
Intersection spaces and multiple transverse recurrence

Downloaded from: https://research.chalmers.se, 2025-12-01 17:08 UTC

Citation for the original published paper (version of record):
Björklund, M., Hartnick, T., Karasik, Y. (2025). Intersection spaces and multiple transverse
recurrence. Journal dAnalyse Mathematique, 156(1): 97-150.
http://dx.doi.org/10.1007/s11854-025-0377-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



INTERSECTION SPACES AND
MULTIPLE TRANSVERSE RECURRENCE

By

MICHAEL BJÖRKLUND, TOBIAS HARTNICK AND YAKOV KARASIK

Abstract. We study multiple recurrence properties along separated cross
sections for pmp actions of unimodular lcsc group on Polish spaces. We establish
a multiple transverse recurrence theorem under the assumption that sufficiently
large powers of the return time set are Delone sets. Typical examples of such
situations arise from the theory of uniform approximate lattices.
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JOURNAL D’ANALYSE MATHÉMATIQUE, Vol. 156 (2025)

DOI 10.1007/s11854-025-0377-0

97
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1 Introduction

Given a Borel measurable action of a locally compact second countable (lcsc)
group G on a Polish space X, we say that a point x ∈ X is recurrent if there exists
a sequence (gn) in G with gn → ∞ such that gn.x → x. The Poincaré recurrence
theorem ensures that in the case of a probability measure preserving (pmp) action,
almost every point is recurrent. In this article we are interested in conditions which
ensure a stronger recurrence property for generic points which we call multiple
transverse recurrence.

More precisely, we are going to consider a pmp action of a lcsc group G on
a Polish space X with invariant probability measure μ. If Y ⊂ X is a sufficiently
well-behaved cross section, then the measure μ gives rise to a transverse measure
ν on Y (see [1, 13, 14]). By a multiple transverse recurrence theorem
we shall mean a theorem which ensures that for every r ≥ 1 and for ν⊗r-almost
all (y1, . . . , yr) ∈ Yr there exists a sequence (gn) ∈ G with gn → ∞ such that
for all j ∈ {1, . . . , r} we have both gn.yj → yj (i.e., multiple recurrence)
and gn.yj ∈ Y (i.e., transverse recurrence). Multiple transverse recurrence is a
rare phenomenon, which, as we will see later, only occurs under strong arithmetic
assumptions on the return time set to the cross section.

In this article we are going to establish a multiple transverse recurrence theorem
for a specific class of transverse systems whose return time sets are uniform
approximate lattices in the sense of [2]. Before we go into the details of our
setting, we discuss a specific example of a multiple transverse recurrence theorem,
which motivated us to introduce the general setting considered below.

1.1 A motivating example. Let Go be a non-compact unimodular lcsc
group with Haar measure mGo . We recall that the closed subsets of a lcsc group Go

form a compact metrizable space C(Go) under the Chabauty–Fell topology (see,
e.g., [2]) on which Go acts jointly continuously by g.A := Ag−1. If Po is a discrete
subset of Go, then we denote by �Po the hull of Po, i.e., the orbit closure of Po

in C(Go), and set �×
Po

:= �Po \ {∅}. The subset TPo := {Q ∈ �Po | e ∈ Po} is then a
cross section for the Go-action on �×

Po
, i.e., every G-orbit in �×

Po
intersects TPo .

(This specific cross section is sometimes called the canonical transversal in the
theory of aperiodic order.)

Motivated by problems in the theory of aperiodic order (see, e.g., [2, 3, 4])
we would like to find conditions which ensure that for many elements Q1, . . . ,Qr

of TPo the intersection Q1 ∩ · · · ∩ Qr is large in a suitable sense. This can be
achieved under two additional assumptions on the initial set Po.
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Firstly, we need to assume enough discreteness of Po. Recall that a subset
Po ⊂ Go is called uniformly discrete if its difference set � := PoP−1

o does not
accumulate at the identity; it is called relatively dense if there exists a compact
subset K ⊂ Go such that Go = KPo. In the sequel we assume that Po ⊂ Go is a
subset such that the difference set� is relatively dense and�3 is uniformly discrete.
These assumptions imply that � is actually a uniform approximate lattices
in the sense of [2], i.e., a relatively dense and discrete approximate subgroup, and
hence�n is actually uniformly discrete for all n ∈ N.

Secondly, we will assume that Go is unimodular and that the set �×
Po

admits
a Go-invariant probability measure μ. We are mostly interested in the case in
which Go itself is uncountable. In this case, the cross section TPo is a μ-nullset,
hence it does not make sense to speak about μ-generic points in TPo . However, the
theory of transverse measures ensures that there is a finite measure ν on TPo , called
the transverse measure of μ, such that for every bounded non-negative Borel
function f : G × TPo → R≥0,∫

�Po

∑
p∈P

f (p−1, p.P) dμ(P) =
∫

Go

∫
TPo

f (g,Q) dν(Q) dmGo(g),

and this provides us with a notion of genericity in TPo . There are plenty of examples
of sets Po satisfying both assumptions, including all uniformmodel sets in the sense
of [3].

Theorem 1.1 (Multiple transverse recurrence). There exist gn ∈ Q1 ∩· · ·∩Qr

for ν⊗r-almost all (Q1, . . . ,Qr) ∈ Tr
Po

such that

gn.Q1 → Q1, . . . , gn.Qr → Qr and gn → ∞.

Note that for every n ∈ N and j ∈ {1, . . . , r} we have gn.Qj ∈ TPo , hence the
recurrence to (Q1, . . . ,Qr) is in the transverse direction. The theorem implies in
particular that generically the intersection Q1 ∩ · · · ∩ Qr is infinite, but one can
actually say much more. Given a sequence (Gt) of subsets of Go of positive Haar
measures we define the lower (Gt)-density of a locally finite subset A ⊂ Go by

Dens(Gt)(A) := lim
t→∞

|A ∩ Gt|
mG(Gt)

.

Theorem 1.2 (Positive density of intersections). We have, for ν⊗r-almost all

(Q1, . . . ,Qr) ∈ Tr
Po

and every convenient sequence (Gt) in Go

Dens(Gt)(Q1 ∩ · · · ∩ Qr) > 0.

See Definition 6.1 below for the definition of a convenient sequence; for the
purposes of this introduction it suffices to know that such sequences exist in many
amenable lcsc groups and all semisimple algebraic groups over local fields.
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1.2 A general setting. We now describe a general abstract setting, in
which Theorems 1.1 and 1.2 hold true. For the rest of this introduction, Go denotes
a unimodular lcsc group with a jointly continuous action on a Polish space X. A
Borel subset Z ⊂ X is called a cross section for the Go-action if Go.Z = X; it is
called separated if the set�(Z) := {g ∈ Go | g.Z ∩ Z 	= ∅} of return times to Z

intersects some identity neighborhood in Go only in {e}. For example, TPo ⊂ �×
Po

is a cross section with return time set � = PoP−1
o , hence a separated cross section

if � is uniformly discrete.
From now on, Z ⊂ X denotes a separated cross section and μ denotes a Go-

invariant probability measure on X. As in the motivating example there is then a
finite measure ν on Z, called the transverse measure of μ, such that for every
bounded non-negative Borel function f : G × Z → R≥0,∫

X

∑
g∈Zx

f (g−1, g.x) dμ(x) =
∫

Go

∫
Z
f (g, z) dν(z) dmGo(g),

where Zx := {g ∈ Go | g.x ∈ Z} denotes the set of return times from x to Z.

Definition 1.3. We say that the action of Go on (X, μ) is
• recurrent if for μ-almost every x ∈ X there exists a sequence (gn) in Go

such that gn → ∞ and gn.x → x.
• r-fold recurrent if for μ⊗r-almost every (x1, . . . , xr) ∈ Xr there exists a

sequence (gn) in Go such that gn → ∞ and gn.xj → xj for all j ∈ {1, . . . , r}.
• transversally recurrent if for ν-almost every z ∈ Z there exists a sequence

(gn) in Go such that gn → ∞, gn.z ∈ Z and gn.z → z (i.e., the recurrence is
along the transversal).

• r-fold transversally recurrent if for ν⊗r-almost every (z1, . . . , zr) ∈ Zr

there exists a sequence (gn) in Go such that gn → ∞, gn.zj ∈ Z and gn.zj → zj

for all j ∈ {1, . . . , r}.
While transversal recurrence follows from recurrence, multiple transverse re-

currence does not follow from multiple recurrence. The reason is that Zr is not
a transversal for the diagonal Go-action on Xr, but only for the Go-action on the
(typically much smaller) intersection space

X[r] = {(x1, . . . , xr) ∈ Xr | ∃g ∈ Go : g.xj ∈ Z for all j = 1, . . . , r}.
Note that in the case where X = �×

Po
and Z = TPo this space is given by

{(Q1, . . . ,Qr) ∈ �r
Po

| Q1 ∩ · · · ∩ Qr 	= ∅},
hence the name. In order to establish r-fold transverse recurrencewe first construct
a finite invariant measure on X[r] with transverse measure ν⊗r and then establish
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multiple recurrence for this measure. This can be carried out under suitable
assumptions on the return time set�:

Theorem 1.4 (Finiteness of intersection measure). If� is a uniform approxi-
mate lattice in Go, then there exists a unique finite Go-invariant measureμ[r] on X[r]

whose transverse measure on Zr is given by ν⊗r. Moreover, if μ is Go-ergodic,

then, up to a multiplicative constant, μ[r] is an r-fold Go-invariant self-joining of
the measure μ.

More explicitly, the last statement means that the normalized transverse mea-
sure, i.e., the probability measure μ[r](X[r])−1 · μ[r], pushes forward to μ under
each of the projections projj : X[r] → X, (Q1, . . . ,Qr) �→ Qj for 1 ≤ j ≤ r.

Once the existence of a finite intersection measure is established, multiple
transversal recurrence follows by standard ergodic theoretical methods (see Theo-
rem 5.1 for the general statement):

Theorem 1.5 (Multiple transverse recurrence). If� is a uniform approximate
lattice in Go, then the action of Go on X is r-fold transversally recurrent for every

r ∈ N.

Another consequence of the existence of a finite intersection measure concerns
intersections of return time sets (see Theorem6.4 for the general statement). Recall
that for z ∈ Z we denote by Zz ⊂ Go the set of return times from x to Z.

Theorem1.6 (Positive density of intersections). If� is a uniformapproximate

lattice in Go, then for every convenient sequence (Gt) of subsets of G we have

Dens(Gt)(Zz1 ∩ · · · ∩ Zzr ) > 0,

for ν⊗r-almost all (z1, . . . , zr) ∈ Zr.

Note that Theorems 1.1 and 1.2 are special cases of Theorems 1.5 and 1.6
respectively.

1.3 Establishing finiteness of the intersection measure. Before we
discuss a few further generalizations of the theorems above we would like to
comment on the methods behind the proof of Theorem 1.4. It turns out that
this theorem can be derived from a restriction in stages theorem for transverse
measures with respect to certain semidirect product groups. To state the theorem
we assume that G = NL is the semidirect product of a normal subgroup N and a
subgroup L, where N and L are unimodular lcsc groups and the L-action on N is
Haar measure-preserving. We may then normalize Haar measures on G, N and L
such that mG(WNWL) = mN(WN)mL(WL) for all Borel subsets WN ⊂ N and WL ⊂ L.
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We now consider a Borel action of a group G on a Polish space X with separated
cross section Z. If we define Y := L.Z, then X ⊃ Y ⊃ Z and

• G acts on X with separated cross section Z;
• N acts on X with cross section Y (which need not be separated);
• L acts on Y with separated cross section Z.

If μ is a finite G-invariant measure on X, then we denote the corresponding
transverse measure (with respect to the G-action) on Z by GresX

Z (μ). It turns out
that this measure is finite and uniquely determines the original measureμ. We also
use similar notations for the other two groups. The technical heart of this article is
then the proof of the following theorem:

Theorem 1.7 (Restriction in stages). If the N-cross section Y is separated,

then for every finite G-invariant measureμ on X the measure NresX
Y (μ) is finite and

L-invariant and
GresX

Z = LresY
Z ◦ NresX

Y .

Let us demonstrate how Theorem 1.7 implies a more general version of Theo-
rem 1.4. For this let X1, . . . ,Xr be Polish spaces on which Go acts jointly contin-
uously with corresponding separated cross sections Z1, . . . ,Zr and let μ1, . . . , μr

be Go-invariant probability measures on X1, . . . ,Xr respectively. We then denote
by ν1, . . . , νr and �1, . . . ,�r the corresponding transverse measure, respectively
return time sets and abbreviate

G := Gr
o, X := X1 × · · · × Xr and Z := Z1 × · · · × Zr.

Then Z is a separated cross section for the action of G on X. In order to apply
Theorem 1.7 we observe that the group G admits semidirect product splittings of
the form G = NkL for any k ∈ {1, . . . , r}, where Nk denotes the kernel of the kth
coordinate projection and L ∼= Go denotes the diagonal subgroup. In this situation,
the intermediate transversal Y := L.Z is given by the generalized intersection
space

X[r] = {(x1, . . . , xr) ∈ X1 × · · · × Xr | ∃ g ∈ Go : g.x1 ∈ Z1, . . . , g.xr ∈ Zr}.
We say that the cross sections Z1, . . . ,Zr are commensurable if Y = X[r] is
a separated cross section for the Nk-action on X for all k ∈ {1, . . . , r} so that
Theorem 1.7 applies. In this case

μ[r]
k := Nk resX

Y (μ1 ⊗ · · · ⊗ μr)

is a finite measure on Y = X[r] which is invariant under the action of the diagonal
group L ∼= Go and

LresY
Z (μ[r]

k ) = GresX
Z (μ1 ⊗ · · · ⊗ μr) = ν1 ⊗ · · · ⊗ νr.
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Furthermore, μ[r]
k projects to the given measure μk on Xk. Moreover, we have

LresY
Z(μ[r]

1 ) = · · · = LresY
Z (μ[r]

r ), and hence μ[r]
1 = · · · = μ[r]

r ,

i.e.,the measure μ[r] := μ[r]
k is actually independent of k. This then establishes the

following general version of Theorem 1.4:

Theorem 1.8 (Finiteness of intersection measure, general form). Assume that
Z1, . . . ,Zr are commensurable. Then Go acts diagonally on X[r] with separated

cross section Z := Z1 × · · · × Zr and there is a unique finite Go-invariant measure
μ[r] on X[r] such that

GoresX[r]

Z (μ[r]) = ν1 ⊗ · · · ⊗ νr.

Moreover, if μ1, . . . , μr are Go-ergodic, then, up to a multiplicative constant, μ[r]

is a Go-invariant joining of the measures μ1, . . . , μr.

In order to apply the theorem, one needs to give criteria which ensure that the
cross sections Z1, . . . ,Zr are commensurable. This is the point where we need
discreteness and cocompactness assumptions on the return times:

Theorem1.9 (Commensurability criterion). The cross sections Z1, . . . ,Zr are
commensurable provided the intersection � := �1 ∩ · · · ∩�r is relatively dense

in Go and none of the product sets �3
i�

3
j accumulates at the identity.

Note that if X1 = · · · = Xr and Z1 = · · · = Zr this condition is satisfied if and
only if � = �1 = · · · = �r is a uniform approximate lattice.

1.4 Generalizations. Just as Theorem 1.4 implies Theorems 1.5 and 1.6
(and hence in particular Theorems 1.1 and 1.2) we can deduce from Theorem 1.8
the following theorems.

Theorem 1.10 (Multiple transverse recurrence, general form). If the

cross sections Z1, . . . ,Zr are commensurable, then for ν1 ⊗ · · · ⊗ νr-almost all
(z1, . . . , zr) ∈ Z1 × · · ·× Zr there exists a sequence (gn) in (Z1)z1 ∩ · · · ∩ (Zr)zr such

that
gnz1 → z1, . . . , gnzr → zr and gn → ∞.

