
Thesis for The Degree of Doctrate of Philosophy

Adaptive Scheduling of Inference Pipelines on
Multicore Architectures

Pirah Noor Soomro

Division of Computer Science Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2025

Adaptive Scheduling of Inference Pipelines on Multicore Architec-
tures

Pirah Noor Soomro

Thesis supervisor:
Professor Miquel Pericàs, Chalmers University of Technology, Sweden

Thesis co-supervisors:
Dr. Nikela Papadopoulou, University of Glasgow, Scotland

Examiner & Chairman:
Professor Per Stenström, Chalmers University of Technology, Sweden

Opponent:
Research Scientist Lionel Eyraud-Dubois, Inria Centre at the University of

Bordeaux, France

Grading Committee:
Established Researcher Vincenç Beltran, Barcelona Supercomputing Center,

Spain
Associate Professor Jose Cano Reyes, University of Glasgow, Scotland

Associate Professor Salman Toor, Uppsala University, Sweden

Deputy Committee:
Professor Vincenzo Massimiliano Gulisano, Chalmers University of Technology,

Sweden

Copyright ©2025 Pirah Noor Soomro
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-261-1
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5719.
ISSN 0346-718X Department of Computer Science & Engineering

Division of Computer Science Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2025.

ii

“Calmness is a sign of Intelligence”
- Imam Ali

iv

Abstract

In today’s data-driven world, machine learning (ML) algorithms, particularly
Convolutional Neural Networks (CNNs), play a pivotal role in powering a
myriad of applications across various domains. As the demand for realtime
inference continues to escalate, optimizing CNN inference across diverse com-
putational platforms becomes imperative. This thesis addresses this challenge
by exploring the complexities posed by heterogeneous edge devices, chiplet-
based architectures, and inference serving systems. Heterogeneous edge devices
present unique challenges due to resource constraints and architectural diversity,
while chiplet based architectures offer potential enhancements in inference per-
formance. Leveraging innovative techniques such as online tuning algorithms,
malleable and moldable inference pipelines, and adaptive scheduling strategies,
our thesis proposes a comprehensive framework for optimizing DNN inference.
This framework aims to advance system performance, reduce latency, and
mitigate interference effects, thereby contributing to the development of more
efficient and scalable AI systems capable of meeting the evolving demands of
realtime inference across diverse computational platforms. The thesis addresses
several key problem statements, including enabling runtime scheduling of infer-
ence pipelines on edge devices, fully online scheduling of inference pipelines on
heterogeneous platforms, mitigating interference effects on inference pipelines
in inference serving systems, and optimizing resource allocation in inference
serving systems for adaptive SLO aware inference serving.

The contributions of this thesis are encapsulated in four papers, each
focusing on distinct aspects of CNN inference optimization. These contributions
include the development of comprehensive frameworks for online scheduling of
CNN pipelines, leveraging platform knowledge for expedited seed generation,
dynamic scheduling techniques to alleviate interference effects, and SLO aware
scheduling techniques for optimizing resource allocation in inference serving
systems. Through these contributions, this thesis seeks to advance the state of
the art in CNN inference optimization and inference serving systems, paving
the way for more efficient and scalable AI systems capable of meeting the
demands of realtime inference across diverse computational platforms.

Keywords

CNN parallel pipelines, Online tuning, Design space exploration, Heterogeneous
computing units, Processing on chiplets, Inference Serving Systems, Interference
Mitigation

Acknowledgment

Truly, every milestone is achieved by the will of God. This journey has been
lengthy and arduous, yet it has imparted invaluable lessons. I extend my heart-
felt gratitude to my supervisor, Professor Miquel Pericàs, whose unwavering
guidance has been instrumental. His profound expertise in research and astute
insights made this journey significantly smoother. I am also indebted to my co-
supervisors, Dr. Mustafa Abduljabbar and Nikela Papadopoulou, whose sharp
observation and problem-solving acumen have been invaluable in advancing
my research. I express sincere appreciation to Prof. Jeronimo Castrillon from
Technische Universität Dresden for graciously hosting me during my research
visit to his group and offering invaluable feedback on my work. My gratitude
extends to my research group: Dr. Madhavan Manivannan, Bhavishiya Goel,
Jing, Sonia, Hari, Minyu, Nufail, and Mohammad Eljamali, whose unwavering
support, insightful discussions, and assistance have been invaluable throughout.
Lastly, I am deeply grateful to my family for their constant support; to my
Ami and Papa for their endless prayers and encouragement, even without fully
understanding the technical details of my work, and to my siblings, Iqra, Kashi,
and Hassan, for their continuous support and belief in me. I dedicate this
thesis to my beloved daughter, Zimal Fatima Ali, whose presence brings joy
and meaning to my life. A special acknowledgment goes to my husband, Ali
Raza, for his steady support and encouragement throughout this journey.

This research is partly funded by the European Union Horizon 2020 research
and innovation programme under LEGaTO 1 with grant agreement No.780681,
PRIDE: Principles for Computing Memory Devices 2 with grant agreement No.
CHI 19-0048 funded by Swedish Foundation for Strategic Research and Euro-
lab4HPC 3 with grant agreement No.800962. The computations were enabled
by resources provided by the Swedish National Infrastructure for Computing
(SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE)
partially funded by Swedish Research Council 4 grant agreement No.2018-05973.

1https://legato-project.eu/
2https://www.pride-project.se/
3https://www.eurolab4hpc.eu/
4https://www.vr.se/

vii

List of Publications

Appended publications

This thesis is based on the following publications:

I: Pirah Noor Soomro, Mustafa Abduljabbar, Jeronimo Castrillon, and
Miquel Pericàs. “An online guided tuning approach to run cnn pipelines
on edge devices”
Published in Proceedings of the 18th ACM International Conference on
Computing Frontiers, pp. 45-53. 2021.

II: Pirah Noor Soomro, Mustafa Abduljabbar, Jeronimo Castrillon, and
Miquel Pericàs. “Shisha: Online scheduling of CNN pipelines on hetero-
geneous architectures”
Published in Proceedings of International Conference on Parallel Process-
ing and Applied Mathematics 2022.

III: Pirah Noor Soomro, Nikela Papadopoulou and Miquel Pericàs. “ODIN:
Overcoming Dynamic Interference in iNference pipelines”
Published in Proceedings of the European Conference on Parallel Processing
2023.

IV: Pirah Noor Soomro, Nikela Papadopoulou and Miquel Pericàs. “Accor-
dion: A malleable pipeline scheduling approach for adaptive SLO-aware
inference serving”
Published in Proceedings of 22nd International Conference on Computing
Frontiers 2025.

