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 A B S T R A C T

In next-generation networks, cells will be replaced by a collection of points-of-access (PoAs), with overlapping 
coverage areas and/or different technologies. Along with a promise for greater performance and flexibility, 
this creates further pressure on network management algorithms, which must make joint decisions on (i) 
PoA-to-user association and (ii) PoA management. We solve this challenging problem through an efficient and 
effective solution concept called Cluster-then-Match (CtM).  While state-of-the-art approaches tend to focus 
on performance-related metrics, e.g., network throughput,  CtM makes human-centric decisions, where pure 
network performance is balanced against  energy consumption and electromagnetic field exposure. Importantly, 
such human-centric metrics  concern all humans in the network area — including those who are not network 
users. Through our performance evaluation, which leverages detailed models for EMF exposure estimation 
and standard-specified signal propagation models, we show that CtM outperforms state-of-the-art network 
management schemes  that solely focus on network performance,  including those utilizing machine learning, 
reducing energy consumption by over 80%  in indoor scenarios, and over 36% in outdoor ones. 
1. Introduction

The recent trend in mobile communication networks is to make 
them evolve away from the cellular paradigm. Indeed, traditional cells 
– areas exclusively served by one base station, with overlap between 
cells being minimized – are becoming increasingly rare. After the 
introduction of multi-layer coverage via small cells [1] in 4G, and 
multi-RAT (radio access technology) networks in 5G [2], 6G will almost 
completely dispense with cells, and replace them with a collection 
of points-of-access (PoAs), thus becoming cell less. As exemplified in 
Fig.  1, PoAs may use different technologies (e.g., 5G-NR and Wi-Fi) 
and overlapping coverage areas, and each end user (including user-
terminals like smartphones, but also non-human devices like robots) 
can be served by multiple PoAs.

Another relevant feature of 5G-and-beyond networks is the in-
creasing attention to sustainability, understood in a wide sense as the 
impact of networking on the environment; such impact can be evalu-
ated through aspects like power consumption [3] and electromagnetic 
field (EMF) exposure [4]. This has generated a trend toward human-
centric networking, a new paradigm where pure network performance 
(e.g., throughput) is balanced against sustainability metrics.  In many 

∗ Correspondence to: corso Duca degli Abruzzi 24, 10129 Torino, Italy.
E-mail address: francesco.malandrino@cnr.it (F. Malandrino).

cases, sustainability metrics become the objective of the optimization 
(e.g., minimize the energy consumption), while performance becomes a 
constraint (e.g., give to each user the minimum required throughput). 

Compared to network performance metrics, human-centric ones 
tend to be more of a moving target: taking EMF exposure as an example, 
next-generation networks are moving towards higher frequencies, for 
which different metrics for EMF exposure assessment are being consid-
ered [5]. This means that our general goal is to endow human-centric 
network with a new capability – a priori sustainability management. 
This entails satisfying a set of constraints that are (i) different from 
the traditional ones, as they include human-centric metric as well as 
performance-related ones, and (ii) dynamic over time, as they account 
for factors like demand evolution and user mobility. Decision variables 
are similarly dynamic, as they reflect the fact that the network config-
uration can be changed over time to adapt to external conditions. This 
represents a marked departure from – and a significant improvement 
over – the state-of-the-art approach of ensuring that network configu-
ration complies  with a static, given set of key performance and value 
indicator (KPI, KVI) targets.
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Fig. 1. A simple indoor cell-less network. Two points-of-access (PoAs) serve their end 
users through one or more beams; one of the users can be served by two PoAs. A 
human is irradiated by the beam from PoA #1 to User #2; humans will nonetheless 
incur EMF exposure whether or not they are network users.

Fig. 2.  The main components of our solution strategy and their mutual interactions..

As a result of the above, managing cell-less and human-centric net-
works will be substantially more complex than with current-generation 
ones. Reasons behind such complexity include (i) the number and 
diversity of the PoAs to manage; (ii) the fact that some technologies 
(especially higher-frequency ones) support beamforming [6], resulting 
in further decisions to make, and (iii) the fact that multiple PoAs may 
be available to serve a given user. Any decision made in cell-less and 
human-centric networks will impact, jointly and often in a counter-
intuitive manner, both performance-related and human-centric metrics. 
The traditional (and popular, as detailed in Section 2) approach of 
ignoring human-centric aspects is of course not an option; also, straight-
forward optimization approaches are ruled out by the complexity of the 
problem to solve, as per Section 4.2.

Motivated by the need to combine both performance-related and 
human-centric metrics in the dynamic management of next-generation 
networks,  we propose an efficient solution strategy called Cluster-then-
Match (CtM), which can jointly decide on the association between users 
and PoAs, and the management of the PoAs themselves, including beam 
steering and power management aspects at the PoAs.  As depicted in 
Fig.  2, CtM leverages the main features of cell-less networks – to wit, 
the availability, heterogeneity, and configurability of PoAs – to improve 
over the state-of-the-art in three main ways. More specifically: 

1. CtM jointly manages all PoAs, hence, it is able to prevent con-
flicts between different decisions;

2. CtM considers all aspects of PoA management, from beam steer-
ing and beamwidth selection to power allocation;

3. CtM considers both performance-based and human-centric met-
rics, and the latter are evaluated for all humans in the network 
area, including those who are not network users.

To ensure both the decision quality and the fact that they can be made 
swiftly enough, CtM performs two main steps: users are first clustered
into groups, and then groups are matched with the PoAs. This allows 
us to exploit the flexibility of the cell-free networking paradigm, where 
the PoA (and beam) serving each end user can be chosen dynamically 
and there is no a priori association between users and PoAs.

