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Abstract—Large Language Models (LLMs) are increasingly
used by software engineers for code generation. However, lim-
itations of LLMs such as irrelevant or incorrect code have
highlighted the need for prompt programming (or prompt
engineering) where engineers apply specific prompt techniques
(e.g., chain-of-thought or input-output examples) to improve the
generated code. While some prompt techniques have been stud-
ied, the impact of different techniques — and their interactions —
on code generation is still not fully understood. In this study, we
introduce CodePromptEval, a dataset of 7072 prompts designed
to evaluate five prompt techniques (few-shot, persona, chain-of-
thought, function signature, list of packages) and their effect
on the correctness, similarity, and quality of complete functions
generated by three LLMs (GPT-40, Llama3, and Mistral). Our
findings show that while certain prompt techniques significantly
influence the generated code, combining multiple techniques does
not necessarily improve the outcome. Additionally, we observed
a trade-off between correctness and quality when using prompt
techniques. Our dataset and replication package enable future
research on improving LLLM-generated code and evaluating new
prompt techniques.

Index Terms—Large language models, prompt programming,
code generation.

1. INTRODUCTION

ITH the widespread adoption of Large Language Mod-
Wels (LLMs) in software engineering, researchers and
practitioners have uncovered their significant potential, par-
ticularly for code-related tasks, such as code generation and
completion [1], [2]. However, this adoption has also revealed
several limitations of LLMs that can hinder developers’ pro-
ductivity [3] and cause frustrations [4], preventing them from
fully leveraging the benefits of LLMs in their coding process.
Such limitations are related to hallucinations, misunderstanding
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the intent or purpose of the code, or simply generating incorrect
code [5].

These limitations are inherent to the design of LLMs, and
are unlikely to “resolve themselves” entirely with future model
generations. Therefore, researchers started proposing ways to
mitigate these limitations by adapting how users interact with
the LLMs. The interactions typically start with a natural lan-
guage prompt that specifies what the LLM is expected to output.
To ensure that LLM generates accurate, relevant, and high-
quality outputs, users employ a structured approach to construct
prompts, which is known as prompt programming.

To implement prompt programming, various prompt tech-
niques can be used to guide the LLM on how to achieve the
expected results [6], [7], [8]. For example, few-shot learning
involves providing the LLM with a few input-output examples
to guide the function logic, while adding context about the
packages used can give the model additional information on
what helper functions to use.

However, such prompt techniques were evaluated based on
the output accuracy for natural language generation tasks [8],
[9] and are not well-studied for code generation, more specif-
ically, function synthesis (generating function-level code),
which is one of the most common use cases among software
engineers [3]. Furthermore, evaluating the accuracy of code
generation is not sufficient, since other aspects of the code
are important for software engineers, such as maintainability
and adherence to best practices. Prompt techniques can also
be combined [6], but to the best of our knowledge, no work
evaluates the impact of multiple interacting prompt techniques
in one prompt. For instance, whether applying a certain prompt
technique can cancel out, hinder, or even enhance the impact
of an existing prompt technique in the prompt.

Therefore, in this study, we design a full factorial experiment
on five common prompt techniques for function generation
along with all the possible combinations of these prompts,
which sums up to 32 unique combinations of prompt tech-
niques. To perform a comprehensive evaluation of the impact
of different prompt techniques on code generation, we con-
struct our dataset CodePromptEval which consists of 221 code-
generation prompts from CoderEval [10], that we extend with
32 possible variations for each prompt (that is, combinations of
prompt techniques). This results in a total of 7072 datapoints.
We use CodePromptEval to generate functions with three pop-
ular LLMs (GPT-40, Llama3, and Mistral), then evaluate the
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generated functions based on correctness, as well as quality and
similarity to ground truth (e.g., in terms of naming style and
structure). Particularly, we investigate the following research
questions.

RQ 1: How do different LLMs perform on CodePromptEval?

Initially, we study the performance of different current-
generation LLMs (GPT-40, Llama3, and Mistral) on our Code-
PromptEval dataset. We particularly look at the correctness of
LLM-generated code as measured using existing test cases in
CoderEval benchmark as a ground truth. We observe that the
performance of all three evaluated LLMs is comparable, with
a difference of around 5 percentage points between the best
model, GPT-40, and the worst, Mistral.

RQ 2: To what extent do different prompting techniques (and
combinations of them) impact the code generation of LLMs?

We now turn to the central research question of this paper. Us-
ing a full factorial experiment design, we compare how different
prompt techniques (e.g., few-shot, providing a persona, etc.)
impact the generated code in three dimensions: correctness,
similarity to ground truth, and code quality.

RQ 2.1: How do prompt techniques impact the
correctness of the code?

To evaluate correctness, we test the functions, then
measure the Pass@k scores for each combination of
prompt techniques. We also perform statistical tests
to identify the (combinations of) prompt techniques
that impact the test results. We found that including
only a function signature or few-shot examples has a
significant positive impact on correctness. We further
observe that combining prompt techniques does not
lead to significantly better results.

RQ 2.2: How do prompt techniques impact the
similarity of the code to a human-written baseline?

We also study how similar generated solutions are to
the (human-written) baseline. We find that including
a persona, chain-of-thought, or signature increases
the overall similarity to the baseline for some LLMs,
while few-shot reduces only the lexical similarity.
Note that generating code that is similar to an “ex-
pected” solution may be good or bad depending on
context — on the one hand, code that is close to the
baseline may be easy to fix even if it is not passing the
test cases; on the other, “different” can be particularly
valuable if the goal is to brainstorm approaches, e.g.,
if used in “exploration mode” [11].

RQ 2.3: How do prompt techniques impact the
quality of the code?

Finally, we study code quality as measured through
the presence of code smells and the (cyclomatic
and cognitive) complexity of the code. We find
that including a signature or few-shot examples
leads to functions with higher complexity and more
code smells. Interestingly, adding a relevant persona
(“as a software developer who follows best coding
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practices ...”) indeed has a small positive effect on
the code quality, but at the expense of slightly lower
correctness.

Overall, we conclude that the impact of prompt programming
techniques is not dramatic for, at the time of writing, current-
generation models. Most combinations of prompt techniques
do not lead to statistically significant improvements (nor regres-
sions) in correctness, similarity or quality. Providing type infor-
mation for the function that is to be generated, either explicitly
through a signature, or implicitly via few-shot examples, has
the most clear effect. Some prompt techniques have a positive
impact on correctness, and others on quality. However, the
obvious idea of combining them usually improves neither.

II. RELATED WORK

Existing research on LLMs in software engineering has
shown the potential of LLMs to support software engineers
in various tasks, including requirements elicitation, software
testing and documentation [12], [13]. However, the main fo-
cus is directed towards code-related tasks [3]. This is also
reflected in the interest among software organizations that, at
the time of writing, leverage LLMs mostly for code gener-
ation, code completion and code summarization [14]. How-
ever, the increased adoption of LLMs for code-related tasks
has unveiled risks and limitations, such as hallucinations, in-
accuracies, and potential vulnerabilities [15], [16]. Researchers
have proposed the concept of prompt programming (or prompt
engineering) in order to minimize the model’s limitations
and trigger the LLM to output a more desirable response
by using prompt techniques and provide relevant contextual
information [6], [17].

Therefore, a new line of research emerged focusing on find-
ing prompt techniques that can improve the performance of
LLMs in various tasks. White et al. [6] propose different prompt
patterns and techniques depending on the software-related task.
However, the impact of these techniques on the LLM output
can be unstable and inconsistent. Wang et al. [18] shows that
prompt techniques can be sensitive to the specific task as well
as the LLM (e.g., GPT-3.5 vs. GPT-40). Other studies also show
that the few-shot prompt technique [19] is effective, especially
with the right structure [7], type [20] or order [21] of the
examples (shots). Reynolds and McDonell [9] highlight how
few-shot examples can hurt the performance of the model and
limit its search for a plausible solution in translation tasks. Con-
trastingly, we found that few-shot significantly improved the
performance of the LLMs suggesting that prompt techniques
have varied impact depending on the task and the domain.