Theorem 1.11 (Positive density of intersections, general form). If the cross

sections Z1, . . . ,Zr are commensurable, then for every convenient sequence (Gr)
of subsets of G, we have

Dens(Gt)((Z1)z1 ∩ · · · ∩ (Zr)zr) > 0,

for ν1 ⊗ · · · ⊗ νr-almost all (z1, . . . , zr) ∈ Z1 × · · · × Zr.
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This allows us in particular to establish the following twisted versions of The-
orems 1.1 and 1.2:

Corollary 1.12 (Twisted multiple transverse recurrence and twisted positive
density). Let Po, μ and ν be as in Subsection 1.1 and let λ1, . . . , λr be contained

in the subgroup of Go generated by Po.
(i) For ν⊗r-almost all (Q1, . . . ,Qr) ∈ Tr

Po
there exist gn ∈ ⋂r

k=1 λkQkλ
−1
k such

that

λ−1
1 gnλ1.Q1 → Q1, . . . , λ−1

r gnλr.Qr → Qr and gn → ∞.

(ii) For every convenient sequence (Gt) in Go, we have

Dens(Gt)(λ1Q1λ
−1
1 ∩ · · · ∩ λrQrλ

−1
r ) > 0,

for ν⊗r-almost all (Q1, . . . ,Qr) ∈ Tr
Po

.

We do not know whether separatedness of Y can be replaced by a weaker
condition in Theorem 1.7. If this was the case, then the assumptions in all of our
theorems could be weakened accordingly.

1.5 A general correspondence theorem for transverse measures. It
is obvious from the results listed above that transversemeasures (offinite measures)
play a central role in this article. In recent years there have been a number of
excellent expositions of the theory of transverse measures, see in particular [1, 13,
14], and in preparing this article we profited very much from these expositions.
However, for the purposes of the present article we needed a version of transverse
measure theory which applies to actions which are not necessarily essentially
free and measures which are not necessarily finite (but only σ-finite). For the
convenience of the reader we thus decided to include a self-contained treatment of
the theory of transverse measures in this specific context. Let us briefly summarize
this theory here:

We consider a Borel action G � X of a unimodular lcsc group G on a standard
Borel space X with separated cross section Y . We fix a Haar measure mG on G

throughout. The action of G on X defines an equivalence relation on X, the orbit
relation of G � X, and we denote by RG,Y (or RY if G is clear from context) the
restriction of this orbit relation to Y; it is called the cross section equivalence
relation. We are going to construct a bijective correspondence between certain
classes of G-invariant σ-finite measures on X and certain classes of RY -invariant
σ-finite measures on Y . (See Subsection 2.4 below for the notion of invariance
under an equivalence relation.) To obtain this perfect correspondence, we have to
fix certain finiteness conditions on the measures in questions.
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Definition 1.13. ABorel exhaustion ofY is an increasing sequenceY = (Yn)
in BY such that Y =

⋃
Yn. A Borel measure ν on Y is called Y-finite if ν(Yn) < ∞

for all n, and we denote by M(Y,Y) the space of all Y-finite Borel measures on Y .

We fix once and for all a Borel exhaustion G = (Kn) of G by compact sets,
such that every compact set in G is contained in some Kn. For every Borel
exhaustion Y = (Yn) of Y we then obtain a Borel exhaustion YG := (Kn.Yn) of X.
We now denote by M(X,YG)G ⊂ M(X,YG) the subspace of G-invariant measures
and by M(Y,Y)RG,Y ⊂ M(Y,Y) the subspace of RG,Y -invariant measures.

Theorem 1.14 (Measure correspondence, general case). If G is unimodular,
then with notation as above there exist mutually inverse bijections

GresX
Y : M(X,YG)G → M(Y,Y)RG,Y , and GindX

Y : M(Y,Y)RG,Y → M(X,YG)G,

such that the following hold for all pairs (μ,ν) withμ∈M(X,YG)G and ν=GresX
Y (μ):

(i) For every bounded non-negative Borel function F on G × Y we have

(mG ⊗ ν)(F) =
∫ ∑

g∈Yx

F(g−1, g.x) dμ(x).

(ii) If C ⊂ G×Y is a Borel subset such that a : C → X, (g, y) �→ g.y is injective,

then

μ(a(C)) = (mG ⊗ ν)(C).

(iii) If B be a G-invariant Borel set in X, then

μ(B) = 0 ⇐⇒ ν(B ∩ Y) = 0.

If μ ∈ M(X,ZG)G, then ν := GresX
Y (μ) is called the transverse measure

of μ, and μ is called the lifted measure of ν. An important special case of
Theorem 1.14 concerns the case of Radon measures:

Corollary 1.15 (Measure correspondence for Radon measures). Let G � X
be a continuous action of a lcsc unimodular group G on a lcsc space X and let

Y ⊂ X be a closed separated cross section. Then GresX
Y restricts to a bijection

between G-invariant Radon measures on X and RG,Y-invariant Radon measures

on Y.

1.6 Structure of the paper. This paper is composed of three parts. Part 1
(Section 2–Section 4) develops transverse measure theory in our specific setting
and establishes Theorem 1.14 and Corollary 1.15. Part 2 (Sections 5 and 6)
summarizes the basic ergodic theory of transverse measures. In particular, we
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establish Theorem 1.10 and Theorem 1.11 in the case r = 1. Our main results
are derived in Part 3 (Section 7–Section 9): In Section 7 we study transverse
measure for semidirect product groups and establish Theorem 1.7. We apply this
in Section 8 to the study of intersection spaces and establish Theorems 1.8–1.11
(and hence also Theorems 1.4–1.6 as special cases). In Section 9 we specialize
further to the case of return times which are uniform approximate lattices and
establish Theorem 1.1, Theorem 1.2 and Corollary 1.12.

2 Measure theory

This section summarizes our notation concerningmeasurable actions of lcsc groups
on standard Borel spaces and the corresponding invariant measures. The first three
subsections (Subsection 2.1, Subsection 2.2 and Subsection 2.3) contain standard
material concerning general measurable spaces, standard Borel spaces and Borel-
G-spaces respectively. In Subsection 2.4 we discuss the notion of invariance of a
set or a measure under a countable Borel equivalence relation, which will play a
crucial role in the sequel.

2.1 Measurable spaces. Let (X,BX) be a measurable space. We refer to
the elements of BX asBorel sets. A Borelmeasure on X is a σ-additive measure
on BX with values in [0,∞]. We denote by M(X) the set of all Borel measures
on X (we suppress the dependence on the σ-algebra BX). A Borel exhaustion
is an increasing sequence X := {Xn : n ≥ 1} in BX such that X =

⋃
n Xn, and a

Borel measure μ on X is X-finite if μ(Xn) < ∞ for all n. The set of all X-finite
Borel measures on X is denoted by M(X;X), and a Borel measure is σ-finite if it
is X-finite for some Borel exhaustion X. If μ(X) < ∞, then μ is of course X-finite
for any Borel exhaustionX. In this case, we say thatμ is a finite Borel measure,
and if μ(X) = 1, we say that μ is a Borel probability measure. We denote
by Mσ(X), Mfin(X) and Prob(X) the spaces of σ-finite Borel measures, finite Borel
measures and Borel probability measures on X respectively. Clearly,

Prob(X) ⊂ Mfin(X) ⊂ M(X;X) ⊂ Mσ(X),

for every Borel exhaustion X. If μ is a σ-finite Borel measure on X, we say that
a Borel set B is μ-null if μ(B) = 0 and μ-conull if μ(Bc) = 0. If A ⊂ BX

is a sub-σ-algebra and T ⊂ X is a Borel set, we define the σ-algebra A |T by
A |T = {B ∩ T : B ∈ A }. We refer to A |T as the restriction of A to T . We also
define BT := BX|T , and refer to the elements in BT as Borel sets in T .
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If (X,BX) and (Y,BY) are measurable spaces, then a map ϕ : X → Y is Borel
if ϕ−1(BY) ⊂ BX. If ϕ is a bijection and both ϕ and ϕ−1 are Borel, we say
that ϕ is a Borel isomorphism. More generally, if A is a Borel set in X, then
a map ϕ : A → Y is Borel if ϕ−1(BY ) ⊂ BA. A map f : A → [0,∞] is Borel
if A∞ := f−1({∞}) ∈ BA and f |A\A∞ is Borel.

2.2 Standard Borel spaces. We say that a measurable space (X,BX) is
a standard Borel space if there exists a Polish (completely metrizable and
separable) topology T on X such that BX is the Borel σ-algebra generated by T. In
particular, there is a countable subset S ⊂ BX which generates BX such that⋂

x∈B∈S
B = {x}, for all x ∈ X.

We refer to S as a (countable) separating family for X.
Let us collect some basic facts about standard Borel spaces.

Lemma 2.1. Let (X,BX) and (Y,BY) be standard Borel spaces and let

ϕ : X→Y be a Borel map.

(i) If Z ⊂ X is a Borel set, then (Z,BX|Z) is a standard Borel space [12,

Corollary 13.4].
(ii) If ϕ is injective, then ϕ(X) is a Borel set in Y and ϕ : X → ϕ(X) is a Borel

isomorphism [12, Corollary 15.2].
(iii) If ϕ has countable fibers, i.e., ϕ−1({y}) is at most countable for every y ∈ Y,

then ϕ(X) is a Borel set in Y and ϕ admits a Borel right-inverse. [12,
Corollary 18.10].

We denote by BProb(X) the smallest σ-algebra on Prob(X) with respect to which
the maps μ �→ μ(B), where B is a Borel set in X, are measurable. By [12,
Section 17.E], if (X,BX) is standard, then so is (Prob(X),BProb(X)).

2.3 Borel G-spaces. Let G be a locally compact and second countable
(lcsc) group and let (X,BX) be a standard Borel space. We denote by BG the Borel
σ-algebra on G, and note that both (G,BG) and (G × X,BG ⊗ BX) are standard
Borel spaces. Suppose a : G×X → X, (g, x) �→ g.x is an action of G on X. If a is
Borel, we say that (X, a) is a Borel G-space. If H is a closed subgroup of G, we
denote by a|H the restriction of a to H × X, and refer to the Borel H-space (X, a|H)
as the H-restriction of (X, a).

Suppose (X, a) is a Borel G-space. A Borel set B in X is G-invariant if g.B = B
for all g ∈ G. A Borel measure μ on X is G-invariant if μ(g.B) = μ(B) for
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everyg ∈ G and B ∈ BX , andwe say thatμ is G-ergodic if everyG-invariant Borel
set in X is either μ-null or μ-conull. We denote by Prob(X)G,Mfin(X)G,M(X;X)G

and Mσ(X)G the spaces of G-invariant Borel probability measures, G-invariant
finite measures, G-invariant X-finite measures and G-invariant σ-finite measures
on X respectively.

Suppose (X, a) and (T, b) are Borel G-spaces. A Borel map π : X → T such
that π(g.x) = g.π(x) for all g ∈ G and x ∈ X is called a G-map. Note that if π
is a G-map and μ ∈ Mfin(X)G, then π∗μ ∈ Mfin(T)G, where π∗μ(C) = μ(π−1(C))
for C ∈ BT . We refer to π∗μ as the push-forward of μ under π (we only
consider push-forwards of finite measures, as push-forwards of σ-finite measures
are not σ-finite in general). We refer to (T, π∗μ) as the G-factor of (X, μ) induced
by π. If H is a lcsc group and p : G → H is a continuous homomorphism, then
every Borel H-space (T, bo) can be lifted to a Borel G-space (T, b), by setting
b(g, x) = bo(p(g), x). We then say that G acts on T via p.

If (X1, a1), . . . , (Xr, ar) are Borel G-spaces, let a	 denote the diagonal G-
action on X1 × · · · × Xr, i.e., a	(g, x) = (a1(g, x1), . . . , ar(g, xr)), for g ∈ G and
x = (x1, . . . , xr). Let πk denote the projection from X1 × · · · × Xr onto Xk. Note
that πk is a G-map. Suppose μk ∈ Prob(Xk)G for k = 1, . . . , r. A G-invariant
Borel probability measureμ on X1 ×· · ·×Xr is a joining of (X1, μ1), . . . , (Xr, μr)
if (πk)∗μ = μk for every k.

2.4 Countable Borel equivalence relations. Let (X,BX) be a standard
Borel space. A Borel subset E ⊂ X × X is a countable Borel equivalence
relation (cber) if E is an equivalence relation on X and for every x ∈ X, the
set {y ∈ X : (x, y) ∈ E} is countable.

Suppose E is a countable Borel equivalence relation. Let A,B ⊂ X be
Borel sets and ϕ : A → B a Borel surjection. Then ϕ is a partial E-map if
graph(ϕ) ⊂ E ∩ (A × B). Note that, according to our terminology, every partial
E-map ϕ : A → B is assumed to be onto B. We thus refer to A as the domain of ϕ
and to B as the range of B, and we sometimes write A = dom(ϕ) and B = ran(ϕ).
We denote by [[E]] the set of all injective (hence bijective) partial Borel E-maps.
We then have the following notions of invariance under E:

Definition 2.2. A Borel set B ⊂ X is E-invariant if

ϕ−1(B ∩ ran(ϕ)) = B ∩ dom(ϕ), for all ϕ ∈ [[E]].

ABorelmeasureμ onX isE-invariant ifμ(dom(ϕ)) = μ(ran(ϕ)), for allϕ ∈ [[E]],
and an E-invariant Borel measure μ on X is E-ergodic if every E-invariant Borel
set in X is either μ-null or μ-conull.
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We denote by Prob(X)E,Mfin(X)E,M(X;X)E and Mσ(X)E the spaces of E-
invariant Borel probability measures, E-invariant finite measures, E-invariant X-
finite measures and E-invariant σ-finite measures on X respectively. In terms of
Borel functions, E-invariance can be characterized as follows:

Lemma 2.3. Supposeμ is an E-invariant Borel measure and f : X → [0,∞]
is Borel. Then,∫

dom(ϕ)
f ◦ ϕ dμ =

∫
ran(ϕ)

f dμ, for every ϕ ∈ [[E]].

Proof. If B∞ := f−1({∞}) ∩ ran(ϕ) has positive μ-measure, then so has
ϕ−1(B∞) ∩ dom(ϕ). Hence,∫

dom(ϕ)
f ◦ ϕ dμ = ∞ and

∫
ran(ϕ)

f dμ = ∞,

and thus the identity in the lemma trivially holds. Let us from now on assume that
μ(B∞) = 0. Suppose f = χB for some Borel set B ⊂ X. If ϕ ∈ [[E]], we define
ϕB := ϕϕ−1(B)∩dom(ϕ), and note that ϕB ∈ [[E]] with dom(ϕB) = ϕ−1(B)∩dom(ϕ) and
ran(ϕB) = B ∩ ran(ϕ). Since μ is E-invariant, we have μ(dom(ϕB)) = μ(ran(ϕB)),
and thus ∫

dom(ϕ)
f ◦ ϕ dμ = μ(dom(ϕB)) = μ(ran(ϕB)) =

∫
ran(ϕ)

f dμ.

We conclude that the lemma holds for every simple function. A standard approxi-
mation argument finishes the proof. �

3 Separated cross sections and lifted measures

In this section we discuss cross sections of Borel actions. We then explain how,
under certain separability assumptions on the cross sections, measures on the cross
section can be extended to measures on the whole space. Our main result is
Theorem 3.14 which states that σ-finite measures on the transversal which are
invariant under a certain equivalence relation can be canonically extended to G-
invariant measures on the whole space, which are subject to a certain finiteness
property.

3.1 Separated cross sections. Let G be a lcsc group and (X, a) a Borel
G-space. If Y ⊂ X is a Borel set and x ∈ X, we define the set of hitting times Yx

by
Yx := {g ∈ G : g.x ∈ Y} ⊂ G,
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and the set of return times �a(Y) by

�a(Y) := {g ∈ G : Y ∩ g−1.Y 	= ∅} =
⋃
y∈Y

Yy.

Let U be an open identity neighborhood in G. A Borel set Y ⊂ X is U-separated
if Yy ∩ U = {e} for all y ∈ Y (or equivalently, if �a(Y) ∩ U = {e}), and a cross
section if G.Y = X (or equivalently, if the restriction of the action map a to G × Y
is surjective). If Y ⊂ X is a U-separated cross section for some open identity
neighborhood U in G, then we call Y a separated cross section for short. In
this case we say that a Borel set C ⊂ G × Y is injective if the restriction of a to C

is injective. The following lemma ensures that for every separated cross section
Y ⊂ X every Borel set B ⊂ X can be covered by the images of countably many
injective sets in G × Y .

