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ABSTRACT

Chemical reactions can be connected in large networks such as knowledge graphs. In this way, prior work has been able to draw

meaningful conclusions about the properties and structures involved in organic chemistry reactions. However, the research has

focused on public sources of organic synthesis that might lack the intricate details of the synthetic routes used in in-house drug

discovery. In this work, previous analyses are expanded to also include an in-house electronic lab notebook (ELN) source, such

that we can compare it to knowledge graphs that were constructed from US Patent and Trademark Office (USPTO) and Reaxys.

We found that the Reaxys knowledge graph is the most interconnected and has the largest proportion of nodes belonging to the

core, whereas the USPTO is much less connected and only has a small core. The ELN knowledge graph falls between these
extremes in connectivity and it does not have any core. The hub molecules of ELN and USPTO are most similar, primarily rep-
resented by small, organic building blocks. We hypothesize that these differences can be attributed to the different origins of the
data in the three sources. We discuss what impact this might have on synthesis prediction modelling.

1 | Introduction

The synthesis of chemical matter is at the heart of organic chem-
istry and is an essential activity in the pharmaceutical industry
[1, 2]. Past experiments form a vast collection of knowledge that
could be harnessed for making decisions on future experiments.
Currently, most of the knowledge about chemical reactions is
stored and accessed through large databases such as [3] and
[4], containing manually curated records from various sources.
Furthermore, a large knowledge base is embedded in patents,
mined into machine-readable records [5]. Finally, there is a large
quantity of data in (electronic) lab notebooks in both academia

and industry that in most cases have not been analysed. Common
to all these sources of experimental data is that they offer the
potential for scientists to query individual reactions. This
approach has been widely practiced by the synthesis and medici-
nal chemistry community during multistep and individual
synthesis planning (ref to reaxys/scifinder). More recently, it
has been proposed that additional knowledge could be extracted
if all of these experimental records were considered jointly, i.e. if
they were considered as a network of organic chemistry [6].

Network theory [7] offers an approach to analyse a network of
organic chemistry and has been explored in some publications
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before. Bishop, Klajn & Grzybowski [6] analysed a few million
reactions from the Beilstein database (a precursor to Reaxys)
and concluded that the network of organic chemistry is a
well-defined architecture with an inherent modular structure.
They furthermore explored the evolution of this network over
time and found that it evolves through a mechanism called pref-
erential attachment [8]. This means that nodes, i.e. molecules,
form new connections at a rate proportional to their current
number of connections. As a result, well-connected nodes
become even more connected over time. Preferential attachment
can be inferred from the scale-free property of the network. In a
scale-free network, the node connectivity distribution follows a
power law, where a small proportion of the nodes have a higher
number of connections than the average while at the same time,
the majority of nodes have few connections [9]. Scale-free net-
works have been extensively researched in many areas [10].

The seminal work from [6] was followed up by [11] on a much
larger dataset extracted from the Reaxys database. They confirmed
the scale-free property of the network and also provided additional
analyses based on network theory. Furthermore, these two studies
differ in how they construct the network. Bishop, Klajn &
Grzybowski [6] built a bipartite graph, where the network is a
directed graph constituting two sets of nodes representing either
molecules or reactions. In contrast [11], built a network where
molecules are nodes, and the edges represent the reactions.
Because many reactions have more than one reactant, more
than one edge can represent each reaction. An alternative
approach was introduced by [12], to use a hypergraph represen-
tation of the network. In their approach, the molecular nodes
are connected via hyper-edges that represent reactions. The
hyper-edges can connect to multiple nodes, thus embedding
a relationship between the reactants and products in a given
reaction. The hypergraph approach was compared to the
directed graph approach on a dataset from the US Patent
and Trademark Office (USPTO) [5].

It is worth mentioning that chemical reaction knowledge graphs,
compared to traditional frequency-based statistical analysis, can
enable machine learning models to leverage not only direct
reactant-product relationships but also the extended paths of
connection within the reaction network. By incorporating such
structured information, machine learning algorithms can
improve the predictive accuracy of a specific modelling task.
For instance [13], developed a self-supervised contrastive learning
framework that integrates a knowledge graph into molecular
representation learning. Their approach allowed models to cap-
ture reaction-based molecular relationships more effectively, lead-
ing to improved modelling performance in tasks such as reaction
classification, product prediction, and yield prediction. Similarly
[14], explored how a knowledge graph could expand the accessible
chemical space by encoding transformations between reactants
and products. Their study demonstrated that by utilizing a reaction
knowledge graph, it was possible to identify new viable reactions
and generate libraries of novel compounds that would have been
difficult to infer using other methods.