Other publications

I: Jing Chen, Pirah Noor Soomro, Mustafa Abduljabbar, Madhavan Mani-
vannan, and Miquel Pericàs “Scheduling Task-parallel Applications in
Dynamically Asymmetric Environments”
Published in 49th International Conference on Parallel Processing-ICPP:
Workshops. 2020

ix

x

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Introduction 1
1.1 Background . 2

1.1.1 Convolutional Neural Networks 2
1.1.2 Parallel Implementations of CNNs 2
1.1.3 Inference Pipelines . 2
1.1.4 Diversity in computing platforms 3
1.1.5 Inference Serving Systems 3

1.2 Problem Statements . 4
1.2.1 Enabling runtime scheduling of inference pipelines on

edge devices . 4
1.2.2 Fully online scheduling of inference pipelines on hetero-

geneous platforms . 4
1.2.3 Mitigating Interference effects on inference pipelines in

inference serving systems 5
1.2.4 Inter-Pipeline scheduling for adaptive SLO-aware infer-

ence serving . 5
1.3 Contributions . 6
1.4 Thesis Outline . 7

2 Summary of the papers 9
2.1 Summary of Paper I . 9

2.1.1 Proposed Approach . 9
2.1.2 Evaluation . 10
2.1.3 Conclusion . 10

2.2 Summary of Paper II . 12
2.2.1 Proposed Approach . 12
2.2.2 Evaluation . 13
2.2.3 Conclusion . 13

2.3 Summary of Paper III . 15
2.3.1 Proposed Approach . 15
2.3.2 Evaluation . 16
2.3.3 Conclusion . 16

xi

xii CONTENTS

2.4 Summary of Paper IV . 18
2.4.1 Proposed Approach . 18
2.4.2 Evaluation . 18
2.4.3 Conclusion . 20

3 Conclusion and Future Directions 21

Bibliography 23

Paper I 29

Paper II 40

Paper III 54

Paper IV 69

Chapter 1

Introduction

In today’s data driven world, the importance of machine learning (ML) cannot
be overstated. ML algorithms power a plethora of applications, from image
recognition and natural language processing to recommendation systems and
predictive analytics. Central to many ML tasks is the concept of inference, where
trained models make predictions or decisions based on input data. Among the
various architectures used for inference, Convolutional Neural Networks (CNNs)
have emerged as a cornerstone, demonstrating remarkable performance in tasks
such as image classification, object detection, and semantic segmentation.

As the demand for real time inference continues to rise, there is an urgent
need to optimize CNN inference across diverse computational platforms. This
thesis explores this scenario comprehensively, delving into the challenges and
opportunities presented by heterogeneous edge devices, chiplet based architec-
tures, and inference serving systems. Heterogeneous edge devices pose unique
challenges due to resource constraints and architectural diversity. Conversely,
chiplet based architectures offer potential enhancements in inference perfor-
mance by integrating diverse computational elements, albeit with their own set
of challenges.

Furthermore, inference serving systems play a critical role in providing
predictions as a service, yet face hurdles such as interference from co-located
workloads, which can impact performance and violate service level objectives
(SLOs). Dynamic adaptation strategies are essential to optimize resource
allocation and ensure consistent performance in such systems. Additionally,
scheduling multiple CNN inference pipelines on inference serving systems
introduces complexities in managing throughput and latency.

By synthesizing insights from these diverse domains, our thesis aims to
propose a comprehensive framework for optimizing CNN inference. Leveraging
innovative techniques such as online tuning algorithms, malleable and moldable
inference pipelines, and adaptive scheduling strategies, our approach seeks to
advance system performance, reduce latency, and mitigate interference effects.
Ultimately, our research endeavors to contribute to the development of more
efficient and scalable AI systems, capable of meeting the evolving demands of
real time inference across diverse computational platforms.

1

2 CHAPTER 1. INTRODUCTION

1.1 Background

This section sets the stage for discussing CNNs, outlining their structure and
operations, including parallel implementations and inference pipelines. It also
highlights the challenges of deploying CNNs on diverse computing platforms and
introduces inference serving systems. Subsequent sections will delve deeper into
these topics, exploring optimization strategies and addressing quality-of-service
considerations in inference delivery.

1.1.1 Convolutional Neural Networks

The forward pass of CNNs primarily involves convolutional and fully-connected
layers. Convolutional layers constitute the most computationally intensive
aspect of CNNs. These layers consist of a set of learned filters (weights)
convolved across the height, width, and depth of the input tensor. The
core operation within convolutional layers is the dot product between the
weight tensor and local input regions, akin to matrix multiplication. The
computational complexity of convolutional layers is represented by Equation
2.1, where [H,W,C] denotes the dimensions of the input tensor, and [R,S,K]
represents the dimensions of the convolutional kernel.

WC = H ×W × C ×R× S ×K (1.1)

Fully connected layers, occurring towards the end of CNN architectures, fea-
ture dense connectivity, with each neuron connected to all activations of the
preceding layer. This dense connectivity results in a substantial number of
parameters and intensive computations, as illustrated by Equation 1.2, where
F denotes the number of output categories.

Wfc = H ×W × C × F (1.2)

Pooling layers, positioned between convolutional layers, serve to downsample
the spatial dimensions of the input tensor. With no learned parameters, these
layers involve simple computations, utilizing the input tensor dimensions as
computational weights.

1.1.2 Parallel Implementations of CNNs

Various parallelization schemes are employed to accelerate CNN computations.
Data parallelism involves partitioning the work of a minibatch among multiple
computational resources, while model parallelism divides the work based on
neurons in each layer. Layer pipelining, as described by Ben-Nun et al. [1],
partitions work by distributing network layers among computational resources,
combining model parallelism within the layer with overall layer pipelining. This
hybrid parallelism offers benefits such as reduced communication volume and
cached weights, minimizing memory round trips.

1.1.3 Inference Pipelines

The computations in CNNs are structured as layers, where the output of
one layer feeds into the next. This arrangement forms a linear task chain

1.1. BACKGROUND 3

or dependency, defining the task graph of a CNN. CNN inference processes
streaming input data on this persistent task graph, which can be divided
into sub DAGs representing pipeline stages, where a single stage can contain
multiple CNN layers and a single stage (sub DAG) is assigned to a separate
execution resource. Optimal pipeline efficiency is achieved when the execution
time of all stages is balanced, minimizing end-to-end latency and reducing
the size of the latency gap, commonly referred to as the ”bubble” [2]. The
performance of the pipeline is primarily determined by the slowest stage, or
bottleneck, making it essential to distribute layers in a pipeline to minimize
bottleneck latency.

1.1.4 Diversity in computing platforms

Modern edge devices feature powerful and energy efficient compute resources,
enabling on-device execution of CNNs. This enhances realtime performance
and mitigates communication delays stemming from network issues [3]. While
prevalent DNN frameworks like Tensorflow [4], Caffe [5], Torch [6], and Theano
[7] excel on computing platforms with discrete GPUs and highperformance
CPU clusters, they do not directly address the resource constraints inherent
to edge devices, such as power, memory, and compute capability [8]. As
a result, inference performance on CPUs is often comparable to GPUs in
edge devices (embedded devices), leading many vendors to favor CPUs for
inference tasks [9]. However, this transition to edge devices introduces a
fresh set of challenges, chiefly stemming from the diverse architectures of
System on Chips (SoCs) [9, 10]. Modern edge devices frequently integrate
heterogeneous execution units on the same chip, comprising cores with varying
power-performance-area characteristics but sharing a common Instruction Set
Architecture (ISA) [11]. For instance, an edge device, the NVIDIA Jetson TX2
[12] houses a dualcore NVIDIA Denver 2 64-bit CPU alongside a quadcore ARM
A57 cluster, illustrating this heterogeneity. Similarly, advancements like Intel’s
Meteor Lake [13] and Apple’s A14 Bionic [14] feature asymmetric multicore
designs, combining highperformance and power saving cores. This trend towards
heterogeneity is further augmented by Multi-Chip-Module (MCM) integration,
employing technologies like interposer based packaging to enhance latency and
bandwidth [15,16]. As chip manufacturers blend these technologies to design
highperformance processors, heterogeneity emerges not only at the core level but
also within the memory subsystem and Network on Chip (NoC). To effectively
harness such architectures, applications must be optimized considering varying
levels of heterogeneity. Additionally, to accommodate the diversity of hardware
platforms, the optimization process should ideally be rapid and preferably
conducted online.

