win)
over the grid, and only allow operations at rows and columns
within Win. An example 2D queue state is shown in Fig. 1.
If there is no valid operation in Win, a thread shifts Win up
or down to allow further operations. For conciseness, we call
the number of sub-structures or columns the width (Winwidth),
and the number of rows spanned by each window the depth
(Windepth).

Algorithm 1 shows the core code for the 2D queue, which is
almost identical to the other data structures. For each operation,
the thread iterates over the columns and tries to linearize on a
row within Win, otherwise shifting Win before trying again.
The dequeue deviates from this, in that it returns EMPTY if a lin-
earizable double-collect scan [22] validates that all sub-queues
are empty. The static Win mainly includes a max (Winmax)
field (Winmin := Winmax − depth), and Win can thus be
shifted with a single CAS that increases or decreases Winmax.
An important detail is that the iterations at lines 1.5 and 1.3
should start at the column where the thread last linearized, for
better cache performance, similarly to stickiness in later related
work [14].

Looking closer at the 2D queue, both its windows (Winenq

and Windeq) only contain a Winmax field, and both ShiftEnq
and ShiftDeq simply increment Winmax by depth with a CAS.
As in all 2D designs, if another thread shifts Win before you,
your shift aborts after the failed CAS to not shift Win twice.
Using the state in Fig. 1 as an example, Winenq spans row 4
where columns 0 and 2 are valid for enqueues, while column 1
is already enqueued into. If column 0 and 2 had been enqueued
into, the enqueue operation would atomically shift Winenqmax
up by depth, before again trying to find a valid column to enqueue
at. The sub-queues in the 2D queue are implemented as Michael-
Scott (MS) queues [23] with counted head and tail pointers. This
choice makes it easy to implement TryEnqueue (line 1.8) and
TryDequeue (line 1.6), which only succeed if able to linearize at
the correct row. Furthermore, the counted head and tail pointers

are used to determine the row of the queue’s head or tail (lines
6 and 14). The usage of such counted pointers has been used
in similar relaxed queues [8], and they are simple to implement
with the 16-byte CAS on x86 [24]. If not having access to a
16-byte CAS, one can instead include the row count within each
node, or use an array-based sub-queue which maps row indexes
to array slots [25], [26], [27].

The 2D stack is only slightly different from the queue in
Algorithm 1. Firstly, only one Win is required, as both pushes
and pops operate on the same side of the data structure. This leads
to Winmax no longer increasing monotonically, but instead
decreasing under pop-heavy workloads, and increasing under
push-heavy ones. Furthermore, Winmax shifts by Windepth/2
instead of Windepth, which roughly leaves Win half-full after
each shift. AsWinmax does not strictly monotonically increase,
Win also includes a version count to circumvent the ABA
problem. The sub-stacks are implemented as Treiber stacks [28],
again using counted pointers to the top item, to track its row and
facilitate easy TryPush and TryPop methods.

The 2D deque can be derived as a combination of the queue
and stack, where it has oneWin at each end of the data structure,
as the 2D queue, and these Win can shift both up and down (by
depth/2), as the 2D stack. The simplest way to implement the
sub-deques is using the Maged deque [29] with counted top and
bottom pointers.

Finally, the 2D counter can be seen as a special case of
the 2D stack which disregards the items, and only tracks the
sub-structure sizes. Therefore, it only needs a single Win, and
updates its sub-counters in the same way the 2D stack would
increment or decrement the top row of each sub-stack. The size
of the counter is approximated by the row of one sub-counter
multiplied by Winwidth.

In summary, the 2D designs can be modeled as two-
dimensional grids, where items are inserted or deleted from
valid rows within the current Win. The hard bound imposed
by the Win makes it possible to give worst-case guarantees
on the rank errors of the operations. For example, for the 2D
queue, operations that linearize during different Win are totally
ordered by proxy of theWin order, and each sub-queue is totally
ordered as it is a strict MS queue. Therefore, it is simple to see
that rank errors are bounded by (Winwidth − 1)Windepth [7].
Similar bounds hold for the other designs [7], but are slightly
harder to derive [30].

III. DESIGN OF ELASTIC ALGORITHMS

This section introduces several algorithms with elastic out-of-
order relaxation, by extending the static 2D framework [7]. The
two dimensions of relaxation in the 2D framework areWinwidth

and Windepth, whose optimal configurations depend on both
the number of threads and the surrounding use-case. In general,
Winwidth is often set proportional to the number of threads [7],
[14], while Windepth is determined by algorithm-specific fac-
tors. As Winwidth and Windepth serve different uses, it is
essential that both of them can be reconfigured during runtime
for an elastic extension of the 2D framework to be practically
useful.
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Our new elastic designs therefore letWinwidth andWindepth

change with every window shift. In the pseudocode, we use
width_desired() and depth_desired() as hooks representing the
currently desired values, which can be controlled either manu-
ally or by a dynamic controller. Changing Windepth is straight-
forward in practice, although it affects the error bounds. Effi-
ciently varyingWinwidth demands more attention, as it involves
modifying the number of active sub-structures while maintain-
ing error bounds. To keep this lightweight, our approach is to
leave existing items in place and apply the new Winwidth only
to future insertions.

We track the elastic changes to Winwidth and Windepth

using a Lateral structure. This Lateral consists of a set of nodes,
each corresponding to a range of rows in the substructures, and
provides a width bound for those rows. The Lateral width bound
of a row is the largest width bound of any Lateral node spanning
that row. This approach of using the Lateral is visualized in
Fig. 2 for the queue. There, items were initially enqueued with
Winenq

width = 3, but then it changed to Winenq
width = 4 at the

second row, and then again to Winenq
width = 2 at the fourth row.

These two changes can be seen in the Lateral, which has a
Lateral node for each, storing the new width and row where
the change took effect. Each Lateral node is enqueued at a
row, and implicitly spans all rows until the next Lateral node.
Notably, there are now empty slots in the sub-structures, such as
the last column on the first row, where no item will be inserted.
However, the rows are purely logical, in the implementations
only corresponding to counters, so these empty rows do not
consume memory. Importantly, Winenq is allowed to adjust its
dimensions freely, while Windeq must adapt its width to these
changes by inspecting in which columns items may have been
enqueued, as indicated by the Lateral.

Our elastic queue designs, presented in Section III-A and II-
I-B, are relatively simple, as only a single Winenq spans each
row. In contrast, the remaining designs—such as the stacks in
Section III-C and III-D—are more complex. There, the width of
a row can change multiple times during execution, requiring the
Lateral to be updated continuously to stay correct. To denote this
correctness, we call the Lateral consistent if the width bound for
each row is greater than or equal to the maximum column index
of all items currently in that row.

We identify two design paradigms for elastically extending the
2D data structures using the Lateral. The Lateral-plus-Window
(LpW) designs add the Lateral alongside the existing static
components and modify only the logic for shifting the windows.
In contrast, the Lateral-as-Window (LaW) designs merge the
Lateral and Win into a single linked-list structure of windows.
LaW designs are simpler to implement and analyze than LpW
designs, but they are more specific to the 2D framework and
slightly less flexible in supporting certain elastic behaviors. The
difference between the LpW and LaW designs can be seen
when comparing the LpW queue in Fig. 2 and LaW queue in
Fig. 3, where the LpW design only adds a Lateral node when
Winenqwidth changes, and the LaW design lets each Win be a
Lateral node – enqueueing one each window shift.

In the following sections, we present algorithms for both
LpW and LaW queues and stacks, as well as a LaW deque

Fig. 3. A possible state in the Elastic LaW queue, where windows are stored
in the Lateral, such that Winenq is the tail and Windeq is the head. Looking
at the Lateral, the queue must have initially been configured as Winenq

width
=

3,Winenq
depth

= 1, but then changed to Winenq
width

= 4,Winenq
depth

= 2, and

finally Winenq
width

= 2,Winenq
depth

= 1.

and an LpW counter. These algorithms focus only on the novel
modifications to theWin structure and its shifting logic; all other
behavior follows the static procedures of Algorithm 1, except
that operations now traverse only the substructures within the
current Winwidth.