For code-related tasks, prompt techniques were shown to
have a positive effect on code generation in the domain of
education [22]. Furthermore, researchers proposed ways and
contextual information as prompt techniques to apply to the
prompt and enhance code-related tasks [8], [23], e.g., incor-
porating dataflow information to improve code summarization
[8]. Other prompt techniques used by Dong et al. [24] included
self-collaboration, where the LLM is prompted several times
to take different personas e.g., first as a requirements engineer,
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then a software developer, then a tester, and only then return
a code that resulted from the “collaboration” among the three
personas. Fagadau et al. [25] examined how individual prompt
features (active voice and edge cases) affect code generation.
Their experiments, which combined different prompt features,
showed that most had little impact on the resulting code. In our
study, we focus on three common prompt techniques, namely,
few-shot learning, chain-of-thought [26], and persona [27], as
well as propose two pieces of contextual information as addi-
tional prompt techniques that are easily accessed by the de-
velopers, i.e., the imported packages and the signature of the
function. In addition, we investigate not only the impact of in-
dividual prompt techniques but also their interaction effects on
code generation, for example, whether the effect of combining
few-shot and persona arises from their interaction or from one
technique alone.

To evaluate LLMs on code generation tasks, the most com-
mon metric is Pass@k [28], where k = 1 is used to measure
the rate of passed functions that the LLM generated on the
first attempt [24] (e.g., by running a test suite). CodeBLEU
[29] is another popular metric, commonly used in studies to
measure the human-likenesses of generated code [30], [31].
Li et al. [32] conduct a manual human evaluation of their
proposed prompt technique “AceCoder” based on correctness,
presence of code smells, and maintainability. We provide a
systematic and automated approach to evaluate generated code
based on correctness, maintainability, and similarity to the
ground truth.

III. METHODOLOGY

Fig. 1 shows our approach to evaluate the impact of
commonly-used prompting techniques on the code generated
by LLMs. On a high level, we create prompt templates that
combine prompting techniques (e.g., CoT, few-shot, etc.) and
apply each prompt template to 221 tasks from the CoderEval
benchmark [10]. We evaluate three different LLMs (two open-
weight and one proprietary), leading to 7072 generated func-
tions per LLM. To understand the impact of each prompting
technique and answer RQ2, we evaluate all functions in terms

General multi- B

» regression -
\ similarity scores g . RQ2 (PromptCodeEval
g - Y - Linear mixed- evaluation) :
i effects regression T ] 2, 1

cognitive complexity 1!

Compute !
2 —>
complexity fH

rystalBLEU

Descriptive
statistics (per comb)

T Wilcoxon test

[

The process we follow to evaluate the code generated using different prompts by different LLMs (per run).

of correctness, similarity to the baseline of the benchmark, and
quality using statistical analysis.

We follow a full factorial experiment design and evaluate
the code generation functionality of LLMs by varying two
levels (present/absent) of five factors in a prompt, that is, the
five prompt techniques: (1) few-shot learning, (2) Chain-of-
Thought (CoT), (3) persona, (4) function signature, and (5) the
list of packages. Therefore, we have 32 (2°) treatments in our
experiment. Note that the absence of all of these techniques
counts as zero-shot, where only the generation instruction is
present without any other prompt technique. We do not treat
zero-shot as a factor since it cannot logically be combined
with other prompt techniques (e.g., combining zero-shot with
persona would simply default to persona). Instead, we use zero-
shot as a baseline for prompt technique comparisons.

A. Prompt Technique Combinations

Prompt programming is the act of constructing a prompt
using natural language to ensure that the model provides the
intended response or to improve the performance of the model
[9]. Based on observations from our previous work [3] and rec-
ommendations in literature [6] and from LLM providers such as
OpenAl' and Microsoft?? we decided on five prompt techniques
to apply when prompting LLMs in our study. Examples for all
prompt techniques will be provided later in Fig. 2.

o Few-shot learning can be achieved by providing shots (or
examples) to an LLM in order to enable learning new
examples without the need to fine-tune the LLM [19].
Typically, the examples describe the structure of the input
and output. In code generation, such pattern will result
in each example being composed of a generation task in
natural language as an input, and a complete function as
an output. We found this to be impractical from a user
perspective, and poses a challenge of what generation tasks
to choose in terms of the prompt design. Therefore, we

Uhttps://platform.openai.com/docs/guides/prompt-engineering

Zhttps://learn.microsoft.com/en-us/azure/ai- services/openai/concepts/
advanced-prompt-engineering

3https://microsoft.github.io/prompt-engineering/
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Constraint Respond with a Python function in one code block.

As a software developer who follows best coding practices for maintain-
ability such as avoiding code smells and writing simple and clean code,

Persona

Chain-of-

Think carefully and logically, explaining your answer step by step.
Thought

Convert nanoseconds to a time in fixed format.

Few-shot  For example, if the input is 4523 and 3600, the output is 01:15:23+01:00,

examples and if the input is 4523605 and None then the output is "01:15:23".

Signature ~ The function signature is: def hydrate_time(nanoseconds, tz=None)

The function has access (but does not necessarily use) the following

Packages . ]
packages: time pytz datetime.

Fig. 2. Example prompt in CodePromptEval.

follow an adapted pattern of few-shot prompting for code
generation tasks also used in previous work [28], [33],
where each example consists of a possible input of the
function and its corresponding output. We use two input-
output examples explained in natural language. We do not
consider a varying number of shots.

o Chain-of-Thought (CoT) allows the LLM to break down
the prompt by asking it to “think” step by step before
solving the problem. This technique is used to prompt
the LLM to perform explicit reasoning [34]. We apply
Zero-shot-CoT [26] to isolate the impact of CoT from the
few-shot prompt technique. In Zero-shot-CoT the steps
that the LLM can follow are not explicitly mentioned in
the prompt; rather, the model is expected to generate and
follow its own reasoning process autonomously.

e Persona allows the LLM to play a specific role and con-
sider its perspective when solving a problem [35], [36].
For the persona, we use the role of a software developer
who focuses on practices and standards that software de-
velopers follow.

e Signature is a line of code that includes the signature of the
function to generate. The signature includes the function
name, the input parameters, and (optionally) the output.

e Packages is a list of libraries and files that exist in the
environment in which the code runs. This includes local
packages and external libraries. The packages used by a
function are extracted by parsing all import statements in
the Python file to collect the names of the modules and
external libraries on which the function depends.

Previous work indicates that Signature and Packages are not

necessarily used when prompting LL.Ms for code generation by
developers [3]. While Signature is often a part of the prompt
in code completion benchmarks [37], most code generation
benchmarks construct prompts based on documentation (e.g.,
docstrings) without the signature [10]. Therefore, in this study,
we present them as prompt techniques for code generation
tasks as they might provide additional context that can guide
the model toward more relevant code generation (e.g., types
inferred by the parameter names).

B. CodePromptEval

To evaluate the different combinations of prompt techniques,
we construct CodePromptEval — a dataset that includes 221
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function-level code generation tasks, where each generation
task is implemented using 32 different prompt variations. Each
of these 32 prompts applies a unique combination of prompt
techniques, resulting in a total of 7072 prompts (221 tasks x
32 variations).

To create our dataset, we initially start with the CoderEval
Python dataset [10]. This dataset consists of 230 datapoints
from 43 Python projects. Each datapoint consists of a prompt, a
Python function (human-written baseline), and the correspond-
ing tests (in form of unit tests or a main class). We first set
up different virtual environments for functions from different
projects, then we test the functions using the provided tests, and
eliminate nine datapoints where the baseline does not pass the
tests. This resulted in 221 datapoints that will be the foundation
for our own CodePromptEval dataset.