Lemma 3.1. Suppose Y ⊂ X is a U-separated cross section.
(i) If V ⊂ G is a Borel set such that V−1V ⊂ U, then V × Y is an injective Borel

set. In particular, |Yx ∩ V−1| ≤ 1 for all x ∈ X.
(ii) For every compact set K ⊂ G,

(1) MK := sup
x∈X

|Yx ∩ K| <∞.

(iii) For every x ∈ X, the set Yx is countable and YxY−1
x ⊂ �a(Y). In particular,

Yx is a U-uniformly discrete (and hence closed) subset of G.
(iv) The map a : G × Y → X has countable fibers. In particular, if C ⊂ G × Y is

a Borel set, then a(C) is a Borel set in X (by Lemma 2.1(iii)).

(v) For every Borel set B ⊂ X, there are injective Borel sets B̃1, B̃2, . . . in G × Y
such that

B =
⊔
k

a(B̃k).

Proof. (i) Suppose (v1, y1), (v2, y2) ∈ V × Y such that v1.y1 = v2.y2. Since Y

is U-separated,

v −1
1 v2 ∈ �a(Y) ∩ V−1V ⊂ �a(Y) ∩ U = {e},

and thus v1 = v2, whence y1 = y2.
(ii) Let K ⊂ G be a compact set, and pick an open cover V1, . . . ,Vp of K−1

such that V−1
k Vk ⊂ U for all k. By (i), |Yx ∩ V−1

k | ≤ 1 for all x and k, and thus

|Yx ∩ K| ≤
p∑

k=1

|Yx ∩ V−1
k | ≤ p, for all x.
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(iii) Countability of Yx is immediate from (ii). To prove the inclusion,
pick g1, g2 ∈ Yx, and note that

y := g2.x ∈ Y and g1.x = (g1g
−1
2 ).y ∈ Y,

whence g1g−1
2 ∈ �a(Y). Since g1 and g2 are arbitrary, YxY−1

x ⊂ �a(Y).
(iv) Fix x∈ X and an element (g, y)∈ a−1({x}). Then, for any (g′, y′)∈ a−1({x}),

we have g′.y′ = g.y = x, and thus (g′)−1 ∈ Yx and y′ ∈ Yx.x. By (iii), Yx is a countable
set, so there are only countably many choices for g′ and y′.

(v) Since G is separable, we can find a countable open cover

G =
⋃
k

Vk, such that V−1
k Vk ⊂ U for all k.

Let B′
k := B ∩ Vk.Y , and note that B =

⋃
k B′

k. Define

B1 := B′
1 and Bk+1 = B′

k+1 \
( k⋃

j=1

Bj

)
,

for all k. Then, B1,B2, . . . are disjoint Borel sets, B =
⊔

k Bk and Bk ⊂ B′
k ⊂ Vk.Y

for all k. Set B̃k = a−1(Bk)∩ (Vk ×Y). By (i), Vk ×Y is an injective set, and thus B̃k

is an injective set as well, and a(B̃k) = a(a−1(Bk) ∩ (Vk × Y)) = Bk, for all k. �

3.2 Transverse triples and their Chabauty–Fell maps. Throughout
this subsection, G denotes a lcsc group. We are interested in triples (X, a,Y) where
(X, a) is a Borel G-space and Y ⊂ X is a separated cross section. We refer to
such a triple (X, a,Y) as a transverse triple over G (or more specifically a U-
transverse triple if Y is U-separated). In this subsection we discuss an important
class of examples of transverse triples which arise from certain discrete subsets
of G. In fact, we are going to see that this class of examples is “universal” in a
suitable sense.

We denote by C(G) the space of all closed subsets of G. The Chabauty–Fell
topology is the topology on C(G) generated by open sets of the form

WK := {P ∈ C(G) : P ∩ K = ∅} and WV := {P ∈ C(G) : P ∩ V 	= ∅},
where K and V range over all compact subsets and over all open subsets of G
respectively (cf. [2, 3]). It is not hard to see that with respect to this topology, C(G)
is a compact and second countable Hausdorff space, and a sequence (Pn) converges
to a point P in C(G) if and only if

(i) for every p ∈ P, there exists a sequence (pn) in G such that pn ∈ Pn for all n
and pn → p as n → ∞,
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(ii) if (nk) is a sub-sequence and pk ∈ Pnk such that pk → p as k → ∞, then
p ∈ P.

Furthermore, the action

ar : G × C(G) → C(G), (g,P) �→ Pg−1

is jointly continuous. If U is an identity neighborhood in G, then a subset
Po ∈ C(G) is U-uniformly discrete if PoP−1

o ∩ U = {e}. We denote by

CU(G) ⊂ C(G)

the subset of U-uniformly discrete subsets of G. It is easy to see that CU(G) is a
closed (hence compact) G-invariant subset of C(G). The subset

T := {P ∈ C(G) : e ∈ P} ⊂ C(G)

is closed, and thus compact. By definition, T is a cross section for the G-action
on C(G) \ {∅}.

Example 3.1. Assume that Po ⊂ G is a non-empty closed subset. We then
define the hull of Po as the orbit closure �Po := G.Po and set �×

Po
:= �Po \ {∅}.

Then TPo := T ∩�Po is a cross section for the ar-action of G on�×
Po

, though it will
in general not be separated.

Proposition 3.2. The cross section TPo is U-separated if and only if Po is

U-uniformly discrete, hence (X, a,Y) := (�×
Po
, ar,TPo) is a transverse triple if and

only if Po is uniformly discrete.

Proof. Wemay assumewithout loss of generality that e ∈ Po. ForQ ∈ Y = TP0

we have
g.Q ∈ Y ⇐⇒ e ∈ g.Q = Qg−1 ⇐⇒ g ∈ Q,

and hence YQ = Q ⊂ QQ−1. By [4, Lemma 3.15] we have PP−1 ⊂ PoP−1
o for all

P ∈ �Po . Thus

�ar (Y) =
⋃

Q∈TPo

Q ⊂ ⋃
Q∈TPo

QQ−1 ⊂ PoP−1
o ,

hence if Po is U-uniformly discrete, then Y is U-separated. Conversely, if Y is
U-separated, then Po is U-uniformly discrete by Lemma 3.1(iii). �

Proposition 3.2 provides plenty of transverse triples (X, a,Y), where X is a
subset of CU(G) and Y = X ∩ T. Our next goal is to show that every transverse
triple over G admits a Borel-G-factor, which is of this form. For the proof we
are going to use the fact that since every open set in G is σ-compact, the Borel
σ-algebra BC(G) is generated by the sets WK with K relatively compact.
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Lemma 3.3. For every U-transverse triple (X, a,Y) the map

π : X → CU(G), x �→ Yx

is a well-defined Borel G-map with π(Y) ⊂ T and π−1(T) = Y.

Proof. It follows from Lemma 3.1(iii) that Yx ∈ CU(G) for every x ∈ X, hence
π is well-defined. Note that

π(g.x) = Yg.x = {t ∈ G : tg.x ∈ Y} = Yxg
−1 = g.π(x),

for all g ∈ G and x ∈ X, so π is a G-map. Furthermore,

π−1(T) = {x ∈ X : e ∈ Yx} = Y.

To prove that π is Borel, it suffices to show that π−1(WK) belongs to BX . Note that

π−1(WK) = {x ∈ X : Yx ∩ K = ∅} = (K−1.Y)c.

By Lemma 3.1(iv), K−1.Y is a Borel set in X, so we are done. �

Definition 3.4. The map π : X → CU(G) is referred to as the canonical
Chabauty–Fell G-map.

We will be particularly interested in transverse triples (X, a,Y) for which X
admits a G-invariant ergodic probability measure μ. In this case, if π denotes the
canonical Chabauty–Fell G-map of (X, a,Y), then η := π∗μ is a G-ergodic Borel
probability measure on CU(G) with η({∅}) = 0. Note that supp(η) is a closed, hence
compact, G-invariant subset of CU(G). Since the latter space is second countable
and η is ergodic, there exists an element Po ∈ supp(η) whose G-orbit is dense in
the support. In particular, �Po ⊂ supp(η). Since η({∅}) = 0, we conclude that
X′ := π−1(�×

Po
) is a G-invariant μ-conull Borel subset of X, and we thus have a

Borel G-map

π : (X′, μ|X′) → (�×
Po
, η) such that Y ∩ X′ = π−1(TPo).

Note that �a(Y) ⊂ �ar (TPo). Here is a typical class of examples:

Example 3.2 (Cut-and-project sets). Let H be a lcsc group and suppose
� < G × H is a lattice whose projection to H is dense. Then X := (G × H)/�,
equipped with quotient Borel structure, is a Borel G-space, with a unique G-
invariant (and G-ergodic) Borel probability measure μ (see [3, Lemma 5.7]).

Fix a pre-compact subset W ⊂ H with non-empty interior, and set
Y := ({e} × W)�. It is not hard to check that Y is a separated cross section.
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We thus obtain an associated Chabauty–Fell map π : (G × H)/� → CU(G). The
elements of π(X) are called cut-and-project sets in the literature. Our arguments
above show that μ-almost every x ∈ X, the G-hull �×

π(x) supports a G-invariant
Borel probability measure ηx (which might depend on the point x). Under some
additional mild assumptions on W, [3, Theorem 1.1] tells us that there is in fact a
unique G-invariant (and thus G-ergodic) Borel probability measure η on π(X), not
supported on the empty set. In particular, in this case, ηx = η for all x.

3.3 Borel Y-sections and lifted measures. Let G be a lcsc group with
left-Haar measure mG and let (X, a,Y) be a U-transverse triple over G for some
open identity neighborhood U in G. By Lemma 2.1(iii) and Lemma 3.1(iv). the
map

a|G×Y : G × Y → X

is surjective with countable fibers, hence admits a Borel section b : X → G × Y .
Any such section is necessarily of the form

(2) b(x) = bβ(x) := (β(x)−1, β(x).x),

for some Borel map β : X → G such that β(x) ∈ Yx for all x ∈ X. In the sequel
we are going to refer to such a map β as a Borel Y-section; such sections then
always exist by the aforementioned lemmas.

Definition 3.5. If β : X → G is a Borel Y-section and ν is a Borel measure
on Y , then the Borel measure νβ on X given by

νβ(B) = mG ⊗ ν(bβ(B)), for B ∈ BX

is called the β-lifted measure of ν.

Our next goal is characterize the finiteness properties of lifted measures of
Y-finite Borel measures on Y , where Y = {Yn : n ≥ 1} is a given Borel exhaustion
of Y . By [6, Theorem 2.A.10], there is a fundamental exhaustion G = {Kn : n ≥ 1}
of G by compact sets, i.e., every Kn is a compact set, and every compact set in G is
eventually contained in some Kn. We fix such an exhaustion once and for all and
define YG := {Kn.Yn : n ≥ 1}. We refer to YG as the G-suspension of Y.

Lemma 3.6. YG is a Borel exhaustion of X, and a Borel measure μ on X
is YG-finite if and only if μ(K.Yn) < ∞ for every n and for every compact set K

in G. In particular, this notion does not depend on the choice of fundamental
exhaustion G.
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Proof. The only non-trivial part of the lemma is to show that K.Yn is a Borel
set for every compact set K in G. However, K × Yn is a Borel set in G × Y and
by Lemma 3.1(iv), a|G×Y is Borel with countable fibers, so a(K × Yn) = K.Yn is a
Borel set by Lemma 2.1(iii). �

Lemma 3.7. Let {Kn} be a fundamental exhaustion of G by compact sets,

and {Yn} a Borel exhaustion of Y. Then there is a Borel section β such that
bβ(Kn.Yn) ⊂ Kn × Yn for all n.

Proof. By Lemma 2.1(iii) and Lemma 3.1(iv), the map an := a|Kn×Yn has a
Borel right-inverse

bn : Kn.Yn → Kn × Yn, x �→ (bn,1(x), bn,2(x)).

Note that both bn,1 and bn,2 are Borel maps, and that they satisfy bn,1(x).bn,2(x) = x

for all x ∈ Kn.Yn. We set βn(x) := bn,1(x)−1, so that

bn(x) = (βn(x)
−1, βn(x).x), for all x ∈ Kn.Yn.

In particular, βn(x) ∈ Yx ∩ K−1
n for all x ∈ Kn.Yn. Let X1 := K1.Y1, and define

inductively (the possibly empty Borel sets) X2,X3, . . . by

Xn+1 := Kn+1.Yn+1 \
n⋃

m=1

Xm.

Since {Kn.Yn} is a Borel exhaustion of X, we see that X1,X2, . . . is a Borel partition
of X. We now define β(x) = βn(x) for x ∈ Xn, which is clearly a Borel Y-section
with the property that

β(Kn.Yn) =
n⋃

m=1

β(Xm) ⊂
n⋃

m=1

K−1
m = K−1

n ,

since {Kn} is increasing. �
In the sequel, when constructing lifted measures, we will usually use Y-sections

as in Lemma 3.7. In this case, lifts of σ-finite measures will again be σ-finite. More
precisely:

Corollary 3.8. Let β : X → G be a Borel Y-section such that

bβ(Kn.Yn) ⊂ Kn × Yn

for all n. Then for all ν ∈ M(Y,Y) we have νβ ∈ M(X,YG).

Proof. This is immediate from the fact that νβ(Kn.Yn) ≤ (mG ⊗ ν)(Kn × Yn)
for all n.
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3.4 Cross-section equivalence relations. Let G be a lcsc group and let
(X, a,Y) be a U-transverse triple over G for some open identity neighborhood
U ⊂ G. We define the cross section equivalence relation RY ⊂ Y × Y by

RY := {(y, y′) ∈ Y × Y : y ∈ G.y′}.
By definition, RY is just the restriction of the orbit relation of the G-action on X to
the cross section Y , hence in particular a (set-theoretic) equivalence relation on Y .
Moreover, a straightforward application of Lemma 3.1 yields:

Lemma 3.9. RY is a countable Borel equivalence relation on Y.

Proof. First note that if y′ ∈ Y , then y ∈ G.y if and only if y ∈ Yy′ .y′.
By Lemma 3.1(iii), Yy′ is countable, whence the set {y ∈ Y : (y, y′) ∈ RY} is
countable as well. To see why RY is a Borel set in Y × Y , consider the Borel map
ã : G × Y → Y × X, (g, y) �→ (y, g.y). Then C = ã−1(Y × Y) is a Borel set in
G × Y and RY = ã(C). It follows from Lemma 3.1(iv) that ã has countable fibers,
so RY is a Borel set in Y × Y by Lemma 2.1(iii). �

Our next goal is to study sets and measures which are invariant under the cross
section equivalence relation. For this we need to describe the local structure of
partial RY-maps. The following lemma is based on the proof of [1, Lemma 2.5].

Lemma 3.10. Let ϕ be a partial RY-map and let V be a symmetric identity

neighborhood in G such that V4 ⊂ U. Then there exist
• a Borel partition dom(ϕ) =

⊔
k Ak such that ϕ|Ak is injective for every k,

• identity neighborhoods Wk ⊂ V and λk ∈ �a(Y) such that λ−1
k Wkλk ⊂ V for

all k,

• Borel maps ρk : Ak → Wk such that

ϕ(y) = ρk(y)λk.y, for all y ∈ Ak.

In particular, a(Ck) = Wkλk.Ak, where

Ck = {(wρk(y)
−1, ϕ(y)) : w ∈ Wk, y ∈ Ak} ⊂ W2

k × Y.

Proof. Set A := dom(ϕ). For every y ∈ A, pick λy ∈ �a(Y) such that
ϕ(y) = λy.y, and a symmetric open identity neighborhood Wy ⊂ V such
that λ−1

y Wyλy ⊂ V . Since G is second countable, and thus Lindelöf, we can
find y1, y2, . . . ∈ A such that

W :=
⋃
y∈Y

Wyλy =
⋃
k

Wykλyk .
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Set Wk := Wyk and λk := λyk . Let A′
k := {y ∈ A : ϕ(y) ∈ Wkλk.y}, and note that⋃

k

A′
k = {y ∈ A : ϕ(y) ∈ W.y} = A.

