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Nicholas E. Charron1,2,3,4,15, Klara Bonneau    2,15, Aldo S. Pasos-Trejo    2,15, 
Andrea Guljas2,15, Yaoyi Chen    5, Félix Musil2, Jacopo Venturin    2, 
Daria Gusew    2, Iryna Zaporozhets    2,4,6, Andreas Krämer    5, 
Clark Templeton    2, Atharva Kelkar5, Aleksander E. P. Durumeric    5, 
Simon Olsson    7, Adrià Pérez    8,9, Maciej Majewski    8,9, Brooke E. Husic10, 
Ankit Patel11,12, Gianni De Fabritiis    8,9,13  , Frank Noé    2,5,6,14   & 
Cecilia Clementi    2,3,4,6 

The most popular and universally predictive protein simulation models 
employ all-atom molecular dynamics, but they come at extreme 
computational cost. The development of a universal, computationally 
efficient coarse-grained (CG) model with similar prediction performance 
has been a long-standing challenge. By combining recent deep-learning 
methods with a large and diverse training set of all-atom protein 
simulations, we here develop a bottom–up CG force field with chemical 
transferability, which can be used for extrapolative molecular dynamics on 
new sequences not used during model parameterization. We demonstrate 
that the model successfully predicts metastable states of folded, unfolded 
and intermediate structures, the fluctuations of intrinsically disordered 
proteins and relative folding free energies of protein mutants, while being 
several orders of magnitude faster than an all-atom model. This showcases 
the feasibility of a universal and computationally efficient machine-learned 
CG model for proteins.

Over the past 50 years, substantial developments in hardware, software 
and theory have advanced the simulation of macromolecules from 
proof of principle to in silico study of protein folding and dynamics1,2. 
Despite this success, an ongoing challenge of the field is the accurate 
and efficient representation of large, biologically relevant systems. 
These systems are inherently multiscale: while fine-grained models 
must be used to describe local and fast processes, the long-timescale 
dynamics may be better captured at a coarse-grained (CG) resolution, 
which is both more computationally efficient and facilitates a more 
direct understanding of how macroscopic observables arise from inter-
actions between microscopic degrees of freedom. Up to now, the most 
successful and widely used simulation approach is molecular dynamics 

(MD) with all-atom resolution1,3. Atomistic MD effectively models mac-
romolecular changes, such as protein folding or protein–ligand bind-
ing, and predicts their thermodynamic properties. However, all-atom 
MD comes at extreme computational costs and requires great efforts 
to post-process and analyse the data4,5. It is still unclear whether there 
is a computationally efficient CG scale that lends itself to a general and 
accurate simulation model. Although deep-learning methods have 
been wildly successful in predicting protein structure and function by 
reasoning over large-scale genomic and structure datasets6,7, they often 
do not tie into a physical level of understanding. In this Article we show 
that deep learning can be used to develop a universal CG protein force 
field capable of predicting protein structures, structure transitions, 
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Results
We generated a dataset of all-atom explicit solvent simulations of small 
proteins with diverse folded structures, as well as many combinations 
of dimers of mono- and dipeptides. Using the training data, we trained 
a CG force field, CGSchNet22, and conducted extensive simulations of 
the learned CG model on new, unseen proteins of various sizes and 
structures (details are presented in Fig. 1, Methods and Supplementary 
Section 1).

Conformational landscape of peptides and small proteins
To assess the ability of our approach for learning a transferable CG 
force field, we first tested how it reproduces the folding/unfolding 
free energy landscape of all-atom MD simulations for a set of unseen 
8-peptides (Fig. 2a,b) and unseen small fast-folding proteins: the 025 
mutant of chignolin (PDB 2RVD; Fig. 2c), TRPcage (2JOF; Fig. 2d), the 
beta–beta–alpha fold (BBA) (1FME; Fig. 2e) and the villin headpiece 
(1YRF; Fig. 2f). None of these proteins had sequence similarity >40% 
to any stretch of sequence from the training or validation datasets 
(Table 1 and Supplementary Section 5.3). The free energy surfaces of 
the CG model were obtained through parallel-tempering (PT) simula-
tions to ensure converged sampling of the equilibrium distribution 
(Supplementary Section 4.2). Long constant-temperature (300 K) 
Langevin simulations were also performed for comparison, producing 
consistent results and multiple folding/unfolding events for all proteins 
(Supplementary Sections 6.4 and 6.9). We also obtained converged 
folding/unfolding reference landscapes from atomistic simulations 
for comparison.

