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Distributed Model Training Task Migration for
Hotspot Management in Intelligent Computing
Center Interconnection with Tidal Characteristics

Yingbo Fan, Yajie Li, Carlos Natalino, Yahui Wang, Jiaxing Guo, Wanping Wu, Rongrong Ruan, Wei
Wang, Yongli Zhao, and Jie Zhang, Member, IEEE,

Abstract—Intelligent computing center (ICC) is a new type of
data center constructed with intelligent computing power, such
as graphic processing units (GPUs) and artificial intelligence
acceleration cards. With billions of parameters, the emergence
of large models (e.g., ChatGPT) presents a significant demand
of computing power. It may be challenging for a single ICC
to provide the required computing power during large model
training. Thus, ICC interconnections (ICCI) will become a
typical and effective solution to provide intensive computing
power. Due to human activities, traditional computing tasks (e.g.,
transaction processing and online entertainment) exhibit a tidal
effect of computing demand, which leads to the tidal variation
of remaining computing resources. Moreover, distributed model
training (DMT) tasks are likely to cover peaks and valleys of
the tidal effect in computing power. In this case, it is easy
for DMT tasks to cause an ICC to become a hotspot (i.e.,
computing load in an ICC exceeds a desired threshold), which
significantly degrades the reliability and performance of the ICC.
This paper proposes DeepHM, a deep reinforcement learning-
based hotspot management strategy through task migration in
ICCI networks. To comprehensively consider the bandwidth
metrics of the ICCI network, we further propose a dynamic
wavelength allocation strategy, i.e., DeepHM-DWA. Simulation
results show that the DeepHM and DeepHM-DWA reduce the
hotspot compute unit time blocks by 19% and 18% with fewer
number of migrated workers while balancing the computing load
among multiple ICCs. DeepHM and DeepHM-DWA reduce the
average completion time ratio of the DMT tasks by 2% and 5%,
respectively.

Index Terms—Intelligent computing center interconnections,
tidal effect, distributed model training, hotspot management, task
migration.

I. INTRODUCTION

N intelligent computing center (ICC) is a specialized
data center (DC) for intelligent computing provisioning
(e.g., GPU and artificial intelligence acceleration cards) in the
application intelligence age [1]. The ICC is based on integrated
architecture computing systems, driven by rich data, and
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utilizes intelligent computing power capabilities to perform
complex processing of data. The overall goal is to realize
intelligent applications through model training using large-
scale datasets.

With billions of parameters, large models present a sig-
nificant demand on computing power. It is challenging for
a single ICC to train very large models. For example, large
models such as GPT-4 require a massive infrastructure of
25,000 NVIDIA A100 cards [2]. Even on a single-node 1000P
ICC, the training period extends to 249 days. Therefore, ICC
interconnections (ICCI) will become a typical and effective
solution to provide extensive computing power. The ICCI
network connects various ICCs through an optical network,
which interconnects the computing resources of distributed
ICC:s to achieve distributed collaboration of computing power
in the network [3, 4].

Due to human activities, traditional computing tasks (e.g.,
transaction processing and online entertainment) have different
computing demands at different times, which leads ICCs to
show a periodic variation in utilization [5, 6]. The computing
load of an ICC varies significantly between busy and idle
times, an effect known as the computing tidal characteristics.
For daytime working hours, ICC nodes in residential areas
usually receive fewer requests, while those in business and
industrial areas have a relatively higher number of requests.
It is critical to mitigate these computing tidal characteristics
for resource allocation, energy efficiency, and efficient task
scheduling in ICCI networks.

Distributed model training (DMT) is a critical way to train
large-scale models. The ring-all-reduce (RAR) architecture is
an important communication method in DMT, where each
training node is called a worker [7, 8]. RAR achieves efficient
parameter synchronization and aggregation by communicating
between workers in a ring structure. Large DMT tasks take a
long time to train, which are likely to cover peaks and valleys
of the tidal effect. In this case, it is easy for DMT tasks to cause
an ICC to become a hotspot (i.e., when the computing load in
an ICC exceeds a pre-defined threshold), which significantly
degrades the reliability and performance of the ICC, and even
decreases the task completion time [9-12]. Excessive demand
for computing resources can lead to processing bottlenecks,
increased latency, and slower task execution. In addition,
the hotspot ICCs may result in increased energy consump-
tion, reduced reliability, hardware fatigue, system failures,
and increased downtime [10, 13]. It is crucial to investigate



DOI: 10.1109/TNSM.2025.3590011

how to implement hotspot management for RAR-DMT under
computing tidal effects.
The contributions of this paper are summarized as follows:

o The paper investigates hotspot management by migrating
DMT tasks in ICCI networks with tidal traffic.

e This work proposes DeepHM, a deep reinforcement
learning (DRL)-based task migration strategy for hotspot
management in ICCI network. The DRL model inputs the
current network parameters, node states, and task char-
acteristics into the DRL agent. The method intelligently
and adaptively determines whether the task should be
migrated and formulates the migration strategy.

e To comprehensively consider the bandwidth metrics of
ICCI networks, we further propose a dynamic wave-
length allocation strategy, DeepHM-DWA. In this way,
the bandwidth allocation is dynamically adjusted during
the task migration process, which further optimizes the
task migration strategy and improves the performance and
efficiency of the network.

o In addition, we adopt node-proximity-aware migration,
full node migration, and random node migration as
comparison algorithms. Simulation results show that
the DeepHM and DeepHM-DWA algorithms reduce the
hotspot computing unit (CU)-Time blocks by 19% and
18% with fewer number of migrated workers. Meanwhile,
the algorithms decrease the variance of the remaining
computing resources of the ICC nodes, which balances
the computing load among multiple ICCs. Moreover,
DeepHM and DeepHM-DWA reduce the average comple-
tion time ratio of DMT tasks by 2% and 5%, respectively.