1.1.5 Inference Serving Systems

Machine learning’s widespread adoption necessitates efficient prediction delivery,
giving rise to inference serving systems [17–21]. These systems host pre-trained
model pipelines, or inference pipelines, on cloud infrastructure, catering to
inference queries from users and applications. Such systems often operate
under stringent quality-of-service (QoS) requirements, expressed as service level

4 CHAPTER 1. INTRODUCTION

objectives (SLOs), for query response times and throughput [22]. However, due
to resource constraints and high demand, inference pipelines frequently share
resources with other workloads. This co-location, whether within the inference
serving system itself or as part of broader multi-tenancy practices in cloud
environments [23, 24], can introduce interference that jeopardizes inference
performance, potentially leading to SLO violations.

1.2 Problem Statements

1.2.1 Enabling runtime scheduling of inference pipelines
on edge devices

Frameworks leveraging pipeline parallelism, such as PipeIt [25] for heteroge-
neous core clusters and graphi [26] for many-core platforms, employ offline
analytical performance models to construct efficient pipeline stages. However,
these models face limitations as platforms become more complex and hetero-
geneous. One limitation stems from the reliance on prediction models that
utilize workload characteristics and profiled execution times of representative
kernels, as seen in PipeIt and AUGUR [27]. These models often overlook
realtime performance degrading factors like resource contention, potentially
leading to sub-optimal configurations and performance loss. Furthermore, as
platforms evolve with increased heterogeneity and hierarchy, the shortcomings
of analytical models are expected to exacerbate. Another challenge arises
from the need to repeat performance sampling and throughput maximization
whenever platform configurations change. This necessitates additional efforts
and resources. Addressing these challenges requires an online approach that
relies on realtime performance measurements. However, the complex design
space poses a significant obstacle. To date, there is no online solution capable
of effectively navigating this design space, quickly converging to near-optimal
solutions, and adapting to the performance asymmetry present at runtime.

Question: How to develop an online solution that effectively prunes
the design space, rapidly converges to near-optimal solutions, and adapts to
performance asymmetry in heterogeneous platforms?

1.2.2 Fully online scheduling of inference pipelines on
heterogeneous platforms

Current approaches for partitioning and scheduling CNN pipelines rely on
sophisticated cost models and exploration algorithms to navigate the design
space effectively [28, 29]. However, these approaches face several challenges,
including scalability, sensitivity to environmental changes, and a lack of con-
sideration for heterogeneous architectures. While sophisticated cost models
have been proposed, they often require extensive training and are sensitive to
changes in the execution environment and architectural parameters. Moreover,
they do not adequately account for the increasing heterogeneity in future com-
puting platforms, including diverse core performance and memory bandwidth
characteristics. As heterogeneity continues to rise in future platforms, static
pipeline partitioning and scheduling become increasingly inflexible. To address
this, a fully online and scalable approach to CNN pipeline scheduling is needed.

1.2. PROBLEM STATEMENTS 5

Such an approach should not only consider core heterogeneity but also address
heterogeneity in memory bandwidth. Additionally, it should minimize overhead
to ensure practicality in real world applications.

Question: How to design a fully online and scalable CNN pipeline schedul-
ing approach that targets both core heterogeneity and heterogeneity in memory
bandwidth, while minimizing overhead for practical deployment?
Compared to Question 1, here we focused more on designing a solution that
doesn’t look into performance database to find a solution, instead it should
rely on runtime performance data. We further explored possibilities to develop
an algorithm which should consider memory bandwidth heterogeneity while
finding a balanced pipeline configuration.

1.2.3 Mitigating Interference effects on inference pipelines
in inference serving systems

In inference serving systems, inference pipelines often face performance degra-
dation due to interference from co-located workloads, leading to violations of
SLOs [23,24,30,31]. Mitigating this interference is crucial for ensuring the relia-
bility and efficiency of critical applications. Various scheduling techniques have
been proposed to address interference effects on critical workloads, including
inference pipelines [21,31–34]. These techniques often rely on offline profiling
and machine learning models to partition resources effectively. However, they
may lack adaptability to dynamic changes in workload characteristics and
interference patterns. Pipeline parallelism, particularly in the form of layer
pipelining, offers a promising solution to improve throughput and reduce latency
for inference pipelines [35–38]. Online scheduling techniques have emerged to
find near-optimal pipeline schedules, leveraging heuristics to navigate the vast
search space efficiently [39–42]. By rebalancing pipeline stages dynamically,
these techniques can adapt to changes in workload interference, optimizing
resource utilization in realtime.

Question: How to develop dynamic scheduling techniques for inference
pipelines that effectively mitigate interference effects from co-located workloads
in inference serving systems, ensuring high throughput and low latency while
dynamically adapting to changing workload conditions?

1.2.4 Inter-Pipeline scheduling for adaptive SLO-aware
inference serving

Inference serving systems play a crucial role in providing machine learning
services to businesses, ensuring quick and accurate inference responses while
minimizing costs. These systems operate under hard cost constraints, often
utilizing specialized ML hardware to achieve interactive latencies [43]. However,
under bursty workloads, static resource allocation solutions can lead to increased
costs due to the need for additional resources. To address these challenges,
modern inference serving systems implement various techniques, such as multi-
tenancy, adaptive batching, model selection, and accuracy scaling, to proactively
assign resources and maintain high resource utilization while meeting Service
Level Objectives (SLOs) [17, 44–47]. Despite these efforts, factors like variable
query patterns and changes in the execution environment can lead to SLO

6 CHAPTER 1. INTRODUCTION

violations, resulting in resource overprovisioning or underutilization. Existing
approaches may revise scheduling decisions or drop/defer queries to mitigate
violations, adding operational costs and complexity.

Question: How can resource allocation in inference serving systems be
further optimized by dynamically readjusting resources per inference query,
while ensuring SLO requirements are met and costs are minimized?
In this work we looked into not just one but scheduling and balancing multiple
pipelines to accommodate SLO requirements.

1.3 Contributions

This thesis builds upon four papers, aiming to automate the scheduling of CNN
pipelines on heterogeneous platforms and inference serving systems. The first
paper represents the inaugural attempt at developing an online search scheme
for CNNs. The main contributions of Paper I are:

• Development of a comprehensive framework for generating and online
scheduling of CNN pipelines. We devised a tuning algorithm that utilizes
task moldability and online performance measurements to discover a
near optimal schedule for maximizing pipeline throughput. This scheme
adapts to performance variations between core clusters.

• We introduced a tensor template language interface to describe CNN
descriptors, facilitating the formulation of initial schedules (referred to as
seeds) for online design space exploration.

In Paper II, our focus shifts to chiplet based heterogeneous architectures.
We present an approach that leverages readily available information about the
computing platform and CNN structure without requiring human intervention.
The main contributions of Paper II are:

• Introduction of an expedited method for seed generation by leveraging
platform knowledge. This approach is compared to a range of represen-
tative exploration algorithms, including the scheme proposed in Paper
I.

• Elimination of the requirement for generation and preprocessing of the
design space before the online phase, addressing a limitation observed in
Paper I, particularly when larger platforms and deeper CNNs are used
as use cases.