Define A1 := A′
1 and Ak+1 = A′

k+1 \ (
⋃k

j=1 Aj), for all k. Then A1,A2, . . . are disjoint
Borel sets with union A (we can discard empty sets from this collection). Let us
now construct the maps ρk. We define the Borel set

Ãk = {(w, y) ∈ Wk × Ak : ϕ(y) = wλk.y},
and note that the projection (w, y) �→ y is injective. Indeed, if (w1, y), (w2, y) ∈ Ãk,
then

ϕ(y) = w1λk.y = w2λk.y,

whence λ−1
k w−1

2 w1λk.y = y. We conclude that

λ−1
k w−1

2 w1λk ∈ λ−1
k W2

kλk ∩�a(Y) ⊂ U ∩�a(Y) = {e}.
Hence w1 = w2, and the projection is injective. By Lemma 2.1(ii), we can now
find a Borel map ρk : Ak → Wk such that (ρk(y), y) ∈ Ãk for all y ∈ Ak. In other
words, ϕ(y) = ρk(y)λk.y. It remains to show that ϕ|Ak is injective. We argue by
contradiction and suppose y1, y2 ∈ Ak are such that ϕ(y1) = ϕ(y2), or equivalently,
ρk(y1)λk.y1 = ρk(y2)λk.y2. Then,

λ−1
k ρk(y2)

−1ρk(y1)λk ∈ �a(Y) ∩ λ−1
k W2

kλk = {e},
since λ−1

k W2
kλk ⊂ V ⊂ U and Y is U-separated. Hence, ρk(y1) = ρk(y2), which

implies that the identity ρk(y1)λk.y1 = ρk(y2)λk.y2 just reduces to y1 = y2. �

Corollary 3.11. Suppose B ⊂ Y is an RY-invariant Borel set. Then,

ϕ−1(B ∩ ran(ϕ)) = B ∩ dom(ϕ),

for every (not necessarily injective) partial RY-map ϕ.

Proof. Let ϕ be a (not necessarily injective) partial Borel RY-map. Then, by
Lemma 3.10, we can find a Borel partition dom(ϕ) =

⊔
k Ak such that ψk := ϕ|Ak is

an injective partial RY -map for every k. Hence,

ϕ−1(B ∩ ran(ϕ)) =
⊔
k

ϕ−1(B ∩ ran(ϕ)) ∩ Ak =
⊔
k

ψ−1
k (B ∩ ran(ψk)).

Since B is RY -invariant and ψk is injective, ψ−1
k (B ∩ ran(ψk)) = B ∩ dom(ψk) for

all k, whence

ϕ−1(B ∩ ran(ϕ)) =
⊔
k

(B ∩ dom(ψk)) = B ∩ dom(ϕ). �
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3.5 RY-invariant sets. Let G be a lcsc group and let (X, a,Y) be a U-
transverse triple over G for some open identity neighborhood U ⊂ G. We are
going to show that a subset A ⊂ Y is invariant under the cross section equivalence
relation RY if and only if there exists a G-invariant subsetB ⊂ X such that A = B∩Y .
One direction is in fact immediate from Lemma 3.10:

Corollary 3.12. If B ⊂ X is a G-invariant Borel set, then B ∩ Y ⊂ Y is an
RY-invariant Borel set.

Proof. Let ϕ be a partial Borel RY -map. By Lemma 3.10, there exist a Borel
partition dom(ϕ) =

⊔
k Ak, Borel maps ρk : Ak → G and λk ∈ G such that

ϕ(y) = ρk(y)λk.y, for all y ∈ Ak.

Hence,

ϕ−1(B ∩ ran(ϕ)) =
⊔
k

ϕ−1(B ∩ ran(ϕ)) ∩ Ak.

Since B is G-invariant and ran(ϕ) ⊂ Y , we see that

ϕ(y) = ρk(y)λk.y ∈ B ∩ Y ⇐⇒ y ∈ B ∩ Y,

for every k and y ∈ Ak. In other words, ϕ−1(B ∩ ran(ϕ)) ∩ Ak = B ∩ Ak, for all k,
and thus

ϕ−1(B ∩ ran(ϕ)) =
⊔
k

B ∩ Ak = B ∩ dom(ϕ).

Since ϕ is arbitrary, B ∩ Y is RY -invariant. �
For the converse direction we fix a Borel Y-section β : X → G. We then define

a Borel map

(3) ϕβ : Y → Y, y �→ β(y).y.

By construction, ϕβ is a (not necessarily injective) partial RY -map with dom(ϕβ)=Y.
If A ⊂ Y is a Borel set in Y , we now define Aβ ⊂ X by

(4) Aβ := {x ∈ X : β(x).x ∈ A}.

Note that Aβ = b−1
β (G × A), and thus Aβ is a Borel set in X. We can now establish

the converse of Corollary 3.12:

Lemma 3.13. Let β be a Borel Y-section. If A ⊂ Y is an RY-invariant Borel
set, then Aβ ⊂ X is a G-invariant Borel set such that Aβ ∩ Y = A.
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Proof. We first note that Aβ ∩ Y = ϕ−1
β (A ∩ ran(ϕβ)). Since A is RY -invariant

and dom(ϕβ) = Y , Corollary 3.11 tells us that ϕ−1
β (A ∩ ran(ϕβ)) = A, and thus

Aβ ∩ Y = A. To prove that Aβ is G-invariant, it is enough to show (since X = G.Y)
that

g−1.Aβ ∩ h.Y = h.A, for all g, h ∈ G.

First note that

g−1.Aβ = {x ∈ X : β(g.x)g.x ∈ A}, for all g ∈ G

and thus

g−1.Aβ ∩ h.Y = h.{y ∈ Y : β(gh.y)gh.y ∈ A} = h.ϕ−1
βgh

(A ∩ ranϕβgh),

for all g, h ∈ G. Since A is RY -invariant and ϕβgh is a partial RY -map with
dom(ϕβgh) = Y , we see from Corollary 3.11 that ϕ−1

βgh
(A ∩ ranϕβgh) = A, and

thus g−1.Aβ ∩ h.Y = h.A for all g, h ∈ G. �
In other words, the Y-section β picks for every RY-invariant Borel subset A a

canonical G-invariant extension to X.

3.6 Lifts of RY-invariant measures. Let G be a lcsc group and let
(X, a,Y) be a U-transverse triple over G for some open identity neighborhood
U ⊂ G. The goal of this subsection is to establish the following theorem:

Theorem 3.14. Let ν ∈ M(Y,Y)RY be RY-invariant and let β : X → G be a
Borel Y-section.

(i) The lifted measure νβ is independent of the choice of β.
(ii) νβ is YG-finite.

(iii) If G is unimodular, then νβ is G-invariant.

If G is unimodular we thus obtain a canonical map

GindX
Y : M(Y,Y)RY → M(X,YG)G, ν �→ νβ.

We refer to the map GindX
Y from Theorem 3.14 as the induction map of the

transverse triple (X, a,Y). Note that part (ii) of the theorem is immediate from
part (i) in view of Lemma 3.7 and Corollary 3.8. The proofs of parts (i) and (iii)
are based on the following main lemma concerning piecewise equivalences of
injective sets. Here, given a Borel set C ⊂ G × Y , we set

Cy = {h ∈ G : (h, y) ∈ C}, for y ∈ Y.

By Fubini’s Theorem, Cy is a Borel set in G for every y ∈ Y .
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Lemma3.15.LetC1,C2 ⊂G×Y be injective Borel sets such that a(C1)=a(C2).
Then there exist

• a covering {Y (k)} of Y byBorel sets, Borelmaps γk : Y (k) → Gandϕk ∈ [[RY]]
with dom(ϕk) = Y (k);

• Borel partitions C1 =
⊔

k C1,k and C2 =
⊔

k C2,k such that

C1,k ⊂ G × ran(ϕk) and C2,k ⊂ G × dom(ϕk), for all k,

such that

(C2,k)y2 = (C1,k)ϕk(y2)γk(y2), for all y2 ∈ Y (k).

Remark 3.16. In the proof of this lemma, we will use a Borel partition
G =

⊔
Vk with the property that V−1

k Vk ∪ VkV−1
k ⊂ U for all k. Such partitions can

be constructed in many different ways. Let us here briefly outline one possible
construction. For every g ∈ G, let Wg be an open symmetric identity neighbor-
hood Wg such that W2

g and gW2
gg

−1 are both contained in U. Then
⋃

g∈G gWg is an
open cover of G. Since G is Lindelöf, there exist a countable set {gk} such that

G =
⋃
k

Ṽk, where Ṽk = gkWgk .

Note that Ṽ−1
k Ṽk ∪ ṼkṼ−1

k ⊂ U for all k. To make this collection of sets disjoint,
we set V1 := Ṽ1 and define inductively Vk+1 := Ṽk+1 \⋃k

j=1 Vj, for k ≥ 1 (discarding
empty sets).

Proof of Lemma 3.15. We set ai := a|Ci for i = 1, 2. By Lemma 2.1, ai is a
Borel isomorphism between the Borel sets Ci and a(Ci). Since a(C1) = a(C2), the
composition δ := a−1

1 ◦ a2 is a well-defined injective Borel map and C1 = δ(C2). It
is not hard to see that there is a Borel map θ : C2 → G such that

δ(h2, y2) = (h2θ(h2, y2)
−1, θ(h2, y2).y2), for (h2, y2) ∈ C2.

Let G =
⊔

k Vk be a Borel partition (see Remark 3.16) such that

V−1
k Vk ∪ VkV

−1
k ⊂ U, for all k

and set

C2,k = θ−1(V−1
k ) and C1,k = δ(C2,k).

Clearly, C1 =
⊔

k C1,k and C2 =
⊔

k C2,k are Borel partitions. Define

Y (k) = {y ∈ Y : Yy ∩ V−1
k 	= ∅} = Vk.Y ∩ Y.
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By Lemma 3.1(i), combined with Lemma 2.1(ii), we see that Y (k) ⊂ Y is a Borel
set, and there is a Borel map γk : Y (k) → V−1

k such that γk(y) ∈ Yy ∩ V−1
k for

all y ∈ Y (k). Pick (h2, y2) ∈ C2,k. Then θ(h2, y2) ∈ Yy2 ∩ V−1
k , and thus y2 ∈ Y (k).

However, by Lemma 3.1(i), |Yy2 ∩ V−1
k | ≤ 1, and thus

θ(h2, y2) = γk(y2), for all (h2, y2) ∈ C2,k.

We also define ϕk(y2) = γk(y2).y2 for y2 ∈ Y (k). Note that ϕk is injective. Indeed,
if ϕk(y2) = ϕk(y′

2), for y2, y′
2 ∈ Y (k), then

γk(y
′
2)

−1γk(y2) ∈ Yy2 ∩ VkV
−1
k ⊂ Yy2 ∩ U = {e},

since Y is U-separated. Hence, γk(y2) = γk(y′
2). Since ϕk(y2) = ϕk(y′

2), we see
that y2 = y′

2. We conclude that ϕk ∈ [[RY]] with dom(ϕk) = Y (k). Furthermore,
since C1,k = δ(C2,k), we see that C1,k ⊂ G× ran(ϕk). Let us now fix an index k and
an element y2 ∈ Y (k) Then, since C2,k ⊂ G × Y (k), we see that

(C2,k)y2 = {h2 ∈ G : (h2, y2) ∈ C2,k}
= {h2 ∈ G : (h2θ(h2, y2)

−1, θ(h2, y2).y2) ∈ C1,k}
= {h2 ∈ G : (h2γk(y2)

−1, ϕk(y2)) ∈ C1,k} = (C1,k)ϕk(y2) γk(y2). �

Corollary 3.17. Let ν ∈ Mσ(Y)RY , and suppose that C1,C2 ⊂ G × Y are

injective Borel sets such that a(C1) = a(C2). Then mG ⊗ ν(C1) = mG ⊗ ν(C2).

Proof. Let Y (k),C1,k,C2,k, γk, ϕk be as in Lemma 3.15. Then, for all y2 ∈ Y ,

mG((C2)y2 ) =
∑

k

mG((C2,k)y2 )χdom(ϕk)(y2) =
∑

k

mG((C1,k)ϕk(y2)γk(y2))χdom(ϕk)(y2)

=
∑

k

mG((C1,k)ϕk(y2))χdom(ϕk)(y2),

where we in the last identity have used that mG is right-invariant. Define

fk : Y → [0,∞]

by
fk(y) = mG((C1,k)y), for y ∈ Y.

By Fubini’s Theorem, fk is Borel. Since ϕk ∈ [[RY]] and ν is a σ-finite and
RY-invariant Borel measure on Y , Lemma 2.3 tells us that∫

dom(ϕk)
fk ◦ ϕk dν =

∫
ran(ϕk)

fk dν,
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and thus

mG ⊗ ν(C2) =
∫

Y
mG((C2)y2 ) dν(y2) =

∑
k

∫
dom(ϕk)

mG((C1,k)ϕk(y2)) dν(y2)

=
∑

k

∫
ran(ϕk)

mG((C1,k)y2 ) dν(y2) =
∑

k

∫
Y
mG((C1,k)y2 ) dν(y2)

= mG ⊗ ν(C1),

since C1 =
⊔

k C1,k and C2 =
⊔

k C2,k are Borel partitions. �

Proof of Theorem 3.14. (i) If β and β′ are two Y-sections, then bβ and b′
β

are two sections of a|G×Y , and hence for every Borel set B ⊂ X the sets C := bβ(B)
and C′ := bβ′(B) are injective Borel sets. We now deduce with Corollary 3.17 that

νβ(B) = ν(bβ(B)) = ν(C) = ν(C′) = ν(bβ′(B)) = νβ′ (B).

(ii) Let Y = (Yn) and let (Kn) be a fundamental exhaustion of G. By (i)
and Lemma 3.7 we may assume that bβ(Kn.Yn) ⊂ Kn × Yn for all n, but then
νβ ∈ M(X,YG) holds by Corollary 3.8.

(iii) Ifβ : X→G is aBorelY-section and g ∈ G, thenwe defineβg(x) := β(g.x)g.
Note that βg(x).x = β(g.x)g.x ∈ Y , whence βg is again a Borel Y-section. For every
fixed g ∈ G we then have

bβ(g.x) = (gβg(x)
−1, βg(x).x), for all x ∈ X.

Since mG is left-invariant, we see that for every Borel set B ⊂ X,

νβ(g.B) = mG ⊗ ν(bβg(B)).

Fix a Borel set B in X, and let C := bβ(B) and Cg := bβg(B). Then C and Cg are
injectiveBorel sets inG×Y such that a(C) = a(Cg). SincemG is also right-invariant,
Corollary 3.17 tells us that mG ⊗ ν(Cg) = mG ⊗ ν(C), and thus

νβ(g.B) = mG ⊗ ν(bβg(B)) = mG ⊗ ν(bβ(B)) = νβ(B).

Since g is arbitrary, νβ ∈ M(X;YG)G. �

4 Transverse measure theory

The main goal of this section is to establish Theorem 1.14 from the introduc-
tion. Moreover we discuss ergodic decompositions of transverse measures and the
behavior of transversemeasure under a change of transversal. Throughout this sec-
tion, G denotes a lcsc group with Haar measure mG and (X, a,Y) is a U-transverse
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triple over G for some open identity neighborhood U ⊂ G. We fix a fundamental
exhaustion G = {Kn} of G by compact sets, and let a Borel exhaustion Y = {Yn} be
of Y and denote by YG the G-suspension of Y.

4.1 Periodizations. Given a non-negative bounded Borel function f on
G × Y , we define Tf : X → [0,∞] by

(5) Tf (x) =
∑
g∈Yx

f (g−1, g.x), for x ∈ X.

We refer to Tf as the Y-periodization of f .