The rest of the paper is organized as follows. Section

2 presents related work. Section 3 describes the network
model, service model, and problem description for hotspot
management. In Section 4, we detail the operation principle
and design of DeepHM and DeepHM-DWA, including the
modeling and training mechanisms. Then, in Section 5, we
show the performance evaluation and illustrative numerical
results. Finally, Section 6 concludes the paper.

II. RELATED WORK

This section summarizes the key aspects of DMT training in
tidal networks: hotspot management, the tidal characteristics
of computing resources, and DMT task migration. Previous
research has proposed various approaches to address these
challenges.

A. Hotspot Management

Previous studies have discussed the challenges related to
hotspot management, in terms of task allocation across DC
nodes and within a DC. In terms of task allocation across
different DCs, various methods have been proposed to miti-
gate the adverse effects of hotspots. For example, a location
priority-based efficient mapping algorithm was proposed in
[10] for the virtual network embedding problem, where the al-
gorithm improved the request acceptance rate and the revenue-
overhead ratio of the network in the presence of hotspot nodes.
The authors in [13] proposed that a hotspot node scenario may

be generated in the network when more traffic was destined to
or originated from a DC node and resolved by optimizing the
location of the DCs. In terms of task allocation within DCs,
the work in [14] introduced a temperature-aware virtual DC
embedding scheme that minimized the hot air drawn to each
rack to prevent hotspots. In addition, some work performed
hotspot management by changing DC locations and scheduling
workloads. A scheduling algorithm was proposed in [15] to
dynamically consolidate virtual machines to minimize overall
energy consumption while proactively preventing hotspots.
However, these works did not address the hotspot management
for long-lasting DMT tasks, focusing on pre-scheduling tasks
to manage hotspots rather than using task migration. There is
no research on migrating long-lasting DMT tasks in ICCs for
hotspot management.

B. Tidal Characteristics

The computing tidal scenario where the demand for comput-
ing and/or networking resources showed periodic fluctuations
has attracted attention. In [5], the authors proposed that
due to the real-time fluctuations in the load of computing
nodes, which are nodes within a DC, some computing nodes
exhibited significant periodic characteristics, thereby forming
tidal computing nodes. Furthermore, a routing algorithm with a
weighted wakeup routing penalty was proposed for tidal com-
puting power nodes in the sleep state. Similarly, the authors in
[6] showed that the demand for computing resources within
a DC varied based on human behavior. The work predicted
future computing resource demands of virtual machines and
computed the optimal hybrid optical/electrical DC network
configuration based on the prediction. The work in [16] used
a recurrent neural network model to predict future traffic
demands based on past demand profiles for each area, showing
that the computing demand in urban DCs showed significant
tidal changes over time. The authors of [17, 18] also pointed
out that the DC computing demand was time varying. The
study in [19] explores DNN training in centralized clusters
exhibiting significant tidal patterns, which proves scenarios
where training tasks coexist with tidal traffic. However, these
studies focus on optimizing a single type of time-varying task
and did not analyze the simultaneous impact of tidal effects
and long-lasting DMT tasks, which is a realistic scenario in
ICCI networks [19-21].

C. DMT Migration

Recently, DMT task migration has become a critical re-
search focus on the field of improving training efficiency. For
example, a cluster scheduling framework was presented in
[22], which utilized intra-job predictability to time-slice GPUs
across multiple jobs to provide low latency. The work assessed
the interplay among different co-located DMT tasks. More-
over, the jobs were dynamically migrated to more suitable
GPUs to improve the cluster efficiency and better utilization
through migration and time-slicing jobs for job-to-resource
fit. The authors in [23] proposed a network-aware dynamic
model tracking to migrate models with resource efficiency
tradeoffs and analyzed the concepts of cold models, preheated
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models, and model inertia in DMT over wireless networks. In
[24], an adaptive machine-learning-based model was proposed
to predict key characteristics of live migrations with high
accuracy. The model based its prediction on migration algo-
rithms and workloads running within a virtual machine. The
authors in [25] proposed a two-dimensional spatio-temporal
task migration mechanism to allocate task locations across
geographically distributed DCs. The mechanism used migra-
tion strategies to maximize the utilization of renewable energy,
balancing the emission-cutting effect of task scheduling. How-
ever, it only focused on reducing carbon pollution caused by
high energy consumption, but failed to address the prevention
of hotspot node generation. However, our work addresses the
impact on ICCs when DMT tasks cover peaks and valleys
of tidal effects through task migration, which has not been
analyzed in the DMT migration literature.

In summary, most of the previous research on hotspot
management and tidal characteristics primarily focuses on end-
to-end task scheduling or optimization. However, DMT tasks
require coordination across multiple nodes, making end-to-end
task optimization unsuitable for managing hotspots in DMT
tasks. Furthermore, when tidal characteristics are introduced
in research on DMT task migration, resource utilization tends
to become unbalanced, which may result in inefficient task
migration.

III. PROBLEM DESCRIPTION
A. Network Model

Our study focuses on the ICCI network using RAR archi-
tecture to train large-scale DMT tasks. Each ICC is internally
constructed with a fat-tree topology. ICCs are interconnected
by an optical transport network (OTN). The ICCs have
different geographic locations, where some are located in
residential areas and some in business areas, as shown in
Fig. 1. In addition, the computing resource usage within each
ICC periodically changes over time due to fluctuations in
human activities, which affects the workload of the ICCs.

ICC node
Large distributed
model training

OTN node @ E-Switch (2%

e
|z Fiber link \;) Training ring (& 2)

)
|
|
!
|
1
1
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1

J

Fig. 1. DMT in ICCI network with tidal characteristics.