Then, we ensure that the prompts are “pure” from any prompt
technique that may be implicitly applied (e.g., providing exam-
ples), by going through the prompts manually and removing
any elements that do not describe the purpose of the code. We
then treat this prompt as a zero-shot prompt.

The next step was to prepare prompt templates by defining
how each prompt technique will be implemented and mapping
relevant information to prompt techniques. In particular, for
each datapoint, we extract the signature of the function and the
list of used packages (represented as imports at the beginning of
the class). For chain-of-thought, we adapted the template rec-
ommended by Zhuosheng et al. [26]. To construct the persona,
we defined a persona description of a software developer who
follows best coding practices for maintainability. To implement
the few-shot prompt technique, the first three authors of this
paper manually constructed two input-output examples for each
prompt following the template “If the input is X, then the output
is Y”. We also create corresponding tests to ensure that the input
and output are correct. The examples were created based on
the goal of covering both a typical (mainline) case and an edge
case to ensure that the examples capture a range of expected
behavior.

Finally, we define 32 prompt variations that we list in Table I.
Each variation represents a prompt that applies a unique combi-
nation of prompt techniques. For example, P7 is a prompt that
provides the code signature, but uses no other prompt program-
ming technique, whereas P28 combines few-shot learning with
CoT and the usage of the persona “software developer”. P8 is
the zero-shot baseline, where no prompt technique is used and
the model is only provided with the programming task. P25 is
the case where all prompt techniques are used in conjunction.

We then map each variation from Table I to the relevant
information and templates for prompt techniques (e.g., im-
ported libraries for packages), then we combine them with the
221 prompts from CoderEval, leading to CodePromptEval with
7072 concrete prompts (221 prompts times 32 variations) and
their corresponding Python functions as ground truth.

The functions include both domain-specific implementations
and commonly used utility logic extracted from GitHub reposi-
tories, rather than standard textbook algorithms such as sorting
or searching. Table II describes the functions’ length and cyclo-
matic complexity. Moreover, the 221 functions fall into six code



KHOJAH et al.: IMPACT OF PROMPT PROGRAMMING ON FUNCTION-LEVEL CODE GENERATION

TABLE I
THE 32 COMBINATIONS OF PROMPT TECHNIQUES THAT WE
CONSIDER IN OUR FULL FACTORIAL EXPERIMENT
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TABLE II
FUNCTION STATISTICS IN CODEPROMPTEVAL

Metric Min Max Mean Std Dev

Number of Variables 0 32 2.52 4.35
Number of Parameters 0 7 1.70 1.30
Lines of Code 3 564 32.14 55.82
Block Depth 1 9 2.58 1.63
Cyclomatic Complexity 1 29 4.57 4.66

dependency levels: 33 self-contained (does not use packages
outside the function scope), 25 standard library runnable (uses
libraries available as part of Python standard library), 19 public
library runnable (uses libraries available on PyPI), 54 class
runnable (uses code outside the function, but within the class),
67 file runnable (uses code outside the class, but within the file),
and 23 project runnable (uses code in other files). Our dataset,
the virtual environments, and the few-shot examples and tests
are provided in our replication package [38].

We illustrate an example prompt with all prompting tech-
niques (P25) in Fig. 2. The prompt description, signature, and
packages are extracted from CoderEval, while we construct the
few-shot examples, persona, and chain-of-thought texts as a
part of CodePromptEval. We also append a constraint at the
beginning of each prompt to ensure that the output has a block
of Python code with a self-contained function.

If different prompt techniques are combined, we apply them
in a fixed order (as given in Fig. 2). This order ensures the
sentence flows naturally. For example, the common practice is
to place the persona at the beginning, and the few-shot examples
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after the purpose of the code. While it is possible to experiment
with different orders of prompt techniques in a prompt, we
consider this outside the scope of this study.

C. Code Generation

We focus on LLMs with a decoder-only transformer archi-
tecture, which is at the time of writing the preferred architecture
to use in code generation tasks [39]. Therefore, we select the
following LLMs for our study: GPT-40, Llama3-70B-Instruct,
and Mistral-Small-Instruct-2409 (22B). We also collect data
for two previous-generation LLMs (GPT-3.5-turbo and Llama2-
7B-Instruct), but omit discussing the results for these older
models for reasons of brevity in this paper. In general, the
results for these older models showed lower passing rates and
higher complexities. However, the overall impact of the tech-
niques remained consistent with the findings we report for the
studied LLMs, albeit with varying significance levels. The col-
lected data for these models is still available in our replication
package [38].

We run all 7072 prompts on the selected LLMs three times
to account for the non-deterministic nature of LLMs. For all
LLMs, we set the temperature to 0.2, which has been commonly
used for code generation tasks [28], [40], and complies with
the recommendations for our correctness measure [28]. For
the API-based GPT models, we send requests to the external
API and store the responses. We host the remaining models
on the Alvis cluster, a NAISS resource (National Academic
Infrastructure for Supercomputing in Sweden) dedicated to Ar-
tificial Intelligence and Machine Learning research* using mod-
els downloaded from Huggingface’. Running the self-hosted
LLMs on Alvis required around 2800 GPU hours using Nvidia
A100 GPUs. For the GPT models, we use the OpenAl API,
which is billed based on the tokens that are processed. To run
GPT-40 and GPT-3-turbo on all the prompts in CodePromptE-
val, we provide around 2.45 million input tokens and generate
approximately 7.66 million output tokens.

D. Evaluating the LLM-Generated Functions

After generating 7072 code solutions three times, we evaluate
them based on three main aspects following our research ques-
tions (correctness, similarity, and quality). We use different tests
to measure statistically significant differences for the measures
below, hence we detail the choice of statistical methods in their
corresponding results sections.

Correctness: To evaluate their correctness, we run the gener-
ated functions against their corresponding tests in CoderEval.
When running the functions, we replace the generated function
name with the originally expected one to ensure compliance
with our test cases.

There are two types of tests in CoderEval: Python unit tests,
and a main function with different statements and conditions
that set a boolean variable 1isT (is True) to False when at
least one of the conditions does not hold. To ensure consistency

“https://www.c3se.chalmers.se/about/Alvis/
Shttps:/huggingface.co
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and instrumentation of our experiment, ensure that an Asser-
tionError is thrown when needed, by adding an assert statement
at the end of tests in the form of a main function assert
isT. Furthermore, as some of the LLM-generated functions
can be erroneous and get stuck in an infinite loop, we wrap the
tests with error-handling constructs (a try/except) and set
a timeout of 60 seconds per function. Then we collect the test
results and the error messages when applicable.

We distinguish syntactic correctness and semantic correct-
ness of the function. The Python function is syntactically correct
if its syntax is valid and the function is runnable. Semantically
correct functions are functions that pass their corresponding
tests. When a function is both syntactically and semantically
correct, then it is labeled as plausibly correct [41]. In the re-
mainder of the paper, we use correctness as a short-hand for
plausibly correct.

Similarity: To assess the LLM-generated code’s similarity
to the ground truth obtained from CoderEval (human-written
functions), we measure the CrystalBLEU score [42]. Crystal-
BLEU combines four n-gram measures where n=1,2,3,4
while accounting for “trivial grams” that are shared across all
functions, such as Python keywords. The combined n-grams
that are used as a metric for syntactic similarity are then used
as a proxy to estimate the semantic similarity.

Quality: Regarding code quality, we focus on measures that
are related to maintainability [43] and we only measure them for
functions that pass their tests. In other words, we measure the
quality only for functionally correct functions. We use Pylint®
to generate a report with identified code smells in the generated
functions. Moreover, we compute the code complexity for both
the LLM-generated functions and the equivalent ground truth
(i.e., the human-written functions in CoderEval) to compare
both results and see how the different prompts have an impact
on the code quality. Code complexity refers to how detailed and
interconnected different parts of the code are, which can make
the code harder to understand and test. To get an overview of the
complexity of the generated functions, we measure McCabe’s
cyclomatic complexity via the Radon Python package’ and
cognitive complexity [44] via the cognitive-complexity Python
package.®

IV. CODEPROMPTEVAL OVERVIEW

In this section, we provide an overview of the aggregate
results from running three LLMs (GPT-40, Llama-3, and Mis-
tral) three times on the CodePromptEval dataset. This section
answers RQ1 in our study.