Example 4.1. Let Po ⊂ G be a uniformly discrete subset and �×
Po

and TPo as
in Example 3.1 so that by Proposition 3.2 the triple (X, a,Y) is a transverse triple.
Then the TPo-periodization of a non-negative bounded Borel function f on G×TPo

is given by
Tf (P) =

∑
p∈P

f (p−1,Pp−1).

In general, periodizations have the following basic properties:

Lemma 4.1. Let f be a bounded non-negative Borel function on G × Y.

(i) Tf is Borel.
(ii) TχC = χa(C) for every injective Borel set C ⊂ G × Y.

(iii) Tf (g.x) = Tfg(x), for all g ∈ G and x ∈ X, where fg(h, y) = f (gh, x).
(iv) Suppose f =

∑
k fk pointwise, where f1, f2, . . . are boundednon-negative Borel

functions on G × Y. Then Tf =
∑

k Tfk pointwise.
(v) If {f > 0} ⊂ Kn × Yn for some n, then

Tf (x) ≤ MK−1
n

‖f‖∞ χKn.Yn(x) for all x ∈ X,

where MK−1
n

is given by (1).

Proof. (i) Let G =
⊔

k Vk be a Borel partition such that V−1
k Vk ⊂ U

for all k. Then, by Lemma 3.1(i), a|Vk×Y is injective, so by Lemma 2.1(ii),
there is a Borel right-inverse bk : Vk.Y → Vk × Y , which then must be of the
form bk(x) = (ρk(x)−1, ρk(x).x) for some Borel map ρk : Vk.Y → V−1

k . Note that
g ∈ Yx ∩ V−1

k if and only if g = ρk(x). Thus

Tf (x) =
∑

k

∑
g∈Yx∩V−1

k

f (g−1, g.x)χXk(x) =
∑

k

Fk(x),

where Fk(x) = f (ρk(x)−1, ρk(x).x). Since each Fk is Borel, so is Tf .
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(ii) Suppose C ⊂ G×Y is an injective Borel set. Note that x ∈ a(C) if and only
if there is a unique g ∈ G such that (g−1, g.x) ∈ C (in particular, g ∈ Yx). Hence,

TχC(x) =
∑
g∈Yx

χC(g−1, g.x) = χa(C)(x), for all x ∈ X.

(iii) Fix g ∈ G, and note that

Tf (g.x) =
∑

h∈Yg.x

f (h−1, hg.x) =
∑
h∈Yx

f (gh−1, h.x), for all x ∈ X,

since Yg.x = Yxg−1.

(iv) This readily follows from monotone convergence.
(v) Suppose Tf (x) > 0. Since {f > 0} ⊂ Kn × Yn, there must be an element

g ∈ K−1
n such that g.x ∈ Yn, whence x ∈ Kn.Yn. In particular,

Tf (x) ≤ |Yx ∩ K−1
n |‖f‖∞ χKn.Yn(x), for all x ∈ X.

By Lemma 3.1(ii), there is a finite constant MK−1
n

such that |Yx ∩ K−1
n | ≤ MK−1

n
for

all x ∈ X. �

Remark 4.2 (On the existence of Haar measures). Let us briefly sketch how
Y-periodizations can be used to construct a Haar measure on G, following the
ideas of Izzo [10, 11]. Suppose (X, a) is a Borel G-space, μ is a G-invariant Borel
probability measure on X, and Y is a U-separated cross section for some identity
neighborhood U in G (if the G-action a is free, then one can always produce such
a cross section in X by [7, Proposition 2.10]; furthermore, this construction does
not use the existence of a Haar measure on G). We now define

m(ϕ) = μ(T(ϕ⊗ 1)), for ϕ ∈ Cc(G).

The proof of Lemma 4.1 above now shows that m is a left G-invariant locally
finite Borel measure on G. In particular, the existence of a single free probability-
measure-preserving G-action implies the existence of a (left-invariant) Haar mea-
sure on G.

4.2 Existence of transverse measures.

Proposition 4.3. For every μ ∈ M(X;YG)G, there is a unique ν ∈ M(Y;Y)
such that

(6) μ(Tf ) = (mG ⊗ ν)(f ),
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for every bounded non-negative Borel function f on G × Y. In particular,

μ(a(C)) = mG ⊗ ν(C)

for every injective Borel set C ⊂ G × Y.

Remark 4.4. We refer to ν as the Y-transverse measure of μ. If we want
to emphasize its dependence on μ, we use the notation ν = μY . We stress that we
are not assuming in this lemma that G is unimodular. We can spell out (6) in the
case where f is a function which depends only on one of the two variables: If f1
and f2 are bounded non-negative Borel functions on G and Y respectively, then∫

G
f1(g) dmG(g) =

∫
X

∑
g∈Yx

f1(g
−1) dμ(x)

and ∫
Y
f2(y) dν(y) =

∫
X

∑
g∈Yx

f2(g.x) dμ(x).

Note that if μ is a finite Borel measure, then ν is a finite Borel measure on Y . The
converse is not true.

Proof of Proposition 4.3. Fix μ ∈ M(X;YG)G, and define

η(D) := μ(TχD), for Borel sets D ⊂ G × Y.

By Lemma 4.1(i) and (iv), η is a Borel measure on G × Y . Furthermore,
Lemma 4.1(v) implies that η(Kn × Yn) < ∞ for all n, so in particular, η is σ-
finite. By a standard approximation argument (see e.g. [5, Theorem 3.3.1]), it
suffices to show that there is a unique ν ∈ M(Y;Y) such that

η(A × B) = mG(A) ν(B), for all A ∈ BG and B ∈ BY .

To do this, fix n and a Borel set B ⊂ Yn. We define the Borel measure ηB on G by

ηB(A) = η(A × B), for A ∈ BG.

Since μ is YG-finite, ηB(Kn) ≤ MK−1
n
μ(Kn.Yn) < ∞ for every n by Lemma 4.1(v),

and thus ηB is locally finite. By Lemma 4.1(iii), we see that

ηB(g−1A) = μ(TχA×B(g.·)) = ηB(A), for all g ∈ G,

since μ is G-invariant. Hence ηB is a locally finite and left-invariant Radon
measure on G, and thus a (non-negative) multiple of mG. We conclude that there
is a non-negative (finite) number νn(B) such that

η(A × B) = mG(A) νn(B), for all A ∈ BG.
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Since η is a Borel measure, it follows that νn is a (finite) Borel measure on Yn.
Furthermore, if m ≤ n, then νm(B) = νn(B) for every Borel set B ⊂ Ym. We
conclude that the limit

ν(B) := lim
n→∞ νn(B ∩ Yn)

exists for every Borel set B ⊂ Y . It readily follows from monotone convergence
that ν is a Borel measure on Y such that ν(B) = νn(B) for every Borel set B ⊂ Yn.
In particular, ν is Y-finite. Since η is a Borel measure, we now have

η(A × B) = lim
n
η(A × (B ∩ Yn)) = lim

n
mG(A)νn(B ∩ Yn) = mG(A)ν(B),

for all Borel sets A ⊂ G and B ⊂ Y . �

4.3 Proofs of Theorem 1.14 and Corollary 1.15. We now turn to the
proof of Theorem 1.14. We split the proof into a series of lemmas. For the first
two of these, unimodularity of G is not needed.

Lemma 4.5. The map M(X;YG)G → M(Y;Y), μ �→ μY is injective. In

particular, if μ is non-zero, then so is μY.

Proof. Suppose μ1, μ2 ∈ MY(X)G with (μ1)Y = (μ2)Y . Then,

μ1(a(C)) = mG ⊗ (μ1)Y(C) = mG ⊗ (μ2)Y(C) = μ2(a(C))

for every injective Borel set C ⊂ G×Y . Fix a Borel set B ⊂ X. By Lemma 3.1(v),
there are injective Borel sets B̃1, B̃2, . . . in G × Y such that B =

⊔
k a(B̃k). Since

μ1(a(B̃k)) = μ2(a(B̃k)) for all k, we see that

μ1(B) =
∑

k

μ1(a(B̃k)) =
∑

k

μ2(a(B̃k)) = μ2(B).

Since B is an arbitrary Borel set in X, we conclude that μ1 = μ2. �

Lemma 4.6. Let μ ∈ M(X;X)G and let B be a G-invariant Borel set in X.
Then,

μ(B) = 0 ⇐⇒ μY(B ∩ Y) = 0.

Proof. Let V ⊂ G be an identity neighborhood such that V−1V ⊂ U.
Then V × Y is an injective Borel set by Lemma 3.1(i). Since B is G-invariant,
V.(B ∩ Y) = B ∩ V.Y , and thus

mG(V)μY(B ∩ Y) = μ(V.(B ∩ Y)) = μ(B ∩ V.Y).
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Since 0 < mG(V) < ∞, we see that μY(B ∩ Y) = 0 ⇐⇒ μ(B ∩ V.Y) = 0. In
particular, if μ(B) = 0, then μY(B ∩ Y) = 0. Conversely, if μY (B ∩ Y) = 0, then
μ(B ∩ V.Y) = 0, so if we let � ⊂ G be a countable set such that �V = G, then,
sinceμ and B are G-invariant,μ(B∩ξV.Y) = 0 for all ξ ∈ �. Hence, by σ-additivity
of μ, we see that 0 = μ(B ∩�V.Y) = μ(B ∩ G.Y) = μ(B). �

Lemma 4.7. If G is unimodular and μ ∈ M(X;YG)G, then μY ∈ M(Y;Y)RY is
RY-invariant.

Proof. Let ϕ ∈ [[E]], and let V,Ak, Wk, ρk, λk and Ck be as in Lemma 3.10.
Since ϕ is injective and the sets Ak are disjoint, we have

μY(ϕ(A)) =
∑

k

μY (ϕ(Ak)),

so it suffices to show that μY(ϕ(Ak)) = μY(Ak) for every k. We recall from Lem-
ma 3.10 that

Ck := {(wρk(y)
−1, ϕ(y)) : w ∈ Wk, y ∈ Ak} ⊂ G × Y

is an injective set such that a(Ck) = Wkλk.Ak. Let ρ̃k := ρ ◦ ϕ−1|ϕ(Ak ), and note that

χCk(g, z) = χWk(gρ̃k(z))χϕ(Ak)(z), for all (g, z) ∈ G × Y.

Since mG is right-invariant, Fubini’s Theorem tells us that

mG ⊗ μY (Ck) = mG(Wk)μY(ϕ(Ak)).

Since Ck is injective, we also have (mG ⊗ μY )(Ck) = μ(a(Ck)). Moreover,

μ(a(Ck)) = μ(Wkλk.Ak) = μ(λ−1
k Wkλk.Ak)

= mG(λ−1
k Wkλk)μY(Ak) = mG(Wk)μ(Ak),

where in the second identity we have used that μ is G-invariant, in the third
inequality we have used that λ−1

k W2
kλk ⊂ U, and in the last identity we have used

that mG is conjugation-invariant. Hence

mG(Wk)μY(ϕ(Ak)) = mG ⊗ μY(Ck) = μ(a(Ck)) = mG(Wk)μ(Ak),

and thus μY (ϕ(Ak)) = μY (Ak). �
Thus, if we assume that G is unimodular, then we have an injective restriction

map
GresX

Y : M(X;YG)G → M(Y;Y)RY , μ �→ μY .

It turns out that this map is actually a bijection:
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Lemma4.8. If G is unimodular, then the map GresX
Y : M(X;YG)G →M(Y;Y)RY ,

μ �→ μY is bijective and inverse to the map GindX
Y : M(Y;Y)RY → M(X;YG)G from

Theorem 3.14.

Proof. We fix a Borel Y-section β as in Lemma 3.7; then

GindX
Y (ν) = νβ ∈ M(X;YG)G

for all ν ∈ M(Y;Y)RY by Theorem 3.14. Since GresX
Y is injective, it now suffices to

show that

(7) (νβ)Y = ν for all ν ∈ M(Y;Y)RY ;

thiswill prove that GresX
Y is surjective (hence bijective) and hence that its left-inverse

GindX
Y is actually its inverse.

To prove (7) we fix a Borel set B ⊂ Y . Let V be an identity neighborhood in G

such that V−1V ⊂ U. Then

C1 = bβ(V.B) and C2 = V × B,

where bβ is defined in (2), are both injective Borel sets in G × Y and we have

a(C1) = V.B = a(C2).

Since ν is RY -invariant, it follows fromCorollary 3.17 thatmG⊗ν(C1) = mG⊗ν(C2),
and thus

νβ(V.B) = mG ⊗ ν(C1) = mG(V)ν(B).

In particular, (νβ)Y (B) = ν(B). Since B is an arbitrary Borel set in Y , we see
that (νβ)Y = ν. �

At this point we have established the measure correspondence promised in the
introduction:

Proof of Theorem 1.14. The maps GresX
Y from Lemma 4.8 and GindX

Y from
Theorem 3.14 are mutually inverse by Lemma 4.8. It remains to show that if μ
and ν are as in the theorem, then (i)–(iv) hold. Property (ii) is actually our definition
of ν and (i) follows from (ii) (see Proposition 4.3 and Remark 4.4). Moreover,
(iv) was established in Lemma 4.6. If C is injective, then by Lemma 4.1(ii) we
have TχC = χa(C) and hence

μ(a(C)) = μ(χa(C)) = μ(TχC) = (mG ⊗ ν)(χC) = (mG ⊗ ν)(C).

This establishes (iii) and finishes the proof. �
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Proof of Corollary 1.15. Since Y is closed in X, it is locally compact,
hence we can find an exhaustion Y = {Yn} of Y by compact sets with non-empty
interior. Then the Radon measures on Y are precisely the measures in M(Y,Y). If
G = {Kn}, then the sets Xn := KnYn are compact and exhaust X. Since X is Baire, it
follows that almost all Xn contain an interior point, but this in turn implies that the
measures in M(X,YG) are precisely the Radon measure on X. The corollary then
follows from Theorem 1.14. �

4.4 Ergodic decomposition of Y-transverse measures. In this sub-
section we assume that G is unimodular so that by Lemma 4.7 the transverse
measure μY is RY-invariant for every G-invariant measure μ ∈ M(X;YG)G. We
first observe that the restriction map preserves ergodicity in the following sense:

Lemma 4.9. Suppose μ ∈ M(X;YG)G. Then

μ is G-ergodic ⇐⇒ μY is RY-ergodic.

Proof. Suppose μ is G-ergodic, and let A ⊂ Y be an RY -invariant subset such
that μY(A) > 0. We want to show that μY (Ac) = 0. Let us fix a Borel Y-section
β : X → G and define

Aβ = {x ∈ X : β(x).x ∈ A}.
By Lemma 3.13, Aβ ⊂ X is a G-invariant Borel set such that Aβ ∩ Y = A. Since
μY(A) > 0, it follows from Lemma 4.6 that μ(Aβ) > 0. Since μ is ergodic, we
have μ(Ac

β) = 0. Using Lemma 4.6 again, and the identity (Aβ)c = (Ac)β, we see
that

μY(Ac
β ∩ Y) = μY(Ac) = 0.

To prove the converse, assume thatμY is RY-ergodic, and let B ⊂ X be a G-invariant
Borel set such that μ(B) > 0. We want to show that μ(Bc) = 0. By Corollary 3.12,
B∩Y is an RY-invariant Borel set in Y , and by Lemma 4.6, we haveμY(B∩Y) > 0.
Since μY is RY -ergodic, μY (Bc ∩ Y) = 0, and thus μ(Bc) = 0 by Lemma 4.6. �

This allows us to carry over the ergodic decomposition of invariant measures in
M(X;YG) to transverse measures. We will use the following version of the ergodic
decomposition theorem which is contained in [9, Theorem 1.1].

Theorem 4.10. For every μ ∈ Prob(X)G, there is a unique probability mea-
sure σ on Prob(X), which is supported on the set of G-ergodic Borel probability

measures on X, such that

μ(F) =
∫

Prob(X)G
η(F) dσ(η),

for every bounded real-valued Borel function F on X.



130 M. BJÖRKLUND, T. HARTNICK AND Y. KARASIK

If we now consider F of the form T(ρ⊗ f ), where T is defined as in (5), ρ is a
compactly supported continuous function with mG(ρ) = 1 and f is a bounded Borel
function on Y , then Proposition 4.3 and Lemma 4.9 give the following corollary.