For example, the ICCs located in residential areas receive
fewer requests during daytime working hours, which results
in relatively low computing demand. On the contrary, ICCs
located in business areas have more traffic and computing
tasks, which leads to variations in the level of remaining
computing resources in different ICCs over time.

We model the ICCI network as a directed graph G(V, E,
N, type), where V denotes the set of ICC nodes, while E
and N represent the set of fiber links and the set of GPUs
in each ICC node, respectively. Furthermore, we consider a
GPU as the smallest computing unit within an ICC node,
meaning that one CU corresponds to one GPU. We focus on
the hotspot problem caused by the utilization of computing
resources exceeding a pre-defined threshold. Therefore, we pay
attention to the usage of computing resources in ICC nodes.
It is assumed that when the computing resources in an ICC
are sufficient to train DMT tasks, the GPU memory within
the ICC can also accommodate the task. The rype parameter
denotes the type of ICC node, which is categorized according
to the location of the ICC: ICC in residential areas, business
areas, and other areas. We represent each DMT task as M;(D;,
P, 0; T; S It;), where D; and P; denote the size of the
original training data and the number of parameters in the
DMT task, respectively. 6; and T; represent the model accuracy
requirement and deadline. S; is the node originating the task.
It; indicates the number of iterations of the model. DMT tasks
that cannot be completed within the deadline are considered
blocked. Eq. 1 ensures that the DMT task is completed before
its deadline. Ty, is the time when the task is deployed. We use
Eq. 2 to determine the number of CUs required to complete
a DMT task in a single iteration [26]. A is the computing
required per unit of training data. p is the computing power
per CU. N°rke" ig the number of workers (computing nodes)
involved in the task. T°°" represents the time required for a
single CU to compute a subset of training data in one iteration.
Eq. 3 represents the number of bandwidth units (BUs) used
in a single iteration. X is the capacity per wavelength. 77"
represents the time required for a single BU to transmit the
gradient in one iteration. All the parameters used in the paper
are listed in Table L.

(/Ivicom + 1’!1‘_757‘(11’7,8) % Itl _ E _ Tde (1)
Di X A
NZCU = worker com (2)
p x N x T
Q(Ny)ork:er _ 1) x P,
bu __ i %
Ni - Nworker o X X Ttrans &)
% %

B. Problem Description

Fig. 2 shows an example of migration of large DMT tasks
in the ICCI network with tidal characteristics. In this example,
the objective is to manage hotspots. In the network topology,
node 1 is located in a business area with high activity during
working hours, while node 4 is located in a residential area
with high activity during early morning and evening hours.
Assume that task M; is generated at node 2. At the time of
M; arrival, node 1 and node 3 have more idle CU, therefore
the DMT tasks are deployed on the ring formed by nodes



DOI: 10.1109/TNSM.2025.3590011

TABLE I
PARAMETERS
Category Parameters Description
ICCI Vv ICC nodes
network E set of fiber links
N set of GPUs
type type of ICC node
A computing required per unit
X wavelength capacity
5 hotspot threshold
DMT D; training data size
task P; update gradient size
0; model accuracy
T; deadline
It; number of iterations
N number of CUs
Npv number of BUs
Nporker — number of workers
Teem time for a CU to compute data
Tfrans time for a BU to transmit data
reward « hotspot coefficients
parameters [ CU coefficients
vy hops coefficients
n migrated worker coefficients
%) BU coefficients
DRL w BU coefficients
parameters T discount factor
v probability distribution

1, 2, and 3. However, node 1 will experience a peak period
over time. Node 1 will become a hotspot if it continues to
train this task, which leads to problems such as performance,
reliability degradation, and more energy consumption of node
1. However, there are still a lot of idle computing resources
in node 4 at this time and the network load is not balanced.

To solve this imbalance and avoid node 1 becoming a
hotspot, we trigger the DMT task migration process. We
migrate DMT tasks that have been utilizing ICC computing
resources for a long period at time T1. The training data and
parameters of the worker at node 1 are migrated to node 4
by high-capacity optical fiber for the next training iteration,
which can avoid the generation of hotspots, thus balancing
the load in the network.

Next, we formulate the hotspot management optimization
problem by specifying its objective function and constraints.
The objective is to minimize the number of hotspot nodes in
the network while minimizing the number of migrated workers
as defined in Eq. 4. 7 and 7% denote the node computing re-
source state before and after the migration, respectively. hot(-)
returns the number of hotspot nodes. M, denotes the number
of workers migrated. The migration process is triggered when
the utilization of a node violates a pre-defined threshold ¢
as Eq. 5. act(v) returns the maximum computing resources
used of node v. N, is the computing resource capacity of

- - A - | W N

= ;{7&»«5“ ||L_ ] Business area
2 5
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|:| Require CU
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Fig. 2. Task migration for hotspot management in the ICCI network.

node v. First, we need to identify the candidate rings and
candidate links for the DMT tasks. A candidate ring consists
of a set of interconnected nodes, excluding the current hotspot
nodes, with each pair of nodes connected by the shortest path.
A candidate link refers to the communication links between
nodes within the candidate ring, excluding the shortest paths.
During the migration, we must consider node computing
resource constraints (Eq. 6), bandwidth resource constraints
(Eq. 7), and the specific requirements of the DMT tasks.
Specifically, these constraints include the ability of nodes
to accommodate workers after migration and the capability
of the candidate ring to transfer the communication traffic
required for gradient updates between workers. Furthermore,
the migration must reduce the number of hotspot nodes (Eq. 8)
while meeting the demands of the DMT tasks, such as the need
for multiple workers to execute the task, the requirement for
a ring structure among workers (Eq. 9), and the availability
of sufficient computing resources to ensure the DMT task is
completed before the deadline.

maximize : [hot(7) — hot(T%)] — n x M,. 4)
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mN(U”) > e )
To"* > Re;. (6)
chm > 0. @)
hot(7) — hot(rx) > 0. (8)

30 :vf = {vi..vp. }, (v, vpyq) € E,VEmod n;.  (9)

Re; and T'0"* represent the number of CUs required for task
7 and the number of CUs available on the migration destination
node v, respectively. O; is the number of bandwidth resources
used by the task i before migration. C*™ is the maximum
number of continuity bandwidth resources after migration time
m for link I. Let v — {v]...v}; } denote the target node set
for deployment after migration. This ensures that the selected
worker set v forms a logical ring in the underlying network
graph G(V, E), which is essential for DMT training. © denotes
a permutation of the given nodes. An edge (vj,v;,,) € E
indicates that there exists a link between the two nodes. The
notation k£ mod n; denotes a cyclic connection, meaning that
the last node vy, is also connected to the first node v7.