A. Elastic Lateral-Plus-Window 2D Queue

The elastic Lateral-plus-Window (LpW) queue builds on
the static 2D queue from Algorithm 1, with the key change
that operations iterate only over columns within the current
Winwidth. Algorithm 2 presents the extensions to the static
version, including the integration of the Lateral structure and.
Elasticity is achieved by allowing Winenq

depth, Winenq
width, and

Windeq
depth to change mostly freely at each Win shift. When

Winenq
width changes, a new node is added to the Lateral, recording

the new width for future dequeuers. This ensures that Windeq
width

always covers at least the rightmost populated column between
Windeq

min and Windeq
max.

A possible state of the LpW queue is shown in Fig. 2. As
there are two Lateral nodes, there has been two changes in
Winenq

width, going from the current Windeq
width = 3 at the bottom,

to Winwidth = 4 at the second row, and finally to Winwidth =
2 at the fourth row. Changes in Windepth are not tracked in the
Lateral. The core idea is thatWinenq

width changes freely, but must
first enqueue a Lateral node with the width change, and that the
Windeq

width adapts based on the Lateral.
The LpW queue expands the fields within the windows com-

pared to the static algorithm, which only tracksWinmax. Firstly,
Winenq

width and Windeq
width are added so that operations know

which sub-queues to iterate over. Additionally, Winenq
next_width

is added, which holds the upcoming Winenq
width. The delay of

one Winenq shift before applying this new width is included
to keep the Lateral consistent. Both the sub-queues and Lateral
are implemented as MS queues [23], and provide TryEnqueue
and TryDequeue methods, which succeed only if that end of the
queue matches the argument.
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Algorithm 2: Elastic Win and Lateral in the LpW Queue.

Shifting Winenq is done by creating a new Winenq with a
desired Winenq

depth, Winenq
width equal to the last Winenq

next_width,
and Winenq

next_width as desired, finally updating the global
Winenq with a CAS (line 2.25). However, before this is done, if
Winenq

width �= Winenq
next_width (line 2.19), the algorithm ensures

a Lateral node with width = Winenq
next_width is enqueued into

the Lateral first. Enqueuing this node into the Lateral before
setting the new Winenq

width into effect ensures that the Lateral
is always consistent, so that Windeq

width will always cover all
populated columns between Windeq

max and Windeq
min.

Conversely, when shifting Windeq (line 2.37), the algorithm
first dequeues all Lateral nodes below Windeq

max (line 2.38), as
they represent changes in width that have already been logically
used. If the bottom of the new Windeq is the same row as
the bottommost Lateral node, the new Windeq

width is set to that
node’s width (line 2.43); otherwise, it remains the same as the
previous Windeq

width (line 2.41). The new Windeq
max is then set

by incrementing the old Windeq
max by the desired depth, while

ensuring it does not surpass Winenq
max or the row of the Lateral

tail (line 2.45). This restriction exists to ensure that Windeq

overlaps with at most one Lateral node, which occurs when that
node has row = Windeq

min + 1. This maintains the invariant that
all rows in a Windeq have equal widths.

Having covered how Winenq , Windeq, and the Lateral syn-
chronize, the detail of which row to enqueue items on remains.
In the static 2D queue, items are always enqueued immediately
above the last item. But as seen at the bottom right in Fig. 2,
our elastic queues can have gaps in the sub-queues following
increases in Winenq

width. Therefore, items are instead enqueued
at the larger of the row above the last item and Winenq

min + 1.
This can be implemented by storing row information within
each node in the sub-queues, but this pointer-indirection causes a
slight overhead, and one can instead either include Winenq

depth in
Winenq , or use the row of the Lateral’s tail to calculate the row.

B. Elastic Lateral-As-Window 2D Queue

This elastic LaW queue merges the Win and Lateral struc-
tures into a Michael-Scott (MS) queue [23] of windows. Algo-
rithm 3 presents the extensions relative to the static queue in Al-
gorithm 1. It again uses conditional TryEnqueue and TryDequeue

Algorithm 3: The Lateral in the Elastic LaW Queue.

methods, which only linearize if the tail or head matches the
expected value. Each Win in the Lateral contains max, depth,
and width. The global Winenq and Windeq become the head
and tail nodes in the Lateral. Every shift of Winenq enqueues a
new Win into the Lateral (line 3.12), and each shift of Windeq

dequeues a Win (line 3.20).
An example state of the LaW queue is shown in Fig. 3,

and can be compared to the LpW queue in Fig. 2, which may
result from the same sequence of operations. In the LpW queue,
only Winenq and Windeq are stored, and the Lateral contains
only changes in Winenq

width. In contrast, the LaW queue stores
information about every Win between Winenq and Windeq.
This results in increased memory usage, but the overhead is
typically modest, as each Win is just a node in a linked list
that often spans many items. The benefit of keeping all Win
instances in the Lateral is that it unifies the Lateral and Win
designs, making it easier to change relaxation and track its
changes over time.

As shown in ShiftEnq (line 3.12), Windepth and Winwidth

can be updated from arbitrary variables at each shift, enabling
elastic behavior. The main drawback of this design is that the
relaxation can only change at Winenq , and must propagate
through the queue to eventually reach Windeq .

Finally, as in the LpW queue, the LaW queue only en-
queues items within the current Winenq . After selecting a
sub-queue, each item is enqueued at row max(Winenq

max −
Winenq

depth, sub_queue.tail_row) + 1, which may create gaps
in the sub-queues, as shown in Fig. 3.
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Algorithm 4: Elastic 2D LaW Stack.

C. Elastic Lateral-As-Window 2D Stack

The elastic LaW stack retains as much simplicity from the
LaW queue as possible, while handling the bidirectional window
shifts of the 2D stack. As the LaW queue in Fig. 3, the LaW stack
merges the Win with the Lateral, keeping a Treiber stack [28]
of windows. Pushes and pops work similarly to the static 2D
stack, where the thread finds a sub-stack to operate on within
the currentWin (the topWin in the Lateral), and then linearizes
with a CAS. Additionally, sub-stack nodes store the row of the
node below, and items are always inserted above Winmin as in
the elastic queues.

The main complication of elastically extending the static 2D
stack is that its Win can shift downward at any point after
all sub-queues inside Winwidth have been seen at Winmin.
This does not guarantee that all sub-stacks remain at Winmin

at the linearization of the shift. Therefore, a naive elastic design
could shift downward from WinA to WinB and leave items
above WinB

max, and outside WinB
width, which would lead to

correctness issues.
The LaW stack is designed around the simplifying constraint

that items are always pushed within, and remain within, a Win
on the Lateral, as formalized by Property III.1. This property
simplifies elastic extension and also leads to a tighter and simpler
rank error bound than the Static 2D stack (as presented and
discussed in [30]).

Property III.1 (LaW Stack window cover): If item x is pushed
to sub-stack colx at row rowx, and has not been popped, then
∃Winx ∈ Lateral such that colx < Winx

width and Winx
min <

rowx ≤Winx
max.

Algorithm 4 shows how to shift the Win for the LaW stack
in a way to uphold Property III.1. A downward Win shift is
now split in two steps: shrinking Win (line 4.25), and in a
later shift invocation, shifting Win down (line 4.29). When
Winshrinking is set, push operations are only allowed to push

within the intersection of Win and Winnext. Similarly, upward
shifts either unshrink the Win, or if if it is not shrinking, push
a new Win to the Lateral.

Furthermore, a frozen bit is incorporated into the counted top
pointer of each sub-stack. If this bit is set, a push is not allowed
to linearize on the sub-stack. Pop operations must have seen this
bit set on all sub-stacks outside Winnext

width, together with them
being at or below Winmin, before shifting down (assert at line
4.27). As a sub-stack push can only linearize by first reading the
descriptor, then validating it is valid under the global Win, and
finally linearizing with a CAS, setting these frozen bits ensure
that no item can be pushed outside the current Win, ensuring
Property III.1.

