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ARTICLE INFO ABSTRACT

Keywords: In Sweden, the transport sector accounts for 32% of greenhouse gas emissions, with passenger cars contributing

E-bike to 62% of these. In this context, electric bikes, commonly known as e-bikes, have emerged as a promising

Synthetic population solution for reducing carbon emissions in the transport sector. This paper explores the potential of e-bikes in

Daily activity-travel plans substituting passenger car trips and reducing transportation-related emissions. To achieve this objective, we use

ggz;iglzzggzmon a synthetic population in the Vastra Gotaland (VG) region, Sweden, with daily activity schedules and simulate
an average weekday of travelling with e-bikes instead of their private cars. For assessing the potential for e-
bike substitution, the current literature often relies on trip-level analysis, which does not adequately consider
people’s daily travel-activity plans, resulting in an unrealistic estimation of replaceable trips and their carbon
emissions reduction. Combining an e-bike speed model by agents’ characteristics and an open-source routing
engine, our simulation identifies potential car trips that can be replaced with e-bikes, considering all activities
and the travel between them for an average weekday. The simulation results suggest that e-bikes could replace
57.6% of car trips. Building on this, we explore the potential reduction in greenhouse gas emissions from car
trips taken by residents in the study area. If the top 70% of feasible car users, ranked by shortest to longest
daily travel distances, switch to e-bikes, emissions could be reduced by 10.1% compared to 2018 levels. If
all feasible car users adopt e-bikes, a reduction of up to 22.8% in emissions could be achieved, representing
the upper limit presented by our study. The findings also reveal that males under 40 years old provide the
highest e-bike substitution rates in their daily activity schedules, and in areas with a high population density,
replaceable car trips are more common than in rural areas. This research provides valuable insights into e-bike
substitution and its impact on emission reduction. It contributes to the existing literature through its modelling
approach that realistically considers individuals’ socio-demographic characteristics and daily activity schedules
when assessing the substitution potential.

1. Introduction 2023c), etc. However, there is growing recognition within the aca-

demic community that while technological substitution solutions like
The world faces a significant challenge in reducing greenhouse gas

o o ¢ : electrifying car fleets certainly play a role, they may not constitute
(GHG) emissions to mitigate the negative effects of climate change.

The IPCC (Intergovernmental Panel on Climate Change) report states,
with high confidence, that meeting climate mitigation goals would
require transformative changes in the transportation sector (Jaramillo
et al, 2022). In Sweden, transportation is responsible for 32% of
GHG emissions, and passenger cars within the sector have the most
significant share, with 62% of the emissions (SMHI, 2023).

In response to this challenge, many countries and organisations have
taken decisive actions to reshape the existing transport system and
accelerate the transformation to a sustainable transportation sector. The
current strategies predominantly focus on increasing the use of zero-
or low-emission vehicles, e.g., purchase subsidies or tax benefits, as
seen in France (Anon, 2023a), Canada (Anon, 2023b), Germany (Anon,
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the sole or quickest strategy for achieving a sustainable transformation
of the transportation system (Creutzig et al., 2018). Various inter-
national and national scenarios highlight that behaviour changes are
critical in achieving climate goals (International Transport Forum,
2021; Brand et al., 2020). Martensson et al. (Berg Martensson et al.,
2023) underscore the importance of a significant reduction in car use
to meet Swedish climate targets, which aim for a 70% reduction in
domestic transportation emissions by 2030. Therefore, comprehensive
approaches are needed, including significant policies investing and
incentivising ’active travel’ modes, e.g., walking and cycling.
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Electric bikes, commonly known as e-bikes, have emerged as a
promising solution to reduce GHG emissions from transportation
(Bourne et al., 2018). The prevalent type of e-bike in Europe requires
pedalling and offers assistance up to 25 km/h. Unlike motorised ve-
hicles, e-bikes are highly energy-efficient due to their lightweight and
small electric motor (Weiss et al., 2015; Fishman and Cherry, 2016).
In most cases, e-bikes consume less than 2 kWh per 100 kilometres,
roughly one-tenth of a small electric car’s energy for the same dis-
tance (Ji et al., 2012). Furthermore, e-bike emissions are much lower
than conventional cars, although emission values may vary depending
on the power plant where the electricity is produced (Fishman and
Cherry, 2016). A comprehensive understanding of the limits of e-bike
usage in the transportation system, including their spatial and socio-
economic distribution, is necessary for effective policy-making and
transport planning. This understanding could assist decision-making
processes regarding infrastructure investments and strategies promot-
ing e-bike use.

People’s travel behaviours and preferences can shift towards more
sustainable transportation choices, such as e-bikes, despite individual
preferences being complex and influenced by various factors, e.g., per-
sonal habits, weather conditions, social norms, etc. Collaborative ef-
forts involving government policies and active citizen engagement are
crucial for increasing cycling’s share within the transportation sys-
tem (Dill and McNeil, 2013; Ruan et al., 2014). Combining strategies
that increase the attractiveness of sustainable options (e.g., improved
infrastructure) with measures that disincentivize unsustainable choices
(e.g., congestion pricing) alongside public awareness campaigns can
yield significant benefits. For example, actively promoting cycling,
London has seen a notable increase in daily bike trips, rising by 6.3%
from 1.19 million in 2022 to 1.26 million in 2023, representing a 20%
rise since 2019 (Transport for London (TfL), 2023). Choice models are
frequently applied to predict the likelihood and direction of shifts in
the transportation system and generally provide a satisfactory under-
standing of individuals’ behaviours (Hallberg et al., 2021; Fosgerau
et al., 2023). However, predicting a substantial shift in the system based
on past transportation surveys could pose challenges (Haboucha et al.,
2017; Garcia-Melero et al., 2021).

On the other hand, identifying the upper limits can provide poli-
cymakers and urban planners a benchmark for maximum achievable
outcomes, potentially inspiring broader systemic changes. By comple-
menting existing studies that model individual preferences through
choice models, the present study explores the upper limits of e-bikes
serving as a baseline scenario to further integrate other important
factors.

Several studies have explored the potential of e-bikes as a sustain-
able mode of transportation, revealing their significant role in miti-
gating emissions. To assess e-bike potential within the transportation
system, these studies approach e-bike substitution from different per-
spectives, e.g., estimating individuals’ physical abilities (Philips et al.,
2022) to make e-bike trips or generating scenarios based on external
conditions like inclement weather (Bucher et al., 2019). However, these
studies use trip-level analysis, which often overlooks the positioning of
e-bikes within individuals’ daily trip chains and their interactions with
activities. Trip-level analyses might overestimate replaceable trips by
e-bikes when evaluating comprehensive daily activity plans.