Considering the various sources of chemical reactions, such as
commercial databases, patents, and not the least electronic lab
notebooks—it would be of interest to compare the knowledge
content in different sources. However, previous studies have

primarily focused on a single source of reaction data that also
might not be representative of the experiments performed in
the pharmaceutical industry. In this study, we use a similar
methodology as the aforementioned studies [6, 11] to analyse
different networks of organic chemistry constructed from three
different reaction datasets: 1) Reaxys, 2) the US Patent and
Trademark Office (USPTO), and 3) an in-house electronic lab
notebook (ELN). Our primary aim is to provide a comprehen-
sive comparison and to compose hypotheses on the observed
differences.

2 | Methods
2.1 | Datasets and Knowledge Graphs

We constructed reaction knowledge graphs from three data sour-
ces: 1) reactions mined from USPTO, 2) Reaxys, and 3) an in-house
ELN. The source of the USPTO dataset was the original data
deposited on Figshare, and we reassigned the atom mapping using
NameRXN from [15] whenever possible. For Reaxys and ELN, we
extracted data from an internal database that combines several
reaction sources into a common structure. The Reaxys data ana-
lysed here contains all reactions up to the end of 2020.
The ELN data contains a set of reactions up to June 2023 with
a recorded yield of 5% or more. Atom mapping was assigned with
NameRXN whenever possible, and with Pipeline Pilot [16]
otherwise, because being rule-based, NameRXN is superior to
the greedy algorithm in Pipeline Pilot.

We used an identical extract-transform-load (ETL) pipeline for
all three data sources to add the reactions to a knowledge graph.
We identified reactants as the components to the left or above the
reaction arrow that share at least one atom mapping number
with the product, and these were moved to the left of the reaction
arrow. All other components were assigned as reagents and kept
above the reaction arrow. Then, we neutralized the reactants and
products using RDKit uncharger [17]. All reactions that did not
fulfil the following criteria were removed: 1) being single step,
2) having a single product, 3) including at least one reactant,
4) having a product different from the reactant, and 5) containing
no dummy atoms.

From the resulting reaction data, we constructed a bipartite
graph similar to the one proposed by [18] for each data source,
with nodes representing either molecules or reactions. A reac-
tion in this context is defined without consideration of the
reagents, i.e. reactions that only differ in the reaction condition
were grouped into a single node. A molecule and a reaction
node were connected with an edge indicating whether the mol-
ecule was a reactant or product in the reaction. To explore other
aspects of the networks, we additionally created two monopar-
tite graphs containing only molecule or reaction nodes. In the
molecule graph, reactants and product molecule nodes were
connected with an edge if the reactant and product were part
of a reaction. Similarly, in the reaction graph, reaction nodes
were connected if they shared a common reactant or product.
Figure 1 illustrates the difference between the bipartite and
monopartite graph for a single bimolecular reaction with a sin-
gle product.
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Bipartite Molecule-Reaction Graph

is_product
reaction

Monopartite Molecule Graph

FIGURE 1 | Comparison of bipartite (left) and monopartite (right) graph representations of a bimolecular reaction.

2.2 | Graph Analysis

We performed several analyses on the graphs described above
following the methods detailed by [11]. First, we evaluated the
scale-free properties of each graph by calculating the in- and
out-degree for each node and analysing the resulting degree dis-
tributions. Specifically, each empirical distribution’s fit to a
power law distribution was statistically compared to its fit to
other distributions, including log-normal, positive log-normal,
truncated power law, exponential, and stretched exponential dis-
tributions. Furthermore, we identified key components of the
graphs, such as islands, periphery, core, and hubs. We also
calculated the average shortest path lengths and measured the
hierarchy of the network.

The graph analysis was performed using the graph-tool Python
package [19] with implementations of an extensive set of graph
algorithms. We primarily used the available algorithms for node-
degree, shortest path lengths, clustering, and betweenness.
Additionally, these algorithms are prepared for parallelization,
which makes it convenient to handle large datasets such as
the ones analysed in this work. For the evaluation of the power
law distribution, we used the powerlaw package proposed by [20]
which includes statistical tests comparing the empirical distribu-
tion to power law and other relevant theoretical distributions.

