CHAL

UNIVERSITY OF TECHNOLOGY

Intersection spaces and multiple transverse recurrence

Downloaded from: https://research.chalmers.se, 2025-12-01 17:08 UTC

Citation for the original published paper (version of record):

Bjorklund, M., Hartnick, T., Karasik, Y. (2025). Intersection spaces and multiple transverse
recurrence. Journal dAnalyse Mathematique, 156(1): 97-150.
http://dx.doi.org/10.1007/s11854-025-0377-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



INTERSECTION SPACES AND
MULTIPLE TRANSVERSE RECURRENCE

By

MICHAEL BJORKLUND, TOBIAS HARTNICK AND YAKOV KARASIK

Abstract. We study multiple recurrence properties along separated cross
sections for pmp actions of unimodular Icsc group on Polish spaces. We establish
a multiple transverse recurrence theorem under the assumption that sufficiently
large powers of the return time set are Delone sets. Typical examples of such
situations arise from the theory of uniform approximate lattices.
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1 Introduction

Given a Borel measurable action of a locally compact second countable (lcsc)
group G on a Polish space X, we say that a point x € X is recurrent if there exists
a sequence (g,) in G with g, — oo such that g,.x — x. The Poincaré recurrence
theorem ensures that in the case of a probability measure preserving (pmp) action,
almost every point is recurrent. In this article we are interested in conditions which
ensure a stronger recurrence property for generic points which we call multiple
transverse recurrence.

More precisely, we are going to consider a pmp action of a lcsc group G on
a Polish space X with invariant probability measure x. If ¥ C X is a sufficiently
well-behaved cross section, then the measure x gives rise to a transverse measure
von Y (see [1, 13, 14]). By a multiple transverse recurrence theorem
we shall mean a theorem which ensures that for every r > 1 and for v® -almost
all (y1,...,y,) € Y there exists a sequence (g,) € G with g, — oo such that
for all j € {1,...,r} we have both g,.y; — y; (i.e., multiple recurrence)
and g,.y; € Y (i.e., transverse recurrence). Multiple transverse recurrence is a
rare phenomenon, which, as we will see later, only occurs under strong arithmetic
assumptions on the return time set to the cross section.

In this article we are going to establish a multiple transverse recurrence theorem
for a specific class of transverse systems whose return time sets are uniform
approximate lattices in the sense of [2]. Before we go into the details of our
setting, we discuss a specific example of a multiple transverse recurrence theorem,
which motivated us to introduce the general setting considered below.

1.1 A motivating example. Let G, be a non-compact unimodular Icsc
group with Haar measure mg,. We recall that the closed subsets of a Icsc group G,
form a compact metrizable space C(G,) under the Chabauty—Fell topology (see,
e.g., [2]) on which G, acts jointly continuously by g.A := Ag~!. If P, is a discrete
subset of G,, then we denote by Qp_ the hull of P,, i.e., the orbit closure of P,
in €(G,), and set Qp :=Qp, \ {0}. The subset Tp, :== {Q € Qp, | e € P,} is then a
cross section for the G,-action on QXU, i.e., every G-orbit in Q;U intersects Jp, .
(This specific cross section is sometimes called the canonical transversal in the
theory of aperiodic order.)

Motivated by problems in the theory of aperiodic order (see, e.g., [2, 3, 4])
we would like to find conditions which ensure that for many elements Q1, ..., O,
of Jp, the intersection Q; N --- N Q, is large in a suitable sense. This can be
achieved under two additional assumptions on the initial set P,.
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Firstly, we need to assume enough discreteness of P,. Recall that a subset
P, C G, is called uniformly discrete if its difference set A := POP;1 does not
accumulate at the identity; it is called relatively dense if there exists a compact
subset K C G, such that G, = KP,. In the sequel we assume that P, C G, is a
subset such that the difference set A is relatively dense and A? is uniformly discrete.
These assumptions imply that A is actually a uniform approximate lattices
in the sense of [2], i.e., a relatively dense and discrete approximate subgroup, and
hence A" is actually uniformly discrete for all n € N.

Secondly, we will assume that G, is unimodular and that the set €25 admits
a G,-invariant probability measure p. We are mostly interested in the case in
which G, itself is uncountable. In this case, the cross section Jp, is a u-nullset,
hence it does not make sense to speak about x-generic points in Tp,. However, the
theory of transverse measures ensures that there is a finite measure v on Jp,, called
the transverse measure of yu, such that for every bounded non-negative Borel
functionf : G x Tp, = R,

[ o ppaune = |

Qr, hep G

[j (g, 0) dv(Q) dma, (8),

and this provides us with a notion of genericity in Tp,. There are plenty of examples
of sets P, satisfying both assumptions, including all uniform model sets in the sense
of [3].

Theorem 1.1 (Multiple transverse recurrence). There existg, € Q1N---NQO,
for v¥ -almost all (Q1, ..., Q) € Tp such that

2,01 > 01, ..., g.0,— 0, and g, — oo.

Note that for everyn € Nand j € {1, ..., r} we have g,.Q; € Tp , hence the
recurrence to (Qy, ..., Q,) is in the transverse direction. The theorem implies in
particular that generically the intersection Q; N --- N Q, is infinite, but one can
actually say much more. Given a sequence (G;) of subsets of G, of positive Haar
measures we define the lower (G;)-density of a locally finite subset A C G, by

Dens(A) := lim AN th.
=00 Mg(Gy)

Theorem 1.2 (Positive density of intersections). We have, for v® -almost all
(Q1, ..., Q) € Tp, and every convenient sequence (G;) in G,

Dens (@1 N---NQ,) > 0.

See Definition 6.1 below for the definition of a convenient sequence; for the
purposes of this introduction it suffices to know that such sequences exist in many
amenable Icsc groups and all semisimple algebraic groups over local fields.
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1.2 A general setting. We now describe a general abstract setting, in
which Theorems 1.1 and 1.2 hold true. For the rest of this introduction, G, denotes
a unimodular Icsc group with a jointly continuous action on a Polish space X. A
Borel subset Z C X is called a cross section for the G,-action if G,.Z = X; it is
called separated if the set A(Z) :={g € G, | gZNZ # 0} of return times to Z
intersects some identity neighborhood in G, only in {e}. For example, Tp, C Qp
is a cross section with return time set A = POP;I, hence a separated cross section
if A is uniformly discrete.

From now on, Z C X denotes a separated cross section and u denotes a G,-
invariant probability measure on X. As in the motivating example there is then a
finite measure v on Z, called the transverse measure of u, such that for every
bounded non-negative Borel function f : G x Z — Ry,

| s gmdut= [ {, [ £t 2dv(z) dme, .

g€z,
where Z, := {g € G, | g.x € Z} denotes the set of return times from x to Z.

Definition 1.3. We say that the action of G, on (X, u) is

e recurrent if for y-almost every x € X there exists a sequence (g,) in G,
such that g, — oo and g,.x — x.

e r-fold recurrent if for x® -almost every (xq,...,x,) € X" there exists a
sequence (g,) in G, such that g, — oo and g,.x; — x; forallj e {1,...,r}.

e transversally recurrent if for v-almost every z € Z there exists a sequence
(gn) in G, such that g, — 00, g,.z € Z and g,.z — z (i.e., the recurrence is
along the transversal).

o r-fold transversally recurrent if for v® -almost every (zy,...,z,) € Z"
there exists a sequence (g,) in G, such that g, = 00, g,.z; € Zand g,.z; = z;
forallje {1,...,r}.

While transversal recurrence follows from recurrence, multiple transverse re-
currence does not follow from multiple recurrence. The reason is that Z" is not
a transversal for the diagonal G,-action on X", but only for the G,-action on the
(typically much smaller) intersection space

X =A{(xt,...,x)eX |geG,:gx;e Zforallj=1,...,r}.
Note that in the case where X = Qp and Z = Tp, this space is given by

{(Q1y.,0) Q) | Q1N---NQ, #0},

hence the name. In order to establish r-fold transverse recurrence we first construct
a finite invariant measure on X! with transverse measure v®" and then establish
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multiple recurrence for this measure. This can be carried out under suitable
assumptions on the return time set A:

Theorem 1.4 (Finiteness of intersection measure). If A is a uniform approxi-
mate lattice in G, then there exists a unique finite G,-invariant measure u'" on X
whose transverse measure on Z' is given by v®". Moreover, if u is G,-ergodic,
then, up to a multiplicative constant, u'" is an r-fold G,-invariant self-joining of
the measure u.

More explicitly, the last statement means that the normalized transverse mea-
sure, i.e., the probability measure x!1(X"~!. 4"l pushes forward to x under
each of the projections proj; : X! — X, (Q1,...,0,) — Q;for1 <j<r.

Once the existence of a finite intersection measure is established, multiple
transversal recurrence follows by standard ergodic theoretical methods (see Theo-
rem 5.1 for the general statement):

Theorem 1.5 (Multiple transverse recurrence). If A is a uniform approximate
lattice in G, then the action of G, on X is r-fold transversally recurrent for every
reN.

Another consequence of the existence of a finite intersection measure concerns
intersections of return time sets (see Theorem 6.4 for the general statement). Recall
that for z € Z we denote by Z, C G, the set of return times from x to Z.

Theorem 1.6 (Positive density of intersections). If A is a uniform approximate
lattice in G, then for every convenient sequence (G;) of subsets of G we have

Dens,(Z;, N---NZ,) >0,

forv® -almost all (z1, ...,z,) € Z".

Note that Theorems 1.1 and 1.2 are special cases of Theorems 1.5 and 1.6
respectively.

1.3 Establishing finiteness of the intersection measure. Before we
discuss a few further generalizations of the theorems above we would like to
comment on the methods behind the proof of Theorem 1.4. It turns out that
this theorem can be derived from a restriction in stages theorem for transverse
measures with respect to certain semidirect product groups. To state the theorem
we assume that G = NL is the semidirect product of a normal subgroup N and a
subgroup L, where N and L are unimodular lcsc groups and the L-action on N is
Haar measure-preserving. We may then normalize Haar measures on G, N and L
such that mg(WyW;) = my(Wy)m; (W) for all Borel subsets Wy C N and W, C L.
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We now consider a Borel action of a group G on a Polish space X with separated
cross section Z. If we define Y :=L.Z,then X D Y D Z and

e G acts on X with separated cross section Z;

e N acts on X with cross section Y (which need not be separated);

e L acts on Y with separated cross section Z.
If x is a finite G-invariant measure on X, then we denote the corresponding
transverse measure (with respect to the G-action) on Z by Gresﬁ(,u). It turns out
that this measure is finite and uniquely determines the original measure ¢. We also
use similar notations for the other two groups. The technical heart of this article is
then the proof of the following theorem:

Theorem 1.7 (Restriction in stages). If the N-cross section Y is separated,

N

then for every finite G-invariant measure u on X the measure Nresy(u) is finite and

L-invariant and

Oresy = Lres) o Vresy.

Let us demonstrate how Theorem 1.7 implies a more general version of Theo-
rem 1.4. For this let X1, ..., X, be Polish spaces on which G, acts jointly contin-
uously with corresponding separated cross sections Z;, ..., Z, and let uq, ..., y,
be G,-invariant probability measures on X, ..., X, respectively. We then denote
by vi,...,v.and Ay, ..., A, the corresponding transverse measure, respectively
return time sets and abbreviate

G=G), X=Xix--xX, and Z:=Z; X - X Z,.

Then Z is a separated cross section for the action of G on X. In order to apply
Theorem 1.7 we observe that the group G admits semidirect product splittings of
the form G = N, L for any k € {1, ..., r}, where N; denotes the kernel of the kth
coordinate projection and L = G, denotes the diagonal subgroup. In this situation,
the intermediate transversal Y := L.Z is given by the generalized intersection
space

XM =A{(x,...,x)eXix---xX,|3geG,:8x1€Z,...,8x% €Z}.

We say that the cross sections Zi, ..., Z, are commensurable if ¥ = X" is
a separated cross section for the Ni-action on X for all kK € {1,...,r} so that
Theorem 1.7 applies. In this case

= Nerest (1 ®@ - @ uy)

is a finite measure on Y = X!"l which is invariant under the action of the diagonal
group L = G, and

fresy(uf) = Cresl(u1 ® - @ u) =1 @+ R,
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Furthermore, ,u,[:J projects to the given measure y; on X;. Moreover, we have

Lresy(ull) = - ="resy(ul), andhence pl!=-..=pul",

i.e.,the measure u!"! := ,u,[:J is actually independent of k. This then establishes the
following general version of Theorem 1.4:

Theorem 1.8 (Finiteness of intersection measure, general form). Assume that
Zi,...,Z, are commensurable. Then G, acts diagonally on X" with separated
cross section Z := Z; x --- x Z, and there is a unique finite G,-invariant measure
wV on X such that

G”res)z(['l(,u[’]) =V Q- Q.

Moreover, if jt1, ..., u, are G,-ergodic, then, up to a multiplicative constant, u!”)
is a G,-invariant joining of the measures [y, . .., U

In order to apply the theorem, one needs to give criteria which ensure that the
cross sections Zj, ..., Z, are commensurable. This is the point where we need
discreteness and cocompactness assumptions on the return times:

Theorem 1.9 (Commensurability criterion). The cross sectionsZy, . .., Z, are
commensurable provided the intersection A = A; N --- N A, is relatively dense
in G, and none of the product sets A} A]3 accumulates at the identity.

Note that if X; = --- = X, and Z, = --- = Z, this condition is satisfied if and
only if A = Ay =--- = A, is a uniform approximate lattice.

1.4 Generalizations. Just as Theorem 1.4 implies Theorems 1.5 and 1.6
(and hence in particular Theorems 1.1 and 1.2) we can deduce from Theorem 1.8
the following theorems.

Theorem 1.10 (Multiple transverse recurrence, general form). If the

cross sections Zi, ..., 7Z, are commensurable, then for vi ® --- ® v,.-almost all
(215 ---»2r) € Z1 X - - - X Z, there exists a sequence (g,) in (Z1);, N---N(Z,),, such
that

8nZl = s  ---» 8uir —> Zr and g, —> oo.