• Demonstration of the scalability of the scheme proposed in Paper II with
CNNs containing over 50 compute intensive layers.

In Paper III, we investigated the ramifications of co-locating inference
pipelines within inference serving systems. Our primary emphasis was on
addressing interference, a significant challenge, by devising dynamic scheduling
techniques to alleviate its effects. The principal contributions of Paper III are
as follows:

1.4. THESIS OUTLINE 7

• An online solution - ODIN, that dynamically detects interference and
adjusts the execution of inference pipelines on a given set of processing
elements.

• Unlike other approaches, ODIN does not rely on offline resource utilization
profiles for inference. Instead, it utilizes only the runtime observed
execution times of pipeline stages, making it easily applicable to any
system.

• We propose a heuristic based pipeline scheduling algorithm that optimizes
the pipeline’s overall throughput while minimizing the impact of interfer-
ence on the execution unit. This algorithm considers both the execution
times of pipeline stages and the extent of performance degradation due
to interference.

In paper IV we looked at scheduling techniques for multiple inference pipelines
co-located on inference serving system with a goal to combat response delays
and reduce cost due o additional resources during peak time with bursty
workload. The principal contributions of Paper IV are as follows:

• The proposed solution optimizes resource allocation within an inference
serving system by leveraging SLO-aware scheduling techniques. This
minimizes the need for additional resources per inference query, effectively
mitigating costs.

• We leverage malleable resource allocation to models through malleable
inference pipelines, allowing for flexible assignment of resources during
peak loads. Our adaptive scheduling algorithm ensures that, in the
event of resource scarcity, existing pipelines can be downscaled without
violating SLO requirements, thereby maintaining service quality.

1.4 Thesis Outline

The remainder of this thesis follows a structured layout. Chapter 2 offers sum-
maries of each paper. Chapter 3 contains concluding remarks and suggestions
for future research directions. In addition, the four papers are appended at the
conclusion of this thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Summary of the papers

2.1 Summary of Paper I

In recent years, convolutional neural networks (CNNs) have emerged as powerful
tools in various fields such as image classification [48, 49] and natural language
processing [50]. While training CNNs typically occurs in the cloud, inference,
which involves a single forward pass of a neural network, is increasingly being
performed on edge and mobile devices due to latency concerns [51]. Edge
devices are becoming more powerful, allowing for realtime execution of CNN
applications and reducing reliance on cloud based inference [3]. However,
optimizing CNN inference for edge devices presents challenges due to resource
constraints and the heterogeneous nature of these platforms [8]. Existing deep
neural network (DNN) frameworks are primarily optimized for server-side
computing platforms with discrete GPUs and high performance CPU clusters
[4–7]. However, the parallelization strategy commonly employed in these
frameworks, layer wise data parallelism, may not be optimal for heterogeneous
compute devices [9, 10]. An alternative approach, model parallelism, which
groups consecutive CNN layers into pipeline stages, has shown promise in
addressing these challenges [52]. However, efficiently exploring the complex
design space of model parallelism remains a significant challenge [25, 26]. This
paper proposes an online tuning algorithm for optimizing pipeline parallelism
in CNNs to maximize throughput on heterogeneous platforms. The algorithm
leverages evolutionary search techniques and computational hints derived from
network layer descriptors to efficiently navigate the design space and find near-
optimal configurations. The contributions of this work include the development
of a multi-layer solution integrating a tensor template language for CNN
descriptions and the XiTAO runtime [53] for moldable task execution.

2.1.1 Proposed Approach

The proposed approach consists of two primary components: pre-processing to
generate seed heuristics and online tuning followed by pipelining. Figure 2.1
provides an overview of both modules. The CNN network is described using a
tensor template language, and computational hints are derived from network
layer descriptors. The online tuning phase employs the Pipe-search algorithm,

9

10 CHAPTER 2. SUMMARY OF THE PAPERS

Conv1 = CONV(ip1, op1, W1);
Conv2 = CONV(Conv1, op2, W2);
....
nework.add(Conv1);
network.add(Conv2);
....
network.execute();

Core 0 Core 1 Core 2 Core 3

Layer
p+1

Layer
p+2

Layer m

Layer 1

Layer 2

Layer p

Pipeline stage 1 Pipeline stage 2

Layer to pipeline assignment and
mapping to execution places

Network description in template
tensor language

La
ye

r 1
La

ye
r 2

La
ye

r m

Moldable tasks

Network design expressed in
tensor template language

Extract computational hints and
generate moldable tasks for

network layers

Generate configurations

Find Optimal Pipeline Configuration

Preprocessing

Online Tuning

Figure 2.1: An overview of framework for generation and schedule exploration
for moldable CNN pipeline

which utilizes evolutionary search techniques guided by computational hints
and realtime performance profiling. Moldable tasks are used to represent CNN
layers, enabling dynamic mapping to resources during execution [53]. The
pre-processing step involves generating seed heuristics based on network layer
descriptors and computational hints. These seeds serve as initial configurations
for the online tuning phase. During online tuning, the Pipe-search algorithm
explores the design space to identify near-optimal configurations for maximizing
throughput. realtime performance profiling enables the algorithm to adapt to
runtime conditions and platform heterogeneity [54].

2.1.2 Evaluation

The evaluation of the proposed approach involves comparing the Pipe-search
algorithm with exhaustive search and random walk. Experimental results
demonstrate that Pipe-search significantly reduces convergence time while
achieving near-optimal throughput maximizing pipeline configurations. Specifi-
cally, Pipe-search converges 70X faster than exhaustive search and 11X faster
than random walk. Moreover, the algorithm finds configurations that yield
balanced pipelines for state-of-the-art CNNs, with 79% of configurations tested
considered good candidates for near-optimal cases.

To assess the effectiveness of the algorithm, experiments are conducted
using various CNN architectures on heterogeneous platforms. The results
show that Pipe-search outperforms exhaustive search and random walk in
terms of convergence time and solution quality. Moreover, the algorithm is
capable of adapting to different platform configurations and optimizing pipeline
parallelism for maximum throughput.

2.1.3 Conclusion

In conclusion, this paper presents an online tuning algorithm for optimizing
pipeline parallelism in CNNs on heterogeneous platforms. By leveraging evo-
lutionary search techniques and computational hints, the proposed approach

2.1. SUMMARY OF PAPER I 11

efficiently explores the design space to find near-optimal configurations for max-
imizing throughput. Experimental results demonstrate the effectiveness and
adaptability of the algorithm across various platform configurations. Overall,
this work contributes to the development of efficient CNN inference techniques
for edge and mobile devices.