Note that these results are not an assessment of the capa-
bilities of these models when used with an “ideal” prompt,
but an aggregation over all prompt technique combinations in
our study. That is, the following results should be read as an
overview of CodePromptEval, and not as a judgment of which
LLM performs best in general. Detailed drill-downs assessing

Shttps://pypi.org/project/pylint/
https://pypi.org/project/radon/
Shttps://pypi.org/project/cognitive-complexity/

TABLE III
OVERVIEW OF PASSED AND FAILED FUNCTIONS PER LLM. WE ALSO SHOW
THE BREAKDOWN OF FAILURES TYPES (TOTAL = 7072 FUNCTIONS,
AVERAGED OVER 3 RUNS)
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Results GPT-40 Llama3-70B Mistral-22B
Passed 3691 4+ 12 (52.2%) 3575 £ 11 (50.5%) 3318 + 13 (46.9%)
Failed 3381 4+ 12 (47.8%) 3497 £ 11 (49.5%) 3754 £ 13 (53.1%)
- Syntactic 27 + 1 (0.4%) 59 £ 4 (0.9%) 103 £ 3 (1.5%)
- Semantic 1303 £ 23 (18.4%) 1415 £ 15 (20.0%) 1182 4 18 (16.7%)
- Operational 2051 =+ 21 (29.0%) 2023 4+ 6 (28.6%) 2468 £ 16 (34.9%)

the performance of individual (combinations of) prompt tech-
niques will be presented in Section V.

A high-level results summary is shown in Table III. There
are a total of 7072 generation tasks in the dataset. All three
models are able to solve (generate functions that pass all tests)
approximately half of the tasks. Mistral performs worst in our
study, solving on average 3318 (46.9%) of tasks, and GPT-40
does best solving 3691 (52.2%), outperforming the worst model
by approximately 5 percentage points.

To get a better idea of whether these results are impacted by
the code level of the function, we use the code levels defined by
Yu et al. [10] that are based on the nature of dependencies of the
function. The code levels are: self-contained, standard library
runnable, public library runnable, class runnable, file runnable,
and project runnable. Code levels provide a rough indication
of the “difficulty” of a generation task, based on what kind of
dependencies the LLM needs to correctly incorporate.

We looked into the code levels that passing and failing func-
tions belong to (see Fig. 3). Unsurprisingly, the fail rate for
all models increases as tasks get more difficult (i.e., by con-
struction, class runnable tasks tend to be substantially more
challenging than self-contained ones, and all models struggle
much more with solving them correctly). Pass rates for the
easiest type of task (standard library runnable) are close to
90% for all models, going down to as low as 31% to 41%
for the most challenging tasks (class runnable). We observe
that, overall, all three models perform comparably on most
code levels, with the exception of self-contained tests (where
GPT-40 outperforms the other models by a larger margin of 10
to 13 percentage points). This difference explains most of the
slightly higher overall performance of GPT-40. We also con-
firmed these differences using Chi-square test, which assesses
the association between categorical variables (code level and
pass/fail outcome) resulting in p-value < 0.0001, and Cramér’s
¢ as an effect size for the relationship between the two nominal
variables (¢ = 0.34 :- medium effect).

Finally, we report what errors led to the failing tests shown
in Table III and Fig. 3. We report the error types based on
the Python exception that is first thrown when running the
tests. The results of the error types are visualized in Fig. 4.
The most common error type for failed tests across the LLMs
is AssertionError, indicating that the LLM generated a
Python function that did not exhibit precisely the expected
functionality (as defined through unseen tests). However, are
also frequently encountered such as TypeErrors (operation


https://pypi.org/project/pylint/
https://pypi.org/project/radon/
https://pypi.org/project/cognitive-complexity/

KHOJAH et al.:

GPT-40 Llama3-70B Mistral-22B
Standard
library 90% 10% 88% 12% 88% 12%
runnable
Self-contained 69% 31% 59% 41% 56% 44%
Public
forary  51% 49% 55% 45% 52% 48%
runnable
roject | 51% 49% 50% 50% 49% 51%
e 4% 59% 39% 61% 38% 62%
ass 39% 61% 4% 59% 31% 69%
0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 10 0.25 05 0.75 1

Percentages of functions

Test Result [l Failed | Passed

Fig. 3. Passed and failed functions per LLM for each code level across
three runs. The total number of functions per LLM in a single run is 7072.

GPT-40 Mistral-22B

AssertionError - 38.6%
TypeError - 22.4%

Llama3-70B

=

31.6%

H
@ ala|a
ug N (& (Sl feAl
N () R Y e S e alala|a|o
°\°0\°o\°o\°a\°§‘o\°o\°hmmg£*:":’>$gmmg§g‘,mm
£ EN BN P R e e o] I Y Lo g R
S o o o o B 53 ol el e I PRI 6
BN B

22.5%

ImportError . 13.5% 11.2% 21.7%
AttributeError . 16.8% . 16.4% 11.4%
NameError | 3.2% 22% 6.0%
ValueError | 2.3% 4.0% 1.9%
KeyError = 2.1% 1.8% 1.6%
SyntaxError  0.8% 1.7% 2.8%
IndexError 0.3% 0.6%

Q qf) S /\('J \QQ N ,)fJ S /\93 \QQ Q ,f) <& /\('J \QQ

Percentage (%)

Fig. 4. Percentages of error types occurring among failing tests for functions
generated by GPT-40, Llama3-70B, and mistral-22B across three runs.

is performed on a value of an inappropriate type, indicating
that the LLM misjudged the runtime type of a Python object),
AttributeErrors (invalid attribute reference is made), and
ImportErrors (afaulty import of a module or object). Other
errors, such as NameErrors or IndexErrors, exist but
are rare. While there are differences between the LLMs, they
are relatively minor and not systematic. The most notable dif-
ference is that Mistral tends to generate functions leading to
an ImportError or NameError more frequently than the
other LLMs, whereas AttributeErrors are less frequent
in Mistral-generated code.

Key Findings (RQ1): Overall, we observed that GPT-40
minorly outperforms the other LLMs in the study. However,
in general, results are consistent between current-generation
LLMs. Depending on task difficulty, all LLMs can solve
between 31% and 90% of tasks. Assertion and TypeErrors are
the most common cause of failed tests.

V. PROMPT TECHNIQUE COMPARISON

We now turn towards RQ2, and describe the results of a sta-
tistical analysis examining how the different prompt techniques
applied in each prompt impact the function regarding (i) cor-
rectness, (ii) similarity to the ground truth, and (iii) quality.

A. Correctness

A central question for assessing the value of prompt tech-
niques is how likely a (combination of) techniques is to lead
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Fig. 5. Pass@] results of the different (combinations of) prompt techniques
exemplified for GPT-4o.

to a correct code, meaning that it is both (i) syntactically and
operationally correct (valid and does not throw errors) and (ii)
semantically correct (passes the tests). To measure the correct-
ness of different prompts, we use the well-established Pass @k
metric [28]. This metric measures the likelihood of drawing &
passing functions from the results of n number of generations
(or repetitions).

In our study, we run the functions generated by the 32 com-
binations of prompt techniques over three repetitions (n = 3)
on the tests provided by the CoderEval benchmark. Then, we
collect the test results (pass or fail) and measure Pass@1 (k = 1)
accordingly. Fig. 5 shows Pass@1 results for all combinations
of techniques (see Table I) for GPT-40. Given that results be-
tween different models appear to be very consistent (see also
Section V), we focus our discussion on one example model.
However, results for the other models can be found in the
supplemental material.