Finally, a variety of molecular properties were calculated using
RDKit [17] for all molecular compounds included in the reac-
tions. We considered properties related to the complexity and
drug-likeliness of the compounds. The complexity was assessed
by the molecular weight, number of heavy atoms, number of
rings, number of chiral atoms, and the fraction of carbon atoms
that are sp3 hybridized, i.e. Fsp3. The Quantitative Estimator of
Drug-likeliness (QED) score was used to estimate drug-likeliness
[21]. A QED score close to 1 indicates that a compound is drug-
like, while a score close to 0 indicates that it is not. The averages
of these properties were then compared between graphs as well
as between different sub-structures of each graph.

3 | Results

The following section presents the findings from our analysis of
several chemistry reaction knowledge graphs, constructed from a
set of reactions in an in-house ELN, USPTO, and Reaxys respec-
tively. Additionally, each bipartite graph has been complemented
with two monopartite graphs, which contain only molecule

TABLE 1 | Graph statistics. Counts of nodes and edges in each

graph.
ELN USPTO Reaxys

Nodes

Reactions 556,470 934,948 13,120,771
Molecules 636,361 1,224,059 11,851,702
Total 1,192,831 2,159,007 24,972,473
Edges

Products 556,470 934,948 13,120,771
Reactants 998,627 1,621,340 23,991,669
Total 1,555,097 2,556,288 37,112,440

nodes versus only reaction nodes. Table 1 presents the number
of nodes (reactions and molecules) and edges (reactants and
products) across three datasets: ELN, USPTO, and Reaxys.
Among them, ELN is the smallest, while Reaxys is significantly
larger, containing more than 10 times the number of reactions
and molecules compared to USPTO. The number of edges follows
a similar trend. Reaxys has nearly 24 times more edges than ELN
and about 15 times more than USPTO. The number of reactants
in Reaxys (24M) alone surpasses the total number of those in
both USPTO (1.6M) and ELN (2.6M) combined, highlighting
the much richer reaction data available in Reaxys. A useful
way to measure graph connectivity is the edge-to-node ratio.
This ratio is 1.486 for Reaxys, 1.304 for ELN, and 1.184 for
USPTO, indicating that Reaxys is the most densely connected
graph, while USPTO is the sparsest. A higher ratio suggests that
each molecule or reaction is involved in more connections, which
may indicate a broader coverage of reaction pathways in Reaxys.
The large size of Reaxys is likely due to its extensive coverage of
both patent and non-patent literature, as well as manually
curated experimental data. In contrast, USPTO focuses primarily
on patent reactions, which are more selective, and ELN repre-
sents a collection of proprietary or experimental reaction data,
making it the smallest dataset.

3.1 | The Scale-Free Property

The degree distributions of the bipartite graphs are shown as nor-
malized histograms in the upper row of Figure 2. It can be seen
that many nodes have only a few connections while fewer ones
are highly connected, similarly to what was previously reported
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by [11, 12] although those graph was wired differently than our
bi-partite graphs. Complementary, Table S1 presents the aver-
age degree in each version of the graphs, but as [11] points out,
the average degree is a poor metric of the general graph’s
properties.

To gain a more in-depth understanding of the graph’s respective
attachment mechanisms, each degree distribution is also fitted to
a power law. Prior work has shown that similar chemical net-
works follow a power law distribution [20], which indicates a
preferential attachment style known as the scale-free property.
The scale-invariant relation is described as,

P(k) x k=7 (€]

where P(k) is the probability to observe a node with degree
k and y is the power law exponent. The scale invariant property
means that the distribution retains its features regardless of the
scale of the variable. A power law is a heavy-tailed distribution,
meaning that the tail of the distribution is not exponentially
bounded [20].

The empirical distributions of the Complement Cumulative
Distribution Function (CCDF) are shown next to the respective,
best-fitted theoretical power laws in the bottom row of Figure 2.
While [11] used a fixed start value of degree k,;, =1 to evaluate

the power law fit, we adopt the best possible fit by letting the
algorithm choose the most optimal k;,. The resulting values
on k., for each graph, as well as the fitted parameter y are
all provided in Table 2.

Note that the optimal k.,;, values are between 2 and 5 for all
graphs and degree types. Despite using a few degrees higher than
previous work, we observe the same results for all graphs in
terms of out-degree, i.e. yo, ~ 2.1 [11, 18]. However, y;, ranges
between 5.2 for Reaxys and 8.2 for USPTO, which is larger than
the previously reported y;, ~ 3 [11, 12]. The difference between
our values and those previously reported might be due to the dif-
ference in how the datasets were processed or how the networks
were wired. Furthermore, from the CCDFs, it is clear that the
distributions fit the power law well in terms of out-degree but

TABLE 2 | Power law fit. Estimated parameters for fitting the degree
distributions to a power law, presenting the obtained power law
exponents, y, as well as the optimal minimum degree used, k.