Corollary 4.11. For every μ ∈ Prob(X)G, there is a unique probability mea-
sure σ on Prob(X), which is supported on the set of G-ergodic Borel probability

measures on Y, such that

μY (f ) =
∫

Prob(X)G
ηY(f ) dσ(η),

for every bounded real-valued Borel function f on Y.

4.5 Changeof cross section. Wecontinue to assume thatG is unimodular.
We observe that since Y ⊂ X is a U-separated cross section, the translate g.Y is a
Ug-separated cross section. The corresponding transverse measures with respect
to Y and g.Y are related as follows:

Lemma 4.12. Letμ ∈ Mfin(X)G. Then, for every g ∈ G, we have g∗μY = μg.Y .

Remark 4.13. The lemma, with virtually the same proof, also holds for YG-
finite Borelmeasures, for a Borel exhaustionY of Y and a fundamental exhaustionG
of G by compact sets.

Proof. Fix g ∈ G and let V be an identity neighborhood in G such that
V−1V ⊂ U. Suppose B ⊂ g.Y is a Borel set. Then, g−1.B is a Borel set in Y , and

g∗μY(B) = μY (g−1.B) =
μ(Vg−1.B)

mG(V)
.

Since μ is G-invariant and Vg(Vg)−1 ⊂ Ug and g.Y is Ug-separated, we see that

μ(Vg−1.B)
mG(V)

=
μ(gVg−1.B)

mG(V)
=

mG(gVg−1)
mG(V)

μg.Y (B).

Since G is unimodular and B ⊂ g.Y is arbitrary, we conclude that g∗μY = μg.Y . �

5 Transversal recurrence

In this section we establish a transverse recurrence theorem which corresponds to
the case r = 1 of Theorem 1.10 from the introduction. The versions for r > 1 will
later be established by applying this theorem to a suitable intersection space.
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5.1 A transverse version of Poincaré’s RecurrenceTheorem. Let G
be a non-compact lcsc group with left Haar measure mG. Let X be a Polish space,
and denote by BX the σ-algebra on X generated by the open sets. Let a : G×X → X

be a Borel measurable action, and suppose Y ⊂ X is a U-separated cross section
for some identity neighborhood U in G. The aim of this section is to prove the
following transversal version of Poincaré’s classical recurrence theorem.

Theorem 5.1. For every μ ∈ Mfin(X)G, there is a μY-conull Borel set Y ′ ⊂ Y
such that for every y ∈ Y ′, there is a sequence (gn) ∈ Yy such that gn.y → y and

gn → ∞ as n → ∞.

In other words, for a generic point in the transversal (with respect to the
transverse measure) we can find an infinite number of return times to an arbitrary
small neighborhood in Y (rather than in X). The assumption that X is Polish is
used in the proof to construct an exhaustion of X by compact sets and to guarantee
that X is second countable.

5.2 Proof of Theorem 5.1. We will prove Theorem 5.1 by reducing it
to the non-transversal version of Poincaré’s recurrence theorem. Throughout we
fix μ ∈ Mfin(X)G. A subset � ⊂ G \ {e} is Poincaré (with respect to the triple
(X, a, μ)) if for every Borel set A ⊂ X with positive μ-measure, there exists ξ ∈ �
such that μ(A ∩ ξ−1A) > 0. We can then state Poincaré’s recurrence theorem as
follows:

Lemma 5.2 (Poincaré’s Recurrence Theorem). Let � ⊂ G be an infinite set.

Then � := ��−1 \ {e} is a Poincaré set.

Proof. Assume, for the sake of contradiction, that there exists a Borel set
A ⊂ X with positive μ-measure such that

μ(A ∩ θiθ−1
j .A) = μ(θ−1

i .A ∩ θ−1
j .A) = 0, for all i 	= j,

where θ1, θ2, . . . is an infinite sequence of distinct elements in �. Then the sets
θ−1
1 .A, θ−1

2 .A, . . . are disjoint modulo μ-null sets, and thus

∞ =
∑

i

μ(A) =
∑

i

μ(θ−1
i .A) = μ

(⋃
i

θ−1
i .A

)
≤ 1.

�

Corollary 5.3. For every compact set K in G, there is a countable Poincaré

set � such that � ∩ K = ∅.

Proof. Fix a compact set K in G. Since G is non-compact, there is an infinite
sequence � = (θi) in G such that θ−1

i K ∩ θ−1
j K = ∅ for all distinct θi, θj ∈ �. By
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the previous lemma, � = ��−1 \ {e} is a (countable) Poincaré set, and clearly
� ∩ K = ∅. �

The proof of Theorem 5.1 will be based on two lemmas. If � is a countable
Poincaré set in G, and A ⊂ X is a Borel set, we denote by

A� := {x ∈ A : ξ.x ∈ A, for some ξ ∈ �}
the set of all points in A whose return time sets to A contains �. Since

A� =
⋃
ξ∈�

A ∩ ξ−1.A,

and � is countable, we see that A� is a Borel set in X.

Lemma 5.4. If A ⊂ X is a Borel set with μ(A) > 0, then A� is a μ-conull
Borel subset of A.

Proof. Set B := A \ A�, and assume, for the sake of contradiction, that
μ(B) > 0. Since � is a Poincaré set, this implies that there exists ξ ∈ � such
that μ(B∩ ξ−1B) > 0. In particular, B∩ ξ−1.B is non-empty, which contradicts the
fact that B ⊂ A and B ∩ A� = ∅. �

For the second lemma we consider a Borel set V ⊂ G such that V−1V ⊂ U. By
Lemma 3.1(i), the composition

(8) prY : V.Y → V × Y → Y, v.y �→ (v, y) �→ y

is well defined and Borel.

Lemma 5.5. Let X′ ⊂ X be a μ-conull Borel set. Then prY (X′ ∩V.Y) contains
a μY-conull Borel set.

Proof. Since both a and prY are Borel, [12, Proposition 14.4] tells us that
Y ′ := prY (X′ ∩ V.Y) and V.Y ′ are analytic sets in Y and X respectively. Hence, by
[12, Theorem 21.10], Y ′ and V.Y ′ are measurable with respect to theμY-completion
of BY and the μ-completion of BX respectively (we abuse notation and denote
by μY and μ the unique extensions of μY and μ to the respective completions).
Note that V.Y ′ ⊃ X′ ∩ V.Y . Since X′ is μ-conull we have

μ(X′ ∩ V.Y) = μ(V.Y) = mG(V)μY(Y),

and thus

μY (Y ′) =
μ(V.Y ′)
mG(V)

≥ μ(X′ ∩ V.Y)
mG(V)

= μY(Y).

Since Y ′ is measurable with respect to the μY -completion of BY , we can find a
Borel set Y ′′ ⊂ Y ′ which is still μY -conull. �
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The proof still applies if μ is merely assumed to be σ-finite, but we will not
need this fact here.

Proof of Theorem 5.1. We fix an identity neighborhood V in G such
that V−1V ⊂ U, and an exhaustion {Kn : n ≥ 1} of G by compact sets. By
Corollary 5.3, there exists a sequence (�n) of countable Poincaré sets in G such
that�n ∩ Kn = ∅ for all n. Since X is Polish, it is second countable. Fix a countable
basis for the topology on X and denote by B := {B} the collection of (non-empty)
intersections of the basis elements with supp(μY) ⊂ Y . Define

B̃ := V.B ⊂ X, for B ∈ B.

Since μY (B) > 0, we have μ(B̃) > 0, for every B ∈ B. Define

NB,n := B̃ \ B̃�n and X′ :=
⋃

B∈B

∞⋃
n=1

X \ NB,n.

By Lemma 5.4 we haveμ(NB,n) = 0 for all B ∈ B and n ∈ N. SinceB is countable,
X′ is thus a μ-conull Borel set. By Lemma 5.5 the set prY (X′ ∩ V.Y) contains a
μY-conull Borel subset

Y ′ ⊂ prY (X′ ∩ V.Y) ⊂ Y.

We claim that Y ′ satisfies the conclusions of Theorem 5.1. To see this, pick

y ∈ Y ′, v ∈ V and x = v.y ∈ X′ ∩ V.Y,

and a sequence (Bn) in B such that {y} =
⋂

n Bn.
Since x ∈ X′ ∩ V.Bn for every n, and thus x ∈ (V.Bn)�n , we can find ξn ∈ �n

such that ξn.x ∈ V.Bn. Hence there exist vn ∈ V and yn ∈ Bn such that

ξnv.y = vn.yn,

and thus gn := v −1
n ξnv ∈ Yy ∩ VξnV and gn.y = yn ∈ Bn. Since ξn /∈ Kn for all n,

we see that gn → ∞, and since {y} =
⋂

n Bn, we see that yn → y. �

6 Ergodic theorems for cross sections

In this section we establish a pointwise transversal ergodic theorem along certain
averaging sequences which we call convenient sequences. As an application we
deduce that generic points in the transversal have positive lower density along such
sequences. This establishes Theorem 1.11 from the introduction in the case r = 1.
The versions for r > 1 will later be obtained by applying this version to a suitable
intersection space. Throughout this section, G denotes a unimodular lcsc group
with bi-invariant Haar measure mG and (X, a,Y) is a U-transverse triple over G for
some open identity neighborhood U ⊂ G.
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6.1 Convenient sequences. If V is an open identity neighborhood and
B ⊂ G is a pre-compact Borel set, then we set

B−
V :=

⋂
v∈V

v −1B and B+
V :=

⋃
v∈V

v −1B.

Definition 6.1. Let (Vn) be a decreasing sequence of open identity neigh-
borhoods in G. We say that a sequence (Gt) of pre-compact Borel sets in G is
convenient if

(i) There exist sequences (δn), (εn) and (tn) of positive real numbers such
that δn, εn → 0, and

(9) Gt−δn ⊂ (Gt)
−
Vn

⊂ (Gt)
+
Vn

⊂ Gt+δn, for all t > tn

and

(10) 1 − εn ≤ lim
t→∞

mG(Gt−δn)
mG(Gt)

and lim
t→∞

mG(Gt+δn)
mG(Gt)

≤ 1 + εn,

for all n.
(ii) For every Borel G-space (X, a) and bounded real-valued Borel function ϕ

on X, the set

Eϕ :=
{

x ∈ X : lim
t→∞

1
mG(Gt)

∫
Gt

ϕ(g.x) dmG(g) exists
}

is Borel in X andμ-conull for everyμ ∈ Mfin(X)G. Furthermore, the function
ϕ : Eϕ → R defined by

ϕ(x) = lim
t→∞

1
mG(Gt)

∫
Gt

ϕ(g.x) dmG(g), for x ∈ Eϕ,

is Borel, and for every G-ergodic μ ∈ Prob(X)G, there is a G-invariant and
μ-conull Borel subset Eϕ(μ) ⊂ Eϕ such that ϕ = μ(ϕ) for all x ∈ Eϕ(μ).

Remark 6.2. The key point of Condition (ii) is that the set Eϕ(μ) is G-
invariant. While this is automatic if G is amenable, and (Gt) is a sufficiently nice
Følner sequence in G, it is not at all automatic when G is non-amenable. Sufficient
conditions on (Gt) to satisfy (ii) are given in [8, Theorem 5.22] (note however that
the averages in this book are taken over G−1

t ). Examples of convenient sequences
in semisimple Lie groups are explicated in [8, Chapter 7].

For the applications we have in mind, it is convenient to require the first
condition of (ii) to hold for all G-invariant finite measures μ on X, whereas the
second condition is only required to hold for G-ergodic probability measures. We
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point out, however, that it is actually enough to check both conditions only for
G-invariant ergodic probability measures on X. Indeed, assume that (ii) holds
for all ergodic probabiity measures on X and let μ be a finite invariant measure.
Since Condition (ii) is invariant under rescaling μ, we may assume that μ is a
probability measure, hence admits an ergodic decomposition. Since all ergodic
components ν of μ satisfy ν(Eϕ) = 1 we also have μ(Eϕ) = 1, proving that Eϕ is
μ-conull.

6.2 A pointwise transversal ergodic theorem. Our main goal in this
section is to prove the following theorem.

Theorem 6.3. Suppose μ ∈ Prob(X)G is G-ergodic. Then, for every conve-
nient sequence (Gt) pre-compact Borel sets in G and for every bounded real-valued

Borel function f on X, there is a μY-conull Borel set Ef ⊂ Y such that

lim
t→∞

1
mG(Gt)

∑
h∈Yy∩Gt

f (h.y) = μY(f ), for all y ∈ Ef .

Proof. Wemay without loss of generality assume that f is non-negative. Given
a non-negative continuous function ρ with compact support such that mG(ρ) = 1,
we define

fρ(x) =
∑
h∈Yx

ρ(h−1)f (h.x), x ∈ X.

Note that fρ = T(ρ⊗f ), whereT is the Y-periodization defined in (5), so in particular
fρ is a bounded Borel function on X by Lemma 4.1(i) and (v), and by Proposition
4.3,

(11) μ(fρ) = mG(ρ)μY(f ) = μY(f ), for every μ ∈ Mfin(X)G.

Furthermore, by Lemma 4.1(ii)

fρ(g.x) =
∑
h∈Yx

ρ(gh−1)f (h.x), for all g,

and thus, for every Borel set B ⊂ G,∫
B
fρ(g.x) =

∑
h∈Yx

(∫
G
χg−1B(h) ρ(g) dmG(g)

)
f (h.x).

Suppose supp(ρ) ⊂ V . Then, since ρ and f are non-negative,

χB−
V
(h) ≤

∫
G
χg−1B(h) ρ(g) dmG(g) ≤ χB+

V
(h), for all h ∈ G,
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whence

(12)
∑

h∈Yx∩B−
V

f (h.x) ≤
∫

B
fρ(g.x) dmG(g) ≤ ∑

h∈Yx∩B+
V

f (h.x),

for all x ∈ X and for every (pre-compact) Borel set B ⊂ G.

Suppose (Gt) is a convenient sequence of pre-compact Borel sets in G. By (9),
there exist sequences (δn) and (tn) such that δn → 0, and

Gt−δn ⊂ (Gt)
−
Vn

⊂ (Gt)
+
Vn

⊂ Gt+δn, for all t > tn.

Let (ρn) be a sequence of non-negative continuous functions such that supp(ρn)⊂Vn

and mG(ρn) = 1 for all n. If we set B = Gt and ρ = ρn in (12), then

∑
h∈Yx∩Gt−δn

f (h.x) ≤
∫

Gt

fρn(g.x) dmG(g) ≤ ∑
h∈Yx∩Gt+δn

f (h.x)

for all x ∈ X and t > tn. Define

ψ+(x) = lim
t→∞

1
mG(Gt)

∑
h∈Yx∩Gt

f (h.x) and ψ−(x) = lim
t→∞

1
mG(Gt)

∑
h∈Yx∩Gt

f (h.x),

for x ∈ X, and set En := Efρn and ψn := f ρn
. By (10),

(1 − εn)ψ−(x) ≤ ψn(x) ≤ (1 + εn)ψ+(x)

for all x ∈ En. Furthermore, for every G-ergodic μ ∈ Prob(X)G, we have

ψn(x) = μ(fρn) = μY(f ) for all x ∈ En(μ) := Efρn (μ).

Since εn → ∞, we conclude that

ψ+(x) = ψ−(x) = μY (f ), for all x ∈ E′
f (μ) :=

⋂
n

En(μ).

By Definition 6.1(ii), each E′
n(μ) is G-invariant and μ-conull, and thus E′

f (μ) is
G-invariant and μ-conull as well. By Lemma 4.6, Ef := E′

f (μ) ∩ Y is a μY-conull
Borel set in Y , and

lim
t→∞

1
mG(Gt)

∑
h∈Yy∩Gt

f (h.y) = μY (f ),

for all y ∈ Ef . �
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6.3 Positivity of lowerdensities. Wenowgive an application of Theorem
6.3 to densities of generic return time sets. Given a convenient sequence (Gt) of
pre-compact Borel sets in G we define the associated lower density Dens(Gt)(A)
of a subset A ⊂ G by

Dens(Gt)(A) := lim
t→∞

|A ∩ Gt|
mG(Gt)

.