The free energy landscapes of the two 8-peptides match the atom-
istic references closely (Fig. 2a,b). These peptides are mostly disor-
dered, and their landscapes are mostly determined by the torsional 
dynamics contained in the prior energy term of the model, whereas 
the machine-learned multi-body terms have a small effect on the result. 
In contrast, for the four fast-folding proteins (Fig. 2c–f), the neural 
network must learn to predict the configurational landscape; control 
simulations with only the prior energy term only visit the unfolded 
state for these proteins (Supplementary Fig. 7). For these systems, the 
CG model predicts metastable folding and unfolding transitions, and 
the CG folded states are predicted with a fraction of native contacts 
Q close to 1 and low Cα root-mean-square deviation (r.m.s.d.) values, 
and they are populated with structures closely resembling the correct 
native state (Fig. 2c–f). For chignolin, the model is also able to stabilize 
the same misfolded state with misaligned TYR1 and TYR2 residues, as 
found in the reference atomistic simulations (Fig. 4).

For three of the four fast-folding proteins in Fig. 2, the free energy 
basin containing the native state is the global minimum, whereas for BBA 
it is a local minimum, indicating that all proteins are able to fold/unfold 
correctly (also Supplementary Fig. 25). However, the relative free energy 
differences between the metastable states do not exactly match the 
reference. The model performs better on chignolin, TRPcage and villin 
than on BBA, which contains both helical and anti-parallel β-sheet motifs. 
Previous CG models have also noted difficulty on this target system24,35.

Extrapolation on larger proteins
To assess the ability of our CG model to fold and maintain the folded 
states of larger and more complicated systems, we considered the 
following proteins: 54-residue engrailed homeodomain (1ENH) and 
73-residue de novo designed protein alpha3D (2A3D) (Fig. 3). The sizes 
of these proteins prevent atomistic simulations from sampling the 
folding/unfolding transitions in reasonable time, whereas the full free 
energy landscape can be easily explored by the CG model. Therefore, we 
simulate the folded state with the atomistic force field and compared 
these dynamics with those of our CG model, defining the lowest free 
energy minimum as the CG folded state. From extended configurations, 
the model simulates the folding of both proteins to their correct native 
structure (Fig. 3a,b).

folding mechanisms, folding upon binding of an intrinsically disor-
dered peptide, and changes of free energy upon mutation, similar to 
all-atom MD methods, but orders of magnitude faster.

Most MD simulation studies employ atomistic force fields fitted 
on a combination of quantum-chemical calculations and experimental 
data. Modern force fields have been shown to be qualitatively accurate 
for processes on nanosecond to millisecond timescales and are often 
quantitatively consistent with experiments2,8. Recently introduced 
machine-learned force fields9–11 may capture the quantum-mechanical 
interactions between nuclei in the Born–Oppenheimer approximation 
even more accurately than conventional MD, but they also come at 
higher computational cost12.

Ever since the first protein simulations, the community has striven 
to develop universal (CG) macromolecular models that are compu-
tationally more efficient and more simple to analyse. The feasibility 
of such models is justified by statistical mechanical descriptions of 
protein dynamics, such as energy landscape theory13, and results from 
decades of analysis of atomistic simulations4. These studies suggest 
that a protein’s free energy landscape can be sufficiently described by 
a reduced number of collective variables with minimal loss of accuracy 
compared with atomistic MD. Some CG models have shown success 
in specific systems. These include structure-based models14, which 
rely on the known native structure of a protein to explore its free 
energy landscape, the Martini15 CG force field, which can effectively 
model intermolecular interactions including membrane structure 
formation and protein interactions, and CG force fields developed to 
model protein folding and conformational dynamics such as UNRES16 
or AWSEM17. These models are limited to system-specific applications. 
For instance, Martini inaccurately models intramolecular protein 
dynamics, and UNRES and AWSEM often do not capture alternative 
metastable states.

The main hindrance to the development of an accurate biomo-
lecular CG model is the difficulty in efficiently modelling multi-body 
interaction terms, which are essential to realistically represent correct 
protein thermodynamics and implicit solvation effects18,19. In contrast, 
classical all-atom force fields model most non-bonded interactions as 
a sum of two-body terms.