Theorem 1.11 (Positive density of intersections, general form). If the cross
sections Z1, . .., Z, are commensurable, then for every convenient sequence (G,)
of subsets of G, we have

Densg,,((Z1),, N -+ N (Z,),) > 0,

forvi ®---Qvp-almost all (z1,...,2,) €EZ1 X -+ X Z,.
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This allows us in particular to establish the following twisted versions of The-
orems 1.1 and 1.2:

Corollary 1.12 (Twisted multiple transverse recurrence and twisted positive

density). Let P,, u and v be as in Subsection 1.1 and let 11, ..., 1, be contained
in the subgroup of G, generated by P,,.
(i) For v¥ -almost all (Qy, ..., Q) € Tp, there exist g, € (i 2kOkAL Y such
that
j*l_lgnll-Ql - Ql: e ir_lgnir-Qr - Qr and 8n — O0.

(i1) For every convenient sequence (G;) in G,, we have
Dens, (410147 N+~ N 4,.0,47") > 0,
for v¥ -almost all (Qy, ..., 0,) € Tp .

We do not know whether separatedness of Y can be replaced by a weaker
condition in Theorem 1.7. If this was the case, then the assumptions in all of our
theorems could be weakened accordingly.

1.5 A general correspondence theorem for transverse measures. It
is obvious from the results listed above that transverse measures (of finite measures)
play a central role in this article. In recent years there have been a number of
excellent expositions of the theory of transverse measures, see in particular [1, 13,
14], and in preparing this article we profited very much from these expositions.
However, for the purposes of the present article we needed a version of transverse
measure theory which applies to actions which are not necessarily essentially
free and measures which are not necessarily finite (but only o-finite). For the
convenience of the reader we thus decided to include a self-contained treatment of
the theory of transverse measures in this specific context. Let us briefly summarize
this theory here:

We consider a Borel action G ~ X of a unimodular Icsc group G on a standard
Borel space X with separated cross section Y. We fix a Haar measure mg on G
throughout. The action of G on X defines an equivalence relation on X, the orbit
relation of G ~ X, and we denote by Rg y (or Ry if G is clear from context) the
restriction of this orbit relation to Y; it is called the cross section equivalence
relation. We are going to construct a bijective correspondence between certain
classes of G-invariant o-finite measures on X and certain classes of Ry-invariant
o-finite measures on Y. (See Subsection 2.4 below for the notion of invariance
under an equivalence relation.) To obtain this perfect correspondence, we have to
fix certain finiteness conditions on the measures in questions.
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Definition 1.13. A Borel exhaustion of Y'is an increasing sequence Y = (V)
in By such that Y = |JY,. A Borel measure v on Y is called Y-finite if v(Y,) < oo
for all n, and we denote by M(Y, Y) the space of all Y-finite Borel measures on Y.

We fix once and for all a Borel exhaustion § = (K,) of G by compact sets,
such that every compact set in G is contained in some K,. For every Borel
exhaustion Y = (Y,) of Y we then obtain a Borel exhaustion Y5 := (K,,.Y,,) of X.
We now denote by M(X, 1ég)G C M(X, Yg) the subspace of G-invariant measures
and by M(Y, Y)Rer c M(Y, Y) the subspace of R, y-invariant measures.

Theorem 1.14 (Measure correspondence, general case). If G is unimodular,
then with notation as above there exist mutually inverse bijections

Oresy : M(X,Y5)® — MY, YR, and “indf : M(Y, Y)Rer — M(X, Y5)°,

such that the following hold for all pairs (u,v) with ue M(X, Y5)¢ and v="Cres¥(u):

(1) For every bounded non-negative Borel function F on G x Y we have

(s @(E) = [ 3 Fe™, g0 duto.
ey,
(1) IfC Cc G x Y is a Borel subset suchthata : C — X, (g,y) — g.yis injective,
then

u(a(C€)) = (mg @v)(O).

(iii) If B be a G-invariant Borel set in X, then
uB)=0 < v(BNY)=0.

If u € M(X,2g), then v := Cresf(u) is called the transverse measure
of u, and u is called the lifted measure of v. An important special case of
Theorem 1.14 concerns the case of Radon measures:

Corollary 1.15 (Measure correspondence for Radon measures). Let G ~ X
be a continuous action of a lcsc unimodular group G on a lcsc space X and let
Y C X be a closed separated cross section. Then Cresy restricts to a bijection
between G-invariant Radon measures on X and Rg y-invariant Radon measures

onY.

1.6 Structure of the paper. This paper is composed of three parts. Part 1
(Section 2—Section 4) develops transverse measure theory in our specific setting
and establishes Theorem 1.14 and Corollary 1.15. Part 2 (Sections 5 and 6)
summarizes the basic ergodic theory of transverse measures. In particular, we
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establish Theorem 1.10 and Theorem 1.11 in the case r = 1. Our main results
are derived in Part 3 (Section 7-Section 9): In Section 7 we study transverse
measure for semidirect product groups and establish Theorem 1.7. We apply this
in Section 8 to the study of intersection spaces and establish Theorems 1.8—-1.11
(and hence also Theorems 1.4—1.6 as special cases). In Section 9 we specialize
further to the case of return times which are uniform approximate lattices and
establish Theorem 1.1, Theorem 1.2 and Corollary 1.12.

2 Measure theory

This section summarizes our notation concerning measurable actions of Icsc groups
on standard Borel spaces and the corresponding invariant measures. The first three
subsections (Subsection 2.1, Subsection 2.2 and Subsection 2.3) contain standard
material concerning general measurable spaces, standard Borel spaces and Borel-
G-spaces respectively. In Subsection 2.4 we discuss the notion of invariance of a
set or a measure under a countable Borel equivalence relation, which will play a
crucial role in the sequel.

2.1 Measurable spaces. Let (X, %x) be a measurable space. We refer to
the elements of #y as Borel sets. A Borel measure on X is a g-additive measure
on Ay with values in [0, co]. We denote by M(X) the set of all Borel measures
on X (we suppress the dependence on the g-algebra #x). A Borel exhaustion
is an increasing sequence X := {X,, : n > 1} in HBx such that X = |J, X,,, and a
Borel measure ¢ on X is X-finite if x(X,,) < oo for all n. The set of all X-finite
Borel measures on X is denoted by M(X; X), and a Borel measure is o-finite if it
is X-finite for some Borel exhaustion X. If u(X) < oo, then u is of course X-finite
for any Borel exhaustion X. In this case, we say that u is a finite Borel measure,
and if u(X) = 1, we say that ¢ is a Borel probability measure. We denote
by M;(X), Mg,(X) and Prob(X) the spaces of o-finite Borel measures, finite Borel
measures and Borel probability measures on X respectively. Clearly,

Prob(X) C Mgan(X) C M(X;X) C M,(X),

for every Borel exhaustion X. If u is a o-finite Borel measure on X, we say that
a Borel set B is g-null if x(B) = 0 and p-conull if u(B°) = 0. If &/ C %Bx
is a sub-g-algebra and T C X is a Borel set, we define the g-algebra 7|y by
Al ={BNT:B e «}. Wereferto .o/|r as the restriction of </ to T. We also
define &r := PBx|r, and refer to the elements in % as Borel sets in 7.
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If (X, $Bx) and (Y, By) are measurable spaces, then a map ¢ : X — Y is Borel
if p~'(%By) € Bx. If ¢ is a bijection and both ¢ and ¢!
that ¢ is a Borel isomorphism. More generally, if A is a Borel set in X, then
amap ¢ : A —> Y is Borel if (p_l(%’y) C $By. Amapf : A — [0, o0] is Borel
if Ao :=f~1({00}) € B4 and f|a\a,, is Borel.

are Borel, we say

2.2 Standard Borel spaces. We say that a measurable space (X, %y) is
a standard Borel space if there exists a Polish (completely metrizable and
separable) topology T on X such that Zy is the Borel o-algebra generated by T. In
particular, there is a countable subset & C %x which generates %y such that

(] B={x}, forallxeX.
xeBe8

We refer to 8 as a (countable) separating family for X.
Let us collect some basic facts about standard Borel spaces.

Lemma 2.1. Let (X, Bx) and (Y, By) be standard Borel spaces and let
@: X — Y be a Borel map.
() If Z C X is a Borel set, then (Z, Bx|z) is a standard Borel space [12,
Corollary 13.4].
(i) If ¢ is injective, then p(X) is a Borel set in Y and ¢ : X — ¢(X) is a Borel
isomorphism [12, Corollary 15.2].
(iii) If ¢ has countable fibers, i.e., = ({y}) is at most countable for everyy € Y,
then ¢(X) is a Borel set in Y and ¢ admits a Borel right-inverse. [I2,
Corollary 18.10].

We denote by Hpron(x) the smallest o-algebra on Prob(X) with respect to which
the maps u — u(B), where B is a Borel set in X, are measurable. By [12,
Section 17.E], if (X, %) is standard, then so is (Prob(X), Zprobx))-

2.3 Borel G-spaces. Let G be a locally compact and second countable
(Icsc) group and let (X, Ax) be a standard Borel space. We denote by % the Borel
o-algebra on G, and note that both (G, %) and (G x X, s ® By) are standard
Borel spaces. Supposea : Gx X — X, (g,x)— g.xisanactionof GonX. Ifais
Borel, we say that (X, a) is a Borel G-space. If H is a closed subgroup of G, we
denote by a|g the restriction of a to H x X, and refer to the Borel H-space (X, a|g)
as the H-restriction of (X, a).

Suppose (X, a) is a Borel G-space. A Borel set Bin X is G-invariantif g.B =B
for all g € G. A Borel measure p on X is G-invariant if u(g.B) = u(B) for



108 M. BJORKLUND, T. HARTNICK AND Y. KARASIK

every g € Gand B € %y, and we say that u is G-ergodic if every G-invariant Borel
set in X is either y-null or x-conull. We denote by Prob(X)%, M, (X)¢, M(X; X)¢
and M,(X)C the spaces of G-invariant Borel probability measures, G-invariant
finite measures, G-invariant X-finite measures and G-invariant o-finite measures
on X respectively.

Suppose (X, a) and (7, b) are Borel G-spaces. A Borel map = : X — T such
that 7(g.x) = g.7(x) for all g € G and x € X is called a G-map. Note that if 7
is a G-map and u € Mg,(X)%, then 7, u € Mg, (T)®, where m, u(C) = u(z~(C))
for C € #Br. We refer to w.u as the push-forward of x4 under 7= (we only
consider push-forwards of finite measures, as push-forwards of o-finite measures
are not o-finite in general). We refer to (7, 7, u) as the G-factor of (X, x) induced
by z. If H is a Icsc group and p : G — H is a continuous homomorphism, then
every Borel H-space (7, b,) can be lifted to a Borel G-space (T, b), by setting
b(g, x) = b,(p(g), x). We then say that G acts on 7T via p.

If (X1,a1),...,(X,,a,) are Borel G-spaces, let ap denote the diagonal G-
action on X; X --- X X,, i.e., aa(g, x) = (a1(g, x1), ..., a,(g, x,)), for g € G and
x = (x1,...,x,). Let m; denote the projection from X; x --- x X, onto X;. Note
that 7y is a G-map. Suppose u; € Prob(X)? for k = 1,...,r. A G-invariant
Borel probability measure ¢ on X; X - - - X X, is a joining of (X1, u1), ..., (X, 1)
if ()« p = wy for every k.

2.4 Countable Borel equivalence relations. Let (X, &x) be a standard
Borel space. A Borel subset E C X x X is a countable Borel equivalence
relation (cber) if E is an equivalence relation on X and for every x € X, the
set {y € X : (x,y) € E} is countable.

Suppose E is a countable Borel equivalence relation. Let A,B C X be
Borel sets and ¢ : A — B a Borel surjection. Then ¢ is a partial E-map if
graph(¢) C EN (A x B). Note that, according to our terminology, every partial
E-map ¢ : A — B is assumed to be onto B. We thus refer to A as the domain of ¢
and to B as the range of B, and we sometimes write A = dom(g) and B = ran(¢).
We denote by [[E]] the set of all injective (hence bijective) partial Borel E-maps.
We then have the following notions of invariance under E:

Definition 2.2. A Borel set B C X is E-invariant if

¢~ Y (BNran(p)) = BNdom(p), forall ¢ € [[E]].

A Borel measure y on Xis E-invariantif ¢(dom(p)) = u(ran(p)), forall p € [[E]],
and an E-invariant Borel measure x4 on X is E-ergodic if every E-invariant Borel
setin X is either g-null or x-conull.
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We denote by Prob(X)f, Mg, (X)E, M(X; X)F and M,(X)* the spaces of E-
invariant Borel probability measures, E-invariant finite measures, E-invariant X-
finite measures and E-invariant o-finite measures on X respectively. In terms of
Borel functions, E-invariance can be characterized as follows:

Lemma 2.3. Suppose u is an E-invariant Borel measure and f : X — [0, o0]
is Borel. Then,

/ Fopdu= [ fdu, foreveryo e [EIL
dom(g) ran(p)

Proof. If B, := f~!({oo}) N ran(p) has positive u-measure, then so has
¢~ (Bs) N dom(p). Hence,

/ fopdu=00 and fdu = oo,
dom(g) ran(p)

and thus the identity in the lemma trivially holds. Let us from now on assume that
U(Bso) = 0. Suppose f = yp for some Borel set B C X. If ¢ € [[E]], we define
DB = Py-1(B)ndom(p)- and note that g € [[E]] with dom(gp) = ¢~ '(B) Ndom(y) and
ran(pg) = B Nran(p). Since u is E-invariant, we have u(dom(pg)) = u(ran(pg)),
and thus

/ fopdu = u(dom(ps)) = u(ran(ps)) = / fdu.
dom(gp) ran(g)

We conclude that the lemma holds for every simple function. A standard approxi-
mation argument finishes the proof. ([l

3 Separated cross sections and lifted measures

In this section we discuss cross sections of Borel actions. We then explain how,
under certain separability assumptions on the cross sections, measures on the cross
section can be extended to measures on the whole space. Our main result is
Theorem 3.14 which states that o-finite measures on the transversal which are
invariant under a certain equivalence relation can be canonically extended to G-
invariant measures on the whole space, which are subject to a certain finiteness

property.