Therefore, when tidal characteristics are present, it is neces-
sary to migrate DMT tasks in the ICCI network. The candidate
tasks which occupy a large amount of computing resources
in ICCs for a long period are candidates. The network can
be balanced to prevent the generation of hotspots and ensure
the efficiency and reliability of the entire distributed training
infrastructure by migrating DMT tasks at an appropriate time.

IV. DEEPHM AND DEEPHM-DWA APPROACH

To effectively manage hotspots in the ICCI network through
task migration, we introduce a DRL-based approach that au-
tomates the migration process. The method enables intelligent
decision-making for managing hotspots and migrating tasks
within the ICCI network. The DRL model collects state s;
including current network parameters, node states, and task
characteristics, using an immediate reward function r, to guide
the agent in maximizing hotspot reduction. By intelligently
and adaptively determining whether tasks should be migrated,
as well as selecting the appropriate migration nodes and
time, the method prevents nodes from becoming hotspots. In
addition, the DeepHM-DWA can adjust the number of wave-
lengths allocated to a task based on the remaining wavelength
resources in the network after task migration. In the following,
we detail the design of the DRL model in the DeepHM and
DeepHM-DWA methods.

A. Overall Structure

The principles and details of the DeepHM and DeepHM-
DWA algorithms are illustrated in Fig. 3(a). Given an ICCI
with tidal characteristics or varying computing resources, the
algorithms aim to determine whether DMT tasks should be
migrated and select migration workers and times to maximize
long-term cumulative rewards. Firstly, the Software-Defined
Network (SDN) controller obtains information about each
node, link, and DMT task within the ICCI network (step 1). In
step 2, the controller invokes the feature engineering module

to organize specific state data s, according to the current DMT
task parameters and remaining network resources. Then, the
state data s; is input into the DNNs, which consist of a policy
network and a value network in step 3. The DNNs process
the input state parameters and give a probability distribution
over all the policies using the policy network and the current
value of s, using the value network. The agent iterates through
all provided candidate sets (i.e., migration decisions and
strategies), take actions to migrate DMT tasks, and evaluates
the current migration strategy through a reward system after
migration (steps 4, 5). Once a round is complete, the training
signals (state s;, action a,, reward r,) for this round are stored in
an experience buffer (step 6). In step 7, after reaching a certain
sample capacity, the DNN is updated to maximize long-term
cumulative rewards [27], which is represented as Eq. 10. It
is critical to introduce a discount factor, denoted as ~, which
modulates the impact of rewards occurring subsequent time
steps. The role of the discount factor is to regulate the influence
of future rewards in the calculation of the cumulative reward
promoting a balance between consideration of immediate and
long-term rewards. The discount factor w is constrained to
the interval [0, 1]. Each iteration of a DMT task consists
of computing time and gradient update transmission time, as
shown in Fig. 3(b). Migration of the DMT task will only
occur after the completion of the current iteration when the
computing resource utilization of the node reaches the hotspot
threshold.

o0

’
q)t: E (JJt_tX’I’t

t

(10)

B. DRL Model Design of DeepHM

The DRL model of DeepHM consists of five modules:
environment, state, action, agent, and reward.

o Environment: The environment includes an abstracted
ICCI network, a DMT task generator, a controller, a
feature engineering module, and a reward system. The
controller integrates network and task resources, provid-
ing node and network resource utilization, node types,
hotspots nodes, deployed DMT tasks, and topology ab-
straction to the feature engineering module. The feature
engineering module generates the customized state s,. The
reward system provides immediate feedback on the action
a, to the agent.

o State: The state module includes the current state of the
ICCI network with tidal characteristics, DMT task param-
eters, network resources, and other characteristics. Given
K candidate rings and M time slots, the state contains
2+4xMxK elements. The information is organized into
specific state data in Eq. 11.

St = {GaNSaSP}?»MthaRezl,TOZT, ‘mGM,kEK} (11)

where G and Ns denote task generating node and task ring
nodes (excluding task generating node), respectively. For each
task, we have selected K candidate rings and M time slots
to migrate. Sp;” and My™ are the migration start time and
migration total time for the m™ migration slots in the k”
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Fig. 3. (a) The overall structure of DeepHM and DeepHM-DWA. (b)migration timeline of DeepHM and DeepHM-DWA.

candidate ring. Similarly, Re;” and To,™ are the number of
required and the total CUs, respectively.

o Action: The action module consists of two parts, the
first part is to determine whether to migrate this task or
not. The first action corresponds to the decision of not
performing the migration for this task. On the contrary,
M migration slots among K candidate ring nodes are
selected for this task, so the action space is KxM+1.

o Agent: The agent is responsible for scheduling the
decision-making process, which synchronizes DNNs and
parameters and interacts with the environment in the SDN
controller. The agent observes the candidate set, performs
actions, and evaluates migration policies to guide the
dynamic decision process.