12 CHAPTER 2. SUMMARY OF THE PAPERS

2.2 Summary of Paper II

Multicore processors are becoming increasingly heterogeneous, with designs
featuring a mix of high performance and power saving cores, as seen in In-
tel’s Meteor Lake [13] and Apple’s A14 Bionic [14]. This trend extends to
Multi-Chip-Module (MCM) integration, enabling lower design costs and im-
proved yield by reducing chip area, particularly when combined with interposer
based packaging for lower latency and high bandwidth transmission to memory
devices such as High Bandwidth Memory (HBM) [16]. The resulting hetero-
geneity, spanning cores, memory subsystems, and Network on Chip (NoC),
presents challenges and opportunities for application optimization, particularly
for CNNs, which have high computational, bandwidth, and memory capacity
requirements. Parallel pipelining, partitioning networks across devices and
requiring only input exchange among stages, offers a promising solution. In
chiplet architectures, CNNs can be efficiently pipelined by distributing lay-
ers across chiplets, reducing weight transfer, and enabling manageable load
balancing among heterogeneous computing units. However, effective partition-
ing and scheduling of pipelines necessitate sophisticated cost models, often
requiring extensive training and lacking adaptability to heterogeneous architec-
tures. As future HPC platforms are expected to exhibit increased heterogeneity,
static partitioning and scheduling become less flexible. Online autotuning of
pipeline schedules becomes essential for performance portability, provided it
can achieve acceptable configurations with low overhead. Existing approaches
like PipeSearch [40] generate databases of pipeline configurations, which are
space intensive and slow for larger systems and deeper CNNs. This paper
proposes Shisha, leveraging static information from CNNs and target platforms
to reduce exploration points and find near optimal solutions efficiently.

2.2.1 Proposed Approach

The system comprises nodes with high performance cores (Fast Execution
Places - FEP) connected to high bandwidth memory and nodes of slower cores
(Slow Execution Places - SEP) connected to low bandwidth memory (Figure
2.2). Our goal is to run throughput maximizing CNN inference pipelines on such
architectures. Pipeline configurations involve assigning CNN layers to stages
and mapping stages to Execution Places (EPs). Shisha operates in two phases:
seed generation and online tuning. In the seed generation phase, a meaningful
starting configuration is determined using static information about the CNN
and platform heterogeneity. This configuration balances workload among stages
while considering EP assignments. The seed generation phase calculates layer
weights using Equation 2.1 and ranks EPs based on performance. Layers are
grouped into pipeline stages, aiming for balanced weights across stages.

W = H ×W × C ×R× S ×K (2.1)

Online tuning refines the seed configuration for faster convergence. It starts
from the seed and gradually adjusts load distribution by moving layers between
adjacent stages. This guided exploration aims to avoid slow configurations and
improve overall throughput.

2.2. SUMMARY OF PAPER II 13

SHISHA
Pipeline
stage 1

Pipeline
stage P

Pipeline
stage
P+1

Pipeline
stage Q

.......

.......
CNN

Descriptors

Memory type Y2Memory type Y1

Memory type X1 Memory type X2

Interposer

FEP

SEP

Cores

Figure 2.2: System overview in Paper II

2.2.2 Evaluation

In our evaluation, Shisha emerges as a potent solution, offering superior perfor-
mance compared to existing methods. The seed generation phase is pivotal,
as it sets the initial configuration for subsequent tuning. We find that seeds
generated by Shisha significantly impact both convergence time and solution
quality. Notably, solutions initiated with Shisha seeds consistently achieve
better throughput and faster convergence compared to those with randomly
generated seeds. The online tuning phase of Shisha further enhances its effi-
cacy. Through incremental adjustments to the pipeline configuration, Shisha
effectively balances workload distribution among pipeline stages, leading to im-
proved overall throughput. The selection of assignment and balancing schemes
plays a crucial role in this phase. Heuristics such as workload balancing to the
lightest Fast Execution Place (FEP) contribute significantly to faster conver-
gence and the attainment of near-optimal solutions. In comparing Shisha with
other exploration algorithms, including Pipe-Search, Hill Climbing, Simulated
Annealing, and Random Walk, Shisha demonstrates superior exploration ef-
ficiency and convergence speed. Remarkably, Shisha explores only a fraction
of the design space (˜0.12%) yet achieves convergence approximately 35 times
faster than alternative methods. Even when compared to Exhaustive Search,
Shisha matches the best solutions found for complex CNN architectures like
ResNet50 and YOLOv3. Moreover, we conduct a sensitivity analysis of the
parameter α, which governs the extent of exploration in Shisha. Our findings
reveal that higher values of α lead to better solutions, particularly in scenarios
with greater performance heterogeneity between EPs. This underscores the
adaptability and effectiveness of Shisha in optimizing CNN inference pipelines
across diverse computing platforms.

2.2.3 Conclusion

In this paper, we introduce a rapid method for scheduling CNN pipelines on
heterogeneous computing platforms comprising both fast and slow cores. Our
approach is versatile, applicable to various hardware architectures including
GPUs, FPGAs, asymmetric multicores, and chiplets. By leveraging compile
time information alongside a succinct and directed online search, we effectively
autotune CNN layers into parallel pipelines. The experimental evaluation
validates the efficacy of our method. We demonstrate that Sisha’s solutions are
comparable to those obtained through exhaustive search of the design space.
Furthermore, our results highlight Shisha’s scalability with larger networks and

14 CHAPTER 2. SUMMARY OF THE PAPERS

computing platforms, showcasing its potential for realworld applications. In
conclusion, Shisha offers a promising solution for optimizing CNN inference
pipelines across heterogeneous hardware architectures. Its ability to swiftly
converge to high-quality solutions, coupled with its scalability, underscores its
value in accelerating neural network inference tasks.

2.3. SUMMARY OF PAPER III 15

2.3 Summary of Paper III

In today’s digital landscape, the demand for machine learning based predictions
has skyrocketed, leading to the proliferation of inference serving systems. These
systems, such as Clipper [17], Pretzel [18], and TensorFlow Serving [19], deploy
pre-trained model pipelines on cloud infrastructure to serve inference queries
to users and applications. However, as these systems often operate in resource-
constrained environments with high demand, they frequently co-locate inference
pipelines with other workloads, either within the same inference serving system
or as part of multi-tenant cloud environments. This co-location can lead to
interference, which adversely affects the performance of inference pipelines and
results in violations of service level objectives (SLOs) [22].

Various scheduling techniques have been proposed to mitigate the impact
of interference on critical applications, including inference pipelines. Tradi-
tional approaches focus on offline profiling and predictive modeling to preemp-
tively partition resources and mitigate interference [23, 24, 32]. However, these
techniques often require extensive offline profiling and are less adaptable to
dynamic workload changes. Recent advancements have led to the development
of online interference mitigation techniques tailored specifically for inference
pipelines [21, 31, 34]. These techniques dynamically adapt the execution of
inference pipelines in response to realtime interference, thereby improving their
resilience to co-located workloads.

In this paper, we propose ODIN, a dynamic solution for online interference
mitigation in inference pipelines. Unlike traditional techniques that rely on
offline profiling, ODIN operates entirely online, leveraging runtime observations
to adapt pipeline execution dynamically. We demonstrate the effectiveness
of ODIN in maintaining quality-of-service (QoS) for inference pipelines under
varying interference conditions, outperforming traditional scheduling techniques
such as the least loaded scheduler (LLS) [23]. Our evaluation includes extensive
experiments across different interference scenarios, showcasing ODIN’s superior
performance in terms of latency, throughput, and SLO conformance.

2.3.1 Proposed Approach

ODIN’s approach to online interference mitigation revolves around dynamically
detecting interference and adaptively rebalancing pipeline stages to optimize
throughput and latency. Unlike traditional techniques that rely on offline
profiling and predictive models, ODIN operates entirely online, making it more
adaptable to dynamic workload changes and varying interference conditions.
ODIN operates within a system consisting of multiple execution places, each
comprising multiple cores 2.3. It continuously monitors the execution times
of pipeline stages and triggers rebalancing when interference is detected. The
core of ODIN’s methodology lies in its heuristic algorithm, which intelligently
moves layers between pipeline stages to reduce the workload on affected stages
while maximizing pipeline throughput.