ELN USPTO Reaxys
14 Kmnin 14 Knin 14 Knin
In 7.77 2 8.16 3 5.19 2
Out 2.10 3 2.12 5 2.10 5
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not necessarily for all graphs in terms of in-degree. ELN is the
only graph for which the CCDF fits the power law well in terms
of in-degree, although with a steeper slope than previously seen.
For the remaining graphs, we need further analysis to examine
the scale-free properties of the in-degree.

Additional details are provided in the Supporting Information,
where Table S2 presents likelihood-ratio tests for comparing
how well the degree distributions fit a power law compared
to other distributions. Based on these results, we can rule
out that either of the degree distributions are best described
by exponential, stretched exponential, or positive log-normal,
which means that they are certainly heavy-tailed. However,
log-normal and truncated power law cannot be ruled out as
potentially better suited for certain parts of the distributions
in either of the graphs. The same result has been seen for many
other real networks that do exhibit scale-free behaviours [10].

3.2 | Hierarchical Structure

The hierarchy of the graphs can be explored in several different
ways. We analyse hubs, shortest path length, and betweenness
centrality as well as clustering coefficient.

3.2.1 | Hubs

As previously seen in Figure 2, all graphs exhibit a small propor-
tion of highly connected nodes. We follow [22] and select a
threshold based on the average degree to determine which nodes
should be considered hubs. First, we selected this threshold based
on the total degree of the node, according to §= 100davg, where

TABLE 3 | Molecule hubs. Properties related to existing molecular
hubs.
ELN USPTO Reaxys
Average total 3.10 2.63 3.83
degree
Hubs threshold 310.19 263.34 382.59
#Hubs (proportion) 136 317 4248
(0.02%) (0.03%) (0.04%)

O« ~O

#2
In-degree: 4,

#1
Out deg ee: 576

Out-degree: 290

O

#3
In-degree: 4,
Out-degree: 312

d, 1s the average total degree for the respective graphs. The
resulting proportions of hubs, i.e. nodes with a high total degree,
in the graphs with this definition are presented in Table 3.
Unfortunately, this method resulted in hubs like ammonia,
methyl iodide, BOC anhydride, methanol, and acetic anhydride.
They are classified as reactants based on the atom-mapping algo-
rithm that identifies that they do contribute at least one heavy
atom to the product. They are, however, not particularly
interesting from a chemical perspective, as they are trivial, com-
mercially available starting materials usually used for common
transformations such as acetylation or BOC protection. We also
acknowledge that they could be re-classified based on some
heuristic.

Instead, we continued the analysis by ranking the molecule
nodes on the in-degree of the nodes, and selected hubs that
had an out-degree of more than 100 of the average. To illustrate
these molecules, the top 10 compounds with the highest in-
degrees from the three graphs are shown in Figure 3 from the
ELN graph, as well as in Figures S1 and S2 for UPSTO and
Reaxys respectively. Within these compounds, one can notice
more advanced medicinal chemistry intermediates. For example,
compound #3 can be used in sequential reductive amination and
either amide or C-N cross-coupling; compound #4 can be used in
sequential O or N-alkylation followed by amide coupling; com-
pounds #6 and #10 can be used as intermediates in chemo- and
regioselective C-N or C-C cross-couplings. For ELN and USPTO,
the hubs are various substituted ring systems, whereas Reaxys is
a mix of ring systems and smaller compounds like carbon dioxide
(#1), carbon monoxide (#6), and acetone (#9).

3.2.2 | Small-World Behaviour

As all graphs include hubs, there is reason to believe that they
might also exhibit small-world properties, for which the average
shortest path length should be small. Figure 4 shows the proba-
bility density function of shortest paths in each graph and
Table S3 shows the average shortest path lengths for each graph
and graph version. The molecular graph largely follows the bipar-
tite graph’s structure, and the reaction graph’s structure is largely
similar for all sources. However, for the bipartite or molecular
graph, there are noticeable differences between the different
sources. The ELN graph shows a steady distribution up to about
a distance of 10, where the distribution drops rapidly. The Reaxys

#4
In-degree: 3,
Out-degree: 281

#5
In-degree: 2,
Out-degree: 326

)( ,/\_w A . il _@_ A\ g -/
r\J . JN i / "’4 “\‘\/ o
#6 #7 #8 #9 #10
In-degree: 2, In-degree: 2, In-degree: 2, In-degree: 2, In-degree: 2,

Out-degree: 1361 Out-degree: 268

Out-degree: 266

Out-degree: 265 Out-degree: 291

FIGURE 3 | Molecular hubs. The top 10 ranked hubs based on the in degree from the ELN graph.
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graph shows a steep increase up to about a distance of 10 before
the distribution drops. Finally, the distribution for the USPTO
graph stays steady up to about a distance of 100 before it drops.