Our study contributes to the existing literature by proposing a novel
modelling approach to assess the upper potential of e-bikes in reducing
carbon emissions. Traditional trip-level analyses often fail to capture
the complex interactions between activities in daily plans and the cor-
responding trips, thereby missing crucial nuances for evaluating e-bike
feasibility and practicality. Instead of employing trip-level analysis, we
carefully consider the replacement of car trips with e-bikes within the
context of individual daily activity-travel plans. Specifically, this study
investigates the potential of e-bikes to reduce emissions from passenger
cars using a synthetic population with daily activity schedules in the
Véstra Gotaland (VG) region. To identify e-bike trips that can replace
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cars in activity-travel schedules, we simulate an average weekday,
considering each person’s activity and trip characteristics. Additionally,
this study provides detailed insights into population groups providing
the highest substitution rates of e-bikes in their daily activity sched-
ules and presents the spatial distribution of substitution and emission
reduction.

The remainder of this paper is structured as follows: Section 2
reviews the related literature. Section 3 describes the data sources and
explains our methodology for simulating e-bike trips. Section 4 presents
the results regarding e-bike substitution in individuals’ daily activity-
travel plans and the spatial distribution of reduced GHG emissions
from passenger cars. In Section 5, we discuss the limitations of our
analysis by considering the broader context of e-bike substitution and
provide suggestions for future work. Section 6 concludes the paper by
summarising our key findings.

2. Related work

With the increasing popularity of e-bikes, a growing body of re-
search explores the impacts of e-bike usage as a transportation mode
on mobility, environment, health, and safety (Fishman and Cherry,
2016). E-bikes in this study operate on a similar principle to con-
ventional bicycles (referred to here as “bicycles”), requiring pedalling
for movement. However, several barriers, such as lack of knowledge,
misperceptions, limited access, high purchase costs, and limited in-
frastructure, may impede the widespread adoption of e-bikes (Lee
and Sener, 2023). Despite these challenges, the unique features of e-
bikes, e.g., motorised assistance, may present a solution to address
people’s mobility needs. While many individuals express interest in
bicycles as a transportation mode, they may opt for other modes
due to existing or perceived barriers (Dill and McNeil, 2013). E-bikes
can help overcome certain challenges preventing people from cycling,
e.g., time constraints and physical abilities. They significantly extend
the usability of bicycles by facilitating faster travel with less physical
exertion, allowing for the coverage of longer distances (Bucher et al.,
2019). Researchers indicate the willingness of e-bike users to travel
longer distances (over 25 km) (Wei et al., 2013), particularly during
epidemic situations (Kazemzadeh and Koglin, 2021), suggesting that e-
bikes can significantly enhance the practicality of bicycles as a transport
mode.

Empirical studies from different countries show e-bike adoption
generally leads to reductions in car use to varying degrees, even though
there is some substitution between conventional bikes and e-bikes. For
example, a survey conducted among e-bike owners in Sweden illus-
trates a noticeable shift from cars to e-bikes after purchasing an e-bike.
In rural areas, 42% to 60% of the respondents shift from car mode, the
main transport mode previously used to make trips, whereas in urban
areas, it soars between 71% and 86% of the respondents (Hiselius and
Svensson, 2017). Brand et al. (Neves and Brand, 2019) find that active
travel could replace 41% of short car trips and significantly reduce
carbon emissions from personal travel, considering survey participants’
travel patterns and constraints. A survey in Norway indicates that
individuals who cycle the least are most interested in purchasing an
e-bike (Fyhri et al., 2017). The study’s results suggest that e-bikes have
minor effects on regular cycling but contribute more to shifting people
away from motorised transport. Studies show the varied patterns of
e-bike substitution depending on the dominant travel modes in the
transportation system. A study on existing e-bike users in Rome shows
that e-bikes primarily substituted 49% of car trips and 33% of trips
by other or multiple modes. In Antwerp, e-bikes replaced 38% of the
car trips and 34% of the bike trips (Castro et al., 2019). However, the
mode shift to e-bikes measured at trip level is only one facet. In the
Netherlands, where cars and bicycles represent the two largest shares of
the mode distribution by trip numbers, the adoption of e-bikes, despite
replacing some cycling trips, resulted in a 9.6% reduction in the share
of car kilometres travelled, a considerable portion of the total (Sun
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et al., 2020). While these studies offer valuable insights about e-bike
substitution, a common shortcoming is that they mostly have a limited
sample size. Moreover, they make inferences by asking questions to
current e-bike owners or people in certain e-bike programs, which may
lead to limited representation of the general population.

A body of research creates scenarios to assess the potential utili-
sation of e-bikes within the transportation sector and the consequent
reduction in GHG emissions. Bucher et al. (2019) evaluate the potential
e-bike adoption in commuting trips in Switzerland by analysing factors
like temperature, precipitation, and travel distance, and the study
presents the spatial distribution of GHG emission reductions by e-bike
adoption. McQueen et al. (2020) presents a travel mode replacement
model for a given e-bike mode share using a survey of e-bike users.
The model calculates a reduction in transportation emissions by scaling
down the distance travelled by other modes in proportion to the person
miles travelled replaced by e-bikes. Philips et al. (2022) model the
adoption of electric bicycles as a mode of travel, accounting for the
physical abilities of individuals. By estimating individuals’ maximum
e-bike travel distance, the study identifies trips that can be feasi-
bly switched from cars to e-bikes. Accordingly, it calculates emission
reduction resulting from avoiding the car.

Although previous studies present the potential of e-bikes to re-
duce emissions using different approaches, these studies have trip-level
analyses while ignoring the complexity of individuals’ daily schedules
and the interconnectedness of planned activities. These studies often
fail to adequately consider the positioning of e-bikes in the daily
trip chain and their interactions with activity patterns. This limitation
overlooks crucial factors like time constraints, activity compatibility,
and individual differences, potentially overestimating the number of
replaceable trips and GHG emissions reduction.

To address this gap, our study utilises Hagerstrand’s time-geography
concept (Hagerstrand, 1970), which explains how individuals imple-
ment their activity agenda while considering three main constraints.
Capability constraints encompass individual limitations due to their
physical or mental abilities and available resources. For example, an
individual’s ability to use an e-bike may be influenced by factors such
as age and physical fitness. Coupling constraints reflect the spatial
and temporal links between activities and resources. One instance is
that a workplace located beyond the cycling range could restrict the
feasibility of using an e-bike for all subsequent trips throughout the day.
Authority constraints include social norms, regulations, and infras-
tructure limitations influencing travel choices. For instance, maximum
e-bike speed limit regulation or designated biking lanes can incentivise
or discourage e-bike use.

In this study, we use 284,000 agents with socioeconomic attributes
and detailed activity-travel plans from the synthetic population. By
adopting Héagerstrand’s time-geography concept, we evaluate the po-
tential of e-bike substitution within the context of individuals’ daily
activity-travel plans. Our assessment considers e-bike trip features,
activity-related constraints, trip-related constraints, and personal char-
acteristics and reflects the place of e-bikes in individuals’ daily activity-
travel plans. However, individual preferences, social norms, etc., are
beyond the scope of this study.

3. Methodology

This section explains the key modelling concepts employed to cal-
culate the trip replacement and CO2 reduction potential of e-bikes
(Fig. 1). In the study, we use a synthetic population with daily activity
schedules. The data were generated by a large-scale transportation
modelling framework, the Synthetic Sweden Mobility Model (SySMo)
(Tozluoglu et al., 2022; Tozluoglu et al., 2023) and simulated using
MATSim (Liao et al., 2023) (please see details in Appendix A).