It is evident from Fig. 5 that the most important technique
when it comes to correctness is the presence of a function
signature. Combining the signature with other techniques, such
as few-shot or chain-of-thought, is sometimes helpful to further
increase the likelihood of a generated function being correct
(albeit by a very small margin, e.g., adding chain-of-thought
and few-shot examples to the signature only leads to an im-
provement of 0.1 percentage points). The best combination,
with a Pass@1 of 57.5%, is the combination of signature and
few-shot. We achieved the worst results in terms of correctness
when using chain-of-thought alone, with a Pass@1 of 47.1%.
It is surprising to note that the impact of prompt engineering
techniques is overall lower than we would have expected — the
difference between the best and worst combinations is merely
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Fig. 6. Results from our regression analysis for the pass@1 scores. Each
point visualizes the coefficient estimate for the corresponding combination.
The darker colors represent more conservative significance levels (). zero-
shot is not depicted, as it cannot be combined with other techniques.

10 percentage points, i.e., prompt programming seems to have
a noticeable impact in only a little over one in ten generation
tasks.

Our findings also indicate that sometimes the addition of
more information in the prompt leads to worse performance.
For example, using only few-shot and signature performs better
than if all possible prompt techniques are used. Further, it is
evident that techniques can interact in non-obvious ways. For
example, both package information and CoT alone led to the
worst Pass@1 results. However, if these techniques are used
in conjunction with a function signature, Pass@1 improves
marginally over using only the signature in isolation.

To further investigate these interactions between factors in
our experiment, we conducted a multi-linear regression analy-
sis. Fig. 6 shows the five prompt techniques in the study their
interactions and their effect on the pass@1 score. For instance,
“CoT:Persona” describes if the impact on test results comes
from the interaction of CoT and Persona in a prompt, regardless
of whether that prompt includes other prompt techniques. Simi-
larly, “Sig.” (signature) refers to all prompts that include at least
the signature (including, for example, P23, the combination of
few-shot and signature), and is not limited to prompts that only
specify the signature.

The multi-linear regression results in a coefficient estimate
and a p-value for each factor and possible interactions among
the factors. The coefficient reflects the impact on the test results,
positive and negative coefficients refer to positive and negative
impacts, respectively. The p-value indicates how significant the
impact is.
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In line with our previous findings, we observe that the pres-
ence of a signature and few-shot in a prompt (regardless of
whether they are combined with other prompt techniques) affect
the test results positively (albeit with different statistical signifi-
cance levels for different LLMs), and a positive, high coefficient
estimates (meaning there is a significant positive impact on
correctness). Interestingly, few-shot does not have a statistically
significant impact in the case of the Mistral model.

The remaining main factors (packages, chain-of-thought, and
persona) do not have a statistically significant impact on any of
the three models.

Key Findings (RQ2.1): The presence of a signature or few-
shot has the clearest positive impact on correctness. The other
prompt techniques in the study do not have a statistically
significant impact on correctness. However, in general, the
difference between “good” and “bad” prompt techniques is
surprisingly low. Adding additional information to a prompt
sometimes leads to worse performance.

Digging deeper into what causes generated functions to fail,
Fig. 7 displays the percentages of errors encountered for each
combination of prompt techniques. We show the four most
common error types (AssertionError, TypeError, At -
tributeError, and ImportError) using GPT-4o (other
models in the supplemental material). For example, 48.1% of
the failed functions of prompts with few-shot, packages, and
signature throw an AssertionError.

The combinations of prompt techniques are ordered from the
fewest errors (at the top) to the most errors (at the bottom). In
general, we see that the prompts that result in the least number
of errors (among the first rows in the heatmap) are combinations
that include a signature. On the other end, the prompts with the
most errors lack few-shot examples.

Taking a closer look at the different error types, we observe
that while AssertionErrors generally occur at a higher
rate than the other error types across all prompt techniques,
they are particularly more frequent in prompts that include the
function signature, meaning that failed functions by prompts
with a function signature are able to run but fail their tests
due to a semantics-related error. In contrast, the absence of
the function signature often leads to ImportErrors as well
as TypeErrors that primarily occur because the LLM mis-
judges the expected number or order of positional arguments
when generating functions.

Interestingly, in a subset of cases, ImportErrors occurred
even when packages were explicitly specified. To investigate
this, we manually inspected five random prompts where pack-
ages were specified but still resulted in ImportErrors. We
found that when the prompt indicated the use of a package that
is local or unfamiliar to the LLM, the LLM hallucinated and
attempted to import non-existent functions from the specified
packages.

We note that these findings are consistent for GPT-40 and
Llama3, while the errors of code generated by Mistral lacked
any clear patterns for the above mentioned error types. How-
ever, we observed a trend of a higher rate of AttributeEr-
rors in Mistral when the signature is included in the prompt.
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Fig. 7. The percentages of error types that we observed in failed functions
generated by different combinations of prompt techniques (GPT-40) over three
runs.

For the other two LLMs (GPT-40 and Llama3), we did not ob-
serve any consistent patterns among the prompts that triggered
AttributeErrors.

Overall, we emphasize that encountering a certain error does
not necessarily mean that the function is free from the other
error types, as the program terminates at the first error thrown.
However, assertions are evaluated after the function has suc-
cessfully been executed, so an AssertionError indeed
indicates that no other errors have occurred. Further, Asser-
tionErrors are qualitatively different from other error types,
as they do not indicate a fundamentally broken function, but
rather that the LLM misunderstood (or could not correctly guess
from context) some assumptions about the functionality of the
code that is to be generated.

Key Findings (RQ2.1): Including the signature or few-shot ex-
amples in prompts generally reduces errors, particularly Type-
Errors, AttributeErrors, and ImportErrors. Providing package
information can naturally reduce ImportErrors but may cause
hallucinated imports if unfamiliar to the LLM.
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Fig. 8. The average CrystalBLEU scores for the functions generated by
each combination (Llama3).

B. Similarity

Beyond correctness, we believe that another important ques-
tion is how similar generated functions are to the human-written
baseline. We use the CrystalBLEU score [42] to measure how
similar the generated function is to the baseline in terms of the
syntax and semantics of the function combined. CrystalBLEU is
seen as a stricter improvement over the older CodeBLEU metric
[29]. In our analysis, we remove the signature of the generated
function and the ground truth before measuring the similarity
to avoid any bias toward the signature prompt technique.

In Fig. 8, we see that the average CrystalBLEU score across
three runs is low for all approaches (varying between 16.8%
and 7.5% for Llama3) indicating that generated solutions are
largely different than how humans have solved the same tasks.
Results for the other models are in the supplemental material.

We observe that using any prompt technique increases simi-
larity (i.e., zero-shot has the lowest similarity to the baseline for
all three models). Consistently with correctness, combinations
that include a signature lead to higher similarity. This is unsur-
prising, given that a predefined signature restricts the solution
space for the LLM (which can be desirable or unwanted depend-
ing on context). Combining more techniques indeed seems to
generally increase similarity. We also observe that few-shot can
decrease the similarity, achieving a score of 8.5%. However,
combining it with signature, chain-of-thought or persona can
improve the similarity to 10% and above.

To better understand the impact of the prompt techniques
and their interactions on the code similarity, we now perform
a linear mixed-effects regression analysis to see how the dif-
ferent prompt techniques and their interactions can impact the
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Fig. 9. The coefficient estimates from the linear mixed-effects regression
of prompt technique combinations that significantly impact the CrystalBLEU
score.

CrystalBLEU while accounting for the within-group variation
(random effects) that arise from the three runs of each LLM.

Fig. 9 shows our linear mixed-effects regression results. We
see that, regardless of the test results, the presence of a signature
or persona in a prompt can significantly increase the Crystal-
BLEU score. Chain-of-thought (CoT) seems to also positively
impact the CrystalBLEU score for Llama3, but significantly
lower it for GPT-40 and Mistral. We also observed that the inter-
action between certain prompt techniques can either reinforce
or counteract the effects seen when the techniques are used
individually. For example, while both Signature and CoT in-
dependently increase similarity in Llama-generated functions,
using them together in a prompt can reverse that positive effect
and significantly reduce similarity.