Bottom–up CG force fields20 are typically fit to match the equilib-
rium distribution of an all-atom model, so they could in principle reach 
atomistic-level accuracy and predictiveness. By leveraging recent devel-
opments in deep learning, it has become possible to machine-learn 
such many-body CG force fields using neural networks18,21–30. In par-
ticular, using the variational force-matching approach31,32, such force 
fields have been shown to accurately reproduce the all-atom distribu-
tions of CG observables for single18,21,22,25,27,33 and multiple proteins24. 
Despite these advancements, a transferable CG force field that could 
be considered as universal, quantitative, predictive and as reliable as 
a modern atomistic force field is still missing34.

In this Article we propose a neural network-based CG model that 
is truly transferable in sequence space. We learn the model param-
eters using a bottom–up approach from atomistic simulations of a 
set of proteins and then use it to successfully simulate the conforma-
tional dynamics of proteins never seen at any learning stage, with low 
(16–40%) sequence similarities to the training or validation protein 
set. This CG model is orders of magnitude faster than all-atom MD 
simulations, predicts metastable folded, unfolded and intermediate 
states comparable with all-atom MD simulations, and is consistent 
with experimental data for larger proteins, such as relative folding 
free energies of protein mutants, where converged all-atom simu-
lations are not available. These results indicate that the CG model 
‘learns’ to represent effective physical interactions between the CG 
degrees of freedom and provides strong support for the hypoth-
esis that, using deep-learning methods, a universal CG model for 
realistic and predictive protein simulations at low computational  
cost is within reach.

http://www.nature.com/naturechemistry
https://doi.org/10.2210/pdb2RVD/pdb
https://doi.org/10.2210/pdb2JOF/pdb
https://doi.org/10.2210/pdb1FME/pdb
https://doi.org/10.2210/pdb1YRF/pdb
https://doi.org/10.2210/pdb1ENH/pdb
https://doi.org/10.2210/pdb2A3D/pdb
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We also compared the Cα root-mean-square fluctuations (r.m.s.f.) 
within the CG folded-state free energy minimum with the reference 
all-atom simulations. The CG model stabilizes homeodomain in a state 
very close to the reference native structure, with similar terminal flex-
ibility to the all-atom simulations (Fig. 3a, bottom left) but with slightly 
higher fluctuations along the length of the sequence. The difference 
between the folded state predicted by our model and the crystal struc-
ture (mean r.m.s.d., ~0.5 nm; fraction of native contacts, ~0.75) is similar 
to that of the all-atom simulations from ref. 1 (Supplementary Fig. 12), 
suggesting the difficulty in accurately predicting homeodomain’s 
crystalline structure.

Our reference simulations of alpha3D show flexibility at the ter-
mini as well as between each helical bundle (Fig. 3b), similar to the CG 
model. The CG model also stabilizes a metastable state of alpha3D very 
close to the native structure corresponding to an alternative three-helix 
bundle topology with a different packing of the helices (a detailed 
analysis is provided in Supplementary Section 6.8 and Supplementary 
Fig. 24). Alpha3D is a protein designed de novo by iteratively stabiliz-
ing the selected native state topology, and precursors of the protein 
populate both the native state and the alternative topology similar to 
the one detected by our model36.

These results show that the transferable machine-learned CG 
model can extrapolate to larger unseen proteins, stabilizing the correct 
native states and reproducing their associated backbone fluctuations. 
As an additional analysis, we also demonstrate the extrapolative per-
formance of our CG model on stabilizing the folded states of two large 
proteins for which we only have experimentally determined structures 
as reference data, and on reproducing the conformational heterogene-
ity of a partially disordered protein. The results are discussed in detail 
in Supplementary Section 6.1.

Detailed analysis and comparison with other CG force fields
We compared the characteristics of the learned CG energy landscapes 
with the reference simulations and with three other CG force fields with 
similar resolutions: AWSEM17, UNRES16 and Martini15 (Supplementary 

Sections 4.3, 4.4 and 4.5). We note that AWSEM is parameterized to 
stabilize native states17, and all presented targets should be stable at 
this temperature. Similarly, UNRES is parameterized with conforma-
tional data for multiple systems at several temperatures at ~300 K  
(ref. 16). The Martini force field is unable to stabilize the folded state of 
a protein without elastic restraints37,38; here, we show Martini simulation 
results without native restraints to compare the force field’s ability to 
explore the conformational landscape of a protein system without 
prior knowledge of the protein’s structure. In Supplementary Fig. 27, 
we show that Martini simulations with an elastic network only allow 
for small fluctuations around the native structure.