Our contributions and structure of the paper can thus be summa-
rized as follows:
2 
• We propose a concise and comprehensive model of cell-less 
networks, the decisions they require, and their effects on both 
performance-related and human-centric metrics, most notably, 
EMF exposure (Section 3);

• We formulate the resulting optimization problem, revealing how 
different decisions interact (Section 4), and analyzing its complex-
ity, which rules out solving realistically-sized instances
thereof (Section 4.2);

• We present our CtM algorithm and highlight how it is able to 
ensure both the quality of network management decisions and the 
speed with which they are made (Section 5);

• We describe how to evaluate CtM’s performance under stan-
dardized channel models and scenarios introduced in [7], as 
well as detailed anatomic models for EMF exposure assessment 
(Section 6);

• We introduce the three benchmark we compare CtM against, 
including two based upon machine learning (ML), and present our 
performance evaluation results, showing that CtM outperforms 
the alternatives by over 80% (Section 7).

2. Related work

The human-centric expression is applied to 5 GB/6G networks in 
multiple contexts and with different meanings. Networks that are ex-
pected to closely interact with humans, e.g., in the tactile Internet, 
are called human-centric in [8], which investigates the additional 
capabilities and performance (most notably, latency) required by these 
applications. [9] takes a more technical view on the same issue, iden-
tifying novel 6G use cases (e.g., telepresence and augmented reality) 
and the associated requirements. At the same time, the societal impact 
of 6G networks is evaluated and assessed in [10], focusing on aspects 
like empowerment. Finally, since artificial intelligence (AI) is a key part 
of 6G, research efforts on human-centric networking are looking into 
making AI explainable [11] and to better control the data used for its 
training [12].

A second research area our work is related to is the so-called green 
networking, exploring the trade-offs between network performance and 
the energy consumption (hence, carbon footprint) they incur. Most 
approaches act on the network infrastructure and optimize its configu-
ration, e.g., enlarging the coverage area of some base stations so that 
others can be switched off [13]. To achieve the former objective, novel 
transmission techniques are often employed, e.g., passive intelligent 
reflective surfaces [14]. Many recent approaches leverage AI to either 
predict the demand for coverage and capacity [15], evaluate the impact 
of switching decisions [16], or predict spectrum behavior [17]. At 
the same time, assessing and ensuring the sustainability of AI itself 
is a highly active research area [18], with approaches targeting both 
deep neural network (DNN) architectures [19] and distributed learning 
paradigms [20].

Finally, several works try to combine EMF exposure assessment and 
wireless (mostly, cellular) networking. Many early approaches [21] 
focus on network planning, working under the assumption that the 
infrastructure is given and impossible to control beyond setting power 
levels. Under such conditions, they check whether EMF limits are 
likely to be exceeded. More recent works look at network management, 
seeking to adapt the configuration of PoAs so as to account for both 
EMF limits and network performance; as an example, [22] focuses 
on power control in cell-free massive multiple-input-multiple-output 
systems. We seek to further advance with respect to these works by 
(i) fully modeling and exploiting the configurability of modern-day 
networks (e.g., beamforming and PoA selection), and (ii) estimating 
the levels of EMF exposure considering both the presence of users and 
non-users and their anatomical variability.  Furthermore, the cell-less 
scenario targeted by CtM is different from the cell-free scenario targeted 
by works like [22]: while in cell-free scenarios multiple PoAs can be 
used to jointly serve the same user, CtM assigns each user to one PoA 
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only, and looks for the best configuration that allows each PoA to serve 
multiple users. 

Last, a preliminary version of this work has been presented in [23]. 
With respect to our conference paper, this work compares CtM against 
several benchmarks, including ML-based solutions. Additionally, it 
evaluates CtM and its alternatives in a urban canyon network and 
propagation scenario, considering new phantoms for EMF exposure 
assessment.

3. System model

Our system model aims at representing the main elements of cell-
less networks, their features, and the main decisions to make therein.

Model elements and parameters. Our system includes the PoAs, 
represented by elements 𝑝 ∈  , and the end users (either devices 
such as IoTs, or user terminals), represented by elements 𝑑 ∈ . Each 
PoA 𝑝 ∈  is associated with one or more beams 𝑏 ∈ .  The number 
of beams, i.e., the size || of set , depends upon the technology and 
features of the PoAs, and is an input to our problem.  Further, we 
consider a set of humans ℎ ∈ , representing people who might incur 
the EMF exposure resulting from the network. Humans in  include 
both users of the network and simple passers-by, as depicted in Fig.  1.

End users, humans, and PoAs, are associated with a position and 
height, described through parameters: 𝑥H(ℎ), 𝑦H(ℎ), and 𝑧H(ℎ) for hu-
mans ℎ ∈ ; 𝑥D(𝑑), 𝑦D(𝑑), and 𝑧D(𝑑) for end users 𝑑 ∈ ; 𝑥P(𝑝), 𝑦P(𝑝), 
and 𝑧P(𝑝) for PoAs 𝑝 ∈  . People with a user terminal (e.g., smartphone, 
tablet, laptop, wearable) are represented by both an end user in  and 
a human in , sharing the same location. IoT devices like robots, on 
the other hand, are only represented by an element in .

Concerning PoAs 𝑝 ∈  , they operate at a frequency 𝑓 (𝑝) (which 
is known) and feature a set of beams 𝐵(𝑝) ⊆ , each of which must 
have a minimum width 𝜔min(𝑝). Furthermore, we indicate with 𝜋(𝑏) ∈ 
the PoA originating beam 𝑏. If a single PoA can operate at different 
frequencies, then two distinct elements in  are created to represent it, 
sharing the same location.

Decisions and their effects. Our decisions concern the joint aspects 
of (i) end user-to-PoA assignment, and (ii) PoA and beam management. 
The former is addressed through binary variables 𝑦(𝑏, 𝑑) ∈ {0, 1}, 
expressing whether beam 𝑏 ∈  (hence, PoA 𝜋(𝑏) ∈ ) serves device 𝑑 ∈
. Concerning the latter, we have to make four decisions, namely:

• the transmission power 𝑃tx(𝑝) of PoAs 𝑝 ∈  ;
• the azimuth angle 𝜙(𝑏) of beam 𝑏 ∈ ;
• its elevation angle 𝜃(𝑏);
• its width 𝜔(𝑏).
All the above decisions are then fed as input to the following three 

functions:

• 𝖱𝖺𝗍𝖾(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔, 𝑑), computing the data rate obtained by each 
end user 𝑑 ∈ ,  accounting for interference (both intra- and 
inter-cluster), mobility, and noise;

• 𝖤𝗇𝖾𝗋𝗀𝗒(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔), computing the total energy consumption;
• 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔, ℎ), estimating the EMF exposure levels in-
curred by each human ℎ ∈ , quantified through any of the 
metrics discussed in Section 6.4.