The SySMo model generates over 10 million agents with their activ-
ity schedules. In this study, we use only agents with car trips in their
daily schedule and residing in the Vastra Gotaland (VG) region, which
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includes Gothenburg, Sweden’s second-largest city. The data used in the
study contains 284,000 agents, representing 35% of all car users and
18% of the total population living in the region. We ensure that this
share is representative of the population by sampling proportionally
according to Demographic Statistical Areas (DeSO) (Anon, 2020).

To identify replaceable car trips within individuals’ daily activity-
travel plans, our model utilises Hagerstrand’s time-geography concept.
This concept analyses how individuals construct their daily schedules
within the confines of time and space. It takes into account three
main constraints related to users’ capability, coupling and authorities.
We incorporate these constraints at several points in our methodol-
ogy. The capability constraint involves calculating individuals’ cycling
speed, considering factors like age and gender. The cycling speed
impacts the feasibility of e-bike trips in terms of space and time.
We incorporate coupling constraints by recalculating individuals’ daily
activity schedules to ensure that e-bike trips fit within their planned
activities. Additionally, we address authority constraints by considering
the available biking infrastructure and cycling regulations. A thorough
exploration of these constraints’ limits, our model not only identifies
where e-bikes could feasibly replace car trips but also explores the
maximum extent to which this could occur.

3.1. Simulating e-bike trips

The study’s methodology starts by assigning an e-bike to all car
trips in the agents’ daily travel plans and simulating e-bike trips on the
road network. The e-bike simulation provides e-bike trips’ distance and
duration by personal, activity, and infrastructure characteristics. We
then re-calculate agents’ daily activity-travel plans using the calculated
trip duration shifted to an e-bike. To perform the e-bike simulation,
we first deduce e-bike movement trajectories and then calculate trip
duration using a speed model that we developed.

E-bike movement trajectories

We use a routing engine, OpenTripPlanner (OTP) (OTP, 2023), to
produce e-bike movement trajectories and, accordingly, trip distances.
OTP, which is utilised in various research projects (Pereira, 2019;
Tenkanen and Toivonen, 2020; Liao et al., 2020; Feng et al., 2021),
works similarly to most popular trip-planning applications like Google
Maps or Apple Maps and provides potential travel routes based on
given parameters, i.e., origin, destination, and chosen travel mode. For
the e-bike simulation, we first feed OpenStreetMap (OSM) data (OSP,
2023) and the elevation data (Copernicus Programme, 2022) into OTP
for creating a routable road network. Then the OTP, serving as a
routing engine, uses the created network to extract e-bike movement
trajectories with the origin and destination locations of the car trips that
are assumed to be replaced with e-bikes. OTP identifies e-bike routes
on the given network while considering bike-friendly infrastructures
(e.g., separated bikeways, low-traffic streets, etc.) indicated by the OSM
road network.

E-bike speed model

To assess the potential of car trips replaced by e-bikes, we need
the e-bike trips’ duration. While OTP provides this information and the
moving trajectories, it does not encompass personal and trip-specific
characteristics. To address this limitation, we design an e-bike speed
model to calculate the trip’s duration and integrate the e-bike cycling
speed model into the simulation. Specifically, we combine this e-bike
cycling speed model with the output from the OTP: the e-bike trip
distances and the elevation profiles of their movement trajectories.
Our speed model incorporates demographic characteristics (age and
gender), activity type (work or other), and infrastructure characteristics
(road gradient). These factors are based on data from two empirical
studies (Fliigel et al., 2019; Schleinitz et al., 2017) which observed
cycling behaviour across a variety of infrastructural settings, including
carriageways, dedicated bicycle paths, pavements, and varied traffic
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Fig. 1. Methodology overview of the study showing carbon reduction capability of e-bikes through substituting to car trips in the Vastra Gétaland region.

Table 1

The average Speed distribution parameters by age group Schleinitz et al. (2017).

Age group Mean (km/h) Standard deviation (km/h) Minimum (km/h) Maximum (km/h)
<40 20.5 5.2 12.9 31.0
41-64 17.5 4.0 12.2 25.3
> 65 14.5 1.9 12.2 18.6

Twisk et al. (2021) report average speeds of 20.1 km/h in urban areas and 22.2 km/h in rural settings,
based on data from 14 riders in the Netherlands. Similarly, the study (Dozza et al., 2016) from Sweden
reports an average speed of 16.9 km/h (SD = 2.9 km/h) observed among 14 cyclists. Furthermore, research
(Huertas-Leyva et al., 2018) in Italy involving a small sample of six cyclists records an average speed of

20.4 km/h (SD = 7.8 km/h).

conditions like traffic lights. Nevertheless, it is worth noting that certain
factors, e.g., crossings, traffic lights, and road curvature, are repre-
sented as average speed, not modelled at the link level in the current
model. Incorporating these factors into the speed model can represent
an area for potential improvement.

The speed model starts with calculating the average cycling speed
for each individual to use as a baseline for all e-bike trips of that indi-
vidual. We first derive a speed value by age group to set the individual
average speed. Introducing variability, the speed value is drawn from
a normal distribution based on the individual’s age, informed by the
research by Schleinitz et al. (2017). Besides age, we also add the gender
multiplier as another parameter, considering potential differences in
cycling behaviour between genders (Fliigel et al., 2019). We multiply
the sampled speed value from age-based normal distribution by the
gender parameter and get the average cycling speed for each individual.
To make the average speed realistic, the deduced speed values are
truncated using minimum and maximum bounds (Schleinitz et al.,
2017).

We then calculate the e-bike speed for each road segment (link)
in each cycling trip for an individual’s activity-travel plan. We use
the individually assigned average cycling speed while considering two
trip-specific factors: trip purpose and road gradient. The trip purpose
is recognised as one of the determinants of cycling behaviour (Fliigel
et al., 2019). Our model considers the trips for two purposes: work and
non-work. The model also comprehensively accounts for the effects of
the road gradient on cycling speed. The road gradient is divided into
18 categories, including both positive and negative gradients. Using the
trip-specific parameters, we calculate the speed for each e-bike trip at
the road segment level.

Let SI.’j represent the e-bike speed value for individual i in age
group j, drawn from a normal distribution with mean y; and standard
deviation ¢; specific to the age group j. The sampled speed value is
scaled by a gender parameter X; and truncated by the lower Spin, OF
upper bounds Soin; The average cycling speed A;; for each individual
can be calculated as in Eq. (1). To calculate the speed of a particular
road segment ¢ for each cycling trip in an individual’s activity schedule
Sy, the average cycling speed A;; is scaled with the activity purpose
P, and the road gradient G, parameters (in Eq. (2)). The values u s Ojs
Soin, and Spin, are obtained from the study (Schleinitz et al., 2017)
(Table 1), and X;, P, and G, values from the study (Fliigel et al., 2019)
(Table 2).