Figure 4 shows the free energy landscapes of the four small 
fast-folding proteins from Fig. 2 as a function of the two slowest 
time-lagged independent component analysis (TICA) coordinates39, 
generated from extensive MD simulations using the reference all-atom 
model, CGSchNet, AWSEM, UNRES and Martini. The all-atom land-
scapes exhibit the most structure and have the most metastable states, 
whereas the CG landscapes are smoother. CGSchNet explores much 
of the all-atom free energy landscape and it clearly resolves folded 
and unfolded states as well as other metastable states, whereas this 
behaviour is rarely observed with the other CG models. Often, AWSEM, 
UNRES and Martini only stabilize a single metastable state, which is 
either folded or unfolded. This behaviour is expected, as both the 
AWSEM and UNRES force fields have been primarily parameterized 
for stabilizing proteins with a more pronounced fold rather than whole 
free energy landscapes of less stable proteins. Interestingly, there is 
also appreciable similarity between the all-atom reference and our 
machine-learned CGSchNet in structural ensembles besides the folded 
state prediction. For chignolin, all three all-atom main states (folded, 
misfolded and unfolded) are visited by both CGSchNet and AWSEM, 
but these are clearly metastable only with CGSchNet. AWSEM explores 
but does not stabilize the additional states, and UNRES and Martini do 
not fold chignolin at all. In the landscapes of TRPcage, BBA and villin, 
these differences are even more striking, as CGSchnet captures several 
of the metastable states of the all-atom reference, in particular those 

CG mapping

Diverse all-atom
protein simulations

CG coordinates &
CG atom Type embedding CG PMF, CG forces

Graph neural network

Helices
sheets
coils
dimers
….

Simulate new
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& comparison with

experiment

R.m.s.d., Rg, d.s.s.p., …

Physical
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x, z→ U (x) F(x)
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Fig. 1 | Conceptual illustration of the pipeline for building and testing a 
transferable, bottom–up, machine-learned, CG protein force field.  Pipeline 
for building and testing a transferable, bottom–up, machine-learned, CG protein 
force field from a diverse dataset of all-atom simulations, a chosen CG resolution, 
and a set of basic physical prior energy terms (bonds, angles, dihedrals and 
purely repulsive interactions). The CG atom types z and CG coordinates x 

are transformed into pairwise distances dij are fed into the neural network 
architecture to predict the CG effective potential energy U and corresponding CG 
forces F. The trained neural network can subsequently be used to simulate new 
sequences and predict observables such as root mean square deviations (RMSD), 
radii of gyration (Rg) or dictionaries of secondary structure in proteins (d.s.s.p.).

http://www.nature.com/naturechemistry
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with a partial fold, but these states are not explored by the other CG 
force fields. Nevertheless, substantial differences in the unstructured 
states between the reference and CGSchNet indicate that there is still 
room for improvement in our CG model.

A quantitative comparison between the folded states obtained 
with an all-atom model for these proteins and the CG models considered 

here is presented in Supplementary Section 5.4. Not only does our 
model better populate and stabilize the native state structure than the 
other CG models, but it is comparable to a reference all-atom model 
(Supplementary Fig. 12). In particular, in the case of homeodomain 
(1ENH), the folded-like metastable state visited by the atomistic model 
is at a Q-value of around 0.6, lower than in our CG model.

It is important to note that our model is not designed primarily for 
structure prediction, but rather for the exploration of free energy land-
scapes for protein systems through CG MD. Unsurprisingly, structures 
predicted by AlphaFold36 for these test proteins are very close to the 
corresponding crystal structures, as AlphaFold models are primarily 
trained to recover PDB structures.

Beyond globular protein folding
Folding upon binding of an intrinsically disordered peptide
To test our CG model’s extrapolative ability beyond protein folding, we 
consider the PUMA-MCL-1 system as a case study of concerted folding and 
binding of an intrinsically disordered peptide (IDP). The disordered BH3 
motif of the PUMA ligand undergoes coupled folding and binding to the 
induced myeloid leukaemia cell differentiation protein MCL-140. Starting 
from an extended structure, we simulated the PUMA peptide with our 
transferable CG model either alone or in the presence of the folded MCL-1 
protein. Figure 5 reports the evolution of the Cα r.m.s.d. of the ligand to 
its helical (folded) state during the simulations in both cases. The trajec-
tories of the isolated PUMA (Fig. 5a,b, light blue) exhibit large r.m.s.d. 
fluctuations, indicating that the peptide remains disordered on its own. 
By contrast, the peptide simulated in the presence of the MCL-1 protein 
(orange) rapidly drops to an average r.m.s.d. value of ~2.5 Å, indicating 
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Fig. 2 | Transferable CGSchNet performance on test peptides and proteins. 
a–f, 8-residue peptide DYGCSIHP (a), 8-residue peptide SLEAGGRG (b), chignolin 
(2RVD) (c), TRPcage (2JOF) (d), BBA (1FME) (e) and villin (1YRF) (f). Each subfigure 
shows the two-dimensional (2D) free energy (FE) surface of the CG model 
(CGSchNet) and reference atomistic simulations at 300 K as a function of the first 
two TICA coordinates39 for the two 8-peptides and as a function of the fraction 