We now fix such a sequence once and for all and define the lower density
function DensY by

(13) DensY : Y → [0,∞], DensY(y) := Dens(Gt)(Yy).

Theorem 6.4. For every μ ∈ Prob(X)G, DensY (y) > 0 for μY-almost every

y ∈ Y.

Proof. Let N := {y ∈ Y : DensY (y) = 0}. Fix a G-invariant Borel probability
measure μ on X. We want to show that μY (N) = 0. By Corollary 4.11, there is a
Borel probability measure σ on Prob(X)G, supported on the set of G-ergodic Borel
probability measures, such that

μY (f ) =
∫

Prob(X)G
ηY(f ) dσ(η),

for every bounded real-valued Borel function on X. Hence it suffices to prove that
DensY(y) > 0 for η-almost every y, for every G-ergodic η. To do this, note that

DensY (y) = lim
t→∞

1
mG(Gt)

∑
h∈Yy∩Gt

1.

By Theorem 6.3, the right-hand side converges to ηY(1) for η-almost every y,
and for every G-ergodic Borel probability measure η. By Lemma 4.5 we have
ηY(1) > 0, and we are done. �

7 Transverse measures for actions of semidirect prod-
ucts

In this section we finally establish Theorem 1.7 concerning restriction in stages
for semidirect products which is the main technical result of this article. We also
provide several criteria for the intermediate cross section to be separated; this will
be used in the proof of Theorem 1.9 and some of its variants.
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7.1 Basic setup. Let G be a lcsc group. We assume that there are closed
subgroups N and L of G, with left Haar measures mN and mL respectively, such
that:

• G = NL, N is normal in G and N∩L = {e}. In other words, G is the semidirect
product of N and L.

• The conjugation action of L on N preserves mN .

The first assumption in particular implies that every element g in G is of the form
nl for unique elements n ∈ N and l ∈ L and we write n := prN(g) and l := prL(g).
Note that prL : G → L is a continuous homomorphism. The second assumption
implies that

mG(f ) =
∫

N

∫
L
f (nl) dmN(n) dmL(l), f ∈ Cc(G),

is a left Haar measure on G. Note that

(14) mG(WNWL) = mN(WN)mL(WL),

for all Borel sets WN ⊂ N and WL ⊂ L. The key example that we have in mind is
the following:

Example 7.1. Let Go be a unimodular lcsc group, set G := Gn
o and denote by

πk : G → Go the kth coordinate projection. For some k let N := Nk := ker(πk)
and let L := 	(Go) < G be the diagonal subgroup. Then the triple (G,N,L)
satisfies all of the assumptions above. Indeed, since Go is unimodular, G, N and L

are unimodular, and the L-action on Nk preserves the (bi-invariant) Haar measure
on Nk.

Given an open identity neighborhood U in G and a U-transverse triple (X, a,Z)
over G we make the following definitions: We fix Borel exhaustionZ={Zn : n≥1}
of Z, and let L = {Ln : n ≥ 1} and N = {Nn : n ≥ 1} be fundamental exhaustions
by compact sets of L and N respectively. We define

Y := L.Z and Yn := Ln.Zn and Y = ZL and G = {NnLn : n ≥ 1},

and aL := a|L×X and aN := a|N×X . Note that Y and Yn are Borel sets in X by
Lemma 3.1(iv) and Lemma 2.1(iii). In particular, (Y, aL) is a Borel L-space by
Lemma 2.1(i), and (Y, aL,Z) is a U∩L-transverse triple over L. At the same time Y

is also a cross section for the Borel action aN of N on X. In the sequel we refer to
it as the intermediate cross section.
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7.2 Criteria for separatedness of the intermediate cross section.
We keep the notation of the previous subsection. In particular, Z is a separated G-
transversal in X and at the same time a separated N-transversal in Y . The following
example shows that Y need not be separated when considered as an N-cross section
in X.

Example 7.2. Let G = R
2, N = R × {0} and L = R(α, 1), where α is an

irrational number, and let X = R
2/Z2, Z = {(0, 0)} and Y = L.Z. Then, for every

y = (tα + Z, t + Z) ∈ Y ,

Yy = {(m + nα, 0) : m, n ∈ Z},
which clearly accumulates at (0, 0), and thus Y is not a separated cross section.

Our next lemma provides a necessary and sufficient criterion for Y to be a
separated cross section in terms of the return time set �a(Z). However, this
criterion is often difficult to verify, so we also give two sufficient criteria, which
are easier to check in practise. We use the following notation: if W ⊂ N, then
Wl := lWl−1 for l ∈ L and WL :=

⋃
l∈L Wl.

Lemma 7.1. We have �aN (Y) = prN(�a(Z))L. In particular, Y is a separated

cross section if and only if prN(�a(Z))L is uniformly discrete. This is the case if
either

(i) there is a compact set KL ⊂ L such that KL(�a(Z)∩L) = L, and prN(�a(Z)3)
does not accumulate at the identity in N, or

(ii) G is abelian, and prN(�a(Z)) does not accumulate at the identity in N.

Proof. Let us first show that �aN (Y) = prN(�a(Z))L. Consider the following
equivalences: (1) n ∈ �aN (Y), i.e., there exists y ∈ Y such that y′ := n.y ∈ Y . Since
Y = L.Z, we can write y = lz.z and y′ = lo.zo for some lo, lz ∈ L and zo, z ∈ Z.
Hence (1) is equivalent to (2): (l−1

o nlo)l−1
o lz ∈ Zz, for some lo, lz ∈ L and z ∈ Z.

Since N is normal, N ∩L = {e}, G = NL, and z and lz are arbitrary, (2) is equivalent
to (3): l−1

o nlo ∈ prN(�a(Z)) for some lo ∈ L, or equivalently, n ∈ prN(�a(Z))L.
Note that if G is abelian, then prN(�a(Z))L = prN(�a(Z)), since the L-action

on N is trivial, and hence we deduce that Condition (ii) is sufficient. Now suppose
that (i) holds and fix a compact subset KL ⊂ L such that KL(�a(Z) ∩ L) = L. Since
η�a(Z) η−1 ⊂ �a(Z)3 for all η ∈ �a(Z) ∩ L, we have

prN(�a(Z))L ⊂ prN(�a(Z)3)KL .

Suppose that prN(�a(Z)3) does not accumulate at the identity in N. Then there is
an identity neighborhood W in N such that pr(�a(Z)3) ∩ W = {e}. Let UN be an
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open identity neighborhood in N such that k−1UNk ⊂ W for all k ∈ KL. Then,

prN(�a(Z)3)KL ∩ UN ⊆ (prN(�a(Z)3) ∩ U
K−1

L
N )KL

⊆ (prN(�a(Z)3) ∩ W)KL = {e},
and thus prN(�a(Z))L ∩ UN = {e} as well. In particular, Y is a UN-separated cross
section. �

One might suspect that the cocompactness assumption in Lemma 7.1(i) which
assumes that there is a compact set KL in L such that KL(�a(Z) ∩ L) = L is
superfluous, since it has no counterpart in the abelian case. Our next example
shows that it cannot simply be dropped in the non-abelian case.

Example 7.3. Let G = SL2(R) × SL2(R), let L denote the diagonal in G,
and let N = SL2(R) × {e}. Note that prN(g1, g2) = g1g−1

2 . Let �o = SL2(Z) and
� = �o × �o, and set

X = G/� and Z = {�},
where G acts on X by left multiplication. Then it is easy to check that �a(Z) = �
and prN(�a(Z))L = �SL2(R)

o ×{e}. Since �o contains non-trivial unipotent elements,
�SL2(R)

o accumulates at e in SL2(R), and thus

Y := L.Z = {(go�o, go�o) : go ∈ SL2(R)}
is not a separated cross section for the N-action. However, since

prN(�a(Z)3) = �o × {e},
the second condition in Lemma 7.1(i) clearly holds.

7.3 Restriction in stages. In this section we establish Theorem 1.7 from
the introduction. In fact, we are going to establish a more general version which
also works for certain infinite measures. We keep the notation of the previous
subsection and assume in addition that Y is a UN-separated cross section for the
N-action on X for some open identity neighborhood UN in N.

Let now μ ∈ M(X,ZG)G and let

μZ := GresX
Y (μ) ∈ M(Z,Z)RG,Z .

Since μ ∈ M(YN)L (as L ⊂ G and ZG = (ZL)N = YN) we can also form the
intermediate measure μY := NresX

Y (μ) ∈ M(Y,Y)RN,Y .

Theorem 7.2. Assume that the N-cross section Y is separated and let
μ ∈ M(C,ZG)G and μZ := GresX

Y (μ) ∈ M(Z,Z)RG,Z .
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(i) The measure μY ∈ M(Y,Y)RN,Y is L-invariant and hence the transverse mea-

sure (μY)Z := LresY
Z (μY) is well-defined.

(ii) (μY)Z = μZ.

Proof. Fix identity neighborhoods V,VN and VL in G,N and L respectively,
such that

V−1V ⊂ U and V−1
N VN ⊂ UN and V−1

L VL ⊂ L ∩ U.

We may without loss of generality assume that VNVL ⊂ V . Note that V ×Z, VL ×Z

and VN × Y are a-injective, aL-injective and aN-injective Borel sets respectively
(cf. Lemma 3.1(i)).

To prove that μY is L-invariant, we fix l ∈ L, a Borel set B ⊂ Y and an identity
neighborhood Vl ⊂ VN such that l−1Vll ⊂ VN . Then, since l.B ⊂ Y and Vl × l.B is
an injective Borel set in N × Y ,

μY(l.B) =
μ(Vll.B)
mN(Vl)

=
μ(l−1Vll.B)

mN(Vl)
=

mN(l−1Vll)
mN(Vl)

μY (B) = μY(B),

where we in the second equality have used that μ is L-invariant, and in the last
identity that the conjugation action of L on N preserves mN . Since l and B are
arbitrary, μY is L-invariant.

Let us now prove the identity (μY)Z = μZ . Note that

μ(VNVL.B) = mN(VN)μY(VL.B) = mN(VN)mL(VL)(μY)Z(B),

for every Borel set B ⊂ Z, where we in the first identity have used that μY is the
Y-transverse of μ for the N-action, and in the second identity that (μY)Z is the
transverse measure of μY for the L-action on Y . On the other hand,

μ(VNVL.B) = mG(VNVL)μZ(B) = mN(VN)mL(VL)μZ(B),

since μZ is the Z-transverse measure of μ for the G-action on X. Since B is
arbitrary, we conclude that (μY)Z = μZ. �

Proof of Theorem 1.7. This is just a special case of Theorem 7.2 in which
μ is finite. �

There are several equivalent ways to formulate Theorem 7.2, for example:

Corollary 7.3. Assume that the N-cross section Y is separated. Then the
composition LresY

Z ◦ NresX
Y is well-defined on M(X,ZG)G and satisfies

LresY
Z ◦ NresX

Y = GresX
Z : M(X,ZG)G → M(Z,Z)RG,Z .

Similarly, the composition N indX
Y ◦LindY

Z is well-defined on M(Z,Z)RG,Z and satisfies

N indX
Y ◦ LindY

Z = GindX
Z : M(Z,Z)RG,Z → M(X,ZG)G.
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Indeed, the first version is just a reformulation, and the second version follows
from Lemma 4.5. Yet another way to express the same conclusion is to say that
for μ ∈ M(X,ZG)G we have

(15) NresX
Y (μ) = LindY

Z

(GresX
Y (μ)

)
.

Note that the group N does not appear on the right-hand side. This implies the
following independence of the measureμY from the choice of semidirect splitting:

Corollary 7.4. Let μ ∈ M(X;ZG)G and suppose that N1 and N2 are closed
and normal unimodular subgroups of G such that

N1 ∩ L = N2 ∩ L = {e} and G = N1L = N2L.

Assume that Y is a separated cross section for both aN1 and aN2 and that the L-
actions on N(1) and N(2) by conjugation preserve the respective Haar-measures.

Then
N1 resX

Y (μ) = N2 resX
Y (μ) = LindY

Z (GresX
Y (μ)).

7.4 Compatibility of transverse measures. We keep the notation of the
previous subsection, including the assumption thatY is aUN-separated cross section
for the N-action on X for some open identity neighborhood UN in N. Our goal
here is to establish the following compatibility theorem about transverse measures
which will be used in the proof of Theorem 1.8 to show that the normalized
intersection measure is a joining.

Theorem 7.5. Let (T, bo) be a Borel L-space and π : X → T be a Borel

G-map, where G acts on T via the homomorphism prL. Suppose μ ∈ M(X;ZG)G is
finite and π∗μ is L-ergodic. Then

π∗μY = μY (Y)π∗μ.

Remark 7.6. We do not know whether L-ergodicity of π∗μ is necessary. In
the proof below, we show that π∗μY is always absolutely continuous with respect
to π∗μ, but it seems to be a difficult problem to explicate the Radon–Nikodym
derivative in general.

Proof. Since μ is finite, μY is finite as well, so π∗μ and π∗μY are both finite
L-invariant Borel measures on T . Since π∗μ is assumed to be L-ergodic, to prove
the theorem, it is enough to show that π∗μY is absolutely continuous with respect
to π∗μ. To do this, let B ⊂ T be a Borel set such that π∗μ(B) = μ(π−1(B)) = 0.
We want to prove that π∗μY (B) = μY(π−1(B) ∩Y) = 0. Since N acts trivially on T ,
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the pre-image π−1(B) is an N-invariant Borel set in X. Hence, since μY is the
Y-transverse measure of μ for the N-action on X,

mN(VN)μY(π−1(B) ∩ Y) = μ(VN.(π
−1(B) ∩ Y)) ≤ μ(VN.π

−1(B))

= μ(π−1(B)) = 0,

and thus π∗μY(B) = 0. �

8 Intersection spaces

In this section we apply the general theory of transverse measures for semidirect
products developed in the previous section to the special case where G is as in
Example 7.1 and X is a product space. In this case, the intermediate cross sec-
tion Y is precisely the intersection space discussed in the introduction, and we
can use this to deduce Theorem 1.8 from Theorem 7.2. Once the good properties
of the intersection measure are established, we obtain Theorem 1.10 and Theo-
rem 1.11(and hence their special cases Theorem 1.5 and Theorem 1.6) by applying
the results of the second part. We also establish the commensurability criterion
from Theorem 1.9.

8.1 Basic setup. Let Go be a lcsc unimodular group with left Haar mea-
suremGo . As in Example 7.1 we defineG := Gr

o, Nk := ker(πk) (whereπk : G → Go

is the kth coordinate projection) and L := 	(Go). Furthermore, we assume that we
are given Go-spaces (X1, a1), . . . , (Xr, ar) and corresponding separated cross sec-
tions Z1, . . . ,Zr for some identity neighborhood Uk in Go. We also pick open
identity neighborhoods Uk in Go such that Zk is Uk-separated and abbreviate
�k := �ak(Zk) ⊂ Go. We now set

X := X1 × · · · × Xr, Z := Z1 × · · · × Zr,

U := U1 × · · · × Ur and � := �1 × · · · ×�r,

and denote by a the product of the Go-actions a1, . . . , ar so that (X, a) is a Borel
G-space and Z is a U-separated cross section with return time set �a(Z) = �.
We now apply the theory of the previous section to the transverse triple (X, a,Z)
of the semidirect product G = NkL. The key observation, which links the theory
developed in the last section to the results presented in the introduction, is that the
intermediate transversal Y := L.Z is precisely the intersection space

Y = X[r] :=
{
(x1, . . . , xr) ∈ Xr :

r⋂
k=1

(Zk)xk 	= ∅
}

= {(x1, . . . , xr) ∈ Xr : ∃ go ∈ Go ∀ k ∈ {1, . . . , r} : go.xk ∈ Zk}



144 M. BJÖRKLUND, T. HARTNICK AND Y. KARASIK

considered in the introduction. It thus follows from the results of the previous
section that X[r] is Borel and Nk.X[r] = X for every k ∈ {1, . . . , r}.