Key Findings (RQ2.2): The signature and persona increase
the overall similarity of the function to the baseline (i.e., code
written by humans). Few-shot decreases the similarity unless
combined with chain-of-thought.

C. Quality

Using prompt techniques that yield correct functions does
not necessarily mean that these functions are maintainable and
of good quality. Hence, we now turn to an assessment of the
quality of the generated code. In our experiment, we focus on
code smells and complexity as proxies of code quality. For
this analysis, we only evaluate functions that pass their tests
(see Section V-A). We do not believe that assessing the quality
of functionally incorrect implementations is fruitful because
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TABLE IV
LIST OF CODE SMELLS IN GENERATED FUNCTIONS

Category Code Smell ID  Definition
Error E0602 Usage of an undefined variable.
Warning Wo0611 Import statement not used.
Warning w0613 Function argument is not used.
Refactoring R0903 Insufficient public methods in a class.
Refactoring R1705 Unnecessary “else” after “return”.
Convention C0301 Line exceeds the character limit.
Convention C0103 Violating UPPER_CASE naming style.
Convention CO115 Class lacks a descriptive docstring.
Convention C0116 Function lacks a descriptive docstring.
Convention C0411 ‘Wrong import order.
Convention C0304 File missing a final newline.
CoT, Persona, Package 3% 8% 7% 1% 5% 5% 4% 2% 2% 4% 4%
CoT, Persona 2% 5% 6% 1% 9% 3% 2% 2% 2% 4%
Persona, Package 6% 2% 4% 4% 2% 2% 4% 4%
Persona 4% 9% 4% 1% 10% 5% 2% 2% 3% 4%
CoT, Package 3% 6% 2% 10% 6% 4% 2% 2% 3% 2%
CoT, Persona, Sig. 10% 5% 6% 2% 7% 4% 3% 3% 4% 3%
CoT 3% 8% 10% 4% 2% 2% 2% 3%
CoT, Persona, Package, Sig. 9% 8% 9% 1% 4% 6% 3% 3% 3% 3%
Persona, Package, Sig. 10% 5% 10% 2% 6% 5% 8% 3% 4% 2%
Persona, Sig. 9% 6% 1% 6% 3% 3% 4% 1%
Package 6% 6% 6% 4% 2% 4% 5%
Zero-shot 2% 9% 1% 4% 2% 3% 3%
CoT, Sig. K 10% 9% 3% 5% 5% 3% 4% 5%
CoT, Package, Sig. 8% 8% 2% 7% 6% 3% 8% 3%
Sig. 2% 4% 3% 5% 5%
Package, Sig. 10% 1% 5% 6% 8% 3% 5% 5%
Few-shot, CoT, Persona, Package, Sig. 10% 10% 9% 2% 8% 6% 6% 2% 5%
Few-shot, Package, Sig. 2% 4% 3% 3% 4% 3%
Few-shot, Persona, Package, Sig. 10% 1% 5% 10% 6% 6% 8% 2%
Few-shot, CoT, Persona, Sig. 8% 4% 10% 10% 7% 7% 5% 4%
Few-shot, CoT, Package, Sig. 9% 2% 5% 5% 5% 8% 3%
Few-shot, Persona, Sig. 10% 2% 6% 9% 7% 7% 6% 4%
Few-shot, CoT, Sig. 2% 6% 5% 5% 5% 1%

Few-shot, CoT, Persona 8% 6% 7%
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Few-shot, Sig. [ESAESAEZA 3% 4%
Few-shot, CoT, Package 3% 6%

| 40% | a0 | a1%

5% 5%

Few-shot, Package % 7% 2%

Few-shot, Persona [ 10% 4% 8% 3%
Few-shot [

5% 9% 6%

Fig. 10. Percentages of functions generated by GPT-4o that have different
code smells. Empty fields indicate that no smell of this type is found. Note
that functions can have instances of multiple types of smells.

refactoring must be done on a working piece of code and
preserve its behavior [45].

For code smells, we run Pylint on the generated functions
for each prompt in CodePromptEval, using the code smell IDs
defined by Pylint. Then, we group the code smells for prompts
that share the same prompt techniques, and finally, we select
the top 15 code smells that were the most frequent across all
prompt techniques.

We find 11 code smells that fulfill these criteria for all LLMs
(see Table IV). Most identified code smells are convention code
smells, but there is also one error, two warnings, and two
refactoring smells. From this list, we decided to remove C0304
as it is present in all generated functions across all LLMs and
is mostly an artifact of our generation pipeline.

In Fig. 10, we show what percentage of functions have at
least one instance of each code smell. For reasons of brevity,
we focus on GPT-4o0 (Llama3 and Mistral’s in the supplemental
material).

We note that 71% of the functions generated using the few-
shot technique contain C0116 code smells, indicating that these
functions lacked a descriptive docstring (in contrast to only 22%



KHOJAH et al.: IMPACT OF PROMPT PROGRAMMING ON FUNCTION-LEVEL CODE GENERATION

2391

TABLE V
CYCLOMATIC COMPLEXITY ANALYSIS USING WILCOXON TEST AND A12 VARGHA DELANEY FOR THE EFFECT
SiZE (N- NEGLIGIBLE, S- SMALL, M- MEDIUM, L- LARGE). | INDICATES A REDUCTION IN COMPLEXITY,
() INDICATES NO STATISTICAL DIFFERENCE

Combinations \ GPT-40 Llama3 Mistral

\ p-value Al12  Effect p-value Al12  Effect p-value Al12  Effect
Package 0.0015 0403 | (S) 0.0017 0410 | (S) 0.0050 0412 | (S)
Persona, Package 0.0136 0442 | (S) 0.0033 0412 | (S) 0.0046 0424 | (S)
Zero-shot 0.0172 0445 | (S) 0.0009 0401 | (S) 0.0001 0384 | (S)
CoT, Package 0.0188 0.448 | (S) 00118 0442 | (S) 0.0016 0.409 | (S)
CoT, Persona, Package 0.0213 0451 | (N) 0.0015 0431 | (S) 0.0067 0433 | (S
Persona, Sig. 0.0755 0475 0 0.0230 0440 | (S) 0.0041 0442 | (S
Persona 0.0524 0466 0 0.0015 0401 | (S) 0.0004 0408 | (S)
Sig. 0.0909 0460 0 0.0093 0430 | (S) 0.0076 0.444 | (S)
Package, Signature 0.0295 0460 | (N) 0.0398 0436 | (S) 0.0143 0458 | (N)

of functions generated by chain-of-thought combined with a
persona and package information). In general, we observe that
prompts that apply the few-shot and signature prompt tech-
niques generate functions with more code smells and, more
specifically, warning and error code smells compared to other
prompts.

On the other hand, we observed that CoT, persona, and
package lead to functions with fewer code smells, unless these
prompt techniques are combined with few-shot and/or signa-
ture, then the percentage of code smells increases. This is
interesting, as we have seen that few-shot and signature are
the techniques with the clearest positive impact on correctness
(see Section V-A). In part, this discrepancy could be explained
by solutions for challenging tasks that LLMs only solve cor-
rectly when provided examples or a signature (recall that, for
this analysis, we have only investigated functions that pass all
tests — hence, some challenging functions have an analyzable
solution for signature and few-shot, but not other techniques).
However, we note that the differences in Fig. 10 are too large
to be entirely explained in this way. Consequently, we conclude
that CoT, persona, and package information indeed seem to
systematically lead to fewer code smells.

Key Finding (RQ2.3): While using CoT, persona, or package
information leads to fewer correct solutions, these techniques
lead to higher-quality code in terms of code smells.