Shifting the Win upward is a similar process, but without
the possibility of leaving items outside the Lateral (as it only
expands it). Firstly, if Winshrinking is set, we clear the bit and
undo the shrinking with a CAS (line 4.4). Otherwise, a newWin
is simply created with the desiredWinwidth and Windepth, and
pushed to the Lateral (line 4.7). Finally, when push operations
encounter a frozen sub-stack valid for a push, it first clears the
frozen bit with a CAS, and then re-reads the sub-stack and Win
before proceeding with the push.

D. Elastic Lateral-Plus-Window 2D Stack

The elastic LpW stack is similar in design and motivation to
the LpW queue. It can change relaxation behavior more flexibly
than the LaW stack, and slightly improves performance by not
having to shrink theWin at shifts. Instead of storing all windows
in the Lateral, as the LaW stack, it only stores Lateral nodes at
rows where the width changes, similarly to the LpW queue in
Fig. 2. As this algorithm can shift the Win more freely than the
LaW stack, it requires more care to keep the Lateral consistent,
which is its main drawback.

Algorithm 5 shows how to shift the Win and synchronize
the Lateral in the LpW stack. It again implements the Lateral
as a Treiber stack [28], but now only pushes nodes to it when
the width changes. However, as the width of a row can change
many times in a 2D stack, due to its non-monotonic Winmax,
the Lateral nodes must be re-adjusted before every Win shift
(line 5.14). There, it possibly replaces several Lateral nodes with
a single CAS (line 5.73. Like the LaW stack, it always pushed
items above Winmin, and stores the row count of items in their
sub-stack nodes.

To increase the elasticity from the LaW stack, the LpW stack
separates Winwidth into Winpush_width and Winpop_width for
the push and pop operations. Then, Winpush_width can be
updated at will (line 5.16) and Winpop_width is set as the upper
bound on thewidth of rows in theWin, which can be calculated
using the Lateral (line 5.26).

Shifting the Win (line 5.13) is done by first ensuring the
Lateral is stabilized (line 5.14), then creating a new Win, in-
cluding Winpush_width and Winpop_width as described above,
finally linearizing with a CAS (line 5.27). Furthermore, theWin
stores the direction of the shift (UP or DOWN), and the last
Winpush_width, which are used to keep the Lateral consisent
at the next shift.
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Algorithm 5: Lateral and Win Logic for the Elastic LpW Stack.

The function StabilizeLateral is the core of the LpW stack
(line 5.14), keeping the Lateral consistent at every Win shift.
The function maintains the stack invariant that for any Lateral
node l, all sub-stack items between l.row and l.next.row will
be at columns less than l.width. We divide the synchronization
into two phases, which together create a local top candidate for
the Lateral stack, and linearize with a CAS at line 5.73.

The first phase clones and tries to lower Lateral nodes
above Winmin (line 5.54). By lowering a Lateral node l to
row r, we set l.row ← min(l.row, r), and then if l.row ≤
l.next.row, l is removed from the stack (by re-linking its parent
l′, l′.next← l.next). If a Lateral node l, l.row > Winmin has
l.width ≤Winpush_width, then it is lowered to Winmin (line
5.42), as new nodes can have been pushed outside l.width
within the Win, invalidating its bound. Otherwise, if l.width >
Winlast_push_width and the last shift was downwards, all sub-
stacks must have been seen at the previous Winmin before it
shifted down, so l is lowered to a conservative estimate of the
previous Winmin (line 5.45). This estimate only deviates from
the actual previous Winmin when the last Winmin was smaller
than Windepth/2, in which case it overestimates, thus keeping
a correct bound.

In the second phase (line 5.55), a new Lateral node
with width = Winlast_push_width is pushed if the width has
changed.
� If Winpush_width > Winlast_push_width, the width has

increased, and a Lateral node is pushed at Winmin to
signify that the width from there on is smaller. This is
not needed for correctness, but is helpful in limiting the
Winpop_width if the width shrinks in the future.

� If Winpush_width < Winlast_push_width, the width has
decreased and a new Lateral node needs to be pushed at the
highest row containing nodes between Winpush_width and
Winlast_push_width. This can not reliably be calculated

from the present Win variables, so we simply iterate over
the sub-stacks (line 5.56).

In summary, the elastic LpW stack uses a similar idea as the
elastic LpW queue, but needs to do extra work to maintain the
Lateral invariant. However, unless the workload is very pop-
heavy and there have been very many elastic width changes,
the Lateral nodes should quickly stabilize and let the push_width
and pop_width be equal.

E. Elastic Lateral-As-Window 2D Deque

The elastic LaW deque combines the ideas from the LaW
queue and LaW stack, but is mainly similar to the LaW stack
due to both having bidirectional Win shifts. However, as the
deque can operate on both ends of the data structure, it requires
one Win at the top and one at the bottom.

Algorithm 6 shows how the LaW deque shifts Win, but to
avoid repetition, it only shows how to shift Wintop, as the
methods forWinbot are the mirrored equivalents. Enqueues and
dequeues are done as in the LaW stack, finding a sub-deque
within the current Win and updating the sub-deque with a
linearizable enqueue or dequeue within the Win.

As in the LaW stack, the LaW deque relies on all items in the
deque always being within one Win in the Lateral, as described
by Property III.2. To achieve this, it employs the same method of
shrinking theWin before dequeueing it (line 6.32), and freezing
sub-deques outsideWinwidth during a shrinkingWin, ensuring
that no item is pushed outside the current Win. However, as a
deque can push and pop on both ends, a Win can now shrink in
either direction. However, due to theWin only starting to shrink
when it is at an end of the Lateral, with another Win below or
above, and stops shrinking when enqueueing an adjacent Win
(line 6.6), it can only ever start shrinking from a non-shrinking
state.
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Algorithm 6: Elastic 2D LaW Deque.

Property III.2 (LaW Deque window cover): If item x is
enqueued in sub-deque colx at row rowx, and has not
been dequeued, then ∃Winx ∈ Lateral such that colx <
Winx

widthandWinx
min < rowx ≤Winx

max.
Finally, to ensure correctness of the deque, some requirements

are placed upon the Lateral deque, which can be achieved
by modifying the Maged deque [29]. Firstly, it must support
conditional TryPush, TryPop, and TryReplace methods for both
deque ends, which take in the old expected end Win, only
linearizing if the end is unchanged. The TryReplace method
is non-standard, and repalces the end Win, and is used for
shrinking or un-shrinking the end Win. Secondly, the deque
must be ABA aware when reading an end of the deque, so that
it notices if another Win has been pushed and then popped
between two reads. This also applies to the update methods
TryPush, TryPop, TryReplace, which take in the current expected
Win.

F. Elastic Lateral-Plus-Window 2D Counter

The 2D counter stands out as the only non-queue 2D design,
not allocating any nodes and instead only using the counters
which in the queues associate items with rows. Beside incre-
menting and decrementing counts, much as the 2D stack, the
counter also estimates the total counter size by multiplying a
sampled sub-count byWinwidth. Elastic extensions must ensure
that they can estimate the total count efficiently, while allowing
elastic changes in Winwidth.

The elastic LpW counter adds a Lateral counter that tracks
the offset of the true count to the sum of all counters within
Win, as described in Property III.3. When reducing Winwidth,
all counts outsideWinwidth are set to 0 and added to the Lateral
count. Similarly, then increasing Winwidth, all counts are set to

Algorithm 7: Elastic 2D LpW Counter.

the middle row in Win, and those counts are subtracted from
the Lateral.

Property III.3 (LpW Counter True Count): When Lat-
eral.version =Winversion, all sub-counters outside Winwidth

have count 0, and the true count of the counter (number of
linearized increments − decrements) is: Lateral.offset+∑

i sub_counter[i].
Algorithm 7 presents how to shift the window and synchronize

the Lateral for the elastic LpW counter. In line with earlier LpW
designs, shifting Win is done by creating a new Win with the
desired dimensions, including saving the previous Winwidth

and incrementing a version count, finally changing the global
Win with a CAS (line 7.13).