It is important to highlight that the shape of the beam directly impacts 
the rate, energy, and exposure it results into. Specifically, a beam is a 
specific shape of an antenna radiation pattern characterized by a main 
lobe, i.e., a direction in space where most of the energy is radiated. 
The direction of the beam in spherical coordinates is characterized by a 
pair of angles, 𝜃(𝑏), 𝜙(𝑏), and an angular width (called the beamwidth). 
These effects are captured by the functions 𝖱𝖺𝗍𝖾,𝖤𝗇𝖾𝗋𝗀𝗒 and 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾
defined above, which, therefore, depend on the orientation and width 
of all network beams.  These functions are then combined to express 
the objective we seek to optimize and the system constraints. From the 
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viewpoint of our scheme, they are considered to be given and known. It 
is important however to remark how rate, energy, and exposure can be 
computed through different techniques – and, in the case of exposure, 
even be quantified through different metrics.

As an example, the received power can be determined through 
simple path-loss formulas or through much more complex channel 
models, accounting for clutter and mobility, such as the one we employ 
in Section 6. Similarly, EMF exposure can be quantified through metrics 
that focus on the electromagnetic field at a given location (e.g., elec-
tric field strength or power density [24]), or through more complex 
metrics like the specific absorption rate (SAR), which account for the 
interaction between electromagnetic fields and biological tissues [25]. 
Different scenarios and conditions call for different metrics, hence, 
there is no right way to compute the rate, energy, and exposure.

Accordingly, our system model and problem formulation – as well 
as the CtM solution strategy – can accommodate any technique to do 
so, from the simplest to the most realistic ones. This, coupled with the 
modular architecture of our implementation (see Section 7.2), greatly 
improves the flexibility of the proposed CtM solution, as well as its 
applicability to many real-world scenarios and conditions.

4. Optimization formulation

This section first presents the formulation of the problem we ad-
dress, and then proves its NP-hardness.

4.1. Objective and requirements

In general, we aim to optimize one of the metrics introduced above, 
i.e., one of the functions 𝖱𝖺𝗍𝖾, 𝖤𝗇𝖾𝗋𝗀𝗒 or 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾, while using the other 
two as constraints. The traditional approach would be to maximize the 
performance (quantified, typically, through the sum-rate [26]), subject 
to constraints about energy and EMF exposure.

We instead opt, in accordance with the human-centric paradigm, for 
a formulation where:

• minimizing the global energy consumption is the objective;
• constraints ensure that (i) each end user 𝑑 ∈  obtains the 
required data rate, and (ii) exposure limits are honored for all 
humans in .

This formulation allows us to combine global and local quantities, as 
well as performance-related and human-centric metrics. Notice that 
our approach works unmodified for other options, e.g., maximizing the 
minimum rate. 

More formally, we have:
min

𝑦,𝑃tx ,𝜙,𝜃,𝜔
𝖤𝗇𝖾𝗋𝗀𝗒(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔) (1)

𝖱𝖺𝗍𝖾(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔, 𝑑) ≥ 𝖱𝖺𝗍𝖾min(𝑑),∀𝑑 (2)

𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔, ℎ) ≤ 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾max,∀ℎ. (3)

The problem above reflects the complexity of our scenario, as discussed 
earlier: the objective (1) concerns a global variable, the rate require-
ments are to be guaranteed for each single end user, while meeting the 
guidelines about EMF exposure has to be ensured for all humans.

Also notice how minimum rates may be different for all end users, 
reflecting the fact that performance requirements vary wildly across 
applications and services. With regard to the EMF exposure, the in-
ternational guidelines have been defined by international scientific 
bodies, e.g., the International Commission on Non-Ionizing Radiation 
Protection (ICNIRP), to protect people from all substantiated harmful 
effects of EMF exposure. The estimation of the levels of EMF exposure 
(i.e., the 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾 function in this study) is performed here in terms of 
the rate of energy absorbed by the biological tissues; thus, its values will 
be different for humans with different morphologies, consistently with 
the human-centric approach of our study. We remark that the levels 
of EMF exposure is not used as optimization objective, as the goal is 
not to obtain the lowest level possible, but to be compliant with the 
international exposure guidelines.
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4.2. Problem analysis

We can prove the following property. 

Property 1.  The problem of minimizing (1) subject to (2) and (3) is 
NP-hard.

Proof.  We show how any instance of the generalized assignment 
problem (GAP), which is known to be NP-hard [27], can be transformed 
into an instance of our problem. In GAP, a set of  = {𝑖} of items
must be assigned to containers (bins) 𝑐 ∈ . Items have a value 𝑣𝑖 and 
a weight 𝑤𝑖; containers can support a maximum weight of 𝑊𝑐 . Any 
GAP instance can be transformed in a heavily simplified instance of 
our problem, where:

∙ PoAs in  correspond to items in ;
∙ end users in  correspond to containers in ;
∙ || is such that all PoAs can serve all end users;
∙ the rate experienced by end user 𝑑 when served by PoA 𝑝 is equal 

to 𝑅(𝑝, 𝑑), regardless of all other decisions, and such a quantity is equal 
to the weight of the item corresponding to the PoA;

∙ the function 𝖱𝖺𝗍𝖾 is such that end users served by multiple PoAs 
simply enjoy the sum of the individual rates 𝑅(𝑝, 𝑑), i.e., there is no 
scheduling and no interference;

∙ no EMF exposure is incurred (or, alternatively, there are no 
humans in ).

Notice that these are highly simplified assumptions, i.e., we are 
transforming a full instance of GAP into a very simple (hence, intu-
itively, relatively easy to solve) instance of ours.