We now turn towards the cyclomatic and cognitive com-
plexity and compare the complexity of generated solutions to
the complexity of the human-written baseline. In Table V, we
show the p-values resulting from the paired Wilcoxon test to
assess the statistical significance of differences between the
cyclomatic complexity of the generated functions and ground
truth. We only show the prompt techniques that had a significant
impact on the complexity for at least two LLMs (a = 0.05).
Complete results are in the supplemental material.

We use Vargha Delaney A12 measure [46] to understand the
nature of the impact (reduces or increases complexity) and to
quantify the effect size (Negligible (412 > 0.45), Small (0.36 <
Aqs < 0.45), Medium (0.29 < A15 < 0.36), or Large (A2 <
0.29)). Vargha Delaney A12 is a probability measure (that was
later adopted as an effect size measure), which describes the
probability that one level (generated function complexity) is

greater than a corresponding value in another level (ground truth
complexity). If the A12 is less than 0.50, it means that the values
of the first level are lower than the second level, and the lower
the score is, the larger the effect size. This allows us to see
if the prompts generate functions with a significantly lower or
higher complexity as the ground truth, or with a comparable
complexity when no significance is observed.

Similar to the code smells results, we see that CoT, per-
sona, and packages reduce the complexity in comparison to the
baseline. A zero-shot prompt also leads to lowered complexity.
However, all reductions have (at most) a small effect size. This
can be explained by the low cyclomatic complexity of all LLM
tasks — in general, only minor simplifications are even possible
to the generally rather simple code snippets.

For cognitive complexity (see Table VI), we observe larger
differences among the LLMs than between combinations of
prompt techniques in general. There was no combination of
prompt techniques that reduced the cognitive complexity across
all three LLMs. GPT-40 seems to generate functions with no
or small differences to the ground truth. Mistral can reduce the
cognitive complexity with a small effect size when the prompt
does not include few-shot and a persona, packages or CoT
applied in the prompt. In contrast, there are no clear trends
or patterns among the prompts in Llama3 rather most of the
prompt techniques seem to reduce the cognitive complexity
with a small effect size. We conclude that Llama3 appears to
lead to simpler solutions than the other models, particularly
GPT-4o.

It is interesting to observe that no combination of prompt
techniques leads to more complex solutions than the baseline
— generated solutions are always slightly simpler or compara-
bly complex. Viewed positively, this may indicate that LLMs
generate rather clean code. However, a more negative interpre-
tation may also be that the generated code does not cover some
complex corner cases that human-written solutions account for
(which may not be covered by CoderEval tests).

Key Findings (RQ2.3): There are noticeable differences among
models with regard to the complexity of the code they produce.
Llama3 appears to produce simpler solutions systematically.
There were no cases of increased complexity — LLM so-
lutions were comparably complex to human-written code, or
simpler.
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TABLE VI
COGNITIVE COMPLEXITY ANALYSIS USING WILCOXON TEST AND A12 VARGHA DELANEY FOR THE EFFECT
SiZE (N- NEGLIGIBLE, S- SMALL, M- MEDIUM, L- LARGE). | INDICATES A REDUCTION IN COMPLEXITY,
() INDICATES NO STATISTICAL DIFFERENCE

Combinations \ GPT-40 Llama3 Mistral

\ p-value Al12  Effect p-value Al12  Effect p-value Al12  Effect
Few-shot, Persona 0.0239 0437 | (S) 0.0106 0403 | (S) 0.2629  0.461 0
Few-shot, Persona, Package 0.0326 0.445 1) 0.0210 0.419 1) 0.8239 0.505 0
Persona, Sig. 0.1846 0473 0 0.0024 0417 | (S) 0.0438 0465 | (N)
CoT, Persona 0.4080 0524 0 0.0212  0.441 1 (S 0.0052 0445 | (S)
CoT, Package 0.1694 0485 0 0.0245 0448 | (S) 0.0334 0435 | (S)
CoT 03593 0516 0@ 0.0444 0458 | (S) 0.0093 0432 | (S)
Persona 0.2361 0513 0 0.0027 0398 | (S) 0.0155 0442 | (S)
Package, Sig. 0.1617 0468 0 0.0003 0406 | (S) 0.0437 0448 | (S)
Package 0.1694 0485 0 0.0006 0383 | (S) 0.0267 0426 | (S)
Zero-shot 02522 0504 O 0.0008 0385 | (S) 0.0298 0415 | (S)

VI. DISCUSSION

In this section, we discuss the key lessons learned from this
study, the implications of our findings for software engineering
practitioners and researchers, as well as validity threats.

A. Lessons Learned

L1: The differences in the results of prompt tech-
niques are not dramatic: We carefully designed a full factorial
experiment to evaluate not only prompt techniques but also
combinations of them in a prompt. Our analyses revealed that,
while there was an impact of some prompt techniques on the
generated functions, the results for most of the prompt tech-
niques were not that different. For example, the difference in the
Pass@1 rates for the prompts with the highest and lowest rates
is only around 10 percentage points (see Fig. 5), and the effect
sizes of the complexities are mostly small or insignificant (see
Table V). These insights align with other studies that evaluate
prompt techniques on code summarization [18] and generation
[22], where the performance results of different prompt tech-
niques such as CoT, few-shot, self-collaboration, among others,
are also comparable. In contrast, we see clearer differences
in the performance results of some prompt techniques when
using benchmarks for math-related tasks or general question-
answering [26]. We conclude that a strong emphasis on prompt
programming is not necessary in the context of function-level
code generation using current-generation models.

L2: Providing information about the interface via few-
shot or signature is useful, but limits the “creativity” of the
LLM: In our correctness and similarity results, the signature
and few-shot prompt techniques stood out among other prompt
techniques. In general, we believe that while they are two
different prompt techniques, they can provide similar context
about the expected functional interface in terms of positional
arguments and expected output. This was also revealed through
our general multi-linear regression results in Figs. 6 and 9,
where we see that having either signature or few-shot examples
significantly impact the code’s correctness or similarity, but
their interaction or combination does not help. In relation to
previous work by Ahmed et al. [8], [47], we observe a similar
pattern where contextual information about the parameters and
other identifiers can improve the code summarization. However,
providing this information limits the solution space for the LLM

(i.e., it restricts the potential for “creativity””), which may not
always be desired.

L3: There is a trade-off between correctness and main-
tainability when choosing prompt techniques: Our analysis
revealed contrasting results: prompts with few-shot examples
or function signatures improved correctness but increased com-
plexity and number of code smells, while prompts that em-
ployed persona, CoT or package had lower passing rates but
significantly enhanced code maintainability (see Tables V, VI
for complexity and Fig. 10 for code smells). While previous
research suggests that the use of a persona in the prompt does
not improve the outcome [48] but can improve the personaliza-
tion and user experience [27], we believe that this only applies
to simple personas such as “software developer”. However,
our results indicate that personas can be more beneficial when
used as a way to induce additional quality requirements e.g.,
“software developer who writes clean and simple code”. Recent
work has also shown that personas can be beneficial for code
generation when used in more complex approaches such as
self-collaboration where multiple personas (e.g., requirement
engineer, software tester, and a developer) are used together to
iteratively construct the code in a systematic way [24].

B. Implications

I1: Researchers should prioritize refining prompts for
more effective prompt programming experiments We shed
light on two components of experiments in prompt program-
ming: the generation tasks, and the prompts. Based on observa-
tions in our previous work [3], we note that developers often use
LLMs for more complex tasks than those in common datasets
such as HumanEval [37] or CoderEval [10]. Although we were
able to analyze and compare different prompt techniques, we
believe that a dataset with are more representative functions of
the large systems and projects that developers typically work
with is needed.