The Lateral is said to be synchronized with Win when
Lateral.version = Winversion, and this is required when
shifting Win or reading the counter. They become un-
synchronized every Win shift (line 7.13), after which one
must call SyncLateral to synchronize them. If Winwidth =
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Winlast_width, synchronizing the lateral only involves incre-
menting Lateral.version. Otherwise, synchronizing the Lat-
eral is done in two parts that ensure the correctness of Prop-
erty III.3:

1) First, the Lateral offset change is calculated. If the
Winwidth has decreased, the offset increases by the sum
of all counts outsideWinwidth (line 7.35), as these counts
will be reset to 0. To avoid updates to the counters after
these reads, the readers also increment the version count
on the sub-counters. If Winwidth has increased, the offset
decreases by Winmid := Winmax −Windepth/2) mul-
tiplied by the change in Winwidth (line 7.37), as those
counters will be incremented to Winmid before being op-
erated on in the new window. This step linearizes by updat-
ing the Lateral on line 40, also setting Lateral.syncing,
to flag that the Lateral is between the two synchronization
steps.

2) Then, the potential sub-counters outside Winwidth are set
to 0 (line 7.46), or the new ones inside Winwdith are set
to Winmid (line 7.51), counteracting the change in the
Lateral above. This linearizes by updating the Lateral to
a synchronized state at line 53.

Incrementing and decrementing a counter is done as in the
static 2D counter, by reading a sub-counter, validating that it
is within Win, additionally verifying that the Lateral is syn-
chronized with Win, and then updating the sub-counter with
a CAS. Reading the counter is done equivalently and returns
sub− count ·Winwidth + Lateral.offset.

IV. ANALYSIS

In this section, we prove the correctness and relaxation bounds
for our elastic designs. Our elastic bounds give the worst-case
rank errors, but if no elastic changes are made, our elastic designs
have equal or lower error bounds compared to their static 2D
counterparts.

Static k out-of-order relaxation is formalized by defining and
bounding a transition cost (rank error) of the “get” methods
within the linearized concurrent history [6]. Elastic relaxation
allows the relaxation configuration to change over time, which
will naturally change the bound k as well. Therefore, we define
elastic out-of-order data structures similarly to static out-of-
order, with the difference that the rank error bound is a function
of the relaxation configuration history during the lifetime of
the accessed item. In the simplest case, such as the elastic
LaW queue from Section III-B, the rank error bound for every
dequeued item is a function of Windeq

width and Windeq
depth when

the item is dequeued.
Lock-freedom: To avoid repetitive arguments, we here col-

lectively state that our designs are lock-free as (i) each sub-
structure, the Win, and the Lateral are updated in a lock-free
manner (by linearizing with a CAS), (ii) the Lateral is updated
at most twice every window, and (iii) that there cannot be an
infinite number of window shifts without progress on any of the
sub-structures [7].

Memory usage: The required memory of our designs is pre-
sented in Property IV.1. It is simple to generalize across designs,

so we motivate it in the following paragraph. Importantly, as
there is only an additive factor with the width, the memory
overhead compared to a strict data structure is not very large.

Property IV.1 (Memory usage of Elastic designs): Our elastic
queues, stacks, and deque, use O(n+ w) memory, where n is
the number of items in the data structure, and w is the largest
width of all rows. The counter only uses O(w) memory.

The memory usage of our designs is split into three parts:
(1) sub-structures, (2) the Lateral (3) inserted items. Each
sub-structure uses a small, constant amount of memory, when
ignoring stored items. Thus, if keeping a dynamic vector of
the number of sub-structures needed, they use O(w) memory.
For the counter, as the sub-counters and Lateral are of O(1)
size, its total size is O(w). Otherwise, the Lateral—in the
worst case—has one Lateral node per occupied row in the data
structure, which is O(n), where n is the current number of
items. However, in most cases, as in the queues, the worst case
is one Lateral node per Winwidth ·Windepth items, which is
often quite large. Finally, each item is enqueued into a single
sub-structure, using the same memory as a strict linked list of
O(n), where n is the list size.

Notation: When referencing item x, we denote Winenq x

as the Win which was read at the enqueue of x, analogously
defining Windeq x. Furthermore, Winmaxx

field (or Winminx
field ) ref-

erence the maximum (or minimum) value of Winfield during
the lifetime of x. Finally, rowx refers to the row where x was
inserted and colx to the sub-structure x was inserted.

A. Elastic LpW Queue

The monotonically increasing Winmax of the FIFO queues
makes their analysis relatively straightforward. The main diffi-
culty with the LpW queue is that Winenq

depth does not necessarily

equal Windeq
depth, which means that Winenq x does not have to

span the same rows as Windeq x.
The proof idea of the rank error bound is that we in

Lemma IV.2 prove that any changes in Winenq
width are first

inserted into the Lateral, and then appear in a new Winenq
width.

This essentially proves the Lateral is consistent. Using this,
we essentially show that the worst rank error of dequeueing
item x is when Winenq x

max = rowx = Windeq xmin + 1, and as
Winenq x

width = Windeq xwidth, this leads to a worst-case rank
error of (Winenq x

width − 1)(Winenq x
depth +Windeq xdepth− 1).

To simplify notation, we introduce an ordering of the windows
such that Wini < Winj if Wini

max < Wini
max.

Lemma IV.2: If a Lateral node l is enqueued at time t, then
Windeq

max < rowl at t.
Proof: We first note that rowl ←Winenq

max + 1 when it is
enqueued (line 2.30). Furthermore, the enqueue of l completes
before the window shifts, and it cannot be enqueued again
after the window has shifted as the comparison against the
strictly increasing row count of the tail will fail (line 2.28). As
Windeq

max ≤Winenq
max (line 2.45), and Winenq

max < rowl at t, it
holds that Windeq

max < rowl at t. �
Theorem IV.3: The elastic LpW queue is linearizeable with

respect to a k out-of-order elastically relaxed FIFO queue, where
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for every dequeue of x, k = (Winenq x
width − 1)(Winenq x

depth +

Windeq xdepth− 1).
Proof: Enqueues and non-empty dequeues linearize with a

successful update on a MS sub-queue. An empty dequeue lin-
earizes when Windeq

max = Winenq
max after a double-collect where

it sees all sub-queues within Windeq
width empty. Lemma IV.2

together with Windeq
max = Winenq

max gives that all nodes must be
within Windeq

width, meaning that empty returns can linearize at a
point where the queue was completely empty.

The core observation for proving the out-of-order bound
is to observe that the row counts for the sub-queues and
the max of the windows strictly increase. For a node y to
be enqueued before x, and not dequeued before x, it must
hold that Winenq y ≤Winenq x and Windeq y ≥Windeq x. As
Winenq x

min ≤Windeq xmax, we can bound the possible row of y
by Windeq x

min ≤ rowy ≤Winenq x
max . Using Lemma IV.2 together

with the fact that Windeq only spans rows with one width
at a time (line 2.45), we get that these valid rows for y must
have width Winenq x

width = Windeq x
width. As both Winenq x and

Windeq x must share at least rowx, it holds that Winenq x
min ≤

Windeq x
max . This is then used to limit the valid number

of rowy by Winenq x
max −Windeq x

min = Winenq x
min +Winenq x

depth −
Windeq x

max +Windeq x
depth ≤Winenq x

depth +Windeq x
depth − 1. As all

operations within each sub-queue are ordered, we reach the
final bound of (Winenq x

width − 1)(Winenq x
depth +Windeq x)depth

− 1). �
Furthermore, one can follow the same arguments to prove that

the delay (as introduced in Section II) for the elastic LpW queue
is bounded by the k in Theorem IV.3.

B. Elastic LaW Queue

Analyzing correctness for the elastic LaW queue becomes
simple due to the strict order the Lateral windows define over
all operations. Namely, for itemx, asWinenq x = Windeq x, the
enqueue and dequeue operations are totally orde red against all
operations linearizing in other windows, and can only be out-of-
order with respect to other operations in the same window. This
leads to the simple bound in Theorem IV.4. AsWindeq

depth cannot
change arbitrarily as in the LpW queue, the LaW queue gets a
tighter worst-case bound than the LpW queue in Theorem IV.3.