of native contacts, Q, and the Cα r.m.s.d. to the native state for the four small 
proteins. The structures shown are sampled from the most folded-like metastable 
basin (or labelled metastable basins for the 8-peptides) for CGSchNet (orange) 
and atomistic (grey) models. CG free energy landscapes are obtained through 
Multistate Bennett Acceptance Ratio (MBAR)-reweighted61 parallel-tempering 
simulations (details are provided in Supplementary Sections 4.2 and 6.4).

Table 1 | Maximum sequence similarities of test proteins to 
the proteins used in the model training

Test protein Length (amino 
acids)

Sequence similarity to 
train (%)

DYGCSIHP 8 38

SLEAGGRG 8 50

Chignolin (2RVD) 10 40

TRPcage (2JOF) 20 35

BBA (1FME) 28 29

Villin (1YRF) 35 26

Homeodomain (1ENH) 54 20

SH3 (2NUZ) 55 24

CI2 (2CI2) 65 18

PaaA2 (3ZBE) 71 17

Alpha3D (2A3D) 73 19

S6 (1RIS) 97 16

Details on sequence similarity are in Supplementary Section 5.3.
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induced folding of the peptide by the binding partner. The final simulation 
snapshot reported on the top right of Fig. 5a reinforces this result. Details 
about these simulations are provided in Supplementary Section 5.5.

As a control, we simulated the unfolded PUMA ligand with a pro-
tein that is not known to induce its folding, ubiquitin (PDB 1D3Z). 
Here, although the peptide remains close to the protein, in none of 
the simulated trajectories does it fold into a stable helix, as indicated 
by the much larger deviations of the r.m.s.d. trace (in purple), and by 
the final simulation snapshot on the right of Fig. 5b. Together, these 
results indicate that, when simulated with our CG model, the PUMA 
peptide forms a stable helix only when in the presence of its correct 
binding partner, MCL-1. Although the CG model was trained partially 
on interacting mono/dipeptide pairs (Supplementary Section 1.2), the 
training data contain no protein–protein complexes such as MCL-1/
PUMA. Despite this, the model learns nontrivial interactions that can 
correctly model the PUMA peptide both alone and in the presence of 
its correct binding partner.

Mutational analysis of ubiquitin
We illustrate the extrapolative power of our chemically transferable 
CG model in estimating folding free energy changes upon mutations, 
comparable to experimentally measured ΔΔG values, as described in 
Methods and Supplementary Section 5.6. Such mutational analysis is 
straightforward using our CG model, because the identity of an amino 
acid is solely defined by the type of the Cβ bead in our model (or the 
Cα bead for GLY): mutations can be performed simply by changing 
these bead types as illustrated in Fig. 6a. We chose ubiquitin as a test 
system, given its extensive and available experimental data, focusing 
specifically on the set of conservative mutations investigated by Went 
and Jackson41. We note that ubiquitin has only 18% sequence similarly 
with any proteins in the training/validation datasets.

Figure 6b presents the comparison between the experimental ΔΔG 
values from ref. 41 and those obtained by our model as described in Sup-
plementary Section 5.6. There is a strong correlation between our results 
and the experimental values; the Pearson correlation coefficient obtained 
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with our CG model is comparable with what can be obtained with all-atom 
approaches42,43. This result indicates that the model has learned the general 
physical interactions among the residues at the CG resolution, thereby 
allowing useful predictions on new systems such as mutation effects.