Sl-/j ~ N(ijo-j)

Ay =Sy <81 oM <

ij ming = jj max;

(€Y

Table 2
Parameters for the e-bike speed model (Fliigel et al., 2019).
Parameter Subcategories Coefficient
Male 0.0491
Gender (X,) Female 0.0
.. Work trips 0.1071
Activity purpose (P) Non-work trips 0.0
< -9% 0.0518
-9 to -7% 0.0617
-7 to —6% 0.1228
-6 to —5% 0.1861
-5 to —4% 0.1488
—4 to -3% 0.1196
-3 to —2% 0.0779
-2 to -1% 0.0312
. -1 to 0% 0.0196
Gradient (G,) 0 to 1% 0.0
1 to 2% —-0.0376
2 to 3% —0.1299
3 to 4% -0.1951
4 to 5% —-0.2669
5 to 6% —0.3034
6 to 7% —0.3854
7 to 9% —-0.3949
> 9% —-0.4267
Sy = Ajj S 2

3.2. Mode replacement

Not all the agents’ updated activity-travel schedules using e-bikes
instead of cars are feasible in reality. We propose an algorithm to
evaluate these replaced schedules to identify the car trips that e-
bikes can potentially replace (Algorithm 1 and Fig. 2). The algorithm
incorporates constraints on individual trips, activities, tours, and daily
activity-travel plans. Each agent has daily activity-travel plans, includ-
ing activities and trips to access the activities. A trip series that begins
and ends at home locations constitutes a tour. People are more likely
to leave their cars and switch to alternative travel modes, e.g. e-bikes,
when they are at home rather than at other activity locations.

The algorithm’s initial step involves evaluating all trips against two
criteria: a maximum cycling distance and a maximum allowable delay
in reaching the destination activity. E-bikes can enable relatively longer
distance trips compared to conventional bicycles. In a review of 18
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An activity plan that meets the above conditions 1-6
is considered substitutable by an e-bike.

d;: trip distance
d*: trip distance threshold

Legend

T: total travel duration
T*: total travel duration threshold

Ap: delayed activity duration  D: total travel distance (d,+d,+ ... d,)

t(activity): activity duration

D*: total travel distance threshold

p*: activity duration factor

Fig. 2. Overview of the e-bike substitution methodology.

Algorithm 1: E-bike substitution algorithm.

Initialise:
trip distance d with a threshold 4*
trip duration change Ap with a threshold factor p*
daily total travel duration change AT with a threshold T*
daily total travel distance D with a threshold D*
for each individual with daily activity-travel plan in the population
do
for each tour in the daily activity-travel plan do
for each car trip in the tour do
if (d < d*) & (4p < (p*- the next activity duration)) then
the car trip can be replaced
end if
end for
Initialise variable allCarTripsintheTourchangeable as true
for each car trip in the tour do
if car trip is not changeable then
Set allCarTripsintheTourchangeable to false
pass
end if
end for
end for
if (AT > T*) & (D > D* ) then
the car trips are not changeable
end if
end for

European studies (including grey literature), Cairns et al. (2017) show
that the average trip distances of e-bike trips spanned up to 30 km.
Furthermore, studies from Belgium (Lopez et al., 2017) and China (Wei
et al., 2013) reveal a bimodal distribution of e-bike trip distances, with
an initial peak of less than 5 km and a significant second peak of around
22 km, extending up to 40 km. Similarly, Dane et al. (2020) show that
maximum e-bike trip distances exceed 30 km using mobile phone GPS
data in the Netherlands. To capture the broad range of e-bike trips in
our analysis and explore the upper limits of e-bike usability, we set the
maximum distance for e-bikes at 30 km. This threshold enables us to
cover a comprehensive range of possible e-bike trips.

The algorithm also evaluates e-bike substitution regarding potential
delays to arrival activities caused by the substitution.! Econometric util-
ity functions are widely used to model activity-travel plans (Bowman
and Ben-Akiva, 2001; Arentze et al., 2011). This approach considers the
utility of performing an activity and the disutilities, e.g., being early or
late to the activity. To evaluate the potential delays, we adopt a similar
method to the Charypar-Nagel Utility Function (W. Axhausen et al.,
2023). In this function, the default value of the disutility of being late
for an activity is three times the magnitude of the utility of performing
that activity. For instance, the disutility of one hour being late equals
losing the utility of three hours of performing an activity. Accordingly,
we assign the maximum allowable delay in travel time as being less
than 30% of the duration of the arrival activity. If the delay surpasses
this threshold, there is no utility in performing the activity. Thus, we
assume that the activity and associated trip are not feasible, and the
e-bike cannot replace the car.

Next, the algorithm evaluates tours, i.e., trip series that begin and
end at home locations. For a car trip within a tour to be replaceable
by an e-bike, all trips within the tour must satisfy the above-mentioned
criteria. For instance, let us consider a tour that originates from home
and includes trips to work, shopping, and the return trip home. To
replace the trip between home and work with an e-bike, the other leg
of the tour containing a shopping trip must also be replaceable with an
e-bike.

In the last step, the algorithm assesses the cumulative impact of
these substitutions on total daily travel duration and travel distance by
e-bike by comparing them against thresholds. To examine daily total
changes in daily travel time following substitutions, we established a
threshold of 1.5 h. This threshold is derived from Schifer and Victor’s
travel time budget (Schafer and Victor, 2000), which represents the
average daily travel time for individuals. To assess the cumulative
impact of distance, the algorithm compares the total daily trip distances
of the agents against a threshold, representing the average range of the
e-bike battery. We assume that individuals start their day with a fully

1 An ideal modelling approach would adjust trip departure times backwards
and forwards, accounting for leaving earlier from a previous activity or
arriving late for a subsequent one. This modelling practice, however, requires
information about individuals’ activity priorities. Due to data limitations, we
represent travel time changes as delays. Future research could explore more
detailed modelling of departure times.
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Table 3
The average GHG emissions factors for passenger cars by fuel types.
TTW: tank to wheels, i.e. direct GHG emissions at the exhaust pipe.

TTW (kg CO, eq./km)

Passenger car

fuel type

Urban Rural Mix
Gasoline 0.17 0.16 0.16
Diesel 0.14 0.14 0.14
Electric 0.0 0.0 0.0
PHEV gasoline 0.08 0.1 0.1
PHEV diesel 0.06 0.08 0.07
Ethanol 0.2 0.18 0.19
Gas 0.03 0.03 0.03

charged battery on their e-bikes and do not recharge them during their
daily plans. We set the daily cycling range threshold at 80 km using
the widely recognised e-bike manufacturers, Bosch and Specialised’s
range calculation assistants (Bosch, 2023; Specialized, 2023). The e-
bike range shows variability by various factors, e.g., battery size, driver
weight, speed, and terrain. We selected a 400 Wh battery, an 80 kg
rider, an average 18 km/h speed, and hilly terrain as parameters for
our calculations.

3.3. Estimation of reduced emissions

After identifying potential e-bike trips, we calculate GHG emissions
from passenger cars for both the baseline scenario for 2018 and the
scenario where e-bikes replace passenger car trips. Our study focuses
solely on the evaluation of tank-to-wheel (TTW) emissions, thus not
taking into consideration upstream emissions. TTH emissions are nor-
mally those attributed to the transport sector and on which specific
goals are set. We consider the car fleet from 2018, while the changes
in the fleet composition are beyond the scope of this study.