We start from a condition where all PoAs serve all end users, and 
assign to each end user a minimum rate of 𝖱𝖺𝗍𝖾min(𝑑) =

∑

𝑝∈ 𝖱𝖺𝗍𝖾(𝑝, 𝑑)−
𝑊𝑐 , where 𝑐 is the container associated with end user 𝑑. Similarly to 
the rate, serving end user 𝑑 with PoA 𝑝 incurs an energy cost of 𝐸(𝑐, 𝑑), 
and the total energy (i.e., the value of objective (1)) is simply given 
by ∑𝑐,𝑑 𝐸(𝑐, 𝑑). Also, initially, all PoAs serve all end users with one 
beam. Then, assigning item 𝑖 to container 𝑐 (in the GAP) means stopping
serving the end user 𝑑 associated through 𝑐 with the PoA associated 
with 𝑖. Thus, every time we assign an item, we decrease the energy cost 
in our problem (which corresponds to increasing the value in the GAP). 
At the same time, the rate obtained by the end user decreases (i.e., the 
weight in the container increases) and gets closer to the minimum rate 
(i.e., the maximum container weight). Finally, the optimal solution of 
our problem is also the optimal solution for the GAP. Through the 
above procedure, we can reduce any instance of the GAP problem to 
an instance of ours. The reduction requires polynomial (linear) time, 
hence, the thesis is proved. □

There are two aspects of the proof of Property  1 that are worth 
highlighting. First, we convert an instance of the GAP problem to a very 
simple instance of our own; intuitively, this suggests that our problem 
might be even more complex than GAP.  Indeed, if simple instances 
like the ones we create in the proof are NP-hard, that holds a fortiori
for more complex, realistic instances. 

Furthermore, the proof makes heavily simplified assumptions on 
the form of the functions 𝖱𝖺𝗍𝖾 and 𝖤𝗇𝖾𝗋𝗀𝗒, while altogether ignor-
ing 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾. As exemplified by the channel model presented in Sec-
tion 6, these functions can be very complex to compute, non-linear, 
and non-convex; indeed, they may even lack a closed-form expression. 
All such elements add further complexity to our problem;  specifically, 
traditional solvers require a closed-form expression of the objective and 
constraints of the problem to solve, and many – critically, those that 
are guaranteed to converge to the optimum – only work for convex 
problems. 

As a consequence of Property  1 and the remarks above, it is imprac-
tical – and, often, impossible – to solve our problem using conventional 
numerical solvers.  This is a consequence of the size of the solution 
space to explore and the combinatorial nature of the solutions them-
selves, and  motivates us to propose an efficient and effective heuristic 
strategy called cluster-then-match (CtM), as described next.
4 
5. The CtM strategy

As discussed in Section 4.2, it is prohibitively complex to solve 
our problem to optimality, mostly due to the size of its solution space. 
Accordingly, our CtM heuristic strategy is predicated on (i) sequentially 
considering the main elements of our system model (end users, PoAs, 
humans), and (ii) at each step, restricting our attention to the most 
promising possible decisions. In doing so, CtM can  leverage the flexible 
relationship between users and PoAs, as well as the configurability of 
PoAs themselves, and explore a subset of the original solution space; 
although small, such subspace will contain most of (often, all) the 
highest-quality solutions. In so doing, CtM is able to balance the need 
for speed (because only a small number of solutions are explored) and 
the pursuit of effectiveness (since most of the good-quality solutions are 
among those explored). 

Specifically, as depicted in Fig.  3, the CtM strategy consists of three 
main steps:

1. clustering the end users in , so as to make subsequent decisions 
on a per-cluster, rather than per-end user, basis;

2. assigning clusters to PoAs in  , thus determining beam steering;
3. optimizing beam width and transmission power levels.

Steps 1 and 2 above directly map, respectively, to the twin objectives 
of CtM: exploring a small number of solutions, whilst ensuring their 
quality.  In the following, we describe each of the steps separately.

Step 1: Clustering. A major reason for the complexity of the origi-
nal problem formulated in Section 4 is the many-to-many relationship 
between end users in  and PoAs in  . On the one hand, we need to 
take this relationship into account to exploit the potential of cell-less 
networks; on the other hand, considering all possible end user-to-PoA 
associations is unnecessarily complex. Our intuition is to leverage the 
beams in  =

⋃

𝑝∈ 𝐵(𝑝), and make the key observations that:
∙ since there will be more end users than beams, each beam will 

serve multiple end users, and
∙ to keep beams as narrow as possible, it is desirable that end 

users served by the same beam are close to each other. The latter is 
motivated by the fact that wider beams result  in a higher likelihood 
that additional users – other than those in the cluster being served –, as 
well as more humans, to be affected in the beam itself. This, in turns, 
results in higher energy consumption and higher interference. 

Following the observations above, in Step 1 of the CtM strategy 
we cluster the end users in  into as many clusters as the number of 
possible beams in , exploiting their position information (i.e., the 𝑥P
and 𝑦P parameters) to make clusters as small – in terms of area 
occupied by their end users – as possible. Although any clustering 
algorithm can be used in this step, for concreteness we adopt the 
𝑘-means algorithm [28]. 𝑘-means indeed yields very good results in 
scenarios like ours, also thanks to the fact that (unlike hierarchical 
clustering and later approaches such as DBSCAN [29]) it takes as an 
input the target number 𝑘 of clusters, which corresponds to the number 
of beams in our case. End users in the same cluster can be served 
either via pairing in multi-user, multiple-input, multiple-output MIMO 
(MU-MIMO) systems [30], or via time-division multiplexing (TDM) if 
MU-MIMO is not used in the current scenario.

The number 𝑘 of clusters to create must match the number || of 
beams in order for the subsequent matching step to be ran efficiently, 
hence, that quantity does not need optimization. Alternative clustering 
algorithms could be explored in principle, so long as they accept the 
target number of clusters as a parameter; however, we have found that 
most recent clustering approach aim at discovering the optimal number 
of clusters, hence, 𝑘-means remains very well-suited to CtM in spite of 
its age. 