Discussion and conclusion
We have shown that it is possible to machine-learn a transferable, bot-
tom–up, CG effective force field that can be used for MD simulation 
on proteins with little sequence overlap with the systems used for 
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training the model. Notably, the number of training systems is very 
small, containing only 50 small protein domains and 1,245 dimers of 
mono- or dipeptides. We have demonstrated that the model samples 
similar conformational spaces as an explicit water all-atom model, but is 
orders of magnitude faster (Supplementary Table 9). With this increased 
efficiency, the CG model can characterize the folding/unfolding free 
energy landscapes of larger proteins where comprehensive atomistic 
MD is unaffordable. Despite this substantial improvement, our cur-
rent MD code is not optimized, and the simulation throughput can be 
further improved by implementing speedups and optimizing parallel 
batch simulation. Our model also excels in more difficult tasks, such 
as predicting the folding upon binding of an intrinsically disordered 
peptide in the presence of its protein partner, despite the lack of protein 
complexes in the training dataset. However, intrinsically disordered 
proteins appear too structured and compact in our model, which should 
be a subject for future investigation. Finally, we have used the model to 
estimate changes in stability upon mutation in the protein ubiquitin, 
finding good correlation with the experimentally measured values.

In contrast to models such as AlphaFold6, our model is not a protein 
structure prediction tool. Rather, it explores the complete free energy 
surface of the systems of interest, including but not limited to the 
folded protein structure. The ultimate goal of our model would be to 
reproduce the thermodynamics of our systems consistently with the 
underlying atomistic model, but there are some protein targets, such 
as BBA, where our model predicts the folded state as being less stable 
than the unfolded. Yet, even in these systems, our model predicts a 
metastability in the folded region of BBA’s free energy landscape, 
whereas other CG models do not. Further improving the reliability of 
free energy predictions is an important future aim that will require 
both expanding the training dataset and further method development.

The key property of our CG model is the deep graph neural net-
work (GNN) representation of its effective energy that can capture 
multi-body terms without imposing restrictive functional forms. 
The importance of multi-body terms in CG models has been exten-
sively discussed in the literature18,19,44–46. Although it is expected that 
neural networks can capture the important multi-body effects, it is 
remarkable that such a CG force field is transferable in sequence space, 
especially given the rather small sequence coverage of the training 
set. A trade-off between structural accuracy and transferability has 
been observed in the past for various CG protein models47,48. However, 
most CG effective energy functions have been previously parameter-
ized with pre-designed functional forms, limiting the ability to model 
multi-body interactions. In practice, this precluded the possibility of 
quantitatively investigating the accuracy/transferability trade-off in 
protein systems. A deep neural network is the natural answer to such 
a problem and allows us to address this challenge. Although this is not 
the first instance of a bottom–up machine-learning-based protein 
CG model18,21–30, previously proposed versions were either explicitly 
parameterized for single specific systems or were not transferable to 
proteins substantially different from those used in training/valida-
tion datasets.

The particular neural network chosen here (SchNet49) is quite sim-
ple. It consists of a series of continuous-filter convolutions and does not 
include an attention mechanism, nor explicit long-range interaction 
terms. This architectural choice was motivated by the goal of develop-
ing a ‘proof-of-concept’ model, that can be trained and simulated as fast 
as possible while still yielding the desired results. More sophisticated 
architectural choices could produce better-performing CG models. 
In particular, the lack of long-range interactions in our model may 
affect the model performance on much larger and multi-protein sys-
tems, where electrostatic interactions may play an important role50,51. 
Multiple approaches for including long-range interactions52–55 and/
or attention mechanisms56 have been recently proposed for all-atom 
resolutions and could be incorporated into our modelling framework 
in the future.

To prevent our model from exploring nonphysical regions of con-
formational space, we employed a prior energy model (Supplementary 
Section 3.1); however, the model is quite sensitive to any change in this 
prior energy (Supplementary Section 3.3). The current functional 
form and parameterization of the prior model is the result of extensive 
testing, and this set of terms can be further optimized in future work.

It is also important to note that our CG model was trained at a 
specific thermodynamic condition. Transferability in temperature/
pressure or other additional environmental parameters is therefore not 
expected at this point. In particular, the temperature dependence of 
the CG effective energy is highly nontrivial, as it really represents a free 
energy with an entropic component57. An explicit dependence of the 
model on thermodynamic conditions could, in principle, be included 
in the framework58,59. However, in practice, its training would require 
the curation of a substantially larger dataset encompassing multiple 
simulations at multiple thermodynamic conditions, which would 
probably require even more large-scale computational resources than 
those used in this work.