Theorem IV.4: The elastic LaW queue is linearizeable with
respect to a k out-of-order elastically relaxed FIFO queue, where
k = (Windeq

width − 1)Windeq
depth.

Proof: The key observation is that every Winenq must fill all
Windeq

depth rows of Windeq
width items each before shifting to the

next Win. These items can be enqueued in any order, except
that each sub-queue is totally ordered. Enqueues to different
Win are totally ordered due to the sequential semantics of the
Lateral. The Windeq uses the same Win structs as the Winenq ,
by traversing the Lateral of pastWinenq , not shifting past such a
window until it has also dequeued all itsWinwidth ×Windepth

items.
Thus, as the oldest items in the queue always are in Windeq ,

and dequeues only ever operate within Windeq, together with
the fact that the sub-queues are totally ordered, means that a

dequeue can at most skip the first (Windeq
width − 1)Windeq

depth

items. �
As in the LpW queue, it is simple to see that the k in

Theorem IV.4 also bounds the delay of the LaW queue.

C. Elastic LaW Stack

Bounding the rank error for the LaW stack becomes relatively
simple thanks to Property III.1, which guarantees that items
are always within one of the Win in the Lateral. Furthermore,
bounding the rank error of an individual item x is helped by
the key insight that any item pushed after x, but not popped
before x, must have been pushed into a Win which contains x.
Thus the error bound stretches Windepth up and down for every
sub-stack, potentially reordering x against the Winwidth − 1
other sub-stacks.

Theorem IV.5: The elastic LaW stack is linearizable
with respect to a k out-of-order elastically relaxed stack,
where k is bounded for every item x as k = (Winmaxx

width −
1)(2Winmaxx

depth − 1).
Proof: As the algorithm always tries to pop from all sub-

stacks withinWinwidth before returning empty, that it linearizes
with a CAS like the Treiber stack [28], and that Property III.1
gives that there are no items not contained in a Win inside
Lateral, it is obvious that the design is correct with respect to
pool specifications.

To bound the number of items pushed after x, but not popped
before x, we will bound on what rows they can be pushed. If an
item y is pushed during the lifetime of x, then Property III.1
gives that it must be pushed in a window Winpushy where
Winpushy

max ≥ rowx. Furthermore, when popping x, Property
III.1 gives that no items are above Winpopx

max . Thus, the possible
range of allowed rows for items pushed after x, but not popped
before x, spans Winpopx

depth +Winpushy
depth − 1 rows where the−1

comes from the two windows overlapping with at least rowx.
As there are no out-of-order items in colx, the maximum error
is bounded by (Winmaxx

width − 1)(2Winmaxx
depth − 1). �

Another way to view the relaxation errors in the LaW stack it
to logically relax both pushes and pops, instead of just pops,
which is the norm [6]. Using similar arguments as above,
one would then see that the worst-case rank errors would
be (Winpushx

width − 1)Winpushx
depth for the push and (Winpopx

width −
1)Winpopx

depth for the pop. This alternate formulation might be
more useful for describing the actual relaxation in the stack.

D. Elastic LpW 2D Stack

Analyzing the LpW stack is more involved than analyzing
the simpler LaW stack. The idea is to first prove that the Lateral
correctly bounds row widths in Lemma IV.6, then bound the
size of sub-stacks in Lemma IV.7 and IV.8, and finally derive
the rank error bound in Theorem IV.9.

For brevity, we denote Winshift := 	Windepth/2
 and the
top row (size) of sub-stack j as Nj . Furthermore, we introduce
a width bound (widthr) for each row r as l.width if there exists
a Lateral node l, l.next.row < r ≤ l.row, or Winpush_width

if r > l.row ∀ l (if this properly bounds the row widths, the
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Lateral is consistent). Due to Lateral nodes being removed from
the stack if their row overlaps the next node’s row, this width
bound is uniquely defined.

Lemma IV.6: At the moment preceding the linearization of
each window shift, it holds for each row r and every item x
whererowx = r, that widthr ≥ indexx.

Proof: Informally, this lemma states that the Lateral
stack properly bounds all rows with widths greater than
Winpush_width after the call to Stabilize at line 5.52. We prove
this with induction over the sequence of window shifts, and it
is easy to see that it holds at the first window shift, as all nodes
will be pushed within Winput_width. Now, if the lemma held at
the previous window shift, we check if it continues to hold for
the next shift where we shift from Wini.

First, we inspect rows at and below Wini
min and note that

during the lifetime ofWini, all nodes are pushed aboveWini
min,

and widthr will not be changed at rows at or below Wini
min

(lines 5.38, 5.42, 5.45) from lowering a Lateral node. Thus,
if Wini

push_width = Wini
last_push_width, the lemma contin-

ues to hold for all rows lower or equal to Wini
min. If the

Wini
push_width �= Wini

last_push_width a new Lateral node can
be inserted with width Wini

last_push_width. This node changes
row bounds for rows at or below Wini

min if there was no other
Lateral node above Wini

min at the shift to Wini, and in that
case those rows would have before Wini been bounded by
Wini

last_push_width, which is the same as the width bound this
node enforces. Therefore, the induction invariant continues to
hold for rows at or below Wini

min.
Now we inspect rows above Wini

min to see if the invari-
ant also holds there. Firstly, no row will have a width bound
smaller than Winpush_width, as smaller widths will be lowered
or inserted to or below Wini

min (lines 5.42, 5.58). Therefore,
only items above Wini

min outside Wini
push_width can break

the invariant. In the lowering phase, Lateral nodes l, l.width >
Wini

last_push_width ∧ l.width > Winpush_width are lowered
iff the shift to Wini was downwards, as then all sub-stacks
outside Wini

last_push_width were seen at the bottom of the
last window. Thus, if Wini

push_width ≥Wini
last_push_width no

nodes could have been pushed outside Wini
push_width since the

shift to Wini, and as all widths bound held then, they will
hold at the shift from Wini. Otherwise, if Wini

push_width <

Wini
last_push_width, every row r, r ≤ l.row for the topmost

Lateral node l must have a valid bound, and the rows above
l.row were before Wini bounded by Wini

last_push_width

which is smaller than the new bound Wini
push_width, so

the width bounds must hold for all rows in this case as
well. �

Lemma IV.7: If x lives on the stack during ′x, then for any
item y pushed during ′x, rowy ≥Winpushx

min −Winmaxx
shift .

Proof: This is proved by contradiction. Assumexwas pushed
at time tx and there exists an item y : rowy ≤Winx

min −
Winmaxx

shift , pushed at time ty > tx. Call the point in time where
a thread shifted the window to Winpushy as ts.
� If ts < tx, then as ty > tx, x must be pushed during
Winpush y . However, tx can’t be during Winpush y , as
an item is pushed at or below Winmax.

� If instead ts > tx, we call the window beforeWinpush y as
Winz . For a thread to shift from Winz , it must have seen
∀j,Nj = Winz

min (as Lemma IV.6 shows iterating over
Winpop_width is the same as iterating over all j) at some
point tz (set tz as the time it started this iteration) during
Winz . As Winz

min < rowx, tx > tz , which means that tx
must have been duringWinz , as we above showed tx < ts.
This is impossible as during Winz , items are pushed at or
below Winz

max.
�

Lemma IV.8: If x lives on the stack during ′x, then for any
item y pushed, but not popped, during ′x, rowy ≤Winpopx

max +
Winmaxx

shift .
Proof: Similarly to Lemma IV.7 this is proved by contradic-

tion. Assume that x was pushed at tx, popped at time t′x and that
there exists an item y, rowy > Winpopx

max +Winmax x
shift pushed

at ty and not popped at t′x, where tx < ty < t′x. Call the point
in time where a thread shifted to Winpop x as ts.
� If ts < ty , then y must have been pushed in the same

window as x was popped. But items are only pushed at
or below Winmax, which contradicts the assumption, as y
is pushed too low.