Step 2: Matching. We have now as many clusters of end users as 
the number of beams in ; our next task is to match the beams and the 
clusters they serve. This is a bipartite matching problem; importantly, 
thanks to the clustering performed in Step 1, the matching to perform is 
one-to-one instead of many-to-many. To efficiently solve to optimality 



E. Chiaramello et al. Computer Networks 270 (2025) 111522 
Fig. 3. The three main steps of the CtM strategy: clustering of the end users, cluster-
to-PoA assignment, optimizing beam width and transmission power levels.

our one-to-one bipartite matching problem, we apply the Hungarian 
algorithm [31]. The input to the algorithm consists of a square ma-
trix 𝐂 = {𝑐𝑘𝑏}, where element 𝑐𝑘𝑏 is the cost of serving the 𝑘th cluster of 
devices through the 𝑏th beam; the output is the assignment minimizing 
the sum of the costs.

As our cost metric, we simply consider the distance from the PoA 
originating the beam to the centroid of the cluster of devices to serve. 
The main reason for choosing distance is that path loss depends upon 
distance, hence, serving clusters that are farther away would entail 
higher transmission powers and/or lower data rates. More specifically, 
making decisions based upon the distance has a twofold advantage:

• shorter distances between PoAs and devices make it possible to 
use lower power levels and narrower beams;

• using distances (as opposed to, e.g., the achievable rate) does 
not require any knowledge of the specific implementation of 
the 𝖤𝗇𝖾𝗋𝗀𝗒, 𝖱𝖺𝗍𝖾, or 𝖤𝗑𝗉𝗈𝗌𝗎𝗋𝖾 functions.

The latter item also implies that Step 2 of CtM is easy and quick to 
perform even in scenarios and cases where evaluating the rate, energy, 
or exposure is costly and/or time consuming (e.g., if those quantities 
are evaluated through simulations).

Step 3: Optimizing beam width and power. In this step, we set 
the width of each beam and the transmission power of each PoA, keep-
ing into account both the objective (1) and the constraints (2) and (3). 
Specifically, we set the width of beams to the minimum value necessary 
to serve the end users assigned to them. Additionally, we reduce their 
power as much as possible to decrease the energy consumption and the 
EMF exposure, while ensuring the required performance.

Concerning beam widths, let 𝐷(𝑏) ⊆  be the set of end users 
belonging to the cluster assigned to beam 𝑏. Then the angle 𝛼(𝑏, 𝑑) from 
each end user 𝑑 ∈ 𝐷(𝑏) is given by:

𝛼(𝑏, 𝑑) = sgn(𝛥𝑦) arccos
𝛥𝑥

√

𝛥2
𝑥 + 𝛥2

𝑦

,

where 𝛥𝑦 = 𝑦𝐷(𝑑)−𝑦𝑃 (𝜋(𝑏)), 𝛥𝑥 = 𝑥𝐷(𝑑)−𝑥𝑃 (𝜋(𝑏)) and the width of the 
beam is set to the angular width of the cluster, as observed from the 
PoA generating beam 𝑏, i.e.,

𝜔(𝑏) ← max
{

𝜔min(𝜋(𝑏)), 𝜋 − |

|

|

𝛼(𝑏)max − 𝛼(𝑏)min − 𝜋||
|

}

,

where 𝛼(𝑏)max = max𝑑∈𝐷(𝑏) 𝛼(𝑏, 𝑑) and 𝛼(𝑏)min = min𝑑∈𝐷(𝑏) 𝛼(𝑏, 𝑑).  Setting 
the beam width to the angular width of the cluster means making the 
beam as narrow as possible (whilst serving all users of the cluster). Re-
call that narrow clusters mean a smaller likelihood of a beam affecting 
users not belonging to its cluster, hence, making clusters as narrow 
as possible minimizes inter-cluster interference. Also  notice how the 
above expression also accounts for the minimum beam width 𝜔min, 
reflecting the fact that there are technological limits – specific to each 
PoA – preventing beams from being as narrow as one might desire.

The last part of Step 3 concerns power levels. Our key observations 
are as follows:

• reducing power might endanger feasibility (by resulting in a 
violation of constraint (2)), but will never affect adversely energy 
consumption (1) or EMF exposure (3);
5 
• reducing the power of a PoA will not impact feasibility for end 
users served by another PoA.

Accordingly, we process one PoA at a time, as follows:

(a) set an amount of power 𝛿;
(b) consider one of the PoAs 𝑝 ∈  ;
(c) reduce the power 𝑃tx(𝑝) by 𝛿;
(d) repeat Step (c) so long as that results in a globally feasible 

solution;
(e) go back to Step (b) and consider a different PoA.

The above procedure can be repeated, in a manner similar to Newton’s 
bisection algorithm [32], setting a smaller 𝛿 and starting afresh from 
Step (a). By doing so, we can get even more fine-grained (hence, higher 
quality) decisions, at the cost of a longer running time.  Concretely, we 
shall start from a large value of 𝛿, and then reduce it (e.g., by halving it) 
until the required precision has been reached. Importantly, the choice 
of 𝛿 does not affect feasibility, since feasibility is checked globally and, 
no matter the value of 𝛿, step 3 never moves from a feasible to an 
infeasible solution. Also notice that, by considering PoAs in a sequential 
manner and changing one beam at a time, CtM reduces the impact of 
suboptimal decisions: indeed, if a suboptimal decision is made, it will 
not affect PoAs other than the current one. 

5.1. Algorithm analysis

We now formally prove that CtM makes high-quality decisions
swiftly, by having a low computational complexity regardless the size 
of the problem to solve. 

Property 2.  The CtM strategy has polynomial worst-case computational 
complexity. 

Proof.  We prove the property by separately considering the three steps 
depicted in Fig.  3. Concerning Step 1, virtually all popular clustering 
techniques have polynomial complexity; taking 𝑘-means in particular, 
recent implementations can even achieve linear complexity [33]. The 
matching in Step 2 can be performed optimally through multiple ap-
proaches; considering the Hungarian algorithm, its complexity is cubic 
in the number of items to match (in our case, beams), as shown in [34]. 
In Step 3, width decisions are made only once per beam, hence, the 
added complexity is linear in the number of beams. Power levels are 
instead reduced at most ||

⌈ 𝑃max
tx
𝛿

⌉

 times, hence, the added complexity 
is linear in the number of PoAs.