« Reward: We define the immediate reward of DeepHM as:

rt =a X [hot(7) — hot (77)]

+ B x [act(T) —act (77)] —n x M, (12)

where M¢ denotes the number of workers migrated, which
is determined by comparing the candidate nodes selected by
the action with the original task training rings in the state.
« , B, and 7 are normalized positive coefficients. 7 and 7*
denote the node computing resource state before and after the
migration, respectively. hot(-) returns the number of hotspot
nodes, act(-) returns the maximum computing resources used
in the network, which is represented as the number of activated
CUs in all nodes. The more CUs that are activated, the
higher the network cost. Therefore, the reduction in CUs
is a positive factor because it indicates that the task has
been more efficiently allocated to resources, reducing the
load on overburdened nodes and improving overall network
performance. The immediate reward function combines the
hotspots reduced by migrations, the reduced use of computing
resources, and the number of workers migrated of each task.
Therefore, the reward function reduces hotspot nodes and
computing resource usage with the least number of migrations.

C. DRL Model Design of DeepHM-DWA

The environment and agent of the DRL model for DeepHM-
DWA are the same as DeepHM, therefore state, action and
reward are presented in this section.

The state space of DeepHM focuses on the parameters of
the network nodes, while disregarding network resources. The
bandwidth is a very important metric in ICCI networks. There-
fore, the bandwidth resources of the network are considered
in the state of the DRL of DeepHM-DWA. Given K candidate
rings, L candidate links, and M time slots, the state contains
34+4x M x K+ L x K+ L x M elements. The specific state
information is as follows:

} (13)

{ G,Ns, By, Spi,™, Mt,™,
St =

Rey, ™, To, ™, Oy, Ct™|
where B! denotes the /™ link of the k™ ring. O; is the number
of bandwidth resources used by the task before migration. C*"
is the maximum number of continuity bandwidth resources
after time m for link /.

meM keK,IEL

Compared to DeepHM, the action space first adds the
selected links within the candidate rings. Secondly, the action
module selects the number of wavelengths used after migra-
tion. Note that the more wavelengths used after migration, the
shorter the communication time. Therefore, the action space
is K xMxL+2.

We additionally consider wavelength and link in the imme-
diate reward of DeepHM-DWA:

rt = axAhot+x Aact+vyx Alen—px Abu—nx M. (14)
Ahot = hot(7) — hot (7%)
Aact = act(7) — act (77%)
Abu = bu(€) — bu (£)
Alen = len(§) — len (£%)

(15)

where (£) and (£*) denote the link wavelength resource state
before and after migration, respectively. len(:) returns the
number of hops of the ring link, and bu(-) returns the number
of wavelength resources. Allocating more wavelengths after
migration reduces the transmission time for gradient updates
between workers, as the increased bandwidth accelerates data
transfer. A denotes before migration minus after migration.
Thus, the reward function integrates the hotspot status, com-
puting resources, bandwidth resources and the number of
migrations.
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D. Training Mechanism

Algorithm 1 describes the training mechanism of an agent
that implements the actor-critic process of the DeepHM and
DeepHM-DWA algorithms. The actor-critic process adopts
two DNNSs representing the policy and the value networks.
The algorithm first obtains the state of the ICCI network
and the tidal characteristics from the SDN controller (line 1).
The tidal characteristics include the areas where the network
nodes are located and the tidal variations of node and link
resources. Secondly, the algorithm sets a maximum value for
the number of training iterations and initializes the current
number of episodes (line 2). For each DMT task, the state s;
of the DRL model is calculated from the task characteristics
and the network state of the ICCI network (line 3). Lines 6-
10 calculate the probability distribution 7 of the action based
on s,. Different actions will be generated depending on the
specific values of 7w and 6, with § initially set to 1. If the
minimum of the probability distribution is greater than §,
sampling is performed based on the probability; otherwise,
a random strategy is adopted. This approach balances the
exploration of new actions and the exploitation of the current
optimal strategy. In line 11, the DMT task attempts the action,
which is migrated worker and time or not migrated. Then the
algorithm calculates the immediate reward for this action (line
12). The current state, action, and immediate reward are stored
in the experience buffer, which constitutes a sample (line 13).
When the experience buffer capacity reaches ¥ the long-term
cumulative reward is calculated for each sample in the buffer
based on Eq. 1, and the gradient is generated to update the
DNNs (lines 14-19). Finally, the experience buffer is emptied,
and the probability function is updated in preparation for
the next iteration (lines 20-22). DeepHM and DeepHM-DWA
algorithms have a similar procedure but have different state,
action and reward function acquired in different networks.

E. Motivation for using A3C

In this paper, DeepHM and DeepHM-DWA use the Asyn-
chronous Advantage Actor-Critic (A3C) algorithm [28]. The
reason is that A3C can effectively tackle the temporal and
dynamic issues of ICCIL. The computing resource in ICCI
fluctuates due to factors such as user demand characteristics
and traffic load. Therefore, it is necessary to adopt a framework
that can be adapted to changing conditions. Due to the A3C
algorithm allowing agents to continuously interact with the
environment and update policies in real-time, it effectively
captures the tidal characteristics of dynamic network changes.
The network of actors can efficiently adapt to complex network
states and select suitable actions, such as deciding when and
where to migrate DMT tasks. At the same time, the network
of critics can evaluate the results, which provides valuable
feedback for improving the decision-making strategy. This
approach is particularly suitable in ICCI where the relation-
ships between DMT tasks, computing resources, and network
conditions are complex and interrelated. In conclusion, the
adaptability of A3C to temporal dynamics and its ability to
capture and recognize differences make it the best choice for
migrating DMT tasks in the ICCI network.