3.2.3 | Measurements of Hierarchy

In addition to the presence of hubs and small-world property, the
hierarchy was measured in terms of average degree-dependent
betweenness; see Figure 5. We only show this analysis for the
molecular graphs because the graphs for the reaction nodes show
very little difference between data sources. One can observe that
the betweenness centrality increases with the node degree. This
is an indication of hierarchy in the graph, as it means that more
connected nodes have more paths running through them. The
trend is the same for all bipartite graphs as well as in the mole-
cule and reaction versions.

The clustering coefficients for all bipartite graphs are exactly
zero, as by design no triangles can exist in these graphs.
Instead, the clustering coefficients were evaluated only on the
molecule and reaction versions of the graphs. The global

L L L B B 11 S S T S R E T R S R R TI 1T B A NN

clustering coefficients of all monopartite graphs are presented
in Table 4. Notably, the coefficients are all lower than the typical
range of 0.01-0.5 found for many other graphs published in
related work [11]. There appears to be very little difference
between the clustering coefficients for the different graphs.

Regarding the local clustering of the graphs, it can be seen in
Figure 5 that the average local clustering coefficient decreases
with the node degree. This means that the nodes with high
degrees are not part of clusters to the same extent as ones with
fewer connections. As previously stated, some real-world graphs
have shown that the averaged degree-dependent clustering coef-
ficients scale according to ¢(k) o k=1 for hierarchical graphs [11].
Similar conclusions can be drawn for all molecule graphs in this
analysis as their linear regression lines all have slopes close to —1.

3.3 | Network Components and Properties

To identify the different components of interest, the first step was
to determine whether the respective graphs had a core. To do so,
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FIGURE 5 | Hierarchical measurements. (Left) Average degree dependent betweenness: the margins show the distribution of the data and the lines

represent a linear regression. (Right) Average degree dependent clustering: linear regressions of the respective data are shown as lines.

6 of 9

Molecular Informatics, 2025

85U0|7 SUOWIW0D 3A eI 8|qe![dde 8y} Aq pausenob are ssjpie YO ‘88N JO SN 10} Akeid1 8uluO AB|IA UO (SUOTHPUOD-pUR-SWUBI W0 A8 |IM"ARe.d 1 Ul |uo//Sdny) SUORIPUOD pue swi 1 8us 89S *[520z/.0/TE] uo Ariqiauluo A|im ‘Bulupeieg suemrls Aq TT000SZ0Z JUIW/Z00T OT/I0p/wioo A8 i AreJqiul|uo//sdny woiy pepeojumod ‘. ‘620z ‘TSLT898T



TABLE 4 | Clustering coefficients. The average global clustering coefficients for each graph.
ELN USPTO Reaxys
Molecule 0'0001914.626—05 0'000051’1.086—05 0'00014t2.28€—05

Reaction 0.00010.15 45¢—05

0.00039 +4.57¢-05 0.00005 +7.55¢-05

the left panel in Figure S3 shows a distribution plot of the sizes of
strong connected components (SCC) in each graph. The Reaxys
graph has a clear such component according to the definition of a
core, whereas USPTO can be seen to have a smaller core.
However, ELN does not have a significantly larger SCC than
the remaining ones. All graphs do, however, have a connected
component (CC) that is significantly larger than any other; these
can be referred to as the central components of the respective
graphs, as seen in the right panel of Figure S3.

Each core was confirmed to be contained within the respective
largest central components and therefore the periphery is defined
as the relative complement of this central component and the
core. Even for ELN, which did not have a clear core, the central
component of the graph can still be taken to have a more central
meaning than the remainder of the graph; hence, it is defined as
this graph’s periphery. All remaining nodes are considered to
belong to islands and the resulting proportions of each structure
are presented in Table 5. Additionally, the table presents the
results for the molecule and reaction versions of the graphs as
well as results found for the Beilstein database in [18].