As each of the above steps has polynomial time complexity, and we 
perform them sequentially, it follows that the total complexity of the 
full CtM procedure is polynomial as well. □

The concrete meaning of Property  2 is that the computational com-
plexity, hence, the time required by CtM to make its decisions, remains 
manageable as the size of the problem instance (e.g., the number of 
end users and PoAs) grows. This, in turn, implies that CtM decisions 
are made in time to be useful (e.g., to be acted upon) even in large 
and/or complex, real-world scenarios.

6. Reference scenario

For our reference scenario, we turn to ETSI technical report
TR 138.901 [7]. The report collects the outcomes of study item RP-
151606, covering different activities (e.g., spectrum allocation, sce-
narios of interest, measurements) related to frequencies between 6 
and 100 GHz. The study item had identified different scenarios of 
interest and, for each scenario, a suitable channel model; the technical 
report TR 138.901 unifies those models into a single one, working for 
all scenarios and all bands between 6 and 100 GHz. From TR 138.901, 
we draw:
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Fig. 4. Global coordinate system (GCS) (left), hall model for the InF-DH indoor scenario with colored objects representing clutters (center), and the detailed anatomical models 
used for electromagnetic field exposure assessment (right).  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
• two reference scenarios, to wit, an indoor factory (InF-DH) and 
an outdoor urban canyon (UMI-SC);

• the channel model that use throughout all our experiments,.

Each scenario includes a set of PoAs,  , of end users, , and of 
humans . Furthermore, indoor scenarios may include walls, ceiling, 
and clutter, i.e., metallic machinery or other irregular objects, as exem-
plified in Fig.  4(center). The signal propagation in these environments 
depends upon several factors, including the frequency used for the com-
munication, the orientation of antennas and beams, and the position of 
PoAs and users. Indoor scenarios also account for the hall size and the 
clutter density.

The environment is associated with a spherical or Cartesian global 
coordinate system (GCS), as depicted in Fig.  4 (left) for the indoor 
scenario. In the GCS, the azimuth angle, 𝜙 ∈ [−180◦, 180◦], is measured 
counterclockwise from the 𝑥 axis, whereas the zenith angle, 𝜃 ∈
[0◦, 180◦], is measured from the 𝑧 axis. Thus, directions on the horizon 
have 𝜃 = 90◦. To characterize the propagation channel, we first discuss 
the antenna model and then we detail the channel impulse response.

6.1. Antenna model and beamforming

The ETSI specifications [7] assume that PoAs and receivers are 
equipped with rectangular arrays (antenna panels) of 𝑀×𝑁 elements 
organized in a regular grid. To each panel is associated a local coor-
dinate system (LCS), with the 𝑥 axis being along the panel broadside 
direction. The mechanical orientation of the panel thus completely 
defines the relation between its LCS and the GCS. To simplify the 
model description, we here assume that all panels have tilt angle 
equal to 90◦ and slant angle 0◦, whereas the azimuth angle, 𝛼, can be 
arbitrarily chosen. The radiation power pattern of a panel element can 
be described in the LCS by the function 𝐴dB(𝜃, 𝜙),1 given by 𝐴dB(𝜃, 𝜙) =
0 the ideal isotropic model, and by

𝐴dB(𝜃, 𝜙) = 8 − min{𝐴1,dB(𝜃) + 𝐴2,dB(𝜙), 30}

with

𝐴1,dB(𝜃) = min
{

12
( 𝜃 − 90◦

65

)2
, 30

}

𝐴2,dB(𝜙) = min

{

12
(

𝜙
65

)2
, 30

}

,

 according to the 3GPP model with 8dBi gain.
An antenna panel can generate a beam 𝑏 toward a desired direction, 

characterized by the angles (𝜃, 𝜙̃), measured w.r.t. the LCS. Assuming 
that all antenna elements are vertically polarized, the electromagnetic 

1 A variable name with value expressed in dB shows the subscript ‘‘dB’’.
6 
field sent by the panel along the direction (𝜃, 𝜙) (w.r.t. the LCS) is given 
by

𝐹 (𝜃, 𝜙, 𝜃, 𝜙̃,𝑀,𝑁) = 𝐹 (𝜃, 𝜙)
sinc(𝑀𝑔1)
sinc(𝑔1)

sinc(𝑁𝑔2)
sinc(𝑔2)

⋅

√

𝑁𝑀ej𝜋[(𝑀−1)𝑔1+(𝑁−1)𝑔2]

where 𝐹 (𝜃, 𝜙) = 10𝐴dB(𝜃,𝜙)∕20 is the field generated by an array element, 
and 𝑔1 = 𝑑v(cos 𝜃 − cos 𝜃) and 𝑔2 = 𝑑h(sin𝜙 sin 𝜃 − sin 𝜙̃ sin 𝜃). Note 
that such an antenna model can describe both the field associated with 
antennas used for communication as well as a human body. In the latter 
case, a portion of a body with surface 𝜆2∕4𝜋m2 can be associated with 
a single isotropic antenna element with gain given by 𝐴dB(𝜃, 𝜙) = 0 and 
effective area 𝜆2∕4𝜋, where 𝜆 is the signal wavelength.