Algorithm 1 DeepHM and DeepHM-DWA procedure
1: Initialize G(V, E, N, type ) with tidal characteristics
2: Iter =0
3: while Iter < Iterado
4: for each M, (Di7pi,9i,ﬂ,si,1ti)d0

5 calculate S; with M; and G(V, E, N, type )
6: calculate of 7 based on a;
7: if argmin{m(a)} > ¢
8 obtain action a; by sampling 7
9: else
10: a; = argmin{m(a) > rand()}
11: DMT task migration according to a;
12: calculate the immediate reward r; for action a;
13: store {s¢,ar, 7, St4+1} into experience buffer
14: if |experience buffer| = ¥
15: for each {sy/,ay,ry, s¢11/} in buffer do
16: calculate @, with Eq. (1)
17: end
18: calculate the policy and value gradients
19: apply the gradients to update the DNNs
20: empty experience buffer and update &
21:  end
22: Iter = Iter +1
23: end

V. SIMULATION EVALUATION
A. Simulation Setup

We simulated the ICCI network scenario described in this
paper on the San Francisco metropolitan network topology
with 22 nodes and 38 links, as illustrated in Fig. 4(a). We con-
sidered the nodes within the red dashed line as business area,
which were assumed to be busy during daytime working hours,
while the nodes in the green dashed line were considered
within a residential area. We assumed bidirectional fiber links
with 40 wavelengths and 100 Gbps of bit rate per wavelength.
The tidal traffic in the network is randomly generated, with
arrival times following a Poisson distribution (with different
arrival rates for different areas), and the duration following an

TABLE II
SIMULATION PARAMETERS

Parameters Value Parameters | Value
Computing 20 TFLOPS | Nworker [3,10]
resource per GPU
Number of GPUs | 100 A 102
per node
X 100 Gbps Q@ 6
Wavelengths per 40 B 2
link
Time 24 h n 1
D; [700, 2000] | ~ 2
0; [0.1, 0.4] © 2

s [70,200] B | w 0.95
T; [10, 24] v 50
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Fig. 4. (a) Mesh topology for metropolitan agglomeration connections in San
Francisco, CA, USA, (b) tidal traffic variations over 24 hours in a day.

exponential distribution (10 min—1). The tidal characteristics
arise from the varying arrival rates across different areas and
times. For example, during the peak hours from 9:00 to 16:00,
the average arrival rate in the business area is 150 min =1,
while in the residential area, it is only 50 min~'. Fig. 4(b)
showed the traffic variations over 24 hours in a day, where
the traffic load is normalized relative to the maximum load
to ensure generality [29, 30]. Fig. 4(b) exhibits varying traffic
loads due to different arrival rates in different areas at different
times. Each node had one hundred A100 GPUs. We refer to
the hotspot threshold defined in [11, 12], which indicates that
when the workload of a DC reaches 80%, the job completion
time increases significantly. Similarly, we considered a node as
a hotspot when the ICC usage exceeds 80%. The data size of
each DMT task ranged from 700GB (like GPT-3) to 2000GB
(like PaLM), and the updated gradient size ranged from 70
to 200 billion [31]. The accuracy was randomly generated
in [0.1, 0.4] and the number of iterations was represented
by the I(;) = v x log(1/6;), where v depended on the
data size and the condition number [32, 33]. This number of
iterations was an upper bound, exceeding it may not improve
the performance of the model. In the simulation, both the
pre-training and testing data are randomly generated, meaning
that the tidal characteristics and DMT task parameters for pre-
training and testing are different. As a result, the system does
not have prior knowledge of the tidal and task characteristics
during evaluation. The specific parameter values are provided
in Table II.

We configured the DRL framework for asynchronous train-
ing using A3C [28] with 16 concurrent randomly initialized
environments and agents. Each agent consisted of two DNNs
with 5 hidden layers with 128 neurons per layer. The activation
function used for the DNN was exponential linear unit (ELU).
The ¥ and learning rate were set to 50 and 107, respectively.
In addition, we set the K, M, and L to 5, 2, and 3, respectively.

B. Comparison Heuristic Algorithms

Our proposed DRL algorithms are compared with three
heuristics. The algorithms included node-proximity-aware mi-
gration [34], full node migration [35], and random node
migration [36]. When a hotspot occurred in the training ring
of a DMT task, the node-proximity-aware migration algorithm
selectively migrated a single worker to the nearest node with
the idlest CUs. In contrast, the full node migration strategy

w0l® —— DeepHM-DWA)|  350-(b) —— DeepHM-DWA
—— DeepHM 3004 —— DeepHM
30
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20 rewarded with bandwidth, 0
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Fig. 5. Training performance in terms of (a) policy loss and (b) value loss
of the DRL models.

migrated all workers (excluding task generating node) to the
top nodes with the idlest CUs. Finally, the random node mi-
gration approach migrated tasks with hotspot nodes randomly
to other nodes to minimize the hotspots in the ICCI network.

C. Migration Performance

We considered various performance metrics including node
remaining computing resources, the number of hotspot CU-
Time blocks in different areas, bandwidth utilization, migra-
tion workers, downtime, and average task completion time.
The CU-Time block is a metric that summarizes, for a given
period, how many CUs were used. It is obtained by multiply-
ing, for each unit of time, the number of CUs used during that
unit of time. For instance, assuming hours as the time unit,
and a situation where in the first hour 2 CUs were used, while
in the second hour 5 CUs were used, the total CU-Time is 10
CU-Hours. A hotspot CU-Time block refers to a single ICC
node at a specific time where the remaining CUs (number of
GPUs) are less than 20% in the two-dimensional space. In this
study, the migration cost is defined as the number of workers
migrated per DMT task. The downtime is the transmission
time for transmitting data and parameters to the target GPU.

1) DRL convergence

Fig. 5 showed the policy and value losses as the training
of the agents progresses. The convergence of policy loss in
Fig. 5(a) indicated that the policy of the agents had different
behavior. DeepHM converged more quickly, at around 340
epochs. DeepHM-DWA, on the other hand, required 920
epochs to converge. This indicated that including the bit rate
in the problem makes it harder to learn, but the agent can still
learn the policy. The convergence of the value loss in Fig. 5(b)
indicated that the agent learned to estimate the value of states
with convergence similar to the policy network.