Finally, we calculated properties related to molecular complexity
and the QED score related to drug-likeliness, averaged over each
component as well as overall molecular hubs found in the respec-
tive graphs (see Figure 6 as well as Tables S4 and S5). The hypoth-
esis from literature [6] is that hub and core molecules should be
less complex and instead building block substances, i.e. smaller
and diverse. Islands on the other hand are presumed to be made
up of more complex, final drug compounds.

Molecular weight (MW) is one of the most simple indicators of
molecular complexity. The MW is highest for molecules in
islands for all graphs and becomes lower as you pass through
the periphery into the core, with the lightest molecules on aver-
age being the hubs. Following the same trend is the number of
heavy atoms, the number of rings, and the number of chiral
centres, further corroborating the hypothesis. Only for the
ELN graph do we observe an exception, where the average num-
ber of rings is higher in the periphery than in the islands.

TABLES5 | Structural components. The proportion of nodes in each
bipartite graph that make up the core, periphery, and island
components. The result for a precursor to Reaxys, the Beilstein
database from [18], is also presented for comparison.

ELN USPTO Reaxys Beilstein

1,192,831 2,159,007 24,972,473 ~5 900 000

Core N/A 0.01% 6.94% 4%
Periphery 96.04% 88.14% 89.41% 78%
Islands 3.96% 11.85% 3.65% 18%

However, this property is less common for very small molecules
where each carbon hybridization weighs heavier and as previ-
ously noted the hubs are significantly smaller based on the MW.

4 | Discussion

In summary, we observe several differences between the three
analysed reaction graphs. The largest graph derived from
Reaxys is the most connected, as shown by the 1.49 ratio between
the total number of edges and the total number of nodes.
Furthermore, Reaxys shows the lowest power-law parameter
7in Of 5.19, the highest hierarchy, and the largest percentage of
nodes that belong to the core. On the other hand, the graph
derived from USPTO has the lowest general connectivity of
1.18, the highest y;, of 8.16, and a much lower percentage of
nodes belong to the core. The graph derived from ELN often falls
between these two extremes with a general connectivity of 1.30
and a y;, of 7.79. However, it does not have a definable core.
Moreover, the hub molecules in the ELN and USPTO graphs
are qualitatively similar and can be said to belong to small,
organic building blocks, whereas some of the hub molecules
in Reaxys are mostly inorganic compounds. The Reaxys hubs
are on average heavier and have a higher QED score than the
hubs in the USPTO and ELN graphs.

These differences might be explained to a large extent by the
provenance of the data, i.e. the origin of the data. Reaxys is a
comprehensive source of chemistry, encompassing both litera-
ture and patent data, whereas USPTO is confined to data from
patents. ELN is a subset of reactions from a large pharmaceutical
company, having a higher diversity of chemical moieties and a
larger number of different chemical reactions. The scale-free
analysis shows that the knowledge structures within ELN and
USPTO are more centralized around a few highly influential
nodes compared to Reaxys. This expectation aligns with the
nature of reaction data, especially in the context of pharmaceu-
tical synthesis. For instance, when synthesizing new compounds,
represented by newly added nodes of low connectivity, it is com-
mon to utilize more common reactions and building blocks,
which are represented by highly connected nodes. As it was
noted above, compounds #1, #3, #4, and #6 in Figure 3 are build-
ing blocks for the widely used amide coupling reaction, whereas
compounds #7 and #10 are the building blocks for Pd-catalysed
cross-coupling reactions. Following this and the fact that the
ELN graph follows small-world behaviour (the average shortest-
path is short), it can be suggested that hubs or hub-like
heavily connected nodes can be extracted and proposed for
the experimentalists as good candidates to test less explored reac-
tant partners with a higher expected reaction success rate. It can
be speculated that additional filtering by the reaction type should
be applied to make such a recommendation more accurate. In
contrast, Reaxys exhibits a more evenly distributed connectivity
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network across its nodes, allowing for a broader spread of knowl-
edge. This is further supported by the higher ratio of hubs in
Reaxys, indicative of a more extensive exploration of chemistry
across a broader and less restrictive part of the chemical space. In
particular, one should probably pay attention and filter unrelated
parts of the chemical space—, e.g., inorganic transformations—
before using the Reaxys knowledge graph for medicinal chemis-
try synthesis planning or modelling. Furthermore, it is notable
that highly connected nodes and hubs, particularly within the
ELN and USPTO-derived knowledge graphs, are characterized
by lower QED scores (Figure 6a). This aligns with the assumption
that these nodes are more likely to represent building blocks
rather than final drug-like compounds. Interestingly, this trend
is not observed in the Reaxys graph.