To study finiteness properties of measures on the spaces X, Y and Z we fix a
fundamental exhaustion Go = {K(o)

n : n ≥ 1} of Go by compact sets and a Borel
exhaustion Zk = {Z(k)

n : n ≥ 1} of Zk for each k ∈ {1, . . . , r}. Let G and Z denote
the fundamental exhaustion of G by compact sets and the Borel exhaustion of Z
given by

G = {K(o)
n × · · · × K(o)

n : n ≥ 1} and Z = {Z(1)
n × · · · × Z(r)

n : n ≥ 1}.
We denote byL andNk the restrictions of G to L and Nk respectively, and we denote
by X[r] the L-suspension of Z, and by X[r]

Nk
the Nk-suspension of X[r].

8.2 Commensurability of cross sections. We keep the notation of the
previous subsection. In order for our general theory to apply, we need to ensure
that the intermediate cross section Y = X[r] is separated for each of the actions a|Nk

of Nk. We recall from the introduction that the separated cross sections Z1, . . . ,Zk

are called commensurable if this is the case. From Lemma 7.1 we can derive
the following criteria for commensurability.

Lemma 8.1. For a fixed k, Y = X[r] is a separated cross section for a|Nk if
either

(i) there exists a compact set Ko ⊂ Go such that Ko(
⋂r

j=1�j) = Go, and for all

j 	= k, �3
j�

3
k does not accumulate at the identity in Go, or

(ii) Go is abelian, and for all j 	= k, �j�k does not accumulate at the identity
in Go.

In particular, the cross sections Z1, . . . ,Zk are commensurable if one of these
conditions holds for all k ∈ {1, . . . , r}.

Remark 8.2. Before we embark on the proof, let us first make a few prelim-
inary observations. Given a subset A ⊂ Go we set 	r(A) = {(a, . . . , a) : a ∈ A}.
Since �a(Z) = � we then have

�a(Z) ∩ L = 	r

( r⋂
j=1

�j

)
and �a(Z)p = �p

1 × · · · ×�p
r ,

for every positive integer p. Furthermore,

prNk
(g) = (g1g

−1
k , . . . , e, . . . , grg

−1
k ) ∈ Nk,

for all g = (g1, . . . , gr) ∈ G, where e is in the kth position. In particular,

prN(�a(Z)p) ⊂ �p
1�

p
k × · · · × {e} × · · · ×�p

r�
p
k .
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Proof of Lemma 8.1. (i) By Lemma 7.1(i), Y is a separated cross section
for a|Nk if there is a compact set KL ⊂ L such that KL prNk

(�a(Z) ∩ L) = L and
prNk

(�a(Z)3) does not accumulate at the identity in Nk. From the remarks above,
the first condition just means that there is a compact set Ko ⊂ Go such that

	r(Ko)	r

( r⋂
j=1

�j

)
= 	r

(
Ko

( r⋂
j=1

�j

))
= L,

while the second condition means that�3
j�

3
k does not accumulate at zero in Go for

every j 	= k. The same argument applies to (ii), but now using Lemma 7.1(ii). �

Proof of Theorem 1.9. This is just a special case of Lemma 8.1. �

8.3 The intersection measure. We keep the notation of Section 8.1.
Moreover, we assume that the separated cross sections Z1, . . . ,Zr are commen-
surable. We now assume that we are given Go-invariant measures μ1, . . . , μr on
X1, . . . ,Xr respectively such that μk is (Zk)Go-finite. Then, by definition, we have

μ := μ1 ⊗ · · · ⊗ μr ∈ M(X,ZG)G ⊂ M(X,X[r]
Nk

)Nk

for all k ∈ {1, . . . , r} and hence for any such k we can form the tranverse measure

μ[r]
k := NkresX

X[r] ∈ M(X[r],X[r]).

By Corollary 7.4 the measure μ[r] := μ[r]
1 = · · · = μ[r]

r is actually independent of
the choice of k.

Definition 8.3. The measure μ[r] ∈ M(X[r],X[r]) is called the intersection
measure of μ1, . . . , μr. �

From the general theory we infer the following properties of intersection mea-
sures:

Theorem 8.4. Suppose that Z1, . . . ,Zr are commensurable and for every

k ∈ {1, . . . , r} let μk be a (Zk)Go-finite Go-invariant Borel measure on Xk. Then
the intersection measure μ[r] of μ1, . . . , μr has the following properties:

(i) μ[r] ∈ M(X[r];X[r])L is L-invariant.
(ii) μ[r] is the unique measure in M(X[r];X[r])L such that

(μ[r])Z = (μ1)Z1 ⊗ · · · ⊗ (μk)Zk .

(iii) If μ1, . . . , μr are finite, then μ[r] is finite.

(iv) If μ1, . . . , μr are Go-ergodic Borel probability measures, then μ[r]/μ[r](X[r])
is a Go-invariant joining of μ1, . . . , μr.
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Remark 8.5. We stress that μ[r] does not need to be L-ergodic, even if
μ1, . . . , μr are all Go-ergodic.

Proof. (i) and (ii) follow from Theorem 7.2 applied to μ = μ1 ⊗ · · · ⊗μr and
the fact that LresX[r]

Z is injective (Lemma 4.5).
(iii) If μ1, . . . , μr, then μ is finite, and thus μ[r] = μY is finite as well by

Remark 4.4.
(iv) Fix k ∈ {1, . . . , r} and denote by pk : X → Xk the projection onto the kth

factor. We have to show that (pk)∗(μ[r]
k /μ

[r]
k (X[r])) = μk. Since pk is an L-map

(where L acts on Xk via the k’th coordinate), this follows from Theorem 7.5 applied
to the map pk. �

Proof of Theorem 1.8. This is just a special case of Theorem 8.4 in
which μ1, . . . , μr are finite. �

Proof of Theorem 1.4. This is just a special case of Theorem 8.4 in
which X1 = · · · = Xr and μ1 = · · · = μr is finite. �

8.4 Applications. We now derive Theorem 1.10 and Theorem 1.11 from
the introduction from Theorem 8.4. We thus assume that Go is non-compact,
X1, . . . ,Xr are Polish spaces and a1, . . . , ar are jointly continuous Go-actions. We
also assume that μ1, . . . , μr are Borel probability measures on X1, . . .Xr respec-
tively. Theorem 8.4(i)–(iii) then implies that their intersection measure μ[r] is a
finite L-invariant Borel measure on X[r] such that

(μ[r])Z = (μ1)Z1 ⊗ · · · ⊗ (μr)Zr .

We observe that for every z = (z1, . . . , zr) ∈ Z,

(16) Zz = {g ∈ G : g.(z1, . . . , zr) ∈ Z1 × · · · × Zr} =
r⋂

k=1

(Zk)zk .

Proof of Theorem 1.10. By Theorem 5.1, there is a (μ[r])Z-conull Borel
set Z′ ⊂ Z such that for all z ∈ Z′, there is a sequence gn ∈ Z′

z such that gn → ∞
and gn.z → z. If we unwrap this using (16) and the formula

(μ[r])Z = (μ1)Z1 ⊗ · · · ⊗ (μr)Zr,

then we see that we are done. �

Proof of Theorem 1.11. By Theorem 6.4, applied to the L-action on X[r],
we have

lim
t→∞

|Zz ∩ Gt|
mG(Gt)

> 0, for (μ[r])Z-almost every z ∈ Z.
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In view of (16) and since (μ[r])Z = (μ1)Z1 ⊗ · · · ⊗ (μr)Zr , this is what we want to
prove.

Proofs of Theorems 1.5 and 1.6. These are just the special cases
X1 = · · · = Xr and μ1 = · · · = μr of Theorems 1.10 and 1.11 respectively. �

9 Application to uniform approximate lattices

We now specialize the results of the previous section to our main case of interest
and derive Theorem 1.1, Theorem 1.2 and Theorem 1.12 from the introduction. In
fact, we will establish a slightly more general result concerning transverse triples
whose return time sets are uniform approximate lattices.

9.1 Uniform approximate lattices and commensurability of cross
sections. Let Go be a unimodular lcsc group. A subset � ⊂ Go is called
symmetric if � = �−1. A symmetric subset � ⊂ Go is called cocompact if
there is a compact set K ⊂ Go such that K� = Go. If� is a symmetric subset of G
which contains e, then we denote by �∞ the subgroup of G generated by �, i.e.,
�∞ =

⋃
p≥1�

p.
We now consider the following situation: Let (Xo, ao,Zo) be a Uo-transverse

triple for Go for some identity neighborhood Uo in Go and denote by
�o := �ao(Zo) ⊂ Go the associated return time set. For every λ ∈ �∞

o the set λ.Zo

is then a cross section for (X, a) and since (Zk)λk.zo = λk(Zo)zoλ
−1
k for all zo ∈ Zo

we see that λ.Z is a Uλ
o -separated cross section and �ao(λ.Z) = �λ

o . Here we are
interested in the following problem: Given λ1, . . . , λr ∈ �∞, are the cross sections
λ1.Zo, . . . , λr.Zo commensurable so that our general theory applies? According
to Lemma 8.1 it suffices to ensure that the subsets �k := �ao(λk.Z) = �λk

o are
cocompact (or equivalently, that �o is cocompact) and that the sets �3

j�
3
k do not

accumulate at e for any j 	= k. Since λ1, . . . , λr ∈ �∞
o we can find a positive

integer pr such that λk ∈ �pr
o for all k. We then have

�
p
j�

p
k ⊂ �2(p+2pr)

o , for all p ≥ 1.

Thus λ1Z, . . . , λrZ are commensurable provided�o is cocompact and�p+2pr
o does

not accumulate at the identity.
We now recall from the introduction that a symmetric subset � of a lcsc

group Go is called an approximate subgroup if e ∈ � and there is a finite set
F ⊂ Go such that �2 ⊂ �F. We say that � is cocompact if there is a compact
set K ⊂ Go such that K� = Go. Note that if an approximate subgroup � is a
uniformly discrete subset of Go, then so is every iterated product set�p for p ≥ 1.
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Conversely, if � is cocompact and �p is uniformly discrete for all p, then � is
an approximate subgroup of Go ([2, Proposition 2.9]). In this case we call � a
uniform approximate lattice in Go. From the discussion above we thus infer:

Lemma 9.1. If �o is a uniform approximate lattice in Go, then for all
λ1, . . . , λr ∈ �∞

o the separated cross sections λ1Z, . . . , λrZ are commensurable.

9.2 Twistedmultiple recurrenceand twisted positive density. LetGo

be a lcsc group and let (X, a) be a Polish G-space such that ao is jointly continuous.
Moreover, let Zo ⊂ Go be a U-separated cross section for some open identity
neighborhood Uo ⊂ Go with return time set �o := �ao(Zo).

Theorem 9.2. Suppose�o is a uniform approximate lattice in Go and let μo

be a G-invariant Borel probability measure on Xo.

(i) There is a (μo)
⊗r
Zo

-conull Borel set Z′ ⊂ Zr
o such that for all (z1, . . . , zr) ∈ Z′,

there is a sequence gn ∈ ⋂r
k=1 λk(Zo)zkλ

−1
k such that

gn → ∞ and λ−1
k gnλk.zk → zk, for all k,

as n → ∞.
(ii) For every convenient sequence (Gt) of pre-compact Borel sets in Go,

lim
t→∞

|(⋂r
k=1 λk(Zo)zkλ

−1
k ) ∩ Gt|

mG(Gt)
> 0,

for (μo)
⊗r
Zo

-almost every (z1, . . . , zr) ∈ Zr
o.

Proof. We abbreviate Zk := λk.Zo and �k := �λk
o for all k ∈ {1, . . . , r}.

Since �o is a uniform approximate lattice in Go, the cross sections Z1, . . . ,Zr are
commensurable by Lemma 9.1. Note that Z := Z1 × · · · × Zr = (λ1, . . . , λr).Zr

o.
We set μk := μo for k = 1, . . . , r, and note that

(17) (μk)Zk = (λk)∗(μo)Zo, for all k,

by Lemma 4.12. Moreover,

(Zk)λk.zk = λk(Zo)zkλ
−1
k for all zk ∈ Zo.

(i) By Theorem 1.10, there is a
∏r

k=1(μk)Zk-conull Borel set Z′′ ⊂ Z such that
for all r-tuples (z′

1, . . . , z
′
r) ∈ Z′′, there is a sequence gn ∈ ⋂r

k=1(Zk)z′
k
such that

gn → ∞ and gn.(z
′
1, . . . , z

′
r) → (z′

1, . . . , z
′
r),
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as n → ∞. Set Z′ := (λ1, . . . , λr)−1.Z′′ ⊂ Zr
o. By (17), Z′ is a (μo)

⊗r
Zo

-conull Borel
subset of Zr

o. Furthermore, for all (z1, . . . , zr) ∈ Z′,

(z′
1, . . . , z

′
r) = (λ1.z1, . . . , λr.zr) ∈ Z′′,

and thus there is a sequence gn ∈ ⋂r
k=1(Zk)z′

k
=
⋂r

k=1 λk(Zo)zkλ
−1
k , such that

gn → ∞ and gnλk.zk → λk.zk,

as n → ∞.
(ii) By Theorem 1.11, for every convenient sequence (Gt) of pre-compact Borel

sets in Go,

lim
t→∞

|(⋂r
k=1(Zk)z′

k
) ∩ Gt|

mG(Gt)
> 0,

for all (z′
1, . . . , z

′
r) in some

∏r
k=1(μk)Zk-conull subset Z′′ ⊂ Z. We thus see that

lim
t→∞

|(⋂r
k=1 λk(Zo)zkλ

−1
k ) ∩ Gt|

mG(Gt)
> 0,

for all (z1, . . . , zr) ∈ Z′ := (λ1, . . . , λr)−1.Z′′, and Z′ is a (μo)
⊗r
Zo

-conull subset of Zr
o

by (17). �
To close the circle, we now finally return to the setting of Subsection 1.1 which

motivated this whole article. Thus let Po ⊂ Go be a uniformly discrete subset such
that �×

Po
admits a Go-invariant probability measure μo and such that �o := PoP−1

o

is a uniform approximate lattice. Denote by ar the right-multiplication action of Go

on �×
Po

. Then
• X := �×

Po
is locally compact, hence Polish, and the G-action ar is jointly

continuous;
• Z := TPo is a cross section for (X, ar);
• the return time set of (X, ar,Z) is �o; indeed, as in the proof of Proposition

3.2 one sees that �o ⊂ �ar (Z) ⊂ �o, but �o is unifomly discrete, hence
closed.

In particular, (X, ar,Z) is a transverse triple over Go whose return time set is the
uniform approximate lattice �o.

Proof of Corollary 1.12. Apply Theorem 9.2 to the triple

(X, ar,Z) := (�×
Po
, ar,TPo). �

Proofs of Theorem 1.1 and Theorem 1.2. These are just the special
cases of Corollary 1.12(i) and (ii) in which λ1 = · · · = λr = e. �



150 M. BJÖRKLUND, T. HARTNICK AND Y. KARASIK

Open Access This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License, which permits unrestricted use, distri-
bution and reproduction in any medium, provided the appropriate credit is given to
the original authors and the source, and a link is provided to the Creative Commons
license, indicating if changes were made (https://creativecommons.org/
licenses/by/4.0/).
Open Access funding enabled and organized by Projekt DEAL.

REFERENCES

[1] N. Avni, Entropy theory for cross sections, Geom. Funct. Anal. 19 (2010), 1515–1538.

[2] M. Björklund and T. Hartnick, Approximate lattices, Duke Math. J. 167 (2018), 2903–2964.

[3] M. Björklund, T. Hartnick and F. Pogorzelski, Aperiodic order and spherical diffraction, I:
auto-correlation of regular model sets, Proc. Lond. Math. Soc. (3) 116 (2018), 957–996.

[4] M. Björklund, T. Hartnick and F. Pogorzelski, Aperiodic order and spherical diffraction, II:
translation bounded measures on homogeneous spaces, Math. Z. 300 (2022), 1157–1201.

[5] V. I. Bogachev, Measure Theory. Vol. I, Springer, Berlin, 2007.

[6] Y. Cornulier and P. de la Harpe, Metric Geometry of Locally Compact Groups, European Mathe-
matical Society, Zürich, 2016.
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