� If ty < ts, we call the window proceeding Winpop x as
Winz . For a thread to shift from Winz , it must have
seen ∀j,Nj = Winz

min at some point tz (set tz as the
time it started the iteration, seeing the first Nj = Winz

min)
during Winz . Therefore, tz < t′y , which is impossible as
Winz

max < rowy and ty < ts.
�

Theorem IV.9: The elastic LpW stack is linearizeable
with respect to a k out-of-order elastically relaxed stack,
where k is bounded for every item x as k = (Winmaxx

width −
1)(3Winmax x

depth − 1).
Proof: Assume that y is pushed after x and not

popped before x. Then Lemmas IV.7 and IV.8 gives
Winpush x

min −Winmax x
shift ≤ rowy ≤Winpop x

max +Winmax x
shift .

As each sub-stack is internally ordered and the maximum
number of items pushed after x and not popped before x
becomes (Winmax x

push_width − 1)(Winpop x
max −Winpush x

min +
2Winmax x

shift ) ≤ (Winmax x
push_width − 1)(3Winmax x

depth − 1). �
As for the LaW stack, one can reformulate this rank

error bound such that both push and pop operations
are relaxed, with worst-case bounds of (Winpush x

lastwidth −
1)Winpush x

last depth + (Winpush x
width − 1)Winpush x

depth /2 for the
push and (Winpop x

last width − 1)Winpop x
last depth + (Winpop x

width −
1)Winpop x

depth/2 for the pop, where Winlast width and
Winlastdepth is the value of the respective dimension in
the previous Win. The reason the bounds for the LpW stack are
looser than the LaW stack is that it does not shrink Win before
shifting, potentially linearizing in the previous Win at times.

E. LaW Elastic 2D Deque

The rank error of when dequeueing x from one end of a deque
becomes the number of other items pushed to the same end after
x, but not popped before x. Even though we can now push items
from both ends of the deque, using Property III.2 instead of
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Property III.1, proving the following correctness theorem of the
LaW deque follows the same path as the LaW stack. We therefore
omit the proof, and refer the reader to the proof of Theorem IV.5.

Theorem IV.10: The elastic LaW deque is linearizable
with respect to a k out-of-order elastically relaxed deque,
where k is bounded for every item x as k = (Winmax x

width −
1)(2Winmax x

depth − 1).

F. LpW Elastic 2D Counter

The relaxation bound for the LpW counter is slightly different
from the queues, as we the out-of-order error for the counter is
defined as the absolute difference between the returned count
and the true count, contrary to the ordering of items. The idea is
to use Property III.3 to restrict the area of concern to columns
within Winwidth, and then see that sub-counts must be within
the current, or previousWin, bounding the maximum difference
between any two sub-counters.

Theorem IV.11: The elastic LpW counter is lineariz-
able with respect to a k out-of-order elastically re-
laxed counter, where k = (Winwidth − 1)(Windepth/2 +
Winlast

depth − 1), where Winlast is the previous Win.
Proof: Using Property III.3, and assuming we sam-

ple sub-counter i for the read, the relaxation error
of the read operation becomes |∑Winwidth

j (counti −
countj)| ≤

∑Winwidth

j |counti − countj | ≤ (Winwidth −
1)maxj |counti − countj |.

As we only consider sub-counts within Winwidth, the max-
imum difference between any two sub-counters can be proven
in the same was as in the static 2D case, but also considering
elasticWindepth. Lemma 4 in the static 2D paper [7] proves that
all counts are always in two adjacent windows, and with elastic
Windepth, this can easily be adapted to state that all sub-counts
are within Winlast or Win. As the shift from Winlast to
Win is Windepth/2, the maximum difference between any two
sub-counts becomes Windepth/2 +Winlast

depth − 1. �

V. EXPERIMENTAL EVALUATION

In this section, we first evaluate the overhead of our elas-
tic queues, stacks, and counters, when not using their elastic
capabilities, after which we examine how these elastic capa-
bilities can be utilized in dynamic executions. All experiments
run on a 128-core 2.25 GHz AMD EPYC 9754 with two-way
SMT, 256 MB L3 cache, and 755 GB RAM. The machine
runs openSUSE Tumbleweed with the 6.13.1 Linux kernel. All
experiments are written in C and compiled with gcc 13.2.1 at
its highest optimization level, using pthreads for parallelization.
Threads are pinned in a round-robin fashion between core clus-
ters, starting to use SMT after 128 threads.

Our elastic 2D implementations build on an optimized version
of the static 2D framework [7]. We use SSMEM [31] for efficient
epoch-based memory management [32] of our dynamic mem-
ory. Furthermore, to facilitate fair comparison against the static
2D designs, we don’t change the used sub-structures, and thus
use the 16-byte CAS for the counted head and tail pointers in

the queues and stacks. Our implementations, including scripts to
re-run all experiments, are available in the Zenodo repository [2].

A. Static Relaxation

To understand the potential overhead of our elastic extensions,
we compare their scalability, during constant relaxation, against
that of state-of-the-art k out-of-order and strict concurrent de-
signs. For the queues, we select the static 2D queue [7] and the
k-segment queue [9] as k out-of-order designs. Furthermore,
we select the LCRQ [26] and the YMC queue [27] as the state-
of-the-art strict FIFO queues. For the stacks, we select the 2D
stack [7] and the k-segment stack [6] as k out-of-order designs,
the lock-free elimination-backoff stack [33] as an efficient strict
design, and the Treiber stack [28] as a baseline. For the counters,
we select the 2D counter [7] as the relaxed design, and two simple
counters implemented on top of fetch-and-add (FAA) and CAS
for our strict designs. The counters are strictly non-negative,
but the simple FAA counter violates this due to the nature of
FAA, giving it an advantage when the other counters have to do
emptiness checks. All data structures were implemented in our
framework using SSMEM [31] for memory management, with
external non-trivial designs based on their respective paper’s
implementation.

We use a benchmark where threads repeatedly perform insert
or remove operations at random, each with equal probability,
for a duration of one second. Test results are averaged over
10 runs, with standard deviation included in the plots. The
benchmark requires specifying the maximum rank error of each
relaxed data structure, and as the optimal choice of Winwidth

and Windepth is application-specific [7], we set Winwidth =
2× nbr_threads, and use the maximum Windepth which
does not violate the bound. This choice of Win dimensions
gives acceptable scalability, and we saw the same trends when
using other combinations.

Accurately measuring rank errors without altering their dis-
tribution is an open problem, and we adapt a common method
in the literature [7], [20], [34] of encapsulating the linearization
points of all methods in a global lock, giving a total order of
operations. This order can be used to re-run the execution with
a strict data structure, where the rank error of each operation
easily can be calculated. For queues and stacks, the rank error of
dequeuing x is the distance between x and the tail or top item,
and the rank error for counters becomes the absolute difference
between the true count at each operation and the returned count.

Fig. 4 presents how the elastic designs scale with threads,
including both settings with pre-filled and empty data structures.
Pre-filling drastically changes the dynamics of dequeues, as they
don’t have to do potentially costly emptiness checks. However,
the throughput trends are mostly identical irrespective of prefill.
The largest difference when not using pre-fill is that the rank
errors become smaller, as they naturally cannot exceed the queue
size at any time. All experiments show that the elastic designs
have close to zero overhead when compared to the static 2D
designs. Similarly, the elastic designs don’t show any increase
in rank errors when compared to the static designs. Overall, the
elastic designs scale as well as the static 2D framework, and
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Fig. 4. Scalability of throughput and mean rank error with increasing number of threads, using a rank error bound of k = 5× 103. Plots in the top row have a
pre-fill of 106, and the plots in the bottom row do not use any pre-fill.

Fig. 5. Scalability of throughput and mean rank error as rank error bound increases, using 256 threads and 106 pre-fill.

out-scale the other data structures, highlighting the light weight
of the Lateral .