2) Hotspots and CU performance

We first compared the initial state (i.e., the system with-
out any migration), DeepHM, DeepHM-DWA, and the three
comparison algorithms after migration of the remaining CUs,
which is the remaining number of idle GPUs in each node.
Fig. 6 illustrated a heatmap of the remaining CUs per node,
where we consider a hotspot when less than 20% of the
remaining CUs are idle. In the initial state, hotspot nodes were
very common reaching 25%, which were mainly located in
residential and business areas. The number of hotspots was
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reduced after migration. Full node migration reduced the CU-
Time blocks by 21%. However, this performance comes at
the expense of migrated workers, as will be shown next. The
proposed DeepHM and DeepHM-DWA algorithms reduced
the hotspots by 19% and 18%, respectively. Node proximity-
aware migration and random migration reduced similar CU-
Time blocks, with 6% and 3%, respectively. The quantitative
analysis of these observations was provided in Fig. 7.

The number of hotspots CU-Time blocks decreased sub-
stantially in the order of initial state, node-proximity-aware
migration, random node migration, DeepHM-DWA, DeepHM,
and full node migration. The full node migration reduced CU-
Time blocks by 85% compared to the initial state. However,
this performance in terms of CU-Time blocks comes at the cost
of a high number of migrated workers. Notably, the DeepHM
method demonstrated effectiveness, reducing hotspot CU-Time
blocks by 74%, with the migration of only 19 workers. The
DeepHM-DWA reduced hotspots CU-Time blocks by 69%,
migrating only 18 workers. In both cases, the number of
migrated workers was relatively low. Node-proximity-aware
migration and random node migration exhibited similar re-
ductions in hotspot CU-Time blocks, but the latter migrated
18 additional workers.

Next, we evaluated the effectiveness of different migration
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Fig. 7. Number of hotspot CU-Time blocks and total number of migrated
workers.
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Fig. 8. Average usage and variance of CU-Time blocks in each area.

schemes in mitigating the tidal characteristics. The average
usage and variance of CU-Time blocks in the residential,
business, and other areas were shown in Fig. 8. In the
initial state, the difference in the average CU usage between
the residential, business, and other areas was more than 10
TFLOPS - h?, while the variance difference was about 90
TFLOPS - h%. After DeepHM migration, the average CU
usage in the three areas exhibited a reduced disparity of
6 TFLOPS - h, with a diminished variance difference of
78 TFLOPS - h2. Moreover, the difference in average CU
usage between residential and business areas was only 1
TFLOPS -h. In terms of CU equalization, the three areas of
DeepHM-DWA have an average difference of 3 TFLOPS -h
in CU usage and a variance difference of 22 TFLOPS - h?,
which was a 68 TFLOPS - h? reduction from the initial
state. It is noteworthy that the average CU usage disparity
of the other three migration algorithms exceeded DeepHM
and DeepHM-DWA. The DeepHM exhibited the most superior
performance in terms of different areas of equalization.
Furthermore, we compared the distribution of hotspot CU-
Time blocks in different areas, as shown in Fig. 9. In the initial
state, most of the hotspots were localized in residential and
business areas, 46% of the hotspots were in residential areas,
40% of the hotspots were in business areas, while only 14%
of the hotspots were in other areas. The percentage of hotspots
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Fig. 9. Percentage of hotspot CU-Time blocks in each area.

in other areas remained unchanged after node proximity-aware
migration and random node migration, but the percentage
of hotspots in residential areas increased to 51% and 53%,
respectively. DeepHM equalized the distribution of hotspot
CU-Time blocks in three areas with the percentage of hotspots
in the three areas distributed as 43%, 33%, and 25%. The full
node migration achieved the least number of hotspots, but the
hotspots were centered in the other areas with 42%. DeepHM-
DWA algorithm achieved the most balanced distribution of
hotspots in six cases, where 39% of the hotspots were in
residential areas, 33% in other areas, and 27% in business
areas.

3) Network bandwidth performance

In terms of network bandwidth performance, we first com-
pared the network bandwidth utilization and the average hop
number of the training ring in the initial state and after
migration, as shown in Fig. 10. In the initial state, the average
hop number of the DMT training ring was more than 6, and
the bandwidth utilization was 24.5%. Since proximity node
migration migrated nodes to closer nodes, most of the rings
were the same used before and after the migration, so the
average hop number and bandwidth utilization of the rings
changed very little. The random migration strategy introduced
randomness in the migration nodes, resulting in a change in
the training ring.

The average hop number decreased to 5.5. However, the
bandwidth utilization increased to 25.1%, implying an in-
crease in the number of wavelengths utilized. The bandwidth
utilization of full node migration also increased significantly
compared to the initial state, with a corresponding increase in
the average number of hops of the rings used. In the DeepHM
scheme, the bandwidth utilization was 25%, with an average
hop number of 5.3 for the utilized rings. In contrast, DeepHM-
DWA, which considered bandwidth factors, achieved the low-
est average hop number for the utilized training rings at 5.1.
However, the maximum bandwidth utilization reached 27.6%,
indicating an increase in the number of wavelengths utilized
for training after migration. This increase in the number of
wavelengths used is attributed to the reward function, where a
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higher number of wavelengths used leads to greater rewards,
thereby reducing communication time after migrating.