3.1 Separated cross sections. Let G be a Icsc group and (X, a) a Borel
G-space. If Y C X is a Borel set and x € X, we define the set of hitting times Y,
by

Y. ={geG:gxeY}CQG,
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and the set of return times A,(Y) by

AuYV):i={geG:YNg .Y #0} =[] ¥,

yey
Let U be an open identity neighborhood in G. A Borel set Y C X is U-separated
if ¥,NU = {e} for all y € Y (or equivalently, if A,(Y) N U = {e}), and a cross
section if G.Y = X (or equivalently, if the restriction of the action map ato G x Y
is surjective). If ¥ C X is a U-separated cross section for some open identity
neighborhood U in G, then we call Y a separated cross section for short. In
this case we say that a Borel set C C G x Y is injective if the restriction of a to C
is injective. The following lemma ensures that for every separated cross section
Y C X every Borel set B C X can be covered by the images of countably many
injective sets in G x Y.

Lemma 3.1. Suppose Y C X is a U-separated cross section.
(i) IfV C Gis a Borel set suchthat V='V C U, then V x Y is an injective Borel
set. In particular, |Y, NV~ < 1 forall x € X.
(i1) For every compact set K C G,

(D) Mg =sup|Y, N K| < oo.
xeX

(iii) For every x € X, the set Y, is countable and YXYX_1 C Ay(Y). In particular,
Y, is a U-uniformly discrete (and hence closed) subset of G.

(iv) Themap a : G x Y — X has countable fibers. In particular, if C C G x Y is
a Borel set, then a(C) is a Borel set in X (by Lemma 2.1(1ii)).

(v) For every Borel set B C X, there are injective Borel sets El . Ez, ...inGxY
such that

B=| |aBy.
k

Proof. (i) Suppose (v1,y1), (02, y2) € V x Y such that v;.y; = v2.y,. Since Y
is U-separated,

0, 'y e AN VIV C AN U = (e},

and thus v; = vy, whence y; = y;.
(ii) Let K C G be a compact set, and pick an open cover Vi, ..., V, of K1
such that Vk_IVk C U for all k. By (i), |[Y, N Vk‘ll < 1 for all x and &, and thus

p
Y, NK| <> [Y.nV'| <p, forallx.
k=1
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(iii) Countability of Y, is immediate from (ii). To prove the inclusion,
pick g1, g» € Y,, and note that

yi=gxeY and gx=(g18")yeY,

whence g1g2_1 € Ay (Y). Since g, and g, are arbitrary, Y,CYX_1 C Ay Y).

(iv) Fix x e X and an element (g, y) € a~'({x}). Then, for any (g’, y') € a~'({x}),
wehave g’.y’ = g.y = x,and thus (g')~! € Y,andy’ € Y,.x. By (iii), Y is a countable
set, so there are only countably many choices for g’ and y'.

(v) Since G is separable, we can find a countable open cover

G=|JVi, suchthat V'V, C U forall k.
k

Let B, :== BN V,.Y, and note that B = | J, B}. Define

k
By =B, and B =B\ (UB,-),
Jj=1
for all k. Then, By, B>, . .. are disjoint Borel sets, B = | |, By and By C B} C V;.Y
for all k. Set Ek =a '(By) N (Vi x Y). By (i), Vi x Y is an injective set, and thus Ek
is an injective set as well, and a(Ek) =a(a Y (By) N (Vi x Y)) = By, for all k. ]

3.2 Transverse triples and their Chabauty—Fell maps. Throughout
this subsection, G denotes a Icsc group. We are interested in triples (X, a, Y) where
(X, @) is a Borel G-space and ¥ C X is a separated cross section. We refer to
such a triple (X, a, Y) as a transverse triple over G (or more specifically a U-
transverse tripleif Y is U-separated). In this subsection we discuss an important
class of examples of transverse triples which arise from certain discrete subsets
of G. In fact, we are going to see that this class of examples is “universal” in a
suitable sense.

We denote by C(G) the space of all closed subsets of G. The Chabauty—Fell
topology is the topology on C(G) generated by open sets of the form

Wi :={PeCG):PNK=0} and W' :={PeCG): PNV H0},

where K and V range over all compact subsets and over all open subsets of G
respectively (cf. [2, 3]). Itis not hard to see that with respect to this topology, C(G)
is a compact and second countable Hausdorff space, and a sequence (P,) converges
to a point P in C(G) if and only if
(i) for every p € P, there exists a sequence (p,) in G such that p,, € P, for all n
and p,, > pasn — oo,
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(i1) if (ng) is a sub-sequence and p; € P,, such that py — p as k — oo, then
p EP.
Furthermore, the action

a,: G x C(G)— CG), (g, P)—> Pg™!

is jointly continuous. If U is an identity neighborhood in G, then a subset
P, € C(G) is U-uniformly discrete if P(,P;1 N U = {e}. We denote by

CY(G) c C(G)

the subset of U-uniformly discrete subsets of G. It is easy to see that CY(G) is a
closed (hence compact) G-invariant subset of C(G). The subset

T:={PeC(G):eec P} CCG)

is closed, and thus compact. By definition, J is a cross section for the G-action

on C(G) \ {0}.

Example 3.1. Assume that P, C G is a non-empty closed subset. We then
define the hull of P, as the orbit closure Qp, := G.P, and set QF = Qp, \ {0}.
Then Tp, := TN Qp, is a cross section for the a,-action of G on Q})‘O, though it will
in general not be separated.

Proposition 3.2. The cross section Tp, is U-separated if and only if P, is
U-uniformly discrete, hence (X, a, Y) := (Q};O, ar, Tp,) is a transverse triple if and
only if P, is uniformly discrete.

Proof. We may assume withoutloss of generality thate € P,. ForQ € Y = Tp,
we have

1

g0€eY < ecg0=0g < ge0,

and hence Yp = QO € Q0. By [4, Lemma 3.15] we have PP~! C P,P;! for all
P e Qp, . Thus

A= |J 0c |J 007! cpr.P;,
Q€eTp, QeTp,
hence if P, is U-uniformly discrete, then Y is U-separated. Conversely, if Y is
U-separated, then P, is U-uniformly discrete by Lemma 3.1(iii). O

Proposition 3.2 provides plenty of transverse triples (X, a, Y), where X is a
subset of CY(G) and Y = X N'T. Our next goal is to show that every transverse
triple over G admits a Borel-G-factor, which is of this form. For the proof we
are going to use the fact that since every open set in G is g-compact, the Borel
o-algebra %e () is generated by the sets Wi with K relatively compact.



INTERSECTION SPACES AND MULTIPLE TRANSVERSE RECURRENCE 113

Lemma 3.3. For every U-transverse triple (X, a, Y) the map
m:X - CYUG), x> Y,
is a well-defined Borel G-map with 1(Y) C T and n='(T) = Y.

Proof. It follows from Lemma 3.1(iii) that Y, € CY(G) for every x € X, hence
7 is well-defined. Note that

m(gx)=Y,={teG:igxe Y} =Yg ' =gn(x,
forall g € G and x € X, so « is a G-map. Furthermore,
' (T ={xeX:ecY )=V
To prove that 7 is Borel, it suffices to show that 7~ (W) belongs to %x. Note that
T Wy ={xeX: Y, NK=0}=K.Y)".
By Lemma 3.1(iv), K~1.Y is a Borel set in X, so we are done. O

Definition 3.4. The map 7 : X — CY(G) is referred to as the canonical
Chabauty-Fell G-map.

We will be particularly interested in transverse triples (X, a, Y) for which X
admits a G-invariant ergodic probability measure x. In this case, if 7 denotes the
canonical Chabauty—Fell G-map of (X, a, Y), then 7 := 7, u is a G-ergodic Borel
probability measure on CY(G) with #({?}) = 0. Note that supp(#) is a closed, hence
compact, G-invariant subset of CY(G). Since the latter space is second countable
and 7 is ergodic, there exists an element P, € supp(#) whose G-orbit is dense in
the support. In particular, Qp, C supp(z). Since n({0}) = 0, we conclude that
X = n_l(Q;io) is a G-invariant u-conull Borel subset of X, and we thus have a
Borel G-map

m: (X, pulx) = (Qp,n) suchthat Y NX =x""(Tp).
Note that A,(Y) C A, (Tp,). Here is a typical class of examples:

Example 3.2 (Cut-and-project sets). Let H be a lcsc group and suppose
I' < G x H is a lattice whose projection to H is dense. Then X := (G x H)/T,
equipped with quotient Borel structure, is a Borel G-space, with a unique G-
invariant (and G-ergodic) Borel probability measure p (see [3, Lemma 5.7]).

Fix a pre-compact subset W C H with non-empty interior, and set
Y :=({e} x W)I'. It is not hard to check that Y is a separated cross section.
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We thus obtain an associated Chabauty—Fell map 7z : (G x H)/T — CY(G). The
elements of z(X) are called cut-and-project sets in the literature. Our arguments
above show that u-almost every x € X, the G-hull Q) supports a G-invariant
Borel probability measure 7, (which might depend on the point x). Under some
additional mild assumptions on W, [3, Theorem 1.1] tells us that there is in fact a
unique G-invariant (and thus G-ergodic) Borel probability measure # on 7(X), not
supported on the empty set. In particular, in this case, #, = # for all x.

3.3 Borel Y-sections and lifted measures. Let G be a lcsc group with
left-Haar measure mg and let (X, a, Y) be a U-transverse triple over G for some
open identity neighborhood U in G. By Lemma 2.1(iii) and Lemma 3.1(iv). the
map

algxy :G XY > X

is surjective with countable fibers, hence admits a Borel section b : X — G x Y.
Any such section is necessarily of the form

2) b(x) = by(x) := (B, f(x).%),

for some Borel map f : X — G such that f(x) € Y, for all x € X. In the sequel
we are going to refer to such a map £ as a Borel Y-section; such sections then
always exist by the aforementioned lemmas.

Definition 3.5. If f: X — G is a Borel Y-section and v is a Borel measure
on Y, then the Borel measure vy on X given by

vp(B) = mg @ v(bp(B)), forB e %Bx
is called the f-lifted measure of v.

Our next goal is characterize the finiteness properties of lifted measures of
Y-finite Borel measures on Y, where Y = {Y,, : n > 1} is a given Borel exhaustion
of Y. By [6, Theorem 2.A.10], there is a fundamental exhaustion § = {K,, : n > 1}
of G by compact sets, i.e., every K,, is a compact set, and every compact set in G is
eventually contained in some K,,. We fix such an exhaustion once and for all and
define Yg :={K,,.Y,, : n > 1}. We refer to Yq as the §-suspension of Y.

Lemma 3.6. Yg is a Borel exhaustion of X, and a Borel measure y on X
is Yg-finite if and only if u(K.Y,) < oo for every n and for every compact set K
in G. In particular, this notion does not depend on the choice of fundamental
exhaustion G.
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Proof. The only non-trivial part of the lemma is to show that K.Y,, is a Borel
set for every compact set K in G. However, K x Y, is a Borel set in G x Y and
by Lemma 3.1(iv), a|gxy is Borel with countable fibers, so a(K x ;) = K.Y, is a
Borel set by Lemma 2.1(iii). ]

Lemma 3.7. Let {K,} be a fundamental exhaustion of G by compact sets,
and {Y,} a Borel exhaustion of Y. Then there is a Borel section f such that
by(K,.Y,) C K, x Y, for all n.

Proof. By Lemma 2.1(iii) and Lemma 3.1(iv), the map a, := alk, «xy, has a
Borel right-inverse

bn : Kn-Yn — Kn X Yna X = (bn,l(x): bn,2(-x>)-

Note that both b, ; and b, ; are Borel maps, and that they satisfy b, ;(x).b, 2(x) = x
for all x € K,,.Y,. We set B,(x) := b, 1(x)~!, so that

bp(x) = (Bu(x)", Ba(x).x), forallx € K,,.Y,.

In particular, £,(x) € Y, N Kn_l for all x € K,,.Y,,. Let X; := K;.Y,, and define
inductively (the possibly empty Borel sets) X5, X3, ... by

n
X1 = K1Y \ U X

m=1

Since { K,.Y, } is a Borel exhaustion of X, we see that X;, X5, . .. is a Borel partition
of X. We now define f(x) = f,(x) for x € X,, which is clearly a Borel Y-section
with the property that

n n
B, Y =] ) c | K, =K,
m=1 m=1
since { K, } is increasing. [
In the sequel, when constructing lifted measures, we will usually use Y-sections

asin Lemma 3.7. In this case, lifts of o-finite measures will again be o-finite. More
precisely:

Corollary 3.8. Let f: X — G be a Borel Y-section such that
bp(K,.Y,) C K, x Y,
forall n. Then for all v e M(Y,Y) we have vp € M(X, Yg).

Proof. This is immediate from the fact that v4(K,.Y,) < (mg @ v)(K, x Y,)
for all n.
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3.4 Cross-section equivalence relations. Let G be a Icsc group and let
(X, a, Y) be a U-transverse triple over G for some open identity neighborhood
U C G. We define the cross section equivalence relation Ry C Y x Y by

Ry ={(,y)eYxY:yeGy'}.

By definition, Ry is just the restriction of the orbit relation of the G-action on X to
the cross section Y, hence in particular a (set-theoretic) equivalence relation on Y.
Moreover, a straightforward application of Lemma 3.1 yields:

Lemma 3.9. Ry is a countable Borel equivalence relation on Y.