To determine reduced emissions, we first deduce the fuel type of
the cars driven in the simulation. The included fuel types are gasoline,
diesel, electric, hybrid electric vehicle (HEV), plug-in hybrid electric
vehicle (PHEV), ethanol, and natural gas. Using a probabilistic ap-
proach, we assign fuel types using the municipalities’ car fleet fuel type
distributions (Trafikanalys, 2023) and the cars’ total kilometres driven
daily. Given that diesel cars typically have higher average mileage
compared to other fuel types (Anon, 2021), the employed approach
increases the probability of assigning diesel to cars with longer travel
distances than the median travel distance in the municipality. This
method adjusts the probability of assigning diesel to cars in proportion
to the difference between each car’s travel distance and the median
travel distance in the municipality, while still maintaining the overall
fuel type distribution.

Subsequently, we calculate the average TTW emissions for each trip
using the assigned car types of agents, road characteristics, and average
emission factors. The Swedish Transport Agency publishes emission
factors for vehicle and fuel types (Trafikverket, 2023) using the Hand-
book Emission Factors for Road Transport (HBEFA) model (Notter
et al., 2019). The average emission factors consider various parameters,
including the age and size class distribution of the vehicle fleet in
Sweden, and provide GHG emissions in CO2 equivalent (Table 3).
However, it is worth noting that the data does not include the emission
factor for HEV. Therefore, we assume the HEV’s emission factor is the
same as that of the gasoline fuel type.

In the study, we use average emission factors for passenger cars,
categorised by fuel type and urban density level for 2021, which is the
closest available date to the base year. The data has three categories of
urban density levels: urban, rural, and mixed. We categorise the road
network used in the simulation by utilising DeSO zones (Anon, 2020),
which cover the entirety of Sweden and consist of 5,984 zones. We then
calculate average GHG emissions at a link level for each car trip for the
base and e-bike substitution scenarios.

Finally, we calculate the reduction in passenger car emissions and
present the spatial distribution of carbon emissions reduction for resi-
dents in the VG region.
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4. Results

This study reveals e-bike substitution in individuals’ daily activity-
travel plans and the spatial distribution of reduced GHG emissions
from passenger cars. We first examine the e-bike substitution results
across different population groups. And then, we present the potential
emissions reductions, comparing the baseline scenario with the scenario
where e-bikes replace cars. We also provide the sensitivity analysis
results, demonstrating how changes in the model’s constraints influence
the e-bikes’ potential for GHG reduction from private car driving.

4.1. E-bike car trip substitution

The study reveals the potential of e-bikes to replace passenger car
trips using the algorithm incorporating constraints at the individual
trip, tour, and daily plan levels. Initially, we evaluate all trips by
the maximum trip distance and allowable delay to the next activity
constraints. At the trip level, our findings suggest that e-bikes could
potentially replace 72.4% of all car trips. We then evaluate tours by
ensuring that all trips within a tour meet the constraints established at
the trip level. At the tour level, car trips where e-bikes can potentially
replace up to 60.6% of all car trips. The final step involves considering
e-bike substitution by evaluating daily plans based on total daily travel
duration change and travel distance. Our ultimate finding is that the
potential e-bike substitution is 57.6% of all car trips, with a distance
distribution of the cycling trips illustrated in Appendix B. This finding
shows that to understand the potential substitution capability of e-
bikes, the full-day schedule needs to be taken into consideration, and
not only individual trips such as commuting.

We also assess the population groups providing the highest e-bike
substitution rates to give a more comprehensive perspective on e-bike
substitution dynamics. Fig. 3 presents e-bike substitution by age and
gender in the population. According to the developed speed model,
these two personal attributes are among the variables that affect in-
dividuals’ cycling speed. We see the highest e-bike substitution rate at
66% among males under 40 years old. The e-bike substitution potential
tends to decrease with age, with a large change for females compared
to males. Pearson correlation analysis reveals a small yet statistically
significant negative correlation between age and e-bike substitution,
with a correlation coefficient of —0.2 and a p-value of less than 0.01.
Furthermore, t-test results highlight distinct substitution patterns be-
tween the youngest and oldest age groups. These findings suggest
varying patterns of e-bike substitution across different demographics.

4.2. Upper limit of emissions reduction

After identifying the potential e-bike trips, we calculate GHG emis-
sions reduction from passenger cars using the baseline scenario and
the scenario where e-bikes replace passenger car trips. The baseline
scenario is established for 2018 to align with the synthetic population
data. In the baseline scenario, our results suggest that VG region
residents’ total GHG emissions from passenger cars on an average
weekday is 2,501 tons of CO2 eq. and 2,175 tons of CO2 eq. within
the VG region. The calculated emission for the baseline scenario is
comparable with the official statistics (see Appendix C). However,
despite e-bikes replacing more than 50% of car trips, we find that the
benefit of e-bikes in reducing GHG emissions from car trips within the
VG region is limited by 25.6%. This outcome can be explained by the
fact that e-bikes are mostly substituted in short or medium-distance
trips. Summing it up, while over 50% of the trips can be replaced,
these represent only 22.4% of the total car kilometres. When we extend
our analysis to encompass all car trips taken by VG residents, i.e., even
those ending and starting outside of the region, the emissions reduction
from car trips drops to 22.8%. This decrease is primarily due to the fact
that trips outside of VG are often long-distance trips.
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Fig. 3. Trip mode share by age and gender after e-bike substitution.

Furthermore, we analyse the spatial distribution of GHG emission
reduction from e-bike replacement. Fig. 4 illustrates the percentage
emission reduction by DeSO zones on the VG region map. E-bike
emission reduction potential is higher for people residing in urban areas
than in rural areas. We also analyse e-bike emission reduction potential
at the municipality level (see Appendix D). The municipalities with a
high population density, e.g., Gothenburg Partille and Mélndal provide
the highest emission reduction from car trips.

4.3. Range of the emissions reduction

We explore the range of potential emission reductions based on
varying e-bike adoption levels among car users identified as feasible
for adopting e-bikes by Algorithm 1. The analysis ranks the car users
according to their daily trip distances in ascending order, assuming
that the shorter the distance, the higher the likelihood of switching
to e-bikes. Fig. 5 illustrates the emission reduction potential by the
share of substituted e-bike users. If the top 50% of feasible car users,
ranked from shortest to longest daily travel distances, adopt e-bikes, we
estimate a reduction of 5.1% in emissions. When the share extends to
the top 70% and 90%, the emission reduction increases to 10.1% and
17.6%, respectively. If all feasible car users adopt e-bikes, according to
our algorithm, we could achieve an emissions reduction of up to 22.8%,
reaching the upper limit presented by our study.

4.4. Sensitivity analysis

We conducted a sensitivity analysis to illustrate how the simulation
outcomes vary by the constraints employed in our e-bike substitu-
tion algorithm (see Algorithm 1). These constraints include maximum
cycling trip distance, maximum allowable delay, total daily travel
duration change, and total daily travel distance by e-bike. We tested
our algorithm by systematically varying each constraint plus or minus
30% and 15%. The sensitivity analysis results are presented in Fig. 6
(detailed in Appendix E).