At the heart of ODIN is its heuristic based approach to pipeline stage
rebalancing under interference. This approach employs two key heuristics:
determining the direction of moving layers and avoiding local optima. By
intelligently applying these heuristics, ODIN is able to efficiently explore the

16 CHAPTER 2. SUMMARY OF THE PAPERS

PS 1 PS 2

PS 3 PS N

EP 1 EP 2

EP 3 EP M

PS 1 PS 2

PS 3 PS N

EP 1 EP 2

EP 3 EP M

app

app app

EP 1 EP 2

EP 3 EP M

PS 1

PS N

app

ODIN algorithm
inference queries

No interference With interference

PS 3

After mitigation

PS 2

Figure 2.3: System overview

solution space and adapt pipeline execution to varying interference conditions
in realtime.

2.3.2 Evaluation

Our evaluation demonstrates the significant performance improvements ODIN
offers over traditional scheduling techniques in mitigating interference and
enhancing the quality-of-service (QoS) of inference pipelines. We compare
ODIN’s latency and throughput with those of the least loaded scheduler (LLS)
across various interference scenarios. In a system with 4 execution places of 8
cores each, serving inference queries with VGG16 and ResNet50 models, ODIN
consistently outperforms LLS. On average, ODIN achieves 15.8% better latency
with α = 10 and 14.1% with α = 2. Similarly, ODIN achieves 19% higher
throughput than LLS across all scenarios. Notably, ODIN’s adaptive nature
allows it to sustain high throughput and low latency even under challenging
interference conditions.

We evaluate ODIN’s ability to maintain quality-of-service (QoS) by profiling
the number of queries violating service level objectives (SLOs) for different
throughput targets. ODIN demonstrates superior performance, with less than
20% of SLO violations for SLO levels lower than 85%. In contrast, LLS exhibits
higher SLO violations, especially for stringent SLO targets. Moreover, ODIN
sustains 70% of the original throughput under interference, outperforming LLS,
which achieves only 50% SLO conformance. These results highlight ODIN’s
effectiveness in ensuring QoS even in the presence of interference.

We analyze ODIN’s scalability on high numbers of execution places using
ResNet152 models. Scaling from 4 to 52 execution places, ODIN maintains
consistent latency and increases throughput, indicating high parallelism and
efficient utilization of resources. Even with deep neural network models, ODIN
adapts pipeline configurations effectively, achieving throughput comparable to
peak performance under no interference.

2.3.3 Conclusion

In conclusion, we propose ODIN, a dynamic solution for online interference
mitigation in inference pipelines. By adaptively rebalancing pipeline execution
in response to realtime interference, ODIN enhances the performance and
quality-of-service (QoS) of inference serving systems. Our evaluation demon-
strates the effectiveness of ODIN in mitigating interference, outperforming

2.3. SUMMARY OF PAPER III 17

traditional scheduling techniques, and maintaining high throughput and low
latency under varying interference conditions.

18 CHAPTER 2. SUMMARY OF THE PAPERS

2.4 Summary of Paper IV

Machine learning (ML) inference applications are increasingly pervasive in vari-
ous domains, including social media, e-commerce, and healthcare [55–59]. Meta
(formerly Facebook) has reported serving trillions of inference requests daily,
with over 90% of production AI resources dedicated to inference tasks [60,61].
As businesses increasingly rely on ML services for their products, the demand
for quick and cost effective inference responses is escalating. Inference serving
systems play a critical role in meeting these demands, providing the infrastruc-
ture to execute inference queries based on predefined Service Level Objectives
(SLOs) that encompass model accuracy, response time, and cost constraints [61].
However, traditional inference serving systems face challenges in dynamically
allocating resources to adapt to fluctuating workloads while maintaining perfor-
mance and cost efficiency. Techniques such as multi-tenancy, adaptive batching,
model selection, and accuracy scaling have been proposed to optimize resource
utilization and meet SLO requirements [17,44–47]. Nevertheless, factors like
variable query patterns and changes in the execution environment can lead to
SLO violations or resource overprovisioning [62–64]. To address these challenges,
we propose a novel approach, termed Accordion, which leverages malleable
inference pipelines and adaptive scheduling to optimize resource allocation
dynamically.

2.4.1 Proposed Approach

The Accordion framework comprises a collection of computing units known as
execution places (EPs) (Figure 2.4), organized in a multi chip architecture [34].
Each EP consists of multiple cores and is capable of executing inference tasks
in a data parallel manner. The system handles incoming queries categorized
based on priority, such as high and low priority, to prioritize resource alloca-
tion [65]. Additionally, Accordion incorporates a predictor to estimate query
processing times and dynamically adjusts resource allocations to minimize
waiting times [66]. Accordion’s resource allocation strategy involves catego-
rizing incoming queries into high and low priority queues, with a focus on
minimizing waiting times for high priority queries [66]. The scheduler peri-
odically checks for new queries and allocates resources accordingly, utilizing
a predictor to estimate waiting and processing times based on preprofiled
performance data [65]. Queries are dynamically allocated resources based on
their priority and SLO requirements, ensuring efficient resource utilization and
timely query processing. A key feature of Accordion is its malleable inference
pipelines, which allow resources to be dynamically adjusted for each query to
meet its SLO requirements [47]. The system utilizes an adaptive scheduling
strategy to fetch resources from existing pipelines without violating their SLOs,
ensuring efficient resource utilization [34]. By dynamically readjusting pipeline
resources per query, Accordion optimizes system throughput and minimizes
SLO violations, even under fluctuating workloads.

2.4.2 Evaluation

We conducted extensive experiments to evaluate the performance of Accordion
against several baseline approaches in a simulated inference serving environment.

2.4. SUMMARY OF PAPER IV 19

1

Model = VGG
Batchsize = 50
SLO = 10s
Priority = High

Query
Stream

High Priority Queue

Low Priority Queue

Dropout Predictor

2

Waiting buffer

Scheduler

Drop

3

4

Pre-Profiled
Model

Performance

Pipeline performance

Networks 1 Stage M Stage

Model 1 2s 1s

Model N

Pipeline Configuration

Networks 3 Stage M Stage

Model 1 [6,4,3] [2,...,3]

Model N

EP 1 EP 2

EP 3 EP N

Memory

Memory

Figure 2.4: Scheduling architecture

The experiments were performed on a cluster comprising execution places (EPs),
organized in a multichip architecture [34]. Each EP consists of multiple cores
capable of executing inference tasks in a data parallel manner. We utilized a
diverse set of query streams with varying workload patterns, including batch
sizes and arrival rates, to mimic realworld scenarios [41, 62]. Additionally,
we defined strict, moderate, and relaxed Service Level Objectives (SLOs) to
assess system performance under different latency targets [46]. We compared
Accordion against several baseline approaches, including SLO-Conforming,
Fastest, Buffer Based Solution (BBS), and 1-Stage pipeline. SLO-Conforming
allocates resources to queries based on their SLO requirements, while Fastest
assigns maximum resources for the fastest execution [34, 64]. BBS buffers
incoming queries to match them with ongoing ones, while 1-Stage assigns one
EP per query [66]. Accordion demonstrated superior performance in minimizing
end-to-end latency compared to the baselines. On average, Accordion achieved
a 1.6x reduction in latency compared to SLO-Conforming and Fastest, and
a 2.2x reduction compared to the 1-Stage pipeline. The adaptive resource
allocation strategy of Accordion effectively optimized query processing times
under varying workload conditions.