Fig. 5 further shows how the designs scale with increasing
rank error bounds. Here we pre-fill the data structures with 106

items, as the throughput is not that affected as seen in Fig. 4, and
the designs otherwise just become pools. The elastic LaW stack
and elastic LpW counter have slight overheads in throughput at
lower relaxation levels. The reason for this is that the Lateral
incurs some overhead when shifting Win in these designs,
and such shifts happen more often at lower relaxation levels.
However, overall, the elastic 2D designs scale monotonically
with relaxation, mostly performs identically to the static 2D
designs, and outperforms other designs as relaxation increases.

B. Elastic Relaxation - Dynamic Controller

In this seciton, we evaluate the usefulness of our elastic exten-
sions in dynamic workloads with varying degrees of parallelism.

We focus on the LaW queue, as relaxed FIFO queues are more
popular in the literature than stacks or counters, and as we think
the simplicity of the LaW design makes it preferable over the
LpW queue. As the optimal Winwidth is tightly coupled to
the degree of parallelism, we design a lightweight controller to
dynamically adjust Winwidth based on measured contention.
We first examine how the controller reacts over time in a dy-
namic producer-consumer micro-benchmark, and then how it
can provide end-to-end benefits in a parallel BFS algorithm with
varying number of threads.

The dynamic controller should balance relaxation errors with
latency, and a lightweight control signal for this is the failure
rate of sub-structure CAS linearizations [1], [34], [35]. So the
controller should strive to keep the failure rate constant, and
being stable and responding quickly, while imposing low latency
overhead. The conference version of this paper [1] used simple
threshold-based thread-local controllers, similar to CA-PQ [35],
but such simple and local controllers have a hard time reacting
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Fig. 6. Latency, width, and active producers over time, in a producer-consumer benchmark where the number of producers vary over time. All plots use the LaW
queue, but the leftmost uses static relaxation, while the other uses the dynamic controller to keep the producers’ contention stable.

fast without significantly overshooting and being unstable. In-
stead, we here use a shared wait-free controller inspired by leaky
proportional-integral controllers from control theory [36]. The
controller keeps an exponential moving average (EMA) of the
total sub-queue CAS failure rate, which provides an accurate
an reasonably up-to-date estimate of the true failure rate. To
reduce overhead, the threads only update this EMA every 200
operations, and if an update fails due to contention, it is aborted.
The controller can be seen as a leaky integrator with a small
proportional factor.

The controller has a target T , which is the desired fraction of
failing sub-queue CAS. When a thread synchronizes its state
with the controller, it computes its local failure rate F and
logarithmic error Et = ln(F/T ) since the last synchronization,
updating the global error Eg as Eg = αEt + (1− α)Eg , which
is the EMA of failures. When shifting Winenq , its width wi is
updated from the previous width wi−1 based on the global error:
ln(wi) = ln(wi−1) +KpEg ⇔ wi = wi−1 exp(KpEg), where
Kp is a gain constant. The EMA lives in the log domain as
its updates then become symmetric w.r.t. percentage deviations
from T . Finally, to reduce windup, Eg is reduced by 25%
after each change to Winenq

width. In our experiments, we use
α = 0.01,Kp = 0.01, T = 0.012. Configuring T can easily be
done by finding the failure rate of good configurations in static
executions. Varying α between 0.1 and 0.005 did not make a
large difference in our experiments. Finally, Kp is the most
important to tune, as a too large value can cause instability, and
we therefore used this relatively low value.

1) Producer-Consumer Micro-Benchmark: To evaluate the
controller’s ability to adapt to workload changes, we design a
micro-benchmark that emulates a dynamic producer-consumer
scenario. It consists of a shared relaxed FIFO queue accessed by
128 threads. One third of the threads (42) act as consumers, con-
tinuously attempting to dequeue tasks. The remaining 86 threads
act as producers, repeatedly enqueuing tasks. Furthermore, the
number of active producers varies over time, as shown in Fig. 6.
The queues start empty. This setup models a high-contention
server-side task queue, where a fixed pool of worker threads
(consumers) handles a fluctuating stream of external requests
(producers). The benchmark tests whether the controller can
dynamically adjust Winenq

width to maintain a suitable balance
between relaxation and latency under shifting load.

Fig. 6 shows the average operational latency for consumers
and producers, as well as theWinenq

width andWindeq
width, averaged

over 10 runs, both for static Winwidth and when the producers
use the dynamic controller. It uses Windepth = 8 and the static
Winwidth was set to 180, the stable width of the controller
when half the producers are active. When using static width,
the producers’ latency clearly scales with the number of active
producers, while the consumer latency is mostly constant. When
using the controller, the Winenq

width quickly adapts to the number
of active producers, which in turn makes its producers’ latencies
more stable than the static queue. Notably, as we only directly
changeWinenq

width, the change must propagate through the queue
for it to affect Windeq

width, delaying the Windeq
width change. Fur-

thermore, the latencies of the producers and consumers are
not completely independent, as for example seen around 53
seconds in Fig. 6(c) where the increase in Windeq

width causes
the consumers’ latencies to decrease, which in turn increases
the producers’ latencies and contention, in turn also increasing
Winenq

width. This dependence of different aspects of the system
highlights the difficulty of choosing a good control signal for
the controller.

The results in Fig. 6 shows that the controller is quick, stable,
has reasonably low overhead, and mostly adjusts the Winenq

width

to be roughly proportional to the number of active producers.
One disadvantage is how the size of Windeq

width seems to affect
the contention at the enqueues, for example leading toWinenq

width

not dropping as fast or much as we would expect at 0.9 seconds in
Fig. 6(b), or suddenly increasing without the nubmer of threads
changing after 52 seconds in Fig. 6(c). However, this is hard to
avoid when basing the controller on CAS contention, and we
anticipate it will not pose large issues in practice.

The most important consideration when using such a con-
troller is defining the desired behavior. In this synthetic scenario,
we aimed at stabilizing producer latency effectively, minimizing
the relaxation of incoming user requests, while still keeping
user latency acceptable under high load. Since the number of
consumers remained constant and they performed no elastic
changes, their latency was not prioritized and occasionally rose
to as much as 3 μs. If consumer latency is also a concern, they
could be included in the controller’s feedback loop, or a lower
bound could be placed on Winenq

width to prevent excessive spikes
in their latency.
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TABLE I
THREAD WORKLOADS FOR THE BFS BENCHMARK

Fig. 7. Realistic workloads used in BFS benchmarks. The MJ workload (left)
is the number of Google searches of Michael Jackson the day of his death, from
13pm PDT [40]. The Wikipedia workload (right) is the number of search queries
on the English Wikipedia over one week in 2009 [41].

2) Breadth-First Search Macro-Benchmark: To evaluate the
effectiveness of our elastic queue designs and dynamic controller
in a realistic algorithmic setting, we implement a concurrent
breadth-first search (BFS) benchmark in a setting with dynami-
cally accesible parallelism. BFS is a representative example of a
parallel algorithm that uses relaxed queues as a shared work-list,
where balancing throughput and ordering accuracy is critical. In
such algorithms, increasing relaxation may improve scalability
but can reduce work efficiency due to redundant or out-of-order
processing [14], [17]. Our goal is to assess whether dynamic
control over relaxation can yield end-to-end benefits in this more
realistic scenario.

The benchmark uses a relaxed FIFO queue as a work-list [17],
and is analogous to how Dijkstra’s algorithm is parallelized with
relaxed priority queues [14], [20]. We compare the performance
of the LaW queue with the dynamic controller to the static 2D
queue across a range of workloads. These workloads, shown
in Table I, include constant, increasing, and decreasing thread
counts, as well as real-world load traces, shown in Fig. 7. Each
workload runs for half a second before repeating. We measure
both total runtime and total work, defined as the number of suc-
cessful enqueues divided by the number of uniquely enqueued
items (vertices).

Relaxed priority queues have been shown to perform very
well for parallel SSSP over high-diameter sparse graphs [14],
[15], [16], [19], so we focus on such graphs. The graphs are
summarized in table II. Firstly, we use the EU and USA road
graphs [37], which are commonly used road graphs [14], [16],
[17]. Second, we use the GL5 kNN graph [38], [39], whose irreg-
ular nature made it a difficult graph for many participants in the
2025 FastCode Pogramming Challenge on parallel SSSP [19].