We present the sensitivity analysis results by travel mode replace-
ment and emission reduction. For the mode replacement outcomes, our
simulation exhibits the highest sensitivity to the maximum allowable
delay constraint to the next activity. When this threshold is changed
by plus or minus 30%, the mode replacement from a car to an e-bike
results are 59.7% and 54.2%, respectively. For the emission reduction
results, the simulation displays the highest sensitivity to changes in the
maximum trip distance constraint. When this threshold is varied by
plus or minus 30%, the emission reduction shares from car trips within
the VG region range between 27.1% and 22.0%, respectively. Although
there are about five percentage point changes by the constraints in
the mode replacement and emissions reduction results, our simula-
tion results generally demonstrate low variability to these constraint
changes.

5. Discussion

In this study, we analyse the upper limits of e-bike substitution
and calculate the corresponding reduction in GHG emissions using
a synthetic population with daily activity-travel plans. Building on
Hagerstrand’s time-geography concept, we delve into the constraints
shaping individuals’ daily plans and evaluate the potential of e-bike
substitution. This assessment considers three main constraints: capa-
bility, considering individuals’ abilities by age and gender; coupling,
considering individuals’ daily activity schedules with e-bikes; and au-
thority, considering the available biking infrastructure to perform their
daily activities.

Many studies highlight the impact of daily plans on travel mode
choices and their importance in providing a more realistic examination
of travel mode preferences (Schneider et al., 2021). Our results from the
trip level assessments suggest that e-bikes potentially replace 72.4% of
all passenger car trips. However, when examining e-bike substitution
within the context of daily plans, we find that the e-bike replacement
rate in car trips drops to 57.6%. This outcome shows the impor-
tance of considering individuals’ full-day schedules to comprehend the
substitution potential of e-bikes.
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Our research reveals that e-bikes reduce emissions from passenger
cars within the VG region by 25.6% compared to the 2018 baseline
scenario, despite e-bikes replacing more than 50% of car trips. The
limited emission reduction is due to utilising e-bikes mostly in short
and medium-distance trips. The analysis of the total car kilometres
after the substitution shows that e-bikes replace 22.4% of the total
car kilometres of VG residents. This reduction is almost equivalent to
the magnitude that Martensson et al. (Berg Martensson et al., 2023)
describe as necessary to achieve Swedish transport goals, which aim for
at least a 70% reduction in transportation-related emissions by 2030
compared to 2010 levels. Their study highlights that achieving the
Swedish transport target through the substitution of electric cars and
biofuels alone is not possible without reducing person car kilometres.

Several studies explore the potential of e-bikes to reduce
transportation-related emissions from various perspectives. For exam-
ple, Bucher et al. (2019) examine the potential impacts of e-bike
adoption scenarios in commuting trips in Switzerland, considering
variables, e.g., temperature and precipitation. Their research reveals
that reductions of up to 17.5% in fossil fuel-based emissions are
possible. Additionally, McQueen et al. (2020) estimate that a 15%
e-bike person miles travelled (PMT) mode share penetration could
deliver a 12% reduction in carbon dioxide (CO2) emissions from
passenger transportation, using a mode replacement model based on
survey data. These studies have slightly lower emissions reduction
estimates than our study’s results because they focus on a specific trip
purpose, e.g., commuting, or consider, to some extent, an individual’s
willingness to take a cycling trip.

Furthermore, some studies use a life cycle assessment (LCA) ap-
proach, which captures vehicles’ entire life cycle, including manufac-
turing, usage, and disposal, to assess e-bike potential. According to

the life cycle emission estimates by Weiss et al. (2015), e-bikes emit
25 g CO2 eq., while cars emit 240 g CO2 eq. per person kilometre in
Europe. Considering the vehicle life cycle, Philips et al. (2022) demon-
strate that the mean saving for individuals replacing car kilometres
with an e-bike is 0.58 tons of CO2 per year. The study also argues
that the emission-saving potential of switching to e-bikes is higher
in rural compared to urban areas in England. In contrast, our study
reveals higher potential in urban areas in Sweden. This discrepancy
highlights the significance of considering the geographical context in
e-bike substitution and the value of studies like ours in obtaining a
more comprehensive understanding of the benefits of e-bikes in various
geographical contexts.

Additionally, the sensitivity analysis demonstrates that our simu-
lation results have relatively low variability to changes in constraints
employed in our e-bike substitution algorithm. When constraints are
either increased or decreased by 30%, the mode replacement rates from
car to e-bike and the corresponding reduction in car emissions fluctuate
within a narrow range of 5%. The sensitivity analysis also shows that
the changes are not symmetrical. Decreasing the constraint values has
a larger effect on the simulation results regarding e-bike substitution
and emission reduction when compared to increasing the constraints.
Moreover, our research reveals that possible delays to the next activity
are an essential factor affecting the results of e-bike substitution. These
outputs may provide valuable insights for transportation modellers in
model construction and guide policymakers in crafting e-bike policies.

While our study unravels the potential of e-bikes in replacing car
trips and mitigating carbon emissions within the transportation sec-
tor, it is also important to acknowledge the limitations of our anal-
ysis and consider the broader context of sustainable transportation
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strategies. Firstly, our study focuses on the potential upper limits
of e-bike adoption and does not consider individuals’ transportation
preferences influenced by internal factors, e.g., personal habits, health
concerns and psychological barriers or external factors, e.g., weather
conditions, social norms and air quality (Schoenau and Mueller, 2017;
Passafaro et al., 2014). Despite being on the hyperthetical side of
modal shift, these exclusions enable us to explore the benchmark for
maximum achievable outcomes. Additionally, our analysis does not
consider whether trips involve transporting heavy goods or needing
to accompany another person, e.g., driving young children to school.
Incorporating these factors into the analysis would most likely show
lower e-bike integration than our findings and could provide a more
detailed understanding of e-bike usage by preferences.

Secondly, we base our calculations on this year, given that the
synthetic population belongs to 2018. When we compare the base
year of 2018 in official statistics and the year 2021, the most recent
published date, there has been an approximately 10% decrease in
emissions in passenger vehicles in Sweden (Anon, 2020). This implies
that comparing to more recent years the emission reduction potential
will be lower simply because TTW emissions from cars will be lower.

In this study, we examine e-bike substitution within average week-
day schedules while keeping other factors unchanged, e.g., activity
locations. We assume that individuals largely maintain their current
activity patterns and locations when switching from car mode to e-bike.
However, it is important to acknowledge that adopting e-bikes may
lead individuals to reconsider their daily routines, potentially resulting
in changes to their activity locations. Moreover, the analysis results
could vary when examining different days of the week separately. In
our future research, we could explore e-bikes’ potential by considering
shifts in activity locations and patterns stemming from e-bike adoption
and extend the analysis to different days of the week for a more
comprehensive understanding of e-bike’s potential in reducing carbon
emissions.