6.2. Channel impulse response

We now focus on a single wireless link connecting a generic PoA 
𝑝 ∈  to a generic target 𝑡 ∈   where  = ∪ is the set comprising 
end users and humans. For simplicity, we omit the dependence on PoA 
𝑝 and target 𝑡. The distance between the PoA and the target is denoted 
by 𝑑3D, and its projection on the ground is referred to as 𝑑2D (see Fig. 
4). The InF-DH and UMI-SC model provide expressions for the channel 
impulse response, ℎ̃(𝜏), which accounts for both line of sight (LoS) and 
non-LoS (nLoS) propagation. The probability of the PoA and the target 
being in LoS depends on several factors, including the distance 𝑑2D, 
on the PoA and target height and (for the InF-DH scenario) on the 
clutter density [7]. The channel impulse response has, in general, the 
following expression: ℎ̃(𝜏) = 10(𝛾dB+𝑃tx,dB)∕20+𝜁ℎ(𝜏) where 𝑃tx,dB is the 
power emitted by the PoA 𝑝 (in dBm), 𝛾dB is the pathloss, and 𝜁 is a 
random variable modeling shadow fading. The function ℎ(𝜏) describes 
the wireless link as a set of rays grouped in a (scenario-specific) number 
𝑁𝑐 of clusters. Cluster 𝑗 is described by the normalized power 𝑃𝑗 and 
collects the contribution of 𝑁𝑟 = 20 rays, which are characterized 
by a common delay 𝜏𝑗 . Ray 𝓁 of cluster 𝑗 has azimuth and zenith 
angles of departure (AoD) (𝜃𝑃 ,𝑗,𝓁 , 𝜙𝑃 ,𝑗,𝓁), measured w.r.t. to the GCS 
and, similarly, azimuth and zenith angles of arrival (AoA) (𝜃𝑇 ,𝑗,𝓁 , 𝜙𝑇 ,𝑗,𝓁), 
when observed from the target. If the PoA and the target are in LoS, an 
additional path, with LoS AoD (𝜃𝑃 ,0, 𝜙𝑃 ,0) and LoS AoA (𝜃𝑇 ,0, 𝜙𝑇 ,0) (in 
the GCS), has to be considered. Thus, in the delay domain, we have: 

ℎ(𝜏) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑𝑁𝑐
𝑗=1

√

𝑃𝑗
𝑁𝑟

∑𝑁𝑟
𝓁=1 𝐹𝑇 ,𝑗,𝓁𝐹𝑃 ,𝑗,𝓁e

j𝜑𝑗,𝓁 𝛿(𝜏−𝜏𝑗 )

 if nLoS propagation apply
√

1
1+𝐾 ℎnLoS(𝜏) +

√

𝐾
1+𝐾 ℎLoS𝛿(𝜏 − 𝜏1)

 if LoS propagation apply

(4)

where 𝛿(𝜏) is the Dirac delta function, 𝐾 is the Rician fading coefficient, 
𝜑𝑗,𝓁 is a random phase and 
𝐹 ≜ 𝐹 (𝜃 , 𝜙 −𝛼 , 𝜃 , 𝜙̃ ,𝑀 ,𝑁 )
𝑇 ,𝑗,𝓁 𝑇 ,𝑗,𝓁 𝑇 ,𝑗,𝓁 𝑇 𝑇 𝑇 𝑇 𝑇
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𝐹𝑃 ,𝑗,𝓁 ≜ 𝐹 (𝜃𝑃 ,𝑗,𝓁 , 𝜙𝑃 ,𝑗,𝓁−𝛼𝑃 , 𝜃𝑃 , 𝜙̃𝑃 ,𝑀𝑃 , 𝑁𝑃 )

 are the PoA and target fields computed according to (4). Specifically, 
for computing 𝐹𝑇 ,𝑗,𝓁 , we substituted in (4) the antenna parameters 
of the target (e.g., 𝑀𝑇 , 𝑁𝑇 ), and beam direction 𝜙̃𝑇 , 𝜃𝑇  while, for 
computing 𝐹𝑃 ,𝑗,𝓁 , we employed those of the PoA, namely, 𝑀𝑃 , 𝑁𝑃 , 
𝜙̃𝑃  and 𝜃𝑃 . Moreover, in such expressions, the azimuth angles 𝛼𝑃  and 
𝛼𝑇  represent the azimuth mechanical orientation of the PoA and target 
antennas, respectively. Finally, ℎLoS = 𝐹𝑇 ,0𝐹𝑃 ,0 exp(−j

2𝜋
𝜆 𝑑3D) with 

𝐹𝑇 ,0 ≜ 𝐹 (𝜃𝑇 ,0, 𝜙𝑇 ,0−𝛼𝑇 , 𝜙̃𝑇 , 𝜃𝑇 ,𝑀𝑇 , 𝑁𝑇 )

𝐹𝑃 ,0 ≜ 𝐹 (𝜃𝑃 ,0, 𝜙𝑃 ,0−𝛼𝑃 , 𝜙̃𝑃 , 𝜃𝑃 ,𝑀𝑃 , 𝑁𝑃 ). (5)

 Note that, according to [7], the values of the Rician fading coefficient 
𝐾, of the AOA and AOD of each ray, of the cluster powers 𝑃𝑗 and of 
the delays 𝜏𝑗 take random values and are obtained through a long and 
complex procedure whose description would require a large amount 
of space. The interested reader is referred to [7] for details. If in 
the scenario there are several PoAs and targets, the wireless links 
connecting any pair of them are to be considered mutually independent.

6.3. SINR, rate, and power density at the target

Given the set of simultaneously transmitting PoAs () and the set 
of targets ( ), we recall that with each PoA 𝑝 is associated a position 
[𝑥𝑃 (𝑝), 𝑦𝑃 (𝑝), 𝑧𝑃 (𝑝)], a carrier frequency 𝑓 (𝑝), a panel with 𝑀𝑃 (𝑝)×𝑁𝑃 (𝑝)
elements, and a mechanical orientation angle 𝛼𝑃 (𝑝), a transmit power 
𝑃tx,dB(𝑝), and a beam 𝑏, whose direction, in the panel LCS, is speci-
fied by the angles 𝜙̃𝑃 (𝑝) and 𝜃𝑃 (𝑝). Similarly, the target has position 
[𝑥𝑇 (𝑡), 𝑦𝑇 (𝑡), 𝑧𝑇 (𝑡)]. For simplicity, we assume that the target has an 
antenna panel with 𝑀𝑇 (𝑡) = 𝑁𝑇 (𝑡) = 1 element and its power pattern 
is isotropic. Thus, the target mechanical orientation angle becomes 
meaningless as well as the notion of beam, i.e., the variables 𝛼𝑇 (𝑡), 
𝜙̃𝑇 (𝑡), and 𝜃𝑇 (𝑡) can be arbitrarily chosen since they have no effect. 
Then, for every 𝑝 and 𝑡, we define the impulse response of the channel 
connecting them as ℎ̃𝑝,𝑡(𝜏), computed as specified in Section 6.2, with 
power 𝑝,𝑡 = ∫ +∞

−∞ |ℎ̃𝑝,𝑡(𝜏)|
2d𝜏. Let  be the set of frequencies used by 

the PoAs and (𝑓 ) ⊆  the subset of PoAs transmitting at frequency 
𝑓 ∈  , where ∪𝑓∈(𝑓 ) =  and (𝑓 )∩(𝑓 ′) = ∅ ∀ 𝑓, 𝑓 ′ ∈  .