The results presented here were obtained with a model that, 
although aggressively coarse-grained with respect to an explicit water 
atomistic model, still retains the full backbone heavy atoms and an 
additional atom per side chain (excluding GLY). We have not yet inves-
tigated alternative resolutions for building a transferable model, and 
we expect transferability to be strongly tied to the chosen resolution. 
Although different methods have been proposed for the simultane-
ous optimization of CG effective energy and CG mapping60, it remains 
unclear if and which additional resolutions allow for the optimal design 
of a transferable and quantitatively accurate model. We believe that 
the results presented here open the way to a systematic investigation 
of this point.
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Methods
We generated a dataset of all-atom explicit solvent simulations of 
50 CATH domains62, representing small proteins with diverse folded 
structures, as well as ~1,200 dimers of mono- and dipeptides. We stored 
all instantaneous forces on the protein atoms, performed basic force 
aggregation on a CG backbone representation of the proteins27, and 
trained a CG force field, CGSchNet22, which combines a deep GNN 
with physically motivated prior terms. We then conducted a series of 
extensive Langevin and PT simulations of the learned CG model on 
new, unseen proteins of various sizes and structures to demonstrate 
its capabilities and limitations. Wherever feasible, we also performed 
extensive all-atom MD simulations for the test systems and analysed 
them with Markov state modelling4,5 for comparison.

Neural network model
Our model was built using the deep-learning Python packages PyTorch63 
and PyTorch Geometric64. Building on previous efforts22,27,33, we chose 
to model the optimizable term of our CG effective energy with the GNN 
architecture CGSchNet, which is based on a previous architecture, 
SchNet49. See Supplementary Section 2 for a detailed description of 
network architecture, hyperparameter choices and training routines. 
The ability to directly learn species-dependent interactions and CG 
bead-wise features from data represents the primary advantage of 
using a convolutional GNN such as CGSchNet in this pursuit. More 
recent GNN architectures65,66 may be used as an alternative. However, 
we note that newer architectures can require more computational 
resources and more extensive hyperparameter searches, thereby creat-
ing substantial training barriers given the large number of MD simula-
tion frames and the system sizes used in training.

Loss function
We designed our CG model within the framework of variational 
force-matching31,32. In practice, we optimize the parameters {θ} of a 
network representing the effective energy ŨCG(R; {θ}), where R are the 
CG coordinates, by minimizing a loss function in the form

χ2[ ̃FCG,Δ(R; {θ})] = ⟨ 1
3N

N
∑
j=1

‖
‖[ℳFfAA(r)]Δ, j − ̃FCG,Δ(R; {θ})j‖‖

2
⟩
r

(1)

Here, N is the number of CG atoms in the system. In equation (1), 
̃FCG,Δ(R; {θ})  are the forces associated with the CG effective energy, 
̃FCG(R; {θ}) = −∇RŨCG(R; {θ}), after subtraction of the ‘prior forces’:

̃FCG,Δ(R; {θ}) = ̃FCG(R; {θ}) − Fprior(R) (2)

where Fprior(R) = −∇RŨprior(R) and Ũprior(R) is a pre-fit ‘prior energy’ term. 
The atomistic force is similarly modified. The definition of a prior 
energy is discussed in the next section and it has been shown to play 
an important role in constructing stable and accurate neural 
network-based CG models by enforcing asymptotic physical behaviour 
in regions of phase space not covered adequately by training/validation 
datasets obtained through all-atom MD21,22,33,34. In equation (1), the 
operator ℳF  projects the atomistic forces fAA(r), as a function of the 
atomistic coordinates r, in CG space. We have shown in previous work 
that a careful choice of ℳF  is crucial to the optimization of the CG 
model27. In this Article, ℳF  is defined for each CG site as the sum of 
forces on the preserved atom and neighbouring hydrogen atoms con-
nected via constrained bonds27.

CG resolution and prior energy
A good choice of the prior energy model should be connected to the 
resolution chosen to define the CG model34. Previous non-transferable 
CG studies22,25,27 have utilized a resolution that retains only the Cα atoms 
for each amino acid. However, when considering 20 naturally occurring 
amino acids, the type enumeration for common local energy terms, 

such as four-body dihedral interactions, becomes very large. Efforts 
in the past48 have attempted to mitigate such scaling, but this can lead 
to potentially limiting or overly biasing expressions for the associated 
prior energies.

For this work we chose to retain the following five atoms for each res-
idue: backbone N, Cα, C, O and side-chain Cβ. We label different atoms with 
an integer atom type, with the Cβ atom having a residue-dependent atom 
type number. In the case of GLY residues, which do not contain a Cβ, we 
retain only four atoms—N, Cα, C and O—and assign the residue-dependent 
atom type number to the Cα atom. Supplementary Fig. 3 provides a 
graphical description of the CG resolution and atom type labelling.