Proof. First note that if yY € Y, then y € G.y if and only if y € Y,.y.
By Lemma 3.1(iii), Yy is countable, whence the set {y € Y : (y,)) € Ry} is
countable as well. To see why Ry is a Borel setin Y x Y, consider the Borel map
a:GxY—=YxX (g9~ (y,g.y). Then C = a~ (Y x Y) is a Borel set in
G x Y and Ry = a(C). It follows from Lemma 3.1(iv) that a has countable fibers,
so Ry is a Borel setin Y x Y by Lemma 2.1(iii). ]

Our next goal is to study sets and measures which are invariant under the cross

section equivalence relation. For this we need to describe the local structure of
partial Ry-maps. The following lemma is based on the proof of [1, Lemma 2.5].

Lemma 3.10. Let ¢ be a partial Ry-map and let V be a symmetric identity
neighborhood in G such that V* C U. Then there exist
e a Borel partition dom(g) = | |, Ax such that ¢|a, is injective for every k,
e identity neighborhoods Wi, C V and Ay € Ay (Y) such that /lk_kaik c V for
all k,
e Borel maps py : Ax > Wy such that

p(y) = pr(MAr.y, forally € Ay.

In particular, a(Cy) = WiAg.Ay, where
Ce = {(wp» o)) : w e Wy, yeA}C W xY.

Proof. Set A := dom(p). For every y € A, pick 4, € A,(Y) such that
o(y) = Ay.y, and a symmetric open identity neighborhood W, C V such
that 2;'W,A, C V. Since G is second countable, and thus Lindelsf, we can
find yq, y2, ... € A such that

W= U Wyd, = U Wy Ay,
k

yeY
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Set Wy := W,, and 4 := Ay,. Let A} :={y € A : p(y) € WiAr.y}, and note that

UAi={yeAio) e Wy} =A.
k

Define A; := A} and Ags1 = A}, \ (U'.‘=1 Aj), for all k. Then Ay, A,, ... are disjoint
Borel sets with union A (we can discard empty sets from this collection). Let us
now construct the maps p;. We define the Borel set

Ap={(w,y) € Wi x A : 9(y) = whi.y},
and note that the projection (w, y) — yis injective. Indeed, if (v, ¥), (w2, y) € Kk,
then
Pp(¥) = w1de.y = WAk,
whence A7 w5 'w; Ar.y = y. We conclude that

2wy wi Ay € AT WEL N ALY) C UN ALY) = {e).

Hence w; = w,, and the projection is injective. By Lemma 2.1(ii), we can now
find a Borel map p; : Ay — Wi such that (pr(y), y) € Kk for all y € A;. In other
words, p(y) = pr(¥)Ax.y. It remains to show that |4, is injective. We argue by
contradiction and suppose y;, y» € Ay are such that ¢(y;) = ¢(y2), or equivalently,
Pk A1 = pr(y2)Ax.y2. Then,

A8 pe) ™ prD Ak € Au(Y) N A Wiy = (e,
since lk_lW,flk C V C U and Y is U-separated. Hence, pr(y1) = px(y2), which
implies that the identity pi(y1)Ax.¥1 = pr(y2)Ar.y2 just reduces to y; = y». ]
Corollary 3.11. Suppose B C Y is an Ry-invariant Borel set. Then,
¢~ (BN ran(p)) = BN dom(yp),

for every (not necessarily injective) partial Ry-map ¢.

Proof. Let ¢ be a (not necessarily injective) partial Borel Ry-map. Then, by
Lemma 3.10, we can find a Borel partition dom(¢) = | |, Ax such that y; := ¢y, is
an injective partial Ry-map for every k. Hence,

o~ '(BNran(p)) = | |o~'(BNran(p)) NAr = | | wi ' (B Nran(yy).
k k

Since B is Ry-invariant and y; is injective, z//k_l(B Nran(yy)) = BN dom(yy) for
all £, whence

¢~ (BNran(p)) = | |(B N dom(y)) = BN dom(p). 0
k
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3.5 Ry-invariant sets. Let G be a Icsc group and let (X, a,Y) be a U-
transverse triple over G for some open identity neighborhood U C G. We are
going to show that a subset A C Y is invariant under the cross section equivalence
relation Ry if and only if there exists a G-invariant subset B C X suchthatA = BNY.
One direction is in fact immediate from Lemma 3.10:

Corollary 3.12. If B C X is a G-invariant Borel set, then BNY C Y is an
Ry-invariant Borel set.

Proof. Let ¢ be a partial Borel Ry-map. By Lemma 3.10, there exist a Borel
partition dom(¢) = |_|; Ax, Borel maps p; : Ax = G and A, € G such that

o(y) = pr(y)ir.y, forally € Ag.

Hence,

¢~ '(BNran(p)) = | |~ (BNran(p)) N A
k

Since B is G-invariant and ran(p) C Y, we see that
o) = p(Miry € BNY & yeBNY,

for every k and y € A;. In other words, ¢~ (B Nran(p)) N Ay = BN Ay, for all k,
and thus

¢~ '(BNran(p)) = | |BN A, = BN dom(p).
k

Since ¢ is arbitrary, BN Y is Ry-invariant. g

For the converse direction we fix a Borel Y-section f : X — G. We then define
a Borel map

3) op: Y=Y, y= BO).y.

By construction, ¢z is a (not necessarily injective) partial Ry-map with dom(pg)=Y.
If A C YisaBorel setin Y, we now define Ay C X by

4 Ap:={xeX: f(x)xeA}.

Note that Ag = b;l(G x A), and thus Ay is a Borel set in X. We can now establish
the converse of Corollary 3.12:

Lemma 3.13. Let S be a Borel Y-section. If A C Y is an Ry-invariant Borel
set, then Ag C X is a G-invariant Borel set such that Ag 'Y = A.
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Proof. We first note that Ay N Y = go/}I(A M ran(pp)). Since A is Ry-invariant
and dom(gg) = Y, Corollary 3.11 tells us that go/}I(A N ran(ppg)) = A, and thus
AgNY =A. To prove that Az is G-invariant, it is enough to show (since X = G.Y)
that

g ' AsNhY=hA, forallg, heG.

First note that
g_l.Aﬁ ={xeX:f(gx)gxeA}, forallgeG
and thus
g ApNhY =h{yeY: p(ghy)ghye A} =hes (ANrangg,),

for all g,h € G. Since A is Ry-invariant and ¢g, is a partial Ry-map with
dom(gg,) = Y, we see from Corollary 3.11 that goEgL(A Nrangg,) = A, and

thus g=' AgNh.Y =h.Aforall g, h € G. O

In other words, the Y-section f picks for every Ry-invariant Borel subset A a
canonical G-invariant extension to X.

3.6 Lifts of Ry-invariant measures. Let G be a Icsc group and let
(X, a, Y) be a U-transverse triple over G for some open identity neighborhood
U C G. The goal of this subsection is to establish the following theorem:

Theorem 3.14. Let v € M(Y, Y)®" be Ry-invariant and let f : X — G be a
Borel Y-section.
(1) The lifted measure vg is independent of the choice of p.
(ii) vg is Yg-finite.
(iii) If G is unimodular, then vy is G-invariant.

If G is unimodular we thus obtain a canonical map
%indy : M(Y, D)™ — M(X, Y6)¢, v vp

We refer to the map “ind{ from Theorem 3.14 as the induction map of the
transverse triple (X, a, Y). Note that part (ii) of the theorem is immediate from
part (i) in view of Lemma 3.7 and Corollary 3.8. The proofs of parts (i) and (iii)
are based on the following main lemma concerning piecewise equivalences of
injective sets. Here, given a Borel set C C G x Y, we set

C,={heG:(h,y)e(C}, foryeY.

By Fubini’s Theorem, Cy is a Borel setin G foreveryy € Y.
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Lemma3.15. Let C, C; C GX Y beinjective Borel sets such that a(Cy)=a(C»).
Then there exist
e acovering {Y®} of Y by Borel sets, Borelmaps y, : Y® — G and ) € [[Ry]]
with dom(gy) = YO,
e Borel partitions Cy = | |, C1 x and Cy = | |, Cax such that

Cix CGxran(gpy) and Crip C G x dom(gy), forallk,

such that
(Ca0)y, = (C1L gy 76(y2),  forall y, € Y®.

Remark 3.16. In the proof of this lemma, we will use a Borel partition
G = || Vi with the property that V;- 'V, UV, V7! C U for all k. Such partitions can
be constructed in many different ways. Let us here briefly outline one possible
construction. For every g € G, let W, be an open symmetric identity neighbor-
hood W, such that W; and gW;g~" are both contained in U. Then J,.; Wy is an
open cover of G. Since G is Lindeldf, there exist a countable set { g;} such that

G = U I7k, where ’Vvk = giWe,.
k

Note that ‘N/k_ WU ‘N/kf/k_ ' U for all k. To make this collection of sets disjoint,
we set V| = ‘71 and define inductively Vj; = ‘N/k“ \U’.‘=1 V;, for k > 1 (discarding
empty sets).

Proof of Lemma 3.15. Weseta; :=alc, fori=1,2. By Lemma2.1, g;is a
Borel isomorphism between the Borel sets C; and a(C;). Since a(Cy) = a(C»), the
composition J := aj! o a, is a well-defined injective Borel map and C; = §(C,). It
is not hard to see that there is a Borel map 6 : C; — G such that

(2, y2) = (ha6(ha, y2) ™', 0o, y2).32),  for (ha, y2) € Ca.
Let G = | |, Vi be a Borel partition (see Remark 3.16) such that
vi'tviuvvit c U, forall k

and set
Cox=0""(V{") and Cii=d(Cayp).

Clearly, C; =| |, C1x and C, = | |, C» are Borel partitions. Define

YO ={yer:v,nvi' #P}=V,.YNY.
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By Lemma 3.1(i), combined with Lemma 2.1(ii), we see that Y** ¢ Y is a Borel
set, and there is a Borel map y; : Y® — V! such that yi(y) € ¥, N V! for
ally € Y®. Pick (ha,y2) € Cay. Then O(ha, y2) € Yy, N V!, and thus y, € YO,
However, by Lemma 3.1(1), |Y,, N Vk_ll < 1, and thus

O(ha, y2) = yi(y2), forall (hy, ys) € Cox.

We also define ¢r(y2) = yx(y2).y2 for y, € YO, Note that ¢ is injective. Indeed,
if pr(y2) = (5, for y2, ¥4 € Y, then

10 () € Yy, N ViV € Yy, N U = {e),

since Y is U-separated. Hence, yi(y2) = yx(y5). Since gi(y2) = ¢r(35), we see
that y, = y,. We conclude that ¢; € [[Ry]] with dom(p;) = Y®. Furthermore,
since C x = d(Ca ), we see that C; ; C G x ran(gy). Let us now fix an index k and
an element y; € Y® Then, since C; C G x Y®, we see that

(Cop)y, ={h2 € G: (h2,y2) € Coi}
={h € G: (hO(h2, y2)~", 02, y2).y2) € Cu}
={hy € G: (hy() ™", px(32)) € Ci 4} = (C1.)pern) 76(2)- .

Corollary 3.17. Let v € M, (Y)®, and suppose that C;,C, C G x Y are
injective Borel sets such that a(Cy) = a(C3). Then mg Q@ v(C1) = mg Q@ v(C).

Proof. Let Y, Ci k> Coks k> @i be as in Lemma 3.15. Then, forall y, € Y,

mg((C2)y,) = Z ma((Ca,1)y,) Xdom(p)(V2) = Z mMc((C1,1) i) Yx(V2)) Xdom(g)(V2)
k %

= Z mc((C11)pi(v2) Xdom(pn)(V2)»
X

where we in the last identity have used that m is right-invariant. Define
Je: Y = [0, 0]

by
fil) =ma((Ci),), foryeVY.

By Fubini’s Theorem, f; is Borel. Since ¢; € [[Ry]] and v is a o-finite and
Ry-invariant Borel measure on Y, Lemma 2.3 tells us that

/ feogrdv = fedv,
dom(gy) ran(¢x)
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and thus

m@W@h[ﬁmaMmmm:ZA MG((C1 Wputrn) V()
k

om(¢x)

=Z/ ( )MG((Cl,k)yz)dV(y2)=Z/YmG((Cl’k)yz)dv(yz)
ran(gx -

X
=mg @ v(C),

since Cy = | |; Cy x and C, = | |; C»x are Borel partitions. O

Proof of Theorem 3.14. (i) If B and p’ are two Y-sections, then by and b);
are two sections of a|gxy, and hence for every Borel set B C X the sets C := by(B)
and C’ := bg(B) are injective Borel sets. We now deduce with Corollary 3.17 that

vp(B) = v(bg(B)) = v(C) = v(C') = v(by(B)) = vy (B).

(i) Let Y = (¥,) and let (K;) be a fundamental exhaustion of G. By (i)
and Lemma 3.7 we may assume that bg(K,.Y,) C K, x Y, for all n, but then
vp € M(X, Yg) holds by Corollary 3.8.

(iii) If # : X — GisaBorel Y-sectionand g € G, then we define S,(x) := f(g.x)g.
Note that S,(x).x = f(g.x)g.x € Y, whence S, is again a Borel Y-section. For every
fixed g € G we then have

bg(g.x) = (g (x)™", Bo(x).x), forallx e X.
Since mg is left-invariant, we see that for every Borel set B C X,
vp(g.B) = mg @ by, (B)).

Fix a Borel set B in X, and let C := bg(B) and C, := bp (B). Then C and C, are
injective Borel sets in G x Y such that a(C) = a(C,). Since mg is also right-invariant,
Corollary 3.17 tells us that mg ® v(C,) = mg ® v(C), and thus

vp(g.B) = mg @ v(bp,(B)) = mg @ v(bg(B)) = vu(B).