Considering the ubiquitous use of USPTO data in the machine
learning community, it is interesting to speculate on what the
consequences of the differences observed herein are on the
resulting models. If the purpose of the modelling is in the scope
of drug discovery, it can be argued that USPTO represents some
aspects of the chemical knowledge contained in an in-house ELN
reasonably well. However, there remain questions around

reaction scope, something that we cannot readily analyse with
graph theory. The knowledge contained in Reaxys naturally cov-
ers a larger reaction class variety, but as we have observed herein,
it might not correspond to reactions of interest to drug discovery.
Finally, we can likely conclude that the data in USPTO and ELN
are prone to repetitions of similar syntheses, whereas the Reaxys
data appears more diverse in terms of chemical reactions. It
remains an open question whether the reaction knowledge graph
can be used predictively in for instance yield models or building
block selection. It is unclear if the graph contains knowledge
beyond the information that can be extracted from individual
reaction experiments.

5 | Conclusion

We provide an extensive comparative study of the organic chem-
istry knowledge contained in three large sets of reaction data
from literature, patents, and the pharmaceutical industry. As a
result, we have shown that network theory provides valuable
tools to analyse the structure of the knowledge graphs, but that
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there are also some limitations to this analysis. To a large extent,
we found that the differences in the properties of the networks
from the three sources can be rationalised by data provenance.
Furthermore, the analysis shows that the distinct nature of the
data in the three sources might have implications for predictive
modelling using machine learning. As such, future research
should carefully consider the source of the data used when train-
ing machine learning models for predictive tasks such as retro-
synthesis and yield modelling.

Acknowledgements

E.S. was (partially) funded by the European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-Curie
Innovative Training Network European Industrial Doctorate grant agree-
ment No. 956832 ‘Advanced machine learning for Innovative Drug
Discovery’. E.G. was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems, and Software Program (WASP),
funded by the Knut and Alice Wallenberg Foundation. T.B. was a fellow
of the AstraZeneca postdoc programme.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

References

1. M. MacCossand T. A. Baillie, “Organic Chemistry in Drug Discovery,”
Science 303, no. 5665 (2004): 1810-1813, https://doi.org/10.1126/science.
1096800.

2. D. P. Rotella, “The Critical Role of Organic Chemistry in Drug
Discovery,” ACS Chemical Neuroscience 7, no. 10 (2016): 1315-1316,
https://doi.org/10.1021/acschemneuro.6b00280.

3. CAS, https://www.cas.org/about/cas-content (accessed: June 2025).
4. Reaxys, https://www.reaxys.com/ (accessed: June 2025).

5. D. M. Lowe, “Extraction of Chemical Structures and Reactions from the
Literature” (PhD thesis, University of Cambridge, 2012).

6. K. J. M. Bishop, R. Klajn, and B. A. Grzybowski, “The Core and Most
Useful Molecules in Organic Chemistry,” Angewandte Chemie
International Edition 45, no. 32 (2006): 5348-5354, https://doi.org/10.
1002/anie.200600881.

7. D. B. West, Introduction to Graph Theory, vol. 2 (Prentice Hall Upper
Saddle River, 2001).

8. M. Fialkowski, K. J. M. Bishop, V. A. Chubukov, C. J. Campbell, and
B. A. Grzybowski, “Architecture and Evolution of Organic Chemistry,”
Angewandte Chemie International Edition 44, no. 44 (2005): 7263-7269,
https://doi.org/10.1002/anie.200502272.

9. A.-L. Barabasiand R. Albert, “Emergence of Scaling in Random
Networks,” Science 286, no. 5439 (1999): 509-512, https://doi.org/10.
1126/science.286.5439.509.

10. A. D. Broidoand A. Clauset, “Scale-Free Networks Are Rare,” Nature
Communications 10, no. 1 (2019): 1-10, https://doi.org/10.1038/s41467-
019-08746-5.

11. P.-M. Jacoband A. Lapkin, “Statistics of the Network of Organic
Chemistry,” Reaction Chemistry & Engineering 3, no. 1 (2018): 102-118,
https://doi.org/10.1039/C7RE00129K.

12. V. Mannand V. Venkatasubramanian, “Al-Driven Hypergraph
Network of Organic Chemistry: Network Statistics and Applications in
Reaction Classification,” Reaction Chemistry & Engineering 8, no. 3
(2023): 619-635, https://doi.org/10.1039/D2RE00309K.