This five-bead-per-residue CG mapping is not unprecedented—the 
successful AWSEM17 CG force field, which retains the Cα, the Cβ and the 
O atoms (as well as virtual sites for N and C atoms), utilizes a comparable 
resolution. This choice of CG resolution allows for a direct interpreta-
tion of secondary structures and leads to intuitive prior energy choices 
(for example, physical bond/angle terms, physical dihedral angles and 
so on). A description of the terms in the prior force field is provided in 
Supplementary Section 3.1.

It is important to stress that if the prior energy is used alone (with-
out the trainable neural network energy term ŨCG(R; {θ})), it is com-
pletely incapable of stabilizing any secondary or tertiary protein 
structures (Supplementary Fig. 7 presents the results from control, 
prior-only simulations). The function of the prior energy is only to 
prevent the model from visiting configurationally nonphysical regions 
(for example, configurations involving overlapping atoms), with little 
to no additional bias on the configurational landscape. To illustrate 
the relative importance of each prior on model stability/ability to 
access unphysical configurations, we include a prior ablation study, 
where the effect of removing each prior subinteraction, one by one, is 
investigated on a chignolin-specific model at the same five-bead- 
per-residue resolution (Supplementary Fig. 10).

Training data
Three strategies were used to create the training dataset. First, to cap-
ture sequence and secondary/tertiary structure diversity in proteins, 
we constructed a dataset of all-atom simulations of 50 protein domains 
in their native state from the CATH62 database (Supplementary Section 
1.1 presents the domain selection procedure). Each simulation repre-
sents 100,000 frames of all-atom MD data in which the forces and posi-
tions of the solute are saved. In addition to this dataset of folded CATH 
simulations, we constructed a second dataset wherein ~1,200 mono/
dipeptide dimer systems were simulated using umbrella sampling with 
dimer centre-of-mass distances as a reaction coordinate, and each system 
consists of 27,000 frames. Although this dataset does not contain direct 
secondary/tertiary structure information, it contains valuable asymptotic 
force information for atoms that are brought very close together through 
the nature of the enhanced sampling strategy. The necessity for both the 
CATH and dimer datasets was demonstrated by an ablation study in which 
we systematically remove both entire datasets and selected samples 
(Supplementary Fig. 20). Finally, additional frames were constructed 
from the previously described CATH and dimers datasets by taking every 
50th frame of each simulation and additively combining bead positions 
with a Gaussian noise of mean 0 and standard deviation 0.5 Å (Supple-
mentary Section 6.6 provides details of the hyperparameter selection). 
These distorted ‘decoy’ frames were combined with a zero delta-force 
label and used as additional training data, and are designed to prevent 
uncontrolled neural network extrapolation on distorted high-energy 
configurations that may arise transiently during CG simulation. Due to 
the induced distortion, the prior alone predicts a high baseline energy on 
the corresponding areas of phase space. Effectively, the decoy training 
data helps to ensure that the network does not attempt to predict strong 
forces in configurations that should be dominated by the prior terms. A 
comprehensive discussion on the training and validation datasets that are 
used to parameterize the model is provided in Supplementary Section 1.
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Mutational analysis
From the CG model, we can estimate ΔΔG values by treating the effect 
of a single point mutation as a perturbation to the wild-type energy67,68. 
Under the assumption that the mutation does not significantly perturb 
the density of states, the effect of the mutation on protein stability 
can be estimated from perturbation theory67,68 (a detailed analysis is 
provided in Supplementary Section 5.6).

Data availability
All training data, simulation data, and trained models are available at 
https://doi.org/10.5281/zenodo.15465782 (ref. 69). Source data are 
provided with this paper.

Code availability
Code for the generation of the training datasets is available at https://
doi.org/10.5281/zenodo.15465782 (ref. 69). The scripts for model train-
ing and running simulations are available at https://doi.org/10.5281/
zenodo.15482457 (ref. 70). Model training and simulation was done 
using the mlcg package (https://github.com/ClementiGroup/mlcg). 
Additional tools for the prior pipeline can be found in the mlcg-tk 
package (https://github.com/ClementiGroup/mlcg-tk). Finally, analy-
sis tools can be found in the Proteka package (https://github.com/
ClementiGroup/proteka).
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