Further, prompts in common benchmarks often lack a con-
sistent format or level of detail. For instance, the prompts in
CoderEval are based on functions’ docstrings rather than ac-
tual prompts. Sclar et al. [49] show that LLMs, regardless of
their sizes and number of parameters, are highly sensitive to
small prompt changes such as prompt formatting. We observed
similar behavior when experimenting with the template “The



KHOJAH et al.: IMPACT OF PROMPT PROGRAMMING ON FUNCTION-LEVEL CODE GENERATION

function uses the following packages” for the packages prompt
technique and found that it caused errors related to using the
wrong packages. We traced the issue back to the prompt itself
and realized that the packages listed were not necessarily used
by the function but existed in its class. When we modified
the template to “The function has access to (but does not
necessarily use) the following packages,” we mitigated the
issue. This pre-processing of the prompt technique templates
is another aspect of prompt programming recommended by
Obrien et al. [50]. We found value in inspecting and refining
prompts and creating our own few-shot examples, which in-
creased our confidence in the dataset’s reliability and stability.
Therefore, we encourage researchers to invest in similar efforts.

12: Software developers should avoid overusing prompt
techniques While we saw that prompt techniques can be ben-
eficial for certain criteria (e.g., signature for correctness and
persona for quality), we also saw that combining them does
not necessarily yield better results. In fact, some cases showed
that including an additional prompt technique can cancel out
the impact of the existing prompt techniques. For instance, in
the code smells results in Fig. 10, we show how the inclusion
of few-shot examples to CoT and persona can increase the code
smells by more than one-third. Previous work has also shown
how few-shot examples can hurt the LLM performance if not
carefully engineered by humans [26].

I3: Different LLMs have different sensitivity levels
to the prompt techniques We argue that a single prompt
technique does not have the same impact on the different aspects
(correctness, similarity, or quality) of the generated code across
all LLMs. We have seen that the three LLMs demonstrated
different sensitivity levels to the prompt. For instance, we saw
how the similarity scores of Llama3-generated functions were
significantly impacted by CoT, while it showed no effect for
GPT-40 and Mistral (see Fig. 9). The error types for Mistral
did not seem to be strongly impacted by prompt techniques
as they did for other LLMs. Note that these differences in
the models do not necessarily come from the model size and
the number of parameters it was trained on, but rather the
underlying architecture it uses (which aligns with findings by
Wang et al. [18]). This implies that when a software company
integrates an LLM into its processes and provides employee
training, it should develop specific guidelines tailored to the
LLM, including recommendations for prompt techniques that
align with the model’s characteristics e.g., if an LLM returns
simple functions in general, so prompt techniques that impact
complexity may not be needed.

I4: Determining the purpose of the code generation is
essential for the use of prompt programming Depending
on whether the intended use of the LLM is to support hu-
man developers or to completely automate code generation,
prompt programming has different significance. We manually
inspected 40 randomly selected failing functions from differ-
ent code levels, each of which had passed with at least one
other prompt, to understand what caused the failures. We saw
that while the use of some prompt techniques has significantly
minimized the number of errors and code smells, many of
these issues can be easily fixed by human developers, arguably
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requiring less time and effort than re-prompting the LLM and
applying an additional prompt technique. For instance, the ab-
sence of a signature in a prompt causes TypeErrors when
the LLM misjudges the number of arguments, or misses that
the function is a part of a class until the signature with a
self parameter is provided. Moreover, prompting the LLM
with few-shot examples reduced AssertionErrors mostly
because the original prompt lacked clear specifications for
edge cases and input/output formats, which could be picked
up from the examples and result in passed tests (see Fig. 7).
On the other hand, prompt programming can be more valu-
able when the purpose is to automate code generation and
return correct and maintainable code without the need for hu-
man intervention, especially to apply simple modifications or
refactoring actions.

C. Threats to Validity

External validity. The main threats to external validity in
this study are associated with the prompt techniques, the LLMs
and the benchmark we utilized. There are many possible prompt
techniques that can potentially impact code generation, such as
self-collaboration [31], AceCoder [32], or providing the whole
class as context. However, we decided to select common prompt
techniques that can be practically applied by a typical software
developer in most code generation tasks. Another important
question is whether the use of more powerful LLMs can result
in different findings and eliminate the need for prompt pro-
gramming. We used three current-generation LLMs during the
study, including GPT-40 (200B parameters) and Llama3 (70B
parameters). Our replication package [38] also includes results
for older LLMs (GPT-3.5, Llama2), showing that the prompt
techniques affecting code generation in this study similarly
impact older models.

Internal validity. Regarding internal validity, we acknowl-
edge that LLMs can be sensitive to format or structure of the
prompt [49], or even the order of the few-shot examples [21].
To address this, we manually refine the prompts and ensure
that they have the same level of detail, for example, by remov-
ing examples that may be described in the original prompt to
not impact the few-shot analysis. We also used a fixed order
of the prompt techniques that we believe represents a natural
sentence flow, and we ensured to use it consistently across all
prompts. In addition, the manual creation of few-shot examples
for our dataset may have introduced a degree of subjectivity. We
therefore involve the first three authors in the process, allowing
them to discuss possible examples and select the two most
representative ones. Furthermore, to avoid failures due to in-
correct function names, we replace the generated signature with
the correct one before testing, though failures due to incorrect
parameter names may still occur. Finally, since we used recent
LLMs, they may have been trained on the same open-source
GitHub code we used. To reduce this risk, we avoided code-
focused models like Codex and Codel.lama, which are known
to be trained specifically on GitHub data. We also checked
for memorization by following the method from Schifer et
al. [51] using the maximum similarity metric. Similarity was
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found to produce more meaningful results when identifying
memorization compared to other techniques that focus solely on
code structure [52]. However, it may still miss other forms of
memorization, particularly those involving structural overlap.
We found that for all models, 85% of the generated functions
had a maximum similarity score below 0.4, and none were
higher than 0.7. This suggests that the models produced solu-
tions based on understanding the input, not memorizing training
data.

Construct validity. The representativeness of the bench-
mark (including generation tasks and functions) is an important
aspect of construct validity. While current benchmarks often
include functions that are not as complex as real-life tasks, we
used the CoderEval dataset based on large open-source projects
to minimize this threat. However, there remains the question of
whether CoderEval fully captures the complexity and diversity
of real-world development tasks.

Conclusion validity. For conclusion validity, we focused on
three key criteria: similarity, correctness, and quality. While
others, like efficiency, could be considered, we argue these
suffice for our research questions. Robustness is ensured with
multiple metrics for each criterion.

VII. CONCLUSION

In this study, we have investigated the impact of different
prompt techniques on code generation, specifically function
synthesis, along three quality dimensions (correctness, similar-
ity to a human-written baseline, and code quality). We stud-
ied five prompt techniques, namely few-shot learning, auto-
matic chain-of-thought, providing a persona, providing a sig-
nature, and listing packages. We conduct a full factorial analy-
sis of these five factors using CodePromptEval dataset, which
we developed based on CoderEval. We studied three current-
generation LLMs, namely GPT-40, Llama3, and Mistral.

Our key lessons learned were that the impact of prompt
techniques on correctness, similarity, and quality was not as
large as might be expected. Most combinations of prompt tech-
niques do not lead to statistically significant improvements (or
regressions) in correctness, quality, or similarity. Providing type
information for the function that is to be generated, either ex-
plicitly through a signature, or implicitly via few-shot examples,
has the most clear positive effect, particularly on correctness.
Some prompt techniques have a positive impact on correctness,
and others on quality. However, the obvious idea of combining
them usually improves neither.

A possible future extension of our research is to evaluate to
what extent our findings generalize to other code generation
tasks (e.g., line completion, program repair, or the generation
of full applications) and other prompt techniques. It is plausible
that some of the prompt techniques that did not show a mean-
ingful positive impact on correctness in our experiments (e.g.,
chain-of-thought) turn out to be more relevant if the generation
task is more complex. Additionally, there are other quality met-
rics, such as performance or energy efficiency, which should be
studied in future work — particularly given that recent work in-
dicates that Al-generated code frequently exhibits performance
regressions [53].
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