13. J. Xie, Y. Wang, J. Rao, S. Zheng, and Y. Yang, “Self-Supervised
Contrastive Molecular Representation Learning with a Chemical
Synthesis Knowledge Graph,” Journal of Chemical Information and
Modeling 64, no. 6 (2024): 1945-1954.

14. E. Rydholm, T. Bastys, E. Svensson, C. Kannas, O. Engkvist, and
T. Kogej, “Expanding the Chemical Space Using a Chemical Reaction
Knowledge Graph,” Digital Discovery 3 (2024): 1378-1388, https://doi.
0rg/10.1039/D3DD00230F.

15. NextMove Software, “NameRXN,” accessed 2024, https://www.
nextmovesoftware.com/namerxn.html. Version 3.7.0.

16. BIOVIA, Dassault Systémes, “Pipeline Pilot,” accessed 2024, https://
www.3ds.com/products-services/biovia/products/data-science/pipeline-
pilot/. v20.1.0.2208.

17. G. Landrum, “RDKit: Open-Source Cheminformatics,” accessed 2006,
https://www.rdkit.org.

18. B. A. Grzybowski, K. J. M. Bishop, B. Kowalczyk, and C. E. Wilmer,
“The *wired” Universe of Organic Chemistry,” Nature Chemistry 1, no. 1
(2009): 31-36, https://doi.org/10.1038/nchem.136.

19. T. P. Peixoto, “The Graph-Tool Python Library,” Figshare (2014),
https://doi.org/10.6084/m9.figshare. 1164194 (accessed: June 2025).

20. J. Alstott, E. Bullmore, and D. Plenz, “Powerlaw: A Python Package
for Analysis of Heavy-Tailed Distributions,” PLoS One 9, no. 1 (2014):
€85777, https://doi.org/10.1371/journal.pone.0085777.

21. G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and
A. L. Hopkins, “Quantifying the Chemical Beauty of Drugs,” Nature
Chemistry 4, no. 2 (2012): 90-98, https://doi.org/10.1038/nchem.1243.

22. M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and
D. Pedreschi, “The Pursuit of Hubbiness: Analysis of Hubs in Large
Multidimensional Networks,” Journal of Computational Science 2, no. 3
(2011): 223-237, https://doi.org/10.1016/j.jocs.2011.05.009.

Supporting Information

Additional supporting information can be found online in the Supporting
Information section.

9 of 9

85UB01 7 SUOLUIOD @A) 8|qedljdde ayy Aq peueob aJe seoiLe VO '8sn Jo 9N Joj AkeiqiTauluQ AB]1/MW UO (SUONIPUOD-PUE-SWIRILIOD" A8 | IM Alelq 1 joul [Uo//Sdny) SuonIpuoD pue swie | 8y} 88s *[6z0z/0/TE] Uo Ariqiaulluo Ao|im ‘Bulupssed SustIS Ag TT000SZ0Z JUIL/ZOO0T OT/I0p/wW00 A8 | AeJqipuljuo//sdny wouy pspeojumod ‘2 ‘520z ‘TS.T898T


https://doi.org/10.1126/science.1096800
https://doi.org/10.1126/science.1096800
https://doi.org/10.1021/acschemneuro.6b00280
https://www.cas.org/about/cas-content
https://www.reaxys.com/
https://doi.org/10.1002/anie.200600881
https://doi.org/10.1002/anie.200600881
https://doi.org/10.1002/anie.200502272
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1039/C7RE00129K
https://doi.org/10.1039/D2RE00309K
https://doi.org/10.1039/D3DD00230F
https://doi.org/10.1039/D3DD00230F
https://www.nextmovesoftware.com/namerxn.html
https://www.nextmovesoftware.com/namerxn.html
https://www.3ds.com/products-services/biovia/products/data-science/pipeline-pilot/
https://www.3ds.com/products-services/biovia/products/data-science/pipeline-pilot/
https://www.3ds.com/products-services/biovia/products/data-science/pipeline-pilot/
https://www.rdkit.org
https://doi.org/10.1038/nchem.136
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1016/j.jocs.2011.05.009

	Network Analysis of the Organic Chemistry in Patents, Literature, and Pharmaceutical Industry
	1. Introduction
	2. Methods
	2.1. Datasets and Knowledge Graphs
	2.2. Graph Analysis

	3. Results
	3.1. The Scale-Free Property
	3.2. Hierarchical Structure
	3.2.1. Hubs
	3.2.2. Small-World Behaviour
	3.2.3. Measurements of Hierarchy

	3.3. Network Components and Properties

	4. Discussion
	5. Conclusion