Accordion significantly reduced SLO violations across all query streams and
SLO targets. Under strict SLO targets, Accordion exhibited a 1.13x reduction
in violations compared to the baselines. Moreover, Accordion achieved a 4.2x
reduction in violations under moderate SLO targets and maintained only 2%
violations under relaxed SLO targets. These results highlight the effectiveness
of Accordion in meeting stringent latency requirements. Accordion maintained
high system occupancy levels, utilizing resources efficiently throughout the
execution of query streams. For query streams with high workload intensity, Ac-
cordion sustained system occupancy at 100% for approximately 70% of the time,
outperforming other baseline approaches. This efficient resource utilization
contributed to the overall performance improvement of the system. Accordion
demonstrated superior throughput compared to the baselines, processing a
higher number of queries per unit time. On average, Accordion achieved a 1.6x
increase in system throughput compared to SLO-Conforming and Fastest, and
a 2x increase compared to the 1-Stage pipeline. This enhanced throughput is

20 CHAPTER 2. SUMMARY OF THE PAPERS

attributed to Accordion’s dynamic resource allocation and malleable pipeline
approach, which optimized query processing under varying workload conditions.

2.4.3 Conclusion

Paper IV presents Accordion, a novel approach for optimizing resource alloca-
tion and query processing in inference serving systems. By leveraging malleable
pipelines and adaptive scheduling strategies, Accordion effectively addresses
the challenges of fluctuating workloads and stringent latency requirements.
Through extensive experimentation and comparison against traditional baseline
approaches, Accordion demonstrates superior performance in terms of minimiz-
ing end-to-end latency, reducing SLO violations, maximizing system occupancy,
and improving overall throughput. The results underscore the potential of
Accordion to enhance the efficiency and scalability of inference serving systems
in realworld deployments.

Chapter 3

Conclusion and Future
Directions

The culmination of this thesis represents a significant stride forward in the
optimization of Convolutional Neural Network (CNN) inference across hetero-
geneous platforms and inference serving systems. Through the exploration and
refinement of various techniques across four papers, this research contributes to
the advancement of resource-efficient and responsive machine learning inference
systems. The overarching scope of this thesis encompasses the development and
evaluation of innovative solutions to address the challenges posed by diverse
computational platforms and inference serving systems. Each paper makes
distinct contributions to this endeavor:

Paper I: Introduces a comprehensive framework for online scheduling
of CNN pipelines. By leveraging task moldability and online performance
measurements, this paper pioneers an approach to dynamically discover near-
optimal schedules, thus maximizing pipeline throughput. Additionally, the
introduction of a tensor template language interface facilitates the formulation
of initial schedules, laying the foundation for efficient design space exploration.

Paper II: Shifts the focus to chiplet based heterogeneous architectures and
presents an expedited method for seed generation based on readily available
platform knowledge. By eliminating the requirement for preprocessing of
the design space, this paper demonstrates scalability with deep CNNs, thus
addressing a critical limitation observed in previous approaches.

Paper III: Investigates interference effects within inference serving systems
and proposes ODIN, an online solution for dynamic interference detection and
adjustment of inference pipeline execution. By leveraging runtime observed
execution times and a heuristic based scheduling algorithm, this paper effectively
mitigates interference effects, optimizing overall pipeline throughput while
minimizing performance degradation due to interference.

Paper IV: Explores scheduling techniques for multiple co-located inference
pipelines within inference serving systems, focusing on SLO-aware resource
allocation and adaptive scheduling. By leveraging malleable inference pipelines
and adaptive scheduling algorithms, this paper optimizes resource allocation
to mitigate costs during peak loads while ensuring SLO requirements are met.

The importance of Convolutional Neural Networks (CNNs) is ubiquitous,

21

22 CHAPTER 3. CONCLUSION AND FUTURE DIRECTIONS

serving as the backbone for numerous automated applications. However, an
intriguing shift in processor design, exemplified by Processing In Memory
(PIM) technology [67,68], presents a new set of challenges and opportunities
for optimizing existing applications. Adapting CNN pipelines to PIM archi-
tectures necessitates a thorough analysis of the performance gains achieved
by executing CNN operators within the memory. Understanding the impact
of this architectural shift on CNN performance is essential for maximizing
efficiency. Investigating the optimal placement of large CNN parameters on
PIM based chiplets is crucial for leveraging the benefits of PIM technology effec-
tively. This research direction aims to optimize memory utilization and access
patterns to enhance overall system performance. Given the critical importance
of energy and power efficiency, future research should focus on developing
pipeline scheduling techniques that prioritize reducing energy consumption
while maximizing pipeline throughput. This entails exploring novel scheduling
algorithms and optimization strategies tailored to PIM architectures.

Moreover, for more managed inference serving systems, several promising
directions for future work include: Concealing model variant selection behind
a high level API enables users to specify performance and cost objectives
effortlessly. This research direction aims to simplify the model selection process
for users while ensuring optimal utilization of available resources. Abstracting
the choice of hardware behind the same high level API allows the system to
dynamically select the appropriate hardware type(s) based on performance
and cost Service Level Objectives (SLOs). This approach ensures efficient
resource allocation and cost effective inference serving. Abstracting resource
management from users involves automatically optimizing resource allocation
to meet query cost and performance goals for different models under varying
loads. This includes transparently sharing resources across model instances,
users, and managing memory based on observed load and popularity to enhance
provider resource utilization.

In summary, future research in CNN inference optimization and inference
serving systems should focus on addressing the challenges posed by emerging
processor architectures, as well as advancing techniques for efficient resource
management and model selection. By exploring these research directions, we
can further advance the development of efficient and scalable AI systems capable
of meeting the demands of realtime inference across diverse computational
platforms.

Bibliography

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[2] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” arXiv preprint arXiv:1811.06965,
2018.

[3] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Con-
vergence of edge computing and deep learning: A comprehensive survey,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904,
2020.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous systems,” 2015.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[6] “Torch,” http://torch.ch, accessed: 2021-01-20.

[7] “Theano,” http://deeplearning.net/software/theano/, accessed: 2021-01-
20.

[8] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur et al., “Deep learning inference in
facebook data centers: Characterization, performance optimizations and
hardware implications,” arXiv preprint arXiv:1811.09886, 2018.

[9] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at face-
book: Understanding inference at the edge,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2019, pp. 331–344.

[10] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and C.-J. Wu,
“A study of mobile device utilization,” in 2015 ieee international symposium

23

24 BIBLIOGRAPHY

on performance analysis of systems and software (ispass). IEEE, 2015,
pp. 225–234.

[11] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for pro-
cessor power reduction,” in Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36. IEEE, 2003,
pp. 81–92.

[12] “Nvidia jetson tx2,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-tx2/, accessed:
2021-01-20.

[13] “Intel technology roadmaps and milestones,” Feb 2022. [Online].
Available: https://www.intel.com/content/www/us/en/newsroom/news/
intel-technology-roadmaps-milestones.html#gs.z47liy

[14] “Apple a14 bionic: Specs and benchmarks.” [Online]. Available:
https://nanoreview.net/en/soc/apple-a14-bionic

[15] Kannan et al., “Enabling interposer-based disintegration of multi-core
processors,” in 2015 48th Annual IEEE/ACM MICRO. IEEE, 2015, pp.
546–558.