Since g is arbitrary, vz € M(X;Yg)°. d

4 'Transverse measure theory

The main goal of this section is to establish Theorem 1.14 from the introduc-
tion. Moreover we discuss ergodic decompositions of transverse measures and the
behavior of transverse measure under a change of transversal. Throughout this sec-
tion, G denotes a Icsc group with Haar measure mg and (X, a, Y) is a U-transverse
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triple over G for some open identity neighborhood U C G. We fix a fundamental
exhaustion § = {K,,} of G by compact sets, and let a Borel exhaustion Y = {Y,,} be
of Y and denote by Yg the G-suspension of Y.

4.1 Periodizations. Given a non-negative bounded Borel function f on
G x Y, we define Tf : X — [0, oo] by

(5) Tfx)=> f(g™' gx), forxeX.

gGYX
We refer to Tf as the Y-periodization of f.

Example 4.1. Let P, C G be a uniformly discrete subset and Qp and Tp, as
in Example 3.1 so that by Proposition 3.2 the triple (X, a, Y) is a transverse triple.
Then the Tp,-periodization of a non-negative bounded Borel function f on G x Tp,
is given by

TFP) = f~' Pp7h.

peP

In general, periodizations have the following basic properties:

Lemma 4.1. Let f be a bounded non-negative Borel function on G x Y.
(1) Tf is Borel.
(i1) Tyxc = xac) for every injective Borel set C C G x Y.
(iii) Tf(g.x) = Tf,(x), for all g € G and x € X, where fy(h,y) = f(gh, x).
(iv) Supposef =3, fi pointwise, wherefi, f>, . . . are bounded non-negative Borel
functions on G x Y. Then Tf =}, Tfi pointwise.
W) If{f> 0} C K,, x Y, for some n, then

Tf(x) < Mg Iflloo Xk,.v,(x)  forallx € X,
where M- is given by (1).

Proof. (i) Let G = ||, Vi be a Borel partition such that V'V, ¢ U
for all k. Then, by Lemma 3.1(i), a|y,xy is injective, so by Lemma 2.1(ii),
there is a Borel right-inverse by : V.Y — V; x Y, which then must be of the
form by(x) = (pr(x)~!, pr(x).x) for some Borel map p; : V.Y — Vi 1. Note that
g € Y. NVl if and only if g = pi(x). Thus

TF=> > flg" gx) @ =) Fi),
k

—1
k gev,nv;

where Fi(x) = f(pi(x)~"!, p(x).x). Since each Fy is Borel, so is Tf.
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(i1) Suppose C C G x Y is an injective Borel set. Note that x € a(C) if and only

-1

if there is a unique g € G such that (g™, g.x) € C (in particular, g € Y,). Hence,

Trc@) =Y xc(g™', %) = ao/x), forallx € X.
geY;

(iii) Fix g € G, and note that

Tf(gx)= >  f(h™' hgx)=> f(gh™' hx), forallxeX,

heY, heY,

since Y, = Y g™\

(iv) This readily follows from monotone convergence.
(v) Suppose Tf(x) > 0. Since {f > 0} C K, x Y, there must be an element
g € K7 such that g.x € Y,,, whence x € K,,.Y,,. In particular,

TF(x) < 1Yo VK I lloo xk,v, (), forall x € X.

By Lemma 3.1(ii), there is a finite constant Mg -1 such that |¥, N Kl < M- for
all x € X. O

Remark 4.2 (On the existence of Haar measures). Let us briefly sketch how
Y-periodizations can be used to construct a Haar measure on G, following the
ideas of Izzo [10, 11]. Suppose (X, a) is a Borel G-space, u is a G-invariant Borel
probability measure on X, and Y is a U-separated cross section for some identity
neighborhood U in G (if the G-action a is free, then one can always produce such
a cross section in X by [7, Proposition 2.10]; furthermore, this construction does
not use the existence of a Haar measure on G). We now define

m(p) = u(T(p®1), forg e C(G).

The proof of Lemma 4.1 above now shows that m is a left G-invariant locally
finite Borel measure on G. In particular, the existence of a single free probability-
measure-preserving G-action implies the existence of a (left-invariant) Haar mea-
sure on G.

4.2 Existence of transverse measures.

Proposition 4.3. For every u € M(X;Yg)®, there is a unique v € M(Y;Y)
such that

(6) u(Tf) = (mg @ v)(f),
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for every bounded non-negative Borel function f on G x Y. In particular,
u(a(C)) = mg @ v(C)
for every injective Borel set C C G X Y.

Remark 4.4. We refer to v as the Y-transverse measure of y. If we want
to emphasize its dependence on u, we use the notation v = uy. We stress that we
are not assuming in this lemma that G is unimodular. We can spell out (6) in the
case where f is a function which depends only on one of the two variables: If fj
and f, are bounded non-negative Borel functions on G and Y respectively, then

| A@ana = [ 3 A dut

g€y

and

[£0a0)= [ 3 g0 duco

g€y
Note that if g is a finite Borel measure, then v is a finite Borel measure on Y. The
converse is not true.

Proof of Proposition 4.3. Fix u € M(X; 99)‘;, and define
n(D) :== u(Typ), forBorelsetsD C G x Y.

By Lemma 4.1(i) and (iv), # is a Borel measure on G x Y. Furthermore,
Lemma 4.1(v) implies that #(K,, x Y,) < oo for all n, so in particular, # is o-
finite. By a standard approximation argument (see e.g. [5, Theorem 3.3.1]), it
suffices to show that there is a unique v € M(Y;Y) such that

n(A x B) =mg(A)v(B), forall A € $B;and B € By.
To do this, fix n and a Borel set B C Y,,. We define the Borel measure #5 on G by
np(A) =n(A x B), forA € %g.

Since u is Yg-finite, np(K,) < Mg-1pu(Ky.Yy) < 0o for every n by Lemma 4.1(v),
and thus 7 is locally finite. By Lemma 4.1(iii), we see that

np(g ' A) = u(Txaxp(g.) = np(A), forallg € G,

since u is G-invariant. Hence #p is a locally finite and left-invariant Radon
measure on G, and thus a (non-negative) multiple of mg. We conclude that there
is a non-negative (finite) number v, (B) such that

n(A x B) =mg(A) v,(B), forall A e %g.
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Since 7 is a Borel measure, it follows that v, is a (finite) Borel measure on Y,,.
Furthermore, if m < n, then v,,(B) = v,(B) for every Borel set B C Y,,. We
conclude that the limit

v(B) = nlingo v(BNY,)

exists for every Borel set B C Y. It readily follows from monotone convergence
that v is a Borel measure on Y such that v(B) = v,(B) for every Borel set B C Y,,.
In particular, v is Y-finite. Since # is a Borel measure, we now have

n(A x B) = lim (A x (BN Y,)) = limmg(A)v(B N Y,) = mg(A)v(B),

for all Borel setsA c Gand B C Y. O

4.3 Proofs of Theorem 1.14 and Corollary 1.15. We now turn to the
proof of Theorem 1.14. We split the proof into a series of lemmas. For the first
two of these, unimodularity of G is not needed.

Lemma 4.5. The map M(X;Y6)° — M(Y;Y), u — uy is injective. In

particular, if u is non-zero, then so is py.
Proof. Suppose i, ty € My(X)® with (u1)y = (12)y. Then,

11(a(C)) = mg @ (11)y(C) = mg Q@ (12)y(C) = us(a(C))

for every injective Borel set C C G x Y. Fix a Borel set B C X. By Lemma 3.1(v),
there are injective Borel sets El, Ez, ...in G x Y such that B = | |, a(Ek). Since
ﬂ](a(Ek)) = ﬂz(a(Ek)) for all k, we see that

wiB)=> " pi(aBy) =Y pa(a(By) = ua(B).
k k

Since B is an arbitrary Borel set in X, we conclude that u; = u». g

Lemma 4.6. Let u € M(X;X)® and let B be a G-invariant Borel set in X.
Then,
UB)=0 < uy(BNY)=0.

Proof. Let V C G be an identity neighborhood such that V=V c U.
Then V x Y is an injective Borel set by Lemma 3.1(i). Since B is G-invariant,
V.BNY)=BNV.Y, and thus

me(V)y(BOY) = u(VBNY)) = u(BNV.Y).
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Since 0 < mg(V) < oo, we see that uy(BNY)=0 < uBNVY)=0. In
particular, if u(B) = 0, then uy(BNY) = 0. Conversely, if uy(BNY) = 0, then
u(BNVY)=0,soif we let Z C G be a countable set such that 2V = G, then,

—

since u and B are G-invariant, u(BNEV.Y) = Ofor all ¢ € E. Hence, by o-additivity
of u,weseethat 0 = u(BNEV.Y)= u(BNG.Y) = u(B). [

Lemma 4.7. If G is unimodular and u € M(X;Yg)®, then uy € M(Y; YR is
Ry-invariant.

Proof. Let ¢ € [[E]], and let V, A, Wy, pi, 2i and Cy be as in Lemma 3.10.
Since ¢ is injective and the sets A; are disjoint, we have

1y(@A) = uy(p(Ad),
k

so it suffices to show that uy(p(Ar)) = uy(Ay) for every k. We recall from Lem-
ma 3.10 that

Cr = {((wp) L o)) :weW,, yeAJcGxY

is an injective set such that a(Cy) = Wi .A. Let py := po g~} lo4,)» and note that

xc.(8,2) = xw.(8Pk(2) xpuan(z), forall(g,2)e G xY.

Since mg is right-invariant, Fubini’s Theorem tells us that

mg @ uy(Cr) = mg(Wi)uy(p(Ap)).

Since C; is injective, we also have (mg ® uy)(Cy) = u(a(Cy)). Moreover,

1(a(C) = u(WihrAp) = n(Ag Wiki Ag)
= mg(Ax ' Wid) ey (A) = ma(Wi) u(Ap),
where in the second identity we have used that x4 is G-invariant, in the third

inequality we have used that ﬂk_lW,flk C U, and in the last identity we have used
that m¢ is conjugation-invariant. Hence

mg(Wi) uy(p(Ax)) = mg @ uy(Cr) = u(a(Cy)) = mg(Wi)u(Ap),

and thus 20y (p(AD) = py(Ap). O

Thus, if we assume that G is unimodular, then we have an injective restriction
map
Ores¥ : M(X;Y5)® = MY DX,  u— uy.

It turns out that this map is actually a bijection:
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Lemma 4.8. If G is unimodular, then the map “res§ : M(X;Y4)° — M(Y;Y)Fr,
u — py is bijective and inverse to the map “ind} : M(Y; YR — M(X;Y5)C from
Theorem 3.14.

Proof. We fix a Borel Y-section f as in Lemma 3.7; then
Yindy(v) = vs € M(X;Yg)°

for all v € M(Y;Y)® by Theorem 3.14. Since Cres?} is injective, it now suffices to
show that

@) (wp)y =v forallv e MY; Yk,

this will prove that “res} is surjective (hence bijective) and hence that its left-inverse

%indy is actually its inverse.
To prove (7) we fix a Borel set B C Y. Let V be an identity neighborhood in G
such that V='V C U. Then

C1 = bﬁ(V.B) and C2 =V x B,
where by is defined in (2), are both injective Borel sets in G x Y and we have
a(Cl) =VB= a(Cz).

Since v is Ry-invariant, it follows from Corollary 3.17 that mgQv(C)) = mg®v(Cs),
and thus
vp(V.B) = mg @ v(Cy) = mg(V)v(B).

In particular, (vg)y(B) = v(B). Since B is an arbitrary Borel set in Y, we see
that (vg)y = v. O

At this point we have established the measure correspondence promised in the
introduction:

Proof of Theorem 1.14. The maps “resy from Lemma 4.8 and Cind} from
Theorem 3.14 are mutually inverse by Lemma 4.8. It remains to show that if u
and v are as in the theorem, then (i)—(iv) hold. Property (ii) is actually our definition
of v and (i) follows from (ii) (see Proposition 4.3 and Remark 4.4). Moreover,
(iv) was established in Lemma 4.6. If C is injective, then by Lemma 4.1(ii) we
have Tyc = xqc) and hence

1(a(C)) = u(xac)) = u(Txc) = (mg @ v)(xc) = (mg Qv)(O).

This establishes (iii) and finishes the proof. ]
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Proof of Corollary 1.15. Since Y is closed in X, it is locally compact,
hence we can find an exhaustion Y = {Y,} of Y by compact sets with non-empty
interior. Then the Radon measures on Y are precisely the measures in M(Y, Y). If
G = { K.}, then the sets X,, := K,,Y,, are compact and exhaust X. Since X is Baire, it
follows that almost all X, contain an interior point, but this in turn implies that the
measures in M(X, Yg) are precisely the Radon measure on X. The corollary then
follows from Theorem 1.14. (]

4.4 Ergodic decomposition of Y-transverse measures. In this sub-
section we assume that G is unimodular so that by Lemma 4.7 the transverse
measure uy is Ry-invariant for every G-invariant measure ¢ € M(X;Y 9)G. We
first observe that the restriction map preserves ergodicity in the following sense:

Lemma 4.9. Suppose u € M(X;Y5)°. Then
u is G-ergodic <= uy is Ry-ergodic.

Proof. Suppose u is G-ergodic, and let A C Y be an Ry-invariant subset such
that uy(A) > 0. We want to show that uy(A°) = 0. Let us fix a Borel Y-section
S : X — G and define

Ag={xeX: px)xeA}l

By Lemma 3.13, Ay C X is a G-invariant Borel set such that Ay MY = A. Since
uy(A) > 0, it follows from Lemma 4.6 that u(Ag) > 0. Since u is ergodic, we
have ,u(A;f) = 0. Using Lemma 4.6 again, and the identity (Ag)° = (A°)p, we see
that
1y(AGNY) = iy(A%) = 0.

To prove the converse, assume that uy is Ry-ergodic, and let B C X be a G-invariant
Borel set such that 4 (B) > 0. We want to show that x(B¢) = 0. By Corollary 3.12,
BNYisan Ry-invariant Borel setin Y, and by Lemma 4.6, we have uy(BNY) > 0.
Since uy is Ry-ergodic, uy(B° N Y) =0, and thus ux(B°) = 0 by Lemma 4.6. ]

This allows us to carry over the ergodic decomposition of invariant measures in
M(X;Yg) to transverse measures. We will use the following version of the ergodic
decomposition theorem which is contained in [9, Theorem 1.1].