There is also a possibility of a rebound effect associated with
reducing car use resulting from the transition to cycling. This effect
could occur as reduced traffic congestion might incentivise people to
use passenger cars (Malmaeus et al., 2023). The rebound effect may
result in a lower emission reduction than the calculated. However,
in response, policymakers could consider measures to counteract the
rebound effect and maintain the benefits of e-bike usage. One effective
strategy might be to promote e-bike usage by expanding dedicated e-
bike infrastructure while discouraging car use by limiting road space
or implementing pricing mechanisms for passenger cars.

To realise the potential of e-bikes, a range of measures are required,
including reducing car usage and promoting sustainable transportation
modes (Verplanken and Roy, 2016; Rye and Hrelja, 2020; Michie
et al.,, 2011; Brand et al., 2013). However, robust empirical evidence
regarding the effectiveness of interventions in promoting cycling for
travel, especially in countries with a low bike mode share, remains
limited (Stewart et al., 2015). A study conducted in Gothenburg shows
that the transition to cycling as a primary mode of transportation is an
ongoing, dynamic process influenced by positive and negative experi-
ences (Stromberg and Wallgren, 2022). Dedicated cycling infrastructure
encourages individuals to integrate biking into daily routines (Stewart
et al., 2015). Equipment availability, e.g., clothing and bells, is an es-
sential factor in mitigating the associated challenges alongside cycling
infrastructure (Stromberg and Wallgren, 2022).

Although e-bikes have the potential to increase the share of active
travel modes in the transportation system and reduce greenhouse gas
emissions, achieving climate goals requires a more comprehensive
approach. E-bikes are insufficient to replace long-distance passenger car
trips and provide a substantial reduction in the total distance travelled
by cars. Therefore, examining the potential emission reductions that
active mobility can bring through integration with electrified public
transport, considering daily plans and geographical context, could be
a future research direction.
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6. Conclusion

The study provides insights into the potential of e-bikes in replacing
car trips and thus reducing carbon emissions within the transportation
sector, with a specific focus on Sweden’s Vastra Gotaland (VG) region.
Using a methodology that considers individuals’ socio-demographic
characteristics and daily activity schedules, we have achieved a better
understanding of the potential for e-bike adoption, which is valuable
for effective policy formulation and transport planning.

We have identified that e-bikes can replace a substantial portion of
passenger car trips, leading to a 25% reduction compared to 2018 in
GHG emissions from car trips within the VG region. Furthermore, our
analysis shows the spatial distribution of GHG emission reduction. In
areas with higher population density, there is a greater potential for
replaceable car trips and emissions reduction from e-bike adoption. For
instance, in Gothenburg municipality, the emissions reduction potential
is almost 45% of car emissions. This spatial understanding could be
valuable for Sweden’s second-largest city, which aims to achieve a 90%
reduction in transportation emissions by 2030 compared to 2010. Addi-
tionally, these findings are relevant to policymakers and urban planners
targeting to promote e-bike usage and develop appropriate infrastruc-
ture. The study’s findings may not directly apply to other geographical
regions due to their derivation from the sociodemographic variables,
mobility patterns, and road network specific to the Véstra Gotaland
Region. Nonetheless, the methodology of this study can be adapted to
any region with synthetic populations and travel surveys, and the other
datasets can be collected from open-access platforms. Furthermore,
the e-bike simulation leverages open-source software tools, including
MATSim and OTP, enhancing its applicability and reproducibility.

As the transportation sector plays a significant role in GHG emis-
sions, promoting e-bikes as a sustainable mode of transportation can
be considered a viable strategy for mitigating climate change. The
study underscores the need for comprehensive approaches, including
behaviour change and active travel modes, e.g., cycling, alongside
technological solutions. As countries and regions seek to significantly
reduce their emissions, integrating e-bikes into transportation systems
offers a promising avenue for achieving sustainable and environmen-
tally friendly mobility. Future research may include the exploration of
potential synergies between e-bikes and public transport to enhance
emission reduction further.

Ethics statements

The authors declare that this work does not involve the use of
human subjects, social media data, or experimentation with animals.

CRediT authorship contribution statement

Caglar Tozluoglu: Writing — review & editing, Writing — origi-
nal draft, Visualization, Validation, Software, Methodology, Data cu-
ration, Conceptualization. Yuan Liao: Writing — review & editing,
Validation, Software, Methodology, Data curation, Conceptualization.
Frances Sprei: Writing — review & editing, Project administration,
Methodology, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Frances Sprei reports financial support was provided by Swedish Re-
search Council Formas. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.



C. Tozluoglu et al.

Males

I SySMo model
Travel survey

eneralHL L
0.00 M s i I .

0 2 4 6 8 10 12 14 16 18 20
Hour spent at work activity for males

22 24

Journal of Cycling and Micromobility Research 2 (2024) 100043

Females

s SySMo model
Travel survey

il e | T e
0 2 4 6 8 10 12 14 16 18 20 22 24
Hour spent at work activity for females
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Appendix A. Synthetic Sweden Mobility (SySMo) model

The Synthetic Sweden Mobility (SySMo) model (Tozluoglu et al.,
2023) is a large-scale agent-based transportation model which sim-
ulates the Swedish population’s transport behaviours on an average
weekday. SySMo generates a synthetic replica of over 10 million indi-
viduals with certain socio-demographic and household attributes. These
attributes form the basis for constructing the travel demand in the
population. The model assigns a daily activity-travel pattern to each
agent in the population.

SySMo’s methodology contains three main components: population
synthesis, activity generation, and location and mode assignment. The
model synthesises the synthetic population using statistical data from
Statistics Sweden (SCB), creating agents and households. In the syn-
thetic population, each agent has a list of socio-demographic attributes,
e.g., age, gender, civil status, residential zone, personal income, car
ownership, employment, etc. Each agent is also associated with a
household, including key socioeconomic attributes, e.g., household
size and number of children < 6 years old in the household, etc.
Accordingly, the SySMo model generates activity-travel patterns using
the Swedish National Travel Survey (Anon, 2021). The agents’ activity
schedules show the activity type (i.e., home, work, school, and other),
start and end times, duration, sequence, activity locations, and the
travel mode between activities (i.e., walk, bike, car, car passenger and
public transport). While only agents over the age of 18 can be car
drivers, people of all ages can take other transport modes. However,
the synthetic population assumes all trips are taken alone and does not
model trips involving additional persons who require rides, e.g., chil-
dren being dropped off and picked up from school and other escorting
trips.

The SySMo model’s performance is evaluated against official statis-
tics from Statistics Sweden and Trafikanalys. The synthesised popula-
tion is compared at the DeSO zone level, revealing that over 92% of
zones show a gender assignment error within a range of —0.5% to 0.5%.
Similarly, age discrepancies remain within -1% to 1% for more than
78% of zones. These results confirm the synthetic population’s attribute
distributions closely match the statistical data.
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The synthetic population’s activity duration distributions are com-
pared to the travel survey, using Jensen—-Shannon (JS) distance to
quantify distribution similarities. JS distance takes values from 0 to
1, which demonstrates different distributions. Fig. 7 shows the JS
distances for work activity durations are 0.05 for males and 0.08 for
females. Similar analyses on school, home, and other activities illustrate
JS distances between 0.05 and 0.13. Furthermore, Fig. 8 displays the
comparison of travel distances between home and work by car and car
passenger modes in the SySMo and Sampers’s west regional models. The
overall travel distance distributions align closely with those of the Sam-
pers model, indicating a reasonable approximation of the activity-travel
patterns to the validation data.