TABLE II
GRAPHS USED IN THE BFS BENCHMARKS

Table III shows the runtime and work across the selected
graphs and workloads, where all results are averaged over 100
runs. We searched power of 2 combinations for the optimal width
and depth configuartion for the static queue, and found that
Winwidth = 1024 and Windepth = 8 had the best geometric
mean (gmean) runtime across all graphs and workloads. The
dynamic queue therefore also used Windepth = 8, and its con-
tention target T was chosen so that the average width during the
constant workload had a gmean of 1024 across the three graphs,
which was 0.012.

The results show that the dynamic controller in the majority
of these benchmarks reduce runtime, with the gmean across all
graphs and tests being 13% faster and 28% more work-efficient.
Furthermore, the dynamic LaW is faster in 16, and more work-
efficient in 17, out of the 21 benchmarks. The dynamic relaxation
is the most beneficial in the Lin. Inc. and Exp. Inc. workloads,
with a gmean speedup of 35% and 34% respectively. On the
contrary, its worst workload is the Lin. Dec., where it has a 3%
gmean slowdown, the only workload with a gmean slowdown.

The impact of relaxation on work efficiency in concurrent BFS
remains poorly understood. Our results indicate that the early
phase of execution plays a critical role where large relaxation
errors at the start can compound over time, leading to significant
work inefficiencies. Unlike relaxed priority queues, relaxed
FIFO queues lack self-stabilizing ordering mechanisms [14],
[15], [16], making them especially sensitive to early misorder-
ing. This may explain why the dynamic queue outperforms the
static design in the Const. workload, with a lower gmean of
work, and why increasing workloads yield better results than
decreasing ones.

In summary, using our elastic LaW queue with the dynamic
controller outperforms a statically configured 2D queue in the
BFS benchmark with varying levels of parallelism. A key ad-
vantage of this approach is that it eliminates the need to know
the number of accessing threads in advance, instead only a
contention target must be specified. This target is a single tunable
parameter that can also be adjusted at runtime. As a result, we
believe our elastic designs, together with a dynamic controller,
are better suited for integration into long-running systems—
where workload characteristics may change over time—than
static designs.

VI. RELATED WORK

One of the earliest uses of relaxed data structures is from 1993
by Karp and Zhang [42]. However, it was not until more recently
that relaxed data structures garnered stand-alone interest as a
promising technique to boost parallelism [5]. Relaxed designs
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TABLE III
RUNTIME (IN MS) AND WORK, LOWER IS BETTER, FOR A CONCURRENT BFS ALGORITHM USING THE 2D LAW QUEUE WITH EITHER STATICALLY

Winwidth = 1024, OR USING THE DYNAMIC CONTROLLER

have shown exceptional throughput on highly parallel bench-
marks [7], [8], [14], [43], have proven suitable in heuristics
for graph algorithms [14], [15], [44], and been theoretically
analyzed in e.g. [6], [45], [46], [47].

Henzinger et al. formalized quantitative relaxation [6] to
define relaxed data structures with a rank error bound. They also
introduce the relaxed k-segment stack, which builds upon the
earlier relaxed k-FIFO queue [9]. Their theoretical framework
is easy to extend to encompass elastic relaxation by allowing the
rank error bound to vary over time, and it is simple to elastically
extend their designs using the Lateral, as their k-designs can be
modeled within the 2D framework.

Rather than deterministically bounding rank error, some de-
signs achieve better performance by only giving probabilistic
error guarantees [8], [14], [17], [45]. The MultiQueue is a
relaxed priority queue that has proven effective in for example
shortest-path graph algorithms [14], [15], [16], [19]. It enqueues
items into random sub-queues and dequeues the highest-priority
item from a random choice of two sub-queues. Similar strategies
have been applied to FIFO queues [8], [17] and stacks. The
probabilistic rank error guarantees of the MultiQueue have been
analyzed both with a strong potential argument [45], [47] and
with Markov chains [48], but its errors are still not completely
understood.

The SprayList [34] is another probabilistically relaxed priority
queue. Experimentally, the SprayList is outperformed by the
MultiQueue [14] but it is, to the best of our knowledge, the
only design in the literature that can reconfigure relaxation
well during run-time, which it does by adjusting thread-local
parameters based on contention.

The CA-PQ [35] is another relaxed priority queue, again
outperformed by the MultiQueue [14], which can be seen as
elastic, as threads toggle between synchronizing with the global
state and working locally, depending on contention. They use
a simple thread-local controller, similar to the one in the con-
ference version of this paper [1], which works well because
(1) synchronization is toggled per thread, and (2) only on/off
decisions are made. In contrast, our shared controller from

Section V-B better supports global configurations such as Win
dimensions, and can prevent divergence in per-thread settings
when the configuration space is larger.

Relaxed priority queues have been widely used to parallelize
single-source shortest path (SSSP) graph traversals [14], [15],
[16], [19], [35]. In the recent FastCode Programming Challenge
at PPoPP 2025 [49], the winning contribution in the parallel
SSSP track used the MultiQueue [14] to achieve strong results
on sparse input graphs [19]. Strict and relaxed FIFO queues have
also been proposed for parallel BFS [17], [50], though their per-
formance has yet to surpass level-synchronous algorithms [51].
The work-efficiency of relaxed queues in such graph traversals
remains largely unstudied and is an interesting open question.

VII. CONCLUSION

We have presented the concept of elastic relaxation for con-
current data structures, and extended the 2D framework to in-
corporate elasticity. Using the Lateral component, we proposed
the simple LaW designs and more involved LpW designs. If
incorporating the Lateral into designs outside the 2D framework,
we recommend the LaW paradigm for its simplicity and effi-
ciency, but recognize that the LpW design might be more suitable
for some data structures, such as the 2D counter. Our imple-
mentations offer worst-case bounds and match state-of-the-art
performance during periods of constant relaxation, while also
supporting dynamic reconfiguration of relaxation at runtime.
We introduced a lightweight dynamic controller for relaxation,
based on the exponential moving average of per-thread CAS
contention, which efficiently trades relaxation for latency in
real time. Its performance was evaluated both over time in a
producer-consumer benchmark and in a BFS macro-benchmark,
where it demonstrated improved throughput and work efficiency
in several dynamic workloads compared to a statically relaxed
queue. We believe elasticity to be essential for relaxed data
structures to become practically viable, and see this paper as
a first step in that direction.

As future work, we find it of interest to incorporate elastic
relaxation into other data structures, such as relaxed priority
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queues. As relaxed priority queues have already proven state-
of-the-art when it comes to parallel SSSP on some graphs,
we find it of interest to see if elastic relaxation could help
further increase their performance in similar graph traversal
benchmarks.
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[51] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., Washington, DC, USA: IEEE Computer Society Press, 2012.

Kåre von Geijer received the MSc degree in engi-
neering mathematics from Lund University, Sweden,
in 2022. He is currently working toward the PhD
degree with the Computer Networks and Systems
Division, Chalmers University of Technology, Swe-
den. His research centers around relaxed semantics
for concurrent data structures, but he is also inter-
ested in parallel graph algorithms, task scheduling
for parallel algorithms, lock-freedom, and algorithm
engineering.

Philippas Tsigas received the BSc degree in math-
ematics and the PhD degree in computer engineer-
ing and informatics from the University of Patras,
Greece. He was with the National Research Institute
for Mathematics and Computer Science, Amsterdam,
The Netherlands (CWI), and at the Max-Planck In-
stitute for Computer Science, Saarbrücken, Germany,
before. At present, he is a professor with the Depart-
ment of Computing Science, Chalmers University of
Technology, Sweden. His research interests include
concurrent data structures and algorithmic libraries
for multiprocessor and many-core systems, commu-

nication, and synchronization in parallel systems, power aware computing,
fault-tolerant computing, autonomic computing, and scalable data streaming.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