Theorem 4.10. For every u € Prob(X)Y, there is a unique probability mea-
sure o on Prob(X), which is supported on the set of G-ergodic Borel probability

measures on X, such that
ut)= [ ) dot,
Prob(X)¢

for every bounded real-valued Borel function F on X.
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If we now consider F of the form T(p ® f), where T is defined as in (5), pis a
compactly supported continuous function with mg(p) = 1 and f is a bounded Borel
function on Y, then Proposition 4.3 and Lemma 4.9 give the following corollary.

Corollary 4.11. For every u € Prob(X)%, there is a unique probability mea-
sure o on Prob(X), which is supported on the set of G-ergodic Borel probability
measures on Y, such that

() = / () do (),
Prob(X)¢

for every bounded real-valued Borel function f on Y.

4.5 Change of cross section. We continue to assume that G is unimodular.
We observe that since Y C X is a U-separated cross section, the translate g.Y is a
Us-separated cross section. The corresponding transverse measures with respect
to Y and g.Y are related as follows:

Lemma4.12. Let i € My, (X)C. Then, forevery g € G, we have g. ity = g y.

Remark 4.13. The lemma, with virtually the same proof, also holds for Yg-
finite Borel measures, for a Borel exhaustion Y of Y and a fundamental exhaustion G
of G by compact sets.

Proof. Fix g € G and let V be an identity neighborhood in G such that
V=1V c U. Suppose B C g.Y is a Borel set. Then, g~!.B is a Borel setin Y, and

_ u(Veg~'.B)
My (B) = '.B) =
g+1ty(B) = uy(g™".B) mg(V)
Since u is G-invariant and V8(V8)~! C U® and g.Y is U8-separated, we see that

u(Vg~'.B) _u(gVg~'.B) _mg(gVe™h)

= = B).
mg(V) ma(V) me(vy  HerB)

Since G is unimodular and B C g.Y is arbitrary, we conclude that g, uy = pgy. U

5 Transversal recurrence

In this section we establish a transverse recurrence theorem which corresponds to
the case r = 1 of Theorem 1.10 from the introduction. The versions for r > 1 will
later be established by applying this theorem to a suitable intersection space.
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5.1 A transverse version of Poincaré’s Recurrence Theorem. LetG
be a non-compact Icsc group with left Haar measure mg. Let X be a Polish space,
and denote by #y the g-algebraon X generated by the openssets. Leta : GxX — X
be a Borel measurable action, and suppose ¥ C X is a U-separated cross section
for some identity neighborhood U in G. The aim of this section is to prove the
following transversal version of Poincaré’s classical recurrence theorem.

Theorem 5.1. Forevery u € Mﬁn(X)G, there is a py-conull Borel set Y C Y
such that for every 'y € Y, there is a sequence (g,) € Y, such that g,.y — y and
gn — 0o asn — oo.

In other words, for a generic point in the transversal (with respect to the
transverse measure) we can find an infinite number of return times to an arbitrary
small neighborhood in Y (rather than in X). The assumption that X is Polish is
used in the proof to construct an exhaustion of X by compact sets and to guarantee
that X is second countable.

5.2 Proof of Theorem 5.1. We will prove Theorem 5.1 by reducing it
to the non-transversal version of Poincaré’s recurrence theorem. Throughout we
fix u € Mg,(X)®. A subset = C G\ {e} is Poincaré (with respect to the triple
(X, a, p)) if for every Borel set A C X with positive y-measure, there exists £ € E
such that (A N &7'A) > 0. We can then state Poincaré’s recurrence theorem as
follows:

Lemma 5.2 (Poincaré’s Recurrence Theorem). Let ® C G be an infinite set.
Then 2 := @ @'\ {e} is a Poincaré set.

Proof. Assume, for the sake of contradiction, that there exists a Borel set
A C X with positive p-measure such that

—1 4y _ -1 N ..
,u(AﬂH,-Gj A) = p(6; .Aﬂ@j A)=0, forallij,

where 6, 0,, ... is an infinite sequence of distinct elements in ®. Then the sets
07'.A, 051 A, ... are disjoint modulo x-null sets, and thus

00 =" u() =3 u(;".A) =,L6(U9i_l.A) < 1.

Corollary 5.3. For every compact set K in G, there is a countable Poincaré
set B such that EN K = ().

O

Proof. Fix a compact set K in G. Since G is non-compact, there is an infinite
sequence ® = (¢;) in G such that 67 'K N 6;"'K = {) for all distinct 6, §; € ©. By
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the previous lemma, Z = ®@®~! \ {e} is a (countable) Poincaré set, and clearly
ENK=0. O

The proof of Theorem 5.1 will be based on two lemmas. If Z is a countable
Poincaré set in G, and A C X is a Borel set, we denote by

Az ={xeA:éxe A, forsomel e E}
the set of all points in A whose return time sets to A contains E. Since
Az =JAne A,
feE
and = is countable, we see that Az is a Borel set in X.

Lemma 5.4. [fA C X is a Borel set with u(A) > 0, then Az is a u-conull
Borel subset of A.

Proof. Set B := A\ Az, and assume, for the sake of contradiction, that
u(B) > 0. Since E is a Poincaré set, this implies that there exists £ € E such
that £(BNE'B) > 0. In particular, BN &~1.B is non-empty, which contradicts the
factthat BC Aand BN Az = 0. O

For the second lemma we consider a Borel set V C G such that V='V C U. By
Lemma 3.1(i), the composition

(8) pry:VY—>VxY—>Y, ovy— (b,y)—Yy
is well defined and Borel.

Lemma 5.5. Let X' C X be a u-conull Borel set. Then pry (X' N V.Y) contains
a py-conull Borel set.

Proof. Since both a and pry, are Borel, [12, Proposition 14.4] tells us that
Y :=pry(X’ N V.Y) and V.Y’ are analytic sets in ¥ and X respectively. Hence, by
[12, Theorem 21.10], Y” and V.Y’ are measurable with respect to the u y-completion
of By and the p-completion of Ay respectively (we abuse notation and denote
by uy and u the unique extensions of uy and u to the respective completions).
Note that V.Y’ D X’ N VY. Since X’ is u-conull we have

w(X' NV.Y) = w(V.Y) = mg(V)uy(Y),
and thus
u(VY') _ pX'NVY)
mg(V) = mg(V)
Since Y’ is measurable with respect to the uy-completion of %y, we can find a
Borel set Y C Y’ which is still xy-conull. O

uy(Y') = = puy(Y).
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The proof still applies if ¢ is merely assumed to be o-finite, but we will not
need this fact here.

Proof of Theorem 5.1. We fix an identity neighborhood V in G such
that V='V C U, and an exhaustion {K, : n > 1} of G by compact sets. By
Corollary 5.3, there exists a sequence (Z,) of countable Poincaré sets in G such
that 2, N K,, = () for all n. Since X is Polish, it is second countable. Fix a countable
basis for the topology on X and denote by ‘B := { B} the collection of (non-empty)
intersections of the basis elements with supp(uy) C Y. Define

B:=VBCX, forBec?DB.

Since uy(B) > 0, we have u(E) > 0, for every B € 8. Define

o0
Npn = B\ Bz, and X := U UX\NB,,I.
Be'B n=1
By Lemma 5.4 we have u(Np,) = 0forall B € 8 andn € N. Since ‘B is countable,
X’ is thus a u-conull Borel set. By Lemma 5.5 the set pry,(X’ N V.Y) contains a
uy-conull Borel subset

Y CpryX'NVY)CY.
We claim that Y’ satisfies the conclusions of Theorem 5.1. To see this, pick
yeY, veV and x=ovyeX NVY,

and a sequence (B,) in ‘B such that {y} =), B,.

Since x € X’ N V.B, for every n, and thus x € (V.B,)z,, we can find &, € E,
such that &,.x € V.B,. Hence there existv,, € V and y,, € B,, such that

fnv-y = Un-Yn»

and thus g, = vn_lé‘nv e ¥,NVS,Vandg,y=y, € B, Since(, ¢ K, for all n,
we see that g, — oo, and since {y} =), B,, we see that y, — y. (]

6 [Ergodic theorems for cross sections

In this section we establish a pointwise transversal ergodic theorem along certain
averaging sequences which we call convenient sequences. As an application we
deduce that generic points in the transversal have positive lower density along such
sequences. This establishes Theorem 1.11 from the introduction in the case r = 1.
The versions for » > 1 will later be obtained by applying this version to a suitable
intersection space. Throughout this section, G denotes a unimodular Icsc group
with bi-invariant Haar measure mg and (X, a, Y) is a U-transverse triple over G for
some open identity neighborhood U C G.
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6.1 Convenient sequences. If V is an open identity neighborhood and
B C G is a pre-compact Borel set, then we set

By = ﬂ v 'B and B := U v ~'B.
veV veV
Definition 6.1. Let (V,) be a decreasing sequence of open identity neigh-
borhoods in G. We say that a sequence (G,) of pre-compact Borel sets in G is
convenient if
(i) There exist sequences (d,), (¢,) and (#,) of positive real numbers such
that 9, ¢, — 0, and

9) Gi—s, C (G)y, C (G)y, C G, forallt>1,

and

(10) 1—¢g, < lim m(Gi-s) 4 mG(Grss,) <1+e,,
1—oo0 Mmg(Gy) t—oo mg(Gy)

for all n.
(i) For every Borel G-space (X, @) and bounded real-valued Borel function ¢
on X, the set

. 1 .
E, = {x eX: tl_lglo me(G) o p(g.x)dmg(g) ex1sts}
is Borel in X and u-conull for every u € Mg,(X)C. Furthermore, the function
¢ : E, — R defined by

. 1
p(x) = lim me(G) o, p(g.x)dmg(g), forxeE,,
is Borel, and for every G-ergodic u € Prob(X)?, there is a G-invariant and
u-conull Borel subset E,(u) C E, such that ¢ = u(¢) for all x € E,(u).

Remark 6.2. The key point of Condition (ii) is that the set E,(u) is G-
invariant. While this is automatic if G is amenable, and (G;) is a sufficiently nice
Fglner sequence in G, it is not at all automatic when G is non-amenable. Sufficient
conditions on (G;) to satisfy (ii) are given in [8, Theorem 5.22] (note however that
the averages in this book are taken over G, !). Examples of convenient sequences
in semisimple Lie groups are explicated in [8, Chapter 7].

For the applications we have in mind, it is convenient to require the first
condition of (ii) to hold for all G-invariant finite measures 4 on X, whereas the
second condition is only required to hold for G-ergodic probability measures. We
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point out, however, that it is actually enough to check both conditions only for
G-invariant ergodic probability measures on X. Indeed, assume that (ii) holds
for all ergodic probabiity measures on X and let x4 be a finite invariant measure.
Since Condition (ii) is invariant under rescaling x, we may assume that u is a
probability measure, hence admits an ergodic decomposition. Since all ergodic
components v of u satisfy v(E,) = 1 we also have u(E,) = 1, proving that E, is
u-conull.

6.2 A pointwise transversal ergodic theorem. Our main goal in this
section is to prove the following theorem.

Theorem 6.3. Suppose y € Prob(X)C is G-ergodic. Then, for every conve-
nient sequence (G;) pre-compact Borel sets in G and for every bounded real-valued
Borel function f on X, there is a py-conull Borel set Ey C Y such that

1
lim Z fhy) = uy(f), forallye Ey.

=00 mg(Gy) heY,NG,
3

Proof. We may without loss of generality assume thatf is non-negative. Given
a non-negative continuous function p with compact support such that mg(p) = 1,
we define

L= pth™f(hx), xeX

heY,

Note thatf, = T(p®f), where T is the Y-periodization defined in (5), so in particular
f» is a bounded Borel function on X by Lemma 4.1(i) and (v), and by Proposition
43,

(11) 1) = mg(p)py(f) = uy(f), forevery u € Mg, (X)°.

Furthermore, by Lemma 4.1(ii)

fr(gx) =Y plgh™")f(hx), forallg,

heY,

and thus, for every Borel set B C G,

[ s =% ( | 2wt @) de(g)) )

heYy

Suppose supp(p) C V. Then, since p and f are non-negative,

x5y(h) < /G 2150 p(8) dma(8) < ys,(h), forall h € G,
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whence

(12) 3 fha) < /B flgxydma®) < Y. fh),

heY,NB; heYNB},

for all x € X and for every (pre-compact) Borel set B C G.
Suppose (G;) is a convenient sequence of pre-compact Borel sets in G. By (9),
there exist sequences (J,) and (#,) such that §, — 0, and

Gt—én C (Gt)‘_/n C (Gt)-"-/n C Gl‘+5,,9 for all t> tn.

Let (p,) be a sequence of non-negative continuous functions such that supp(p,,) C V,
and mg(p,) = 1 for all n. If we set B = G; and p = p,, in (12), then

> S0 < [ flendna@ s Y S
he¥NG,_s, G he¥NGias,

forall x € X and ¢ > t,. Define

w.(¥) = lim ! 3> fhx) and  y_(x) = lim ! ) S flh),

=00 mg(Gy) heY NG, 100 MG(Gy heY .G,
forx € X, and set E, := Ey, and y,, :=f, . By (10),

(1= e)y—(0) < () < (1+8,) yax)

for all x € E,,. Furthermore, for every G-ergodic u € Prob(X)¢, we have

wn(X) = u(fy,) = uy(f) forall x € E,(u) = E;, (1).

Since &, — o0, we conclude that

wax) = y_(x) = uy(f), forallx e Ep(u) :=()Ea(n).