For more details on the SySMo model methodology and model
performance assessments, please refer to the model documentation (To-
zluoglu et al., 2022).

We use MATSim to deduce realistic daily activity schedules of
agents. MATSim is an open-source framework for simulating large-
scale transportation systems that focus on individual agents’ behaviour
(W. Axhausen et al., 2016). Using an agent-based modelling approach,
MATSim enables the representation of agents within a dynamic trans-
portation network. Within the MATSim simulation, each agent tries to
optimise their activity schedules by adjusting various potential decision
factors, e.g., altering routes or changing departure time. MATSim iter-
atively executes simulations, with each activity plan evaluated through
its scoring system. This scoring system takes timely attendance to the
event as a positive factor while penalising traffic-related delays. To run
simulations, we feed MATsim with the SySMo model’s results and the
road network data (OSP, 2023), and, consequently, extract the travel
trajectories of individual agents from the MATSim simulation.

Appendix B. Cycling trip distance distribution

The e-bike substitution algorithm incorporates constraints at various
levels, e.g., constraints on individual trips, activities, tours, and daily
activity-travel plans and identifies feasible car trips that can be replaced
by an e-bike within the daily activity plan. In Fig. 9, we present the
distribution of cycling trip distances based on our simulation results.
Only 3.2% of cycling trips exceed 22 km, and 1.1% exceed 26 km.

Appendix C. Baseline scenario: GHG emissions from passenger
cars

In the baseline scenario, our calculations show that VG region resi-
dents’ total GHG emissions from passenger cars on an average weekday
is 2,501 tons of CO2 eq. and 2,175 tons of CO2 eq. is emitted within the
VG region. To find the total emissions for all residents, we scaled the
calculated emissions number within the region (2,175 tons CO2 eq.) by
35% and yielded 6,214 tons of CO2 eq.

We validate the calculated GHG emission for the baseline scenario
using data representing 35% of all car users in VG. For comparison, we
rely on the national emissions database (Anon, 2020), which compiles
Sweden’s GHG and air pollutant emissions by sector, subsector, and
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Fig. 8. Daily travel distance distribution between home and work by travel modes in Vastra Gotland.
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Fig. 9. Cycling trip distance distribution (2 km bins).

county based on Sweden’s official emissions statistics. We use the data
on the total GHG emissions from passenger cars within the VG region
per year for 2018.

Subsequently, we compare our results with the data showing annual
total emissions from passenger cars within the VG region. The total
emission is 1,878,328 tons of CO2 eq., per year in the obtained data.
We can calculate the daily average emissions of 5,146 tons of CO2 eq.,
per day. Given that the obtained figure also accounts for weekends and
holidays, the difference between our calculated and the obtained figure
is considered acceptable.

Appendix D. Emission reduction by municipalities

We show e-bike emission reduction potential by municipalities in
descending order of population density in Fig. 10. Municipalities with
high population density have the highest emission reduction from car
trips. Residents of Gothenburg and the surrounding municipalities of
Partille and Molndal have the potential to reduce car emissions by
approximately 40% through the adoption of e-bikes.
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Appendix E. The sensitivity analysis results

In this section, we provide a detailed presentation of our sensitivity
analysis results. Table 4 presents mode replacement results for each
constraint in the e-bike substitution algorithm (refer to Algorithm 1).
The impact of each constraint is analysed at different operational levels:
the individual trip level, where constraints such as maximum trip
distance and allowable delay influence single trips or activities; the tour
level, where all trips within a tour collectively meet the constraints
imposed at the individual trip level; and the daily plan level, where
the cumulative effect of constraints on an individual’s entire daily
activity-travel schedule is considered, including total daily travel time
change and total daily travel distance. The interplay of the constraints
makes the algorithm robust and mitigates large variations in e-bike
substitution against the changes in the constraints. Tables 5, 6, 7, 8
summarises the sensitivity analysis results of each constraint.
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Fig. 10. Emission reductions from passenger cars by municipalities. The y-axis is in descending order of municipality population density.
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Table 4

Journal of Cycling and Micromobility Research 2 (2024) 100043

The sensitivity analysis results for mode replacement by trip, tour and daily plan levels in Algorithm 1.

Constraint Change Trip Level Tour Level Daily Plan Level
Results (in %) Results (in %) Results (in %)
-30% 66.6 56.2 54.9
—-15% 69.9 58.8 56.7
Maximum Trip Distance 0% 72.4 60.6 57.6
15% 74.3 61.9 58.1
30% 75.7 62.9 58.4
-30% 69.7 56.3 54.2
-15% 71.2 58.7 56.1
Allowable Delay 0% 72.4 60.6 57.6
15% 73.3 62.2 58.8
30% 74.1 63.6 59.7
—-30% 54.6
-15% 56.4
Daily Travel Time Change 0% 57.6
15% 58.5
30% 59.1
-30% 56.7
—-15% 57.5
Daily Travel Distance 0% 57.6
15% 57.7
30% 57.7
Table 5
The sensitivity analysis results for the maximum trip distance constraint.
Change Threshold Mode Emission Emission Reduction
(in %) (in km) replacement (in %) Reduction (in %) within VG region (in %)
-30 21 54.9 19.5 22.0
-15 25.5 56.7 21.5 24.2
0 30 57.6 22.8 25.6
15 34.5 58.2 23.6 26.5
30 39 58.5 24.2 27.1
Table 6

The sensitivity analysis results for the maximum allowable delay to the next activity constraint.

Change Threshold Mode Emission Emission Reduction

(in %) replacement (in %) Reduction (in %) within VG region (in %)
-30 0.21 54.2 21.0 23.6

-15 0.255 56.1 22.0 24.7

0 0.3 57.6 22.8 25.6

15 0.345 58.8 23.4 26.3

30 0.39 59.7 23.9 26.9

Table 7

The sensitivity analysis results for the

total daily travel time change constraint.

Change Threshold Mode Emission Emission Reduction

(in %) (in sec) replacement (in %) Reduction (in %) within VG region (in %)
-30 3780 54.6 20.4 23.0

-15 4590 56.4 21.7 24.5

0 5400 57.6 22.8 25.6

15 6210 58.5 23.6 26.4

30 7020 59.2 24.1 27.1

Table 8

The sensitivity analysis results for the total daily travel distance constraint.

Change Threshold Mode Emission Emission Reduction

(in %) (in km) replacement (in %) Reduction (in %) within VG region (in %)
-30 56 56.7 21.8 24.5

-15 68 57.5 22.6 25.4

1] 80 57.6 22.8 25.6

15 92 57.7 22.8 25.6

30 104 57.7 22.8 25.6
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