[16] Cho et al., “Design optimization of high bandwidth memory (hbm) in-
terposer considering signal integrity,” in 2015 IEEE EDAPS, 2015, pp.
15–18.

[17] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system.” in
NSDI, 2017.

[18] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and
M. Interlandi, “Pretzel: Opening the black box of machine learning pre-
diction serving systems.” in OSDI, vol. 18, 2018, pp. 611–626.

[19] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

[20] E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel, B. Coskun, R. Nallapati,
J. Delgado, A. Sadoughi, Y. Astashonok, P. Das et al., “Elastic machine
learning algorithms in amazon sagemaker,” in SIGMOD, 2020, pp. 731–737.

[21] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “Infaas: Automated
model-less inference serving.” in USENIX Annual Technical Conference,
2021, pp. 397–411.

[22] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving.” in USENIX
Annual Technical Conference, 2019, pp. 1049–1062.

[23] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp.
77–88, 2013.

BIBLIOGRAPHY 25

[24] ——, “Quasar: Resource-efficient and qos-aware cluster management,”
ACM SIGPLAN Notices, vol. 49, no. 4, pp. 127–144, 2014.

[25] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big. little
multi-core processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2019.

[26] L. Tang, Y. Wang, T. L. Willke, and K. Li, “Scheduling computa-
tion graphs of deep learning models on manycore cpus,” arXiv preprint
arXiv:1807.09667, 2018.

[27] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 1663–1671.

[28] Adams et al., “Learning to optimize halide with tree search and random
programs,” ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp.
1–12, 2019.

[29] Anderson et al., “Efficient automatic scheduling of imaging and vision
pipelines for the gpu,” Proceedings of the ACM on Programming Languages,
vol. 5, no. OOPSLA, 2021.

[30] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Garraghan,
“Horus: An interference-aware resource manager for deep learning systems,”
in ICA3PP. Springer, 2020, pp. 492–508.

[31] D. Mendoza, F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis,
“Interference-aware scheduling for inference serving,” in Proceedings of the
1st Workshop on Machine Learning and Systems, 2021, pp. 80–88.

[32] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[33] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang, “Prophet:
Precise qos prediction on non-preemptive accelerators to improve utiliza-
tion in warehouse-scale computers,” in Proceedings of the 22nd ASPLOS’17,
pp. 17–32.

[34] L. Ke, U. Gupta, M. Hempsteadis, C.-J. Wu, H.-H. S. Lee, and X. Zhang,
“Hercules: Heterogeneity-aware inference serving for at-scale personalized
recommendation,” in HPCA. IEEE, 2022, pp. 141–144.

[35] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[36] Huang et al., “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” Advances in neural information processing systems,
vol. 32, 2019.

26 BIBLIOGRAPHY

[37] Wang et al., “High-throughput cnn inference on embedded arm big. little
multicore processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2254–2267, 2019.

[38] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, “Scheduling of deep learning
applications onto heterogeneous processors in an embedded device,” IEEE
Access, vol. 8, 2020.

[39] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep learning inference
parallelization on heterogeneous processors with tensorrt,” IEEE Embedded
Systems Letters, vol. 14, no. 1, pp. 15–18, 2021.

[40] P. N. Soomro, M. Abduljabbar, J. Castrillon, and M. Pericàs, “An online
guided tuning approach to run cnn pipelines on edge devices,” in CF’21.

[41] ——, “Shisha: Online scheduling of cnn pipelines on heterogeneous archi-
tectures,” in PPAM 2022.

[42] H.-Y. Chang, S. H. Mozafari, C. Chen, J. J. Clark, B. H. Meyer, and
W. J. Gross, “Pipebert: High-throughput bert inference for arm big. little
multi-core processors,” Journal of Signal Processing Systems, pp. 1–18,
2022.

[43] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architecture, 2017, pp. 1–12.

[44] M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance and
cost of multi-tenant serving for cnn models,” in IC2E. IEEE, 2020, pp.
66–72.

[45] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “Infaas: A
model-less and managed inference serving system,” arXiv preprint
arXiv:1905.13348, 2019.

[46] Gupta. et al., “Deeprecsys: A system for optimizing end-to-end at-scale
neural recommendation inference,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2020,
pp. 982–995.

[47] S. Ahmad, H. Guan, B. D. Friedman, T. Williams, R. K. Sitaraman,
and T. Woo, “Proteus: A high-throughput inference-serving system with
accuracy scaling,” 2024.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[50] M. M. Lopez and J. Kalita, “Deep learning applied to nlp,” arXiv preprint
arXiv:1703.03091, 2017.

BIBLIOGRAPHY 27

[51] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile
sensing?” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications, 2015, pp. 117–122.

[52] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for
deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[53] M. Pericàs, “Elastic places: An adaptive resource manager for scalable
and portable performance,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 15, no. 2, pp. 1–26, 2018.

[54] D. Skinner and W. Kramer, “Understanding the causes of performance
variability in hpc workloads,” in IEEE International. 2005 Proceedings of
the IEEE Workload Characterization Symposium, 2005. IEEE, 2005, pp.
137–149.

[55] Jiang. et al., “Artificial intelligence in healthcare: past, present and future,”
Stroke and vascular neurology, vol. 2, no. 4, 2017.

[56] F. Mireshghallah, M. Taram, P. Ramrakhyani, A. Jalali, D. Tullsen, and
H. Esmaeilzadeh, “Shredder: Learning noise distributions to protect infer-
ence privacy,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, 2020, pp. 3–18.

[57] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings of the
2018 conference of the ACM special interest group on data communication,
2018, pp. 253–266.

[58] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” in Proceedings of the ACM Symposium on Cloud Computing,
2021, pp. 1–17.

[59] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
{Delay-Tolerance},” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), 2017, pp. 377–392.

[60] Facebook Engineering, “Building meta’s genai infrastructure,”
https://engineering.fb.com/2024/03/12/data-center-engineering/
building-metas-genai-infrastructure/, accessed on April 22, 2024.

[61] Gupta et al., “The architectural implications of facebook’s dnn-based
personalized recommendation,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2020, pp.
488–501.

[62] (2018) Twitter Streaming Traces. [Online]. Available: https://archive.org/
details/archiveteam-twitter-stream-2018-04

28 BIBLIOGRAPHY

[63] N. J. Yadwadkar, F. Romero, Q. Li, and C. Kozyrakis, “A case for managed
and model-less inference serving,” in Proceedings of the Workshop on Hot
Topics in Operating Systems, 2019, pp. 184–191.

[64] W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “Slo-aware inference sched-
uler for heterogeneous processors in edge platforms,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 18, no. 4, pp. 1–26,
2021.

[65] “NVIDIA Triton Inference Server Documentation,” https://docs.nvidia.
com/deeplearning/triton-inference-server/, accessed: 2024.

[66] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Optimizing inference serving
on serverless platforms,” Proceedings of the VLDB Endowment, vol. 15,
no. 10, 2022.

[67] Zhang et al., “Top-pim: Throughput-oriented programmable processing in
memory,” in Proceedings of the 23rd International Symposium on HPDC.
New York, NY, USA: Association for Computing Machinery, 2014, p.
85–98.

[68] J. Torrellas, “Flexram: Toward an advanced intelligent memory system:
A retrospective paper,” in 2012 IEEE 30th International Conference on
Computer Design (ICCD). IEEE, 2012, pp. 3–4.