By Definition 6.1(ii), each E,(x) is G-invariant and g-conull, and thus E}(y) is
G-invariant and p-conull as well. By Lemma 4.6, Ey := E;(u) NY is a uy-conull
Borel setin Y, and

lim I
=00 mg(Gy)

> flhy) = py(h),

heY,NG;

forall y € Ef. 4
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6.3 Positivity of lower densities. We now give an application of Theorem
6.3 to densities of generic return time sets. Given a convenient sequence (G;) of
pre-compact Borel sets in G we define the associated lower density Dens g ,(A)
of a subset A C G by

ANG
Dens,)(A) := lim ! tl.
' =00 MG(Gy)
We now fix such a sequence once and for all and define the lower density
function Densy by

(13) Densy : ¥ — [0, 00], Densy(y) := Dens,(Yy).

Theorem 6.4. For every u € Prob(X)®, Densy(y) > 0 for uy-almost every
yelt.

Proof. Let N :={y e Y : Densy(y) = 0}. Fix a G-invariant Borel probability
measure ¢ on X. We want to show that yy(N) = 0. By Corollary 4.11, there is a
Borel probability measure o on Prob(X)¢, supported on the set of G-ergodic Borel
probability measures, such that

uy(f) = ny(f) do(n),
Prob(X)¢
for every bounded real-valued Borel function on X. Hence it suffices to prove that
Densy(y) > 0O for #-almost every y, for every G-ergodic 7. To do this, note that

1
Dens, (y) = lim L.
¥ 1—00 MG(Gy) he;Gt

By Theorem 6.3, the right-hand side converges to #y(1) for z-almost every y,
and for every G-ergodic Borel probability measure #. By Lemma 4.5 we have
ny(1) > 0, and we are done. ]

7 'Transverse measures for actions of semidirect prod-
ucts

In this section we finally establish Theorem 1.7 concerning restriction in stages
for semidirect products which is the main technical result of this article. We also
provide several criteria for the intermediate cross section to be separated; this will
be used in the proof of Theorem 1.9 and some of its variants.
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7.1 Basic setup. Let G be alcsc group. We assume that there are closed
subgroups N and L of G, with left Haar measures my and my respectively, such
that:

e G =NL,Nisnormalin Gand NNL = {e}. In other words, G is the semidirect

product of N and L.

e The conjugation action of L on N preserves my.

The first assumption in particular implies that every element g in G is of the form
nl for unique elements n € N and [/ € L and we write n := pry(g) and [ := pr;(g).
Note that pr; : G — L is a continuous homomorphism. The second assumption
implies that

me(f) = / / Faly dmy(nydmy (D). f € C(G),
NJL
is a left Haar measure on G. Note that
(14) mg(WyWr) = my(Wy)mp(Wy),

for all Borel sets Wy C N and W C L. The key example that we have in mind is
the following:

Example 7.1. Let G, be a unimodular lcsc group, set G := G, and denote by
r : G = G, the kth coordinate projection. For some k let N := N; := ker(zy)
and let L := A(G,) < G be the diagonal subgroup. Then the triple (G, N, L)
satisfies all of the assumptions above. Indeed, since G, is unimodular, G, N and L
are unimodular, and the L-action on N, preserves the (bi-invariant) Haar measure
on Ny.

Given an open identity neighborhood U in G and a U-transverse triple (X, a, Z)
over G we make the following definitions: We fix Borel exhaustion Z={Z, : n > 1}
of Z,andlet L ={L, :n > 1} and N = {N,, : n > 1} be fundamental exhaustions
by compact sets of L and N respectively. We define

Y=LZ and Y,:=L,Z, and Y=2, and G={N,L,:n>1},

and ay = a|.xx and ay := a|yxx. Note that Y and Y, are Borel sets in X by
Lemma 3.1(iv) and Lemma 2.1(iii). In particular, (Y, ar) is a Borel L-space by
Lemma 2.1(i), and (Y, a, Z) is a U N L-transverse triple over L. At the same time Y
is also a cross section for the Borel action ay of N on X. In the sequel we refer to
it as the intermediate cross section.
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7.2 Criteria for separatedness of the intermediate cross section.
We keep the notation of the previous subsection. In particular, Z is a separated G-
transversal in X and at the same time a separated N-transversal in Y. The following
example shows that Y need not be separated when considered as an N-cross section
in X.

Example 7.2. Let G = R>, N = R x {0} and L = R(a, 1), where a is an
irrational number, and let X = R?/Z?, Z = {(0,0)} and Y = L.Z. Then, for every
y=@{o+7Z,t+7Z) €Y,

Yy={(m+na,0):m,neZ},
which clearly accumulates at (0, 0), and thus Y is not a separated cross section.

Our next lemma provides a necessary and sufficient criterion for Y to be a
separated cross section in terms of the return time set A,(Z). However, this
criterion is often difficult to verify, so we also give two sufficient criteria, which
are easier to check in practise. We use the following notation: if W C N, then
W' .= IWI=! forl € L and WL :=J,., W'

Lemma 7.1. We have A, (Y) = prN(Aa(Z))L. In particular, Y is a separated
cross section if and only if pry(A(Z2)" is uniformly discrete. This is the case if
either

(i) there is a compact set K; C L such that Kp(Ay(Z)N L) = L, and pry(Au(Z)%)
does not accumulate at the identity in N, or
(i1) G is abelian, and pry(A\4(2)) does not accumulate at the identity in N.

Proof. Let us first show that A, (Y) = pry(A4(Z2))E. Consider the following
equivalences: (1) n € A4, (Y), i.e., there exists y € Y such thaty’ := n.y € Y. Since
Y = L.Z, we can write y = [,.z and y' = [,.z, for some [,,l, € L and z,,z € Z.
Hence (1) is equivalent to (2): (I;'nl,) 1, € Z., for some ,,l, € L and z € Z.
Since N is normal, NN L = {e}, G = NL, and 7z and [, are arbitrary, (2) is equivalent
to (3): l;lnlo € pry(Ay(2)) for some [, € L, or equivalently, n € prN(Aa(Z))L.

Note that if G is abelian, then pry(A.(Z))* = pry(A4(2)), since the L-action
on N is trivial, and hence we deduce that Condition (ii) is sufficient. Now suppose
that (i) holds and fix a compact subset K; C L such that K, (A,(Z)N L) = L. Since
N ALZ) ' © Au(Z)? forall n € Ay (Z) N L, we have

Pry(Ad(Z)" C pry(AJ(2))r.

Suppose that prN(Aa(Z)3) does not accumulate at the identity in N. Then there is
an identity neighborhood W in N such that pr(A,(Z)*) N W = {e}. Let Uy be an
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open identity neighborhood in N such that k="' Uyk ¢ W for all k € K;. Then,

Prv(A(Z)) 0 Uy € (pry(Au(2)) N UNE YR
c (prN(Aa(Z)3) N W)KL ={e},

and thus prN(Aa(Z))L N Uy = {e} as well. In particular, Y is a Uy-separated cross
section. O

One might suspect that the cocompactness assumption in Lemma 7.1(i) which
assumes that there is a compact set K; in L such that K (A,(Z) N L) = L is
superfluous, since it has no counterpart in the abelian case. Our next example
shows that it cannot simply be dropped in the non-abelian case.

Example 7.3. Let G = SL,(R) x SL,(R), let L denote the diagonal in G,
and let N = SLy(R) x {e}. Note that pry(g1, g2) = glgz_l. Let I'y, = SL,(Z) and
I'=T, xTI,, and set

X=G/T' and Z={T},

where G acts on X by left multiplication. Then it is easy to check that A,(Z) =T
and pry(A4(Z))F = TS2® » (¢}, Since T, contains non-trivial unipotent elements,
FELZ(R) accumulates at e in SL,(R), and thus

Y:=LZ={(81s,80I0): g € SLa(R)}
is not a separated cross section for the N-action. However, since

pry(AL(2)*) =T, x {e},

the second condition in Lemma 7.1(i) clearly holds.

7.3 Restriction in stages. In this section we establish Theorem 1.7 from
the introduction. In fact, we are going to establish a more general version which
also works for certain infinite measures. We keep the notation of the previous
subsection and assume in addition that Y is a Uy-separated cross section for the
N-action on X for some open identity neighborhood Uy in N.

Let now u € M(X, Zg)¢ and let

Uz = Gres)}g(,u) e M(Z, 2)Roz,

Since 4 € M(Yn)E (as L € G and Zg = (Zg)n = Yn) we can also form the
intermediate measure uy := Vres{(u) € M(Y, Y)Rnr,

Theorem 7.2. Assume that the N-cross section Y is separated and let
1 € M(C, 25)¢ and uz = “res§(u) € M(Z, Z)Roz,
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(i) The measure py € M(Y, YR is L-invariant and hence the transverse mea-
sure (iy)z = Lrest(uy) is well-defined.
(i) (uy)z = pz.

Proof. Fix identity neighborhoods V, Vi and V; in G, N and L respectively,
such that

V'vcU and Vy'Vyc Uy and V'V, CcLNU.

We may without loss of generality assume that VyV; C V. Notethat V xZ, V; x Z
and Vy x Y are a-injective, a;-injective and ay-injective Borel sets respectively
(cf. Lemma 3.1(1)).

To prove that uy is L-invariant, we fix [ € L, a Borel set B C Y and an identity
neighborhood V; C Vy such that [='V,/ ¢ Vy. Then, since [.B C Y and V; x L.B is
an injective Borel setin N x Y,

u(Vil.B)  u(I7'ViI.B)  my(I7'Vil)
my (Vi) my(V7) my(V))
where we in the second equality have used that x4 is L-invariant, and in the last

1y(LB) = uy(B) = uy(B),

identity that the conjugation action of L on N preserves my. Since [ and B are
arbitrary, uy is L-invariant.
Let us now prove the identity (u«y)z = wz. Note that

w(VNVe.B) = my(V) uy(Vi.B) = my(Vi)mp (Vi) (uy)z(B),

for every Borel set B C Z, where we in the first identity have used that uy is the
Y-transverse of u for the N-action, and in the second identity that (uy); is the
transverse measure of uy for the L-action on Y. On the other hand,

w(VyVe.B) = mg(VyVi) uz(B) = my(Vin)mp (V) 1 z(B),

since uz is the Z-transverse measure of u for the G-action on X. Since B is
arbitrary, we conclude that (uy)z = pz. O

Proof of Theorem 1.7. This is just a special case of Theorem 7.2 in which
u is finite. (]

There are several equivalent ways to formulate Theorem 7.2, for example:

Corollary 7.3. Assume that the N-cross section Y is separated. Then the

composition Fres) o Nres¥ is well-defined on M(X, 2.5)° and satisfies

Lresg o Nres’; = Gres)z( T M(X, Zg)G — M(Z, Z)Rc.z_
Similarly, the composition Nind} o¥indY, is well-defined on M(Z, 2)R¢% and satisfies

Nind} o “ind} = %ind} : M(Z, 2)%¢2 — M(X, 25)°.
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Indeed, the first version is just a reformulation, and the second version follows
from Lemma 4.5. Yet another way to express the same conclusion is to say that
for u € M(X, 2Z5)¢ we have

(15) Nresy () = Lind} (Cresy(w)) .

Note that the group N does not appear on the right-hand side. This implies the
following independence of the measure uy from the choice of semidirect splitting:

Corollary 7.4. Let u € M(X;25)¢ and suppose that Ny and N, are closed
and normal unimodular subgroups of G such that

NiNL=NNL={e} and G =NL=N,L.

Assume that Y is a separated cross section for both ay, and ay, and that the L-
actions on NV and N® by conjugation preserve the respective Haar-measures.
Then

Mresy(u) ="resy(u) = "indy(“resy(u)).

7.4 Compatibility of transverse measures. We keep the notation of the
previous subsection, including the assumption that Y is a Uy-separated cross section
for the N-action on X for some open identity neighborhood Uy in N. Our goal
here is to establish the following compatibility theorem about transverse measures
which will be used in the proof of Theorem 1.8 to show that the normalized
intersection measure is a joining.

Theorem 7.5. Let (T, b,) be a Borel L-space and © : X — T be a Borel
G-map, where G acts on T via the homomorphism pr;. Suppose u € M(X; 25)¢ is
finite and 7,y is L-ergodic. Then

Tapty = uy(Y) mwop.

Remark 7.6. We do not know whether L-ergodicity of 7, u is necessary. In
the proof below, we show that 7, uy is always absolutely continuous with respect
to m.u, but it seems to be a difficult problem to explicate the Radon—Nikodym
derivative in general.

Proof. Since u is finite, uy is finite as well, so 7, u and 7, uy are both finite
L-invariant Borel measures on 7. Since 7, u is assumed to be L-ergodic, to prove
the theorem, it is enough to show that 7, 1y is absolutely continuous with respect
to w,u. To do this, let B C T be a Borel set such that 7, u(B) = u(z='(B)) = 0.
We want to prove that 7, i y(B) = py(z~'(B)NY) = 0. Since N acts trivially on 7,
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the pre-image 7~!(B) is an N-invariant Borel set in X. Hence, since uy is the
Y-transverse measure of u for the N-action on X,

my(Vi)py(@ '\ (BYNY) = u(Vy.(x " (B)NY)) < u(Vy.x~ (B))
= u(z~'(B)) =0,
and thus 7, uy(B) = 0. ]

8 Intersection spaces

In this section we apply the general theory of transverse measures for semidirect
products developed in the previous section to the special case where G is as in
Example 7.1 and X is a product space. In this case, the intermediate cross sec-
tion Y is precisely the intersection space discussed in the introduction, and we
can use this to deduce Theorem 1.8 from Theorem 7.2. Once the good properties
of the intersection measure are established, we obtain Theorem 1.10 and Theo-
rem 1.11(and hence their special cases Theorem 1.5 and Theorem 1.6) by applying
the results of the second part. We also establish the commensurability criterion
from Theorem 1.9.