In Fig. 11, we compared the average bandwidth utilization
of the three areas. Generally, the average bandwidth utilization
of DeepHM-DWA was higher than the other cases in each area.
Next was the full node migration scheme with higher band-
width utilization than the other four cases, while DeepHM,
proximity-aware migration, random node migration, and the
initial state exhibited similar performance. Moreover, the band-
width utilization in DeepHM-DWA was highest in residential
areas, followed by business areas, and lowest in other areas,
which was the same as the average usage trend of CU. In other
areas, the disparity between DeepHM-DWA and the other
scenarios was most pronounced. The DeepHM-DWA scheme
surpassed full-node migration by 2%, and outperformed other
schemes by 4%. The bandwidth utilization of other cases in the
other areas exhibited similar performance, averaging around
20%. The residential area under the DeepHM-DWA algorithm
achieved the highest bandwidth utilization, reaching 30.3%,
while the lowest was observed in the other areas under the
initial scheme, at only 20%. Overall, the trend of bandwidth
utilization was generally consistent with the trend of CU
utilization. Since DeepHM did not consider bandwidth factors,
it did not demonstrate significant superiority when compared
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to the other schemes.

4) DMT tasks performance

Fig. 12 provided a detailed presentation of the migration
workers associated with each task for the five schemes. The
full node migration strategy migrated all workers except
the task generating nodes, which significantly increased the
migration workers as well as the cost of GPU switching, while
the node proximity-aware migration scheme had the least
migration workers. In contrast, the DeepHM and DeepHM-
DWA algorithms demonstrated notable efficiency compared to
the full migration strategy, with only a few tasks experiencing
an increase in the number of workers migrated.

In the network, we defined the downtime of DMT tasks as
the time taken for transmitting the task data and parameters
to the destination node. Here, we also consider the time for
Optical-Electrical-Optical (OEO) conversion and GPU switch-
ing, which is expressed according to the following:

Zw: DY + Qw0 x 10 x 8
_w0:1 100(Gpps) X 109 x mb;

tdowntime

(16)

+ + (toro X 2+ tapu),

Ufiber

where w represents the worker to be migrated. D;’O is the
data size of task j at worker w0. Q;’O denotes the parameters
of task j currently iterated at w0. mb; signifies the number
of wavelengths used for migration. d and vy, are the
distance to the migrating node and the speed of propagation
through the fiber, respectively [37]. topo represents the time
for OEO conversion, with two conversions required for each
transmission, and tgpy is the downtime for GPU [38, 39].

The total downtime and average downtime of migration
tasks were shown in Fig. 13. DeepHM-DWA achieved the
minimum average downtime for migration tasks because
we maximized the number of wavelengths after migration,
which reduced the communication time for task training. In
DeepHM-DWA, the average downtime for migration tasks was
2 seconds, with a total migration time of 31 seconds. In
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Fig. 13. Total and average downtime of migrated tasks.

Proximity Random

proximity migration, the total downtime and average downtime
were smaller because the migration distance was closer and
fewer workers needed to be migrated. The average downtime
for DeepHM was 2.1 seconds, with a total of 19 workers
migrated, resulting in a total downtime of approximately 40
seconds. Full node migration had the largest average downtime
and total downtime because it migrated more nodes per task
and migrated more workers, with a total downtime of 70
seconds.

In terms of DMT task performance, we also considered
the average ahead-of-time (AOT) ratio [26] of a DMT task
improves after migration compared to its deadline. The accel-
erated completion time of migrated DMT tasks is attributed
to the reduction in communication time, which results from
changes in ring links and the number of wavelengths. The
specific calculation is performed using the following:

. 1 Ti - Tcomplete
AOT _ratio = — E ——— x 100%, (17)
|M] £ T,

where |M| represent the number of the DMT task. T ompiere
is the completion time of the DMT task.

The average AOT ratio for the five migration schemes was
depicted in Fig. 14 DeepHM-DWA exhibited a significantly
faster task completion time compared to other migration
schemes, with the AOT ratio for migrated tasks reduced by
4.6% compared to the deadline. Due to occupying shorter
training rings and utilizing more wavelengths after migration,
DeepHM-DWA reduced communication time for training.
The ratio increased sequentially for random node migration,
DeepHM, proximity-aware migration, and full-node migration.
The ratio was related to the hops and wavelength occupied
by the task in Fig. 10, with a similar trend and the number
of ring hops after migration. However, despite random node
migration involving more hops than DeepHM, tasks were
completed faster. This was attributed to the occupation of
more wavelengths, leading to higher wavelength utilization.
Although full node migration had a higher wavelength utiliza-
tion, the significant increase in the number of hops in the links
increased the task completion time, resulting in only a 2%
improvement. DeepHM can effectively minimize hotspots but
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does not reduce task completion time. In contrast, DeepHM-
DWA improves task completion time but results in higher
wavelength utilization.

Next, we presented the average AOT ratio for each task in
DeepHM-DWA in Fig. 15. The maximum reduction of task
completion time is 9%, while the minimum reduction is 1%.
When tasks were not migrated, there was no reduction in task
completion, consistent with the number of workers migrated
in DeepHM-DWA shown in Fig. 12.

VI. CONCLUSION

In this paper, we propose two DRL-based hotspot man-
agement algorithms called DeepHM and DeepHM-DWA. The
algorithms work by migrating DMT tasks in ICCI networks
considering their tidal characteristics. Additionally, we adopt
three comparison algorithms to validate the effectiveness
of the proposed algorithms. Simulation results show that
DeepHM and DeepHM-DWA reduce hotspot CU-Time blocks
by 19% and 18% with fewer number of worker migrations,
respectively. Furthermore, both algorithms decrease variance
across different network areas, effectively mitigating the tidal
characteristics and balancing the network resource utilization.
Moreover, DeepHM and DeepHM-DWA reduce the comple-
tion time of DMT tasks by 2% and 5%, respectively. Overall,

the proposed algorithms perform hotspot management through
task migration at a lower cost and accelerate the training of
DMT tasks. Future works may extend this work by considering
heterogeneous GPUs with varying amounts of processing and
memory capacity.
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