8.1 Basic setup. Let G, be a lcsc unimodular group with left Haar mea-
sure mg,. Asin Example 7.1 we define G := G, N; := ker(wy) (where 7y : G — G,
is the kth coordinate projection) and L := A(G,). Furthermore, we assume that we
are given G,-spaces (X1, ai1), ..., (X;, a;) and corresponding separated cross sec-
tions Zi, ..., Z, for some identity neighborhood U; in G,. We also pick open
identity neighborhoods U, in G, such that Z; is Ug-separated and abbreviate
Ay =N, (Zy) C G,. We now set

X=X x---xX,, =721 X X2,
U=Ux---xU, and A=A x---xA,,

and denote by a the product of the G,-actions ay, ..., a, so that (X, @) is a Borel
G-space and Z is a U-separated cross section with return time set A,(Z) = A.
We now apply the theory of the previous section to the transverse triple (X, a, Z)
of the semidirect product G = N;L. The key observation, which links the theory
developed in the last section to the results presented in the introduction, is that the
intermediate transversal Y := L.Z is precisely the intersection space

y=xX" = {, . x) e X (@on #0 )
k=1

={(x1,....,x)eX g, € G, Vke{l,...,r}:g,xx € Zi}
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considered in the introduction. It thus follows from the results of the previous
section that X!"! is Borel and N;.X!"! = X forevery k € {1, ..., r}.

To study finiteness properties of measures on the spaces X, Y and Z we fix a
fundamental exhaustion G, = {K,([’) :n > 1} of G, by compact sets and a Borel
exhaustion Z; = {Z® : n > 1} of Z; foreach k € {1,...,r}. Let G and Z denote
the fundamental exhaustion of G by compact sets and the Borel exhaustion of Z
given by

G={K?x---xK”:n>1} and 2={Z"x---xZV:n>1)}.

We denote by £ and Ny, the restrictions of G to L and N, respectively, and we denote
by X"l the £-suspension of Z, and by ngf]k the Ny-suspension of X1,

8.2 Commensurability of cross sections. We keep the notation of the
previous subsection. In order for our general theory to apply, we need to ensure
that the intermediate cross section ¥ = X! is separated for each of the actions aly,
of Ny. We recall from the introduction that the separated cross sections Zy, ..., Z;
are called commensurable if this is the case. From Lemma 7.1 we can derive
the following criteria for commensurability.

Lemma 8.1. For a fixed k, Y = X" is a separated cross section for aly, if
either

(1) there exists a compact set K, C G, such that Ko(ﬂ;=1 Aj) = G,, and for all
Jj#k, Af’ A;z does not accumulate at the identity in G,, or
(i1) G, is abelian, and for all j # k, AjAy does not accumulate at the identity
in G,.
In particular, the cross sections Z, ..., Z; are commensurable if one of these
conditions holds for all k € {1, ...,r}.

Remark 8.2. Before we embark on the proof, let us first make a few prelim-
inary observations. Given a subset A C G, we set A (A) = {(a,...,a) :a € A}
Since A, (Z) = A we then have

ADNL=A((VA)) and A2V = A x - x AL
j=1
for every positive integer p. Furthermore,
Prv (@) = (g18c s+ es o 88K ) € Ny,

forall g = (g1, ..., 8r) € G, where e is in the kth position. In particular,

pra(A(ZY) € ATAL x -+ x {e} x --- x APAL.
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Proof of Lemma 8.1. (i) By Lemma 7.1(i), Y is a separated cross section
for al|y, if there is a compact set K; C L such that K pry, (A.(Z) N L) = L and
prNk(Aa(Z)3) does not accumulate at the identity in N;. From the remarks above,
the first condition just means that there is a compact set K, C G, such that

ALKy A, ( m Aj) =A, (Ko ( ﬂ Aj)) =L,
j=1 j=1
while the second condition means that A]3 A} does not accumulate at zero in G, for
every j # k. The same argument applies to (ii), but now using Lemma 7.1(3i). O
Proof of Theorem 1.9. This is just a special case of Lemma 8.1. (|
8.3 The intersection measure. We keep the notation of Section 8.1.
Moreover, we assume that the separated cross sections Zi, ..., Z, are commen-

surable. We now assume that we are given G,-invariant measures (i, ..., i, On
Xi, ..., X, respectively such that u is (Z;)g,-finite. Then, by definition, we have

p= @ ® € M(X, 26)¢ C M(X, XXM
forall k € {1, ..., r}and hence for any such k£ we can form the tranverse measure
,u,[(r] = Niresy, € M(XU1, Xy,

By Corollary 7.4 the measure u!" := u! = ... = 4" is actually independent of
the choice of k.

Definition 8.3. The measure u!"! € M(X!"!, X"} is called the intersection
measure of i, ..., i, (|

From the general theory we infer the following properties of intersection mea-

sures:

Theorem 8.4. Suppose that Z,, ...,Z, are commensurable and for every
ke {l,...,r}let ux be a (Zi)g,-finite G,-invariant Borel measure on Xi. Then
the intersection measure uV' of 1, . .., i, has the following properties:

() p" e Mx";, XI'WE is L-invariant.
(ii) u"Vis the unique measure in M(XU1; XUWE such that

Wz =z ®- - @ (1p)z-

(i) If w1, ..., u, are finite, then u'" is finite.
Gv) If u1, ..., pu, are G,-ergodic Borel probability measures, then p" / "1 (X!1)
is a G,-invariant joining of (i, ..., Uy
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Remark 8.5. We stress that x!"1 does not need to be L-ergodic, even if
Ui, ..., 1, are all G,-ergodic.

Proof. (i) and (ii) follow from Theorem 7.2 appliedto u = ¢ ® - - - @ u, and
the fact that Lres¥” is injective (Lemma 4.5).

(iii) If uy,..., i, then u is finite, and thus u"! = uy is finite as well by
Remark 4.4.
(iv) Fix k € {1, ..., r} and denote by p; : X — X, the projection onto the kth

factor. We have to show that (pk)*(y,Er]/ ,u,[:](X[’])) = py. Since p; is an L-map
(where L acts on X via the k’th coordinate), this follows from Theorem 7.5 applied
to the map py. (|

Proof of Theorem 1.8. This is just a special case of Theorem 8.4 in
which uy, ..., u, are finite. O

Proof of Theorem 1.4. This is just a special case of Theorem 8.4 in
which X; =--- =X, and | =--- = u, is finite. O

8.4 Applications. We now derive Theorem 1.10 and Theorem 1.11 from
the introduction from Theorem 8.4. We thus assume that G, is non-compact,
X1, ..., X, are Polish spaces and ay, . . ., a, are jointly continuous G,-actions. We
also assume that u, ..., x4, are Borel probability measures on X1, ... X, respec-
tively. Theorem 8.4(i)—(iii) then implies that their intersection measure u!! is a
finite L-invariant Borel measure on X!"! such that

WMz =z, ® - @ u)z,.

We observe that for every z = (21, ..., 2) € Z,

(16) Z,={geG:g(z1,...,2)€L1 X - XZ}= ﬂ(zk)zk-
k=1
Proof of Theorem 1.10. By Theorem 5.1, there is a (u!")z-conull Borel
set Z' C Z such that for all z € Z', there is a sequence g, € Z, such that g, — oo
and g,.z — z. If we unwrap this using (16) and the formula

UMz =(uz, @ (ur)z,
then we see that we are done. O

Proof of Theorem 1.11. By Theorem 6.4, applied to the L-action on X",

we have
li |Z; N Gy
im

>0, for (ﬂ[’])z—almost every z € Z.
t—oo Mg(Gy)
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In view of (16) and since (¢ = (u1)z, ® - -+ ® (u,)z,, this is what we want to
prove.

Proofs of Theorems 1.5 and 1.6. These are just the special cases
Xi=---=X,and y; =--- = pu, of Theorems 1.10 and 1.11 respectively. g

9 Application to uniform approximate lattices

We now specialize the results of the previous section to our main case of interest
and derive Theorem 1.1, Theorem 1.2 and Theorem 1.12 from the introduction. In
fact, we will establish a slightly more general result concerning transverse triples
whose return time sets are uniform approximate lattices.

9.1 Uniform approximate lattices and commensurability of cross
sections. Let G, be a unimodular Icsc group. A subset ® C G, is called
symmetric if ® = ®~!. A symmetric subset ® C G, is called cocompact if
there is a compact set K C G, such that KO = G,.. If ® is a symmetric subset of G
which contains e, then we denote by ®* the subgroup of G generated by 0, i.e.,
0% =, ©".

We now consider the following situation: Let (X,, a,, Z,) be a U,-transverse
triple for G, for some identity neighborhood U, in G, and denote by
Ao, =Ny, (Z,) C G, the associated return time set. For every 4 € AS° the set 1.7,
is then a cross section for (X, a) and since (Z;),, ,, = ik(Zo)Zoik_l for all z, € Z,
we see that 1.Z is a U/-separated cross section and A, (1.Z) = AZ. Here we are
interested in the following problem: Given A1, ..., 1, € A, are the cross sections
MZy, ..., Ar.Z, commensurable so that our general theory applies? According
to Lemma 8.1 it suffices to ensure that the subsets Ay := A, (Ax.2) = Aﬁk are
cocompact (or equivalently, that A, is cocompact) and that the sets A} A,3< do not
accumulate at e for any j # k. Since 4y,...,4, € A we can find a positive
integer p, such that 4; € A?" for all k. We then have

APAR C AP, forallp > 1.

Thus 4,7, ..., 1,Z are commensurable provided A, is cocompact and A‘Z*zl" does
not accumulate at the identity.

We now recall from the introduction that a symmetric subset ® of a lcsc
group G, is called an approximate subgroup if ¢ € ® and there is a finite set
F C G, such that ®* C @F. We say that ® is cocompact if there is a compact
set K C G, such that K® = G,. Note that if an approximate subgroup ©® is a
uniformly discrete subset of G,, then so is every iterated product set ®” for p > 1.
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Conversely, if ® is cocompact and ®” is uniformly discrete for all p, then ® is
an approximate subgroup of G, ([2, Proposition 2.9]). In this case we call ® a
uniform approximate lattice in G,. From the discussion above we thus infer:

Lemma 9.1. If A, is a uniform approximate lattice in G,, then for all
Als ..o Ar € AP the separated cross sections MZ, . .., A.Z are commensurable.

9.2 Twisted multiple recurrence and twisted positive density. LetG,
be a lcsc group and let (X, a) be a Polish G-space such that a, is jointly continuous.
Moreover, let Z, C G, be a U-separated cross section for some open identity
neighborhood U, C G, with return time set A, := A, (Z,).

Theorem 9.2. Suppose A, is a uniform approximate lattice in G, and let u,
be a G-invariant Borel probability measure on X,,.
(1) Thereis a (ﬂo)%r-conull Borel set Z' C Z], such that for all (zy, . ..,z,) € Z',
there is a sequence g, € (i A(Zy), Ax ' such that

gn — 00 and lk_lgnlk.zk — zx, forallk,

asn — oo.
(i1) For every convenient sequence (G;) of pre-compact Borel sets in G,,

(o P AR T TaY N

> 0,
t—00 mg(Gy)

for (ﬂo)%r-almost every (21, ...,2,) € Z.

Proof. We abbreviate Z, := A1;.Z, and Ay, = A;lk for all k € {1,...,r}.

Since A, is a uniform approximate lattice in G,, the cross sections Z, ..., Z, are
commensurable by Lemma 9.1. Note that Z := Z; x --- X Z, = (4, ..., 4,).Z].
We set ;= u, fork=1, ..., r, and note that

(17) (u0)z = Q0u(pto)z,, forallk,

by Lemma 4.12. Moreover,
(Zi)iew = (Zo)y At forall zi € Z,.

(i) By Theorem 1.10, there is a [];_,(#x)z-conull Borel set Z” C Z such that
for all r-tuples (), . .., z;) € Z”, there is a sequence g, € (\;-;(Zi),, such that

gn— oo and g,.(Z,....2) > (&, ..., 2),



INTERSECTION SPACES AND MULTIPLE TRANSVERSE RECURRENCE 149

asn— o0. SetZ' :=(Ay,...,A) 1.2 C Z'. By (17),Z is a (yo)%’—conull Borel
subset of Z/. Furthermore, for all (zy, ..., z,) € Z/,

(lea s Z;) = (il'zla R ir-zr) € Z”a
and thus there is a sequence g, € (V= (Zi);, = iz 2i(Zp)y A", such that
g, > oo and g, Az > Ar.zk,

asn — 0o.
(i) By Theorem 1.11, for every convenient sequence (G;) of pre-compact Borel
sets in G,
. (M1 @) NGl
lim ,
t—00 mg(Gy)
forall (Z}, ..., z,) in some [[;_, (ux)z-conull subset Z” C Z. We thus see that

lim (et A4(Zo)o A N Gyl

> 0,
1—00 mg(Gy)

forall (zi,...,2) € Z :==(A1,..., A)"".Z", and Z' is a (u,)3’ -conull subset of Z]
by (17). O

To close the circle, we now finally return to the setting of Subsection 1.1 which
motivated this whole article. Thus let P, C G, be a uniformly discrete subset such
that Qp admits a G,-invariant probability measure u, and such that A, := P(,P;l
is a uniform approximate lattice. Denote by «, the right-multiplication action of G,
on Qp . Then

e X := Qp is locally compact, hence Polish, and the G-action a, is jointly
continuous;

e Z :=Tp, is across section for (X, a,);

e the return time set of (X, a,, Z) is A,; indeed, as in the proof of Proposition
3.2 one sees that A, C A, (Z) C A,, but A, is unifomly discrete, hence
closed.

In particular, (X, a,, Z) is a transverse triple over G, whose return time set is the
uniform approximate lattice A,,.

Proof of Corollary 1.12. Apply Theorem 9.2 to the triple

(Xa ay, Z) = (Q;’({Ia Ay, r'TP,,)- 0

Proofs of Theorem 1.1 and Theorem 1.2. These are just the special
cases of Corollary 1.12(i) and (ii) in which A, =--- =1, =e. ]
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