Thus, when 𝑝 transmits and the target 𝑡 is an end user 𝑑, the 
instantaneous measured SINR is

SINR𝑝,𝑑 =
𝑝,𝑡

𝑁0𝑊𝑝 + ∫ +∞
−∞

|

|

|

∑

𝑝′∈(𝑓 (𝑝)),𝑝′≠𝑝 ℎ̃𝑝,𝑑 (𝜏)
|

|

|

2
d𝜏

,

where 𝑊𝑝 is the signal bandwidth used by 𝑝 and 𝑁0 = −174dBm/Hz is 
the thermal noise power spectral density. The corresponding achievable 
rate is then given by 
𝑅𝑝,𝑑 = 𝑊𝑝 log2(1 + SINR𝑝,𝑑 ).

 Instead, when the target 𝑡 is a human ℎ, the power received from all 
transmitting PoAs at frequency 𝑓 is: 

𝑃rx,ℎ,𝑓 = ∫

+∞

−∞

|

|

|

|

|

|

∑

𝑝∈(𝑓 )
ℎ̃𝑝,ℎ(𝜏)

|

|

|

|

|

|

2

d𝜏

 and the corresponding power density over the human body at ℎ is 
obtained by dividing the received power in a certain point by the 
effective area 𝜆2∕(4𝜋), i.e.,
𝑆ℎ,𝑓 = 4𝜋𝑓 2∕𝑐2𝑃rx,𝑡,𝑓 W/m2.

6.4. Exposure model

Given the power density over the human body 𝑆ℎ,𝑓 , the EMF expo-
sure is assessed by estimating the specific energy absorption rate (SAR) 
over the whole body, SARwb, which is the power of the EMF absorbed 
over the entire body mass. We first derive the incident electric field 
7 
𝐸inc =
√

𝑆ℎ,𝑓𝑍0 V/m where 𝑍0 = 377Ω is the free-space impedance. 
Considering a human with body mass index BMIℎ kg/m2, the SARwb
can be estimated as 

SARwb =
(

𝐸inc
𝐸ref

)2
⋅
BMIℎ
BMIref

SARref (6)

where SARref , measured in W/kg is the whole-body SAR induced by 
a reference incident field 𝐸ref  in a reference human body of mass 
index BMIref . Eq. (6) assumes far-field conditions, which is a reasonable 
assumption for the exposure scenarios and the frequency considered in 
this study.

The whole-body specific absorption rate (SARref ) of the reference 
human body is defined as [35]: 

SARref =
𝑃wb,ref

𝑀ref
= 1

𝑀ref ∫wb
𝜎(𝑟)𝐸2

RMS(𝑟) d𝑉 (7)

where 𝑃wb,ref  (in W) and 𝑀ref  (in kg) are, respectively, the whole-body 
absorbed power and the mass of the reference human body. As for the 
reference human body: (i) 𝜎 (in S/m) is its electrical conductivity; (ii) 
𝐸RMS (in V/m) is the root mean square value of the induced electric 
field, and (iii) 𝑉  is its volume. The values of SARref  considered in 
this study were calculated by [36] through electromagnetic compu-
tational techniques in anatomical human models and determined in 
far-field conditions, when the reference field 𝐸ref  was set equal to 
2.45V/m. To account for the anatomical variability of human bodies, 
we estimated the SARwb for four computational whole-body anatomical 
human models, two adults and two children: Ella (female, 26 years), 
Duke (male, 34 years), Thelonious (male, 6 years) and Billie (female, 
11 years) (see Fig.  4(right)).  These models belong to the ‘‘Virtual 
Population (ViP)’’, a collection of anatomical models obtained from 
high-resolution Magnetic Resonance Imaging (MRI) data widely used 
for electromagnetic field exposure assessment [37], representing the 
gold standard for in silico biophysical modeling applications. Each 
model resembled the anatomical characteristics of a real individual and 
included up to more than 80 different tissues across the whole body.

The SARref  values provided by [36] were calculated at a set of 
frequencies slightly different from those considered in this study, i.e., 3 
and 5 GHz.  Since the dielectric properties of human tissues vary with 
frequency (thereby affecting the absorption of the power by human 
tissues), we needed to identify which value of SARref  could be con-
sidered reliable and accurate enough to approximate those obtained 
precisely at 3 and 5GHz. To do so, we calculated the ratio between the 
dielectric properties across all tissues, at 3 and 5GHz and those at the 
nearest frequencies reported in [36], that is, 2.45, 3.5 and 5.2GHz.  All 
obtained values were well below 2, the threshold for which, variations 
in dielectric properties do not substantially influence the whole-body 
SAR [38]. We can therefore state that this approximation does not 
affect the reliability the estimation of the exposure. For 5GHz, the 
dielectric properties of human tissues [39,40] were very similar to 
those reported at 5.2GHz,  resulting in average ratios for both con-
ductivity and permittivity equal to about 1. As to the 3GHz frequency, 
the dielectric properties were compared with those reported for both 
2.45 and 3.5GHz, to identify which approximation could be the best. 
Although for both frequencies the ratios obtained as average across 
all the tissues were well below 2, the best approximation was found 
to be the 2.45GHz,  with ratios equal to 0.8 and 1.2 for conductivity 
and permittivity, respectively. From the SARwb of each frequency, the 
whole exposure level was obtained by summing the single frequency 
contribution, as defined in ICNIRP guidelines for multiple frequency 
exposure [35].  Evaluating SAR values allows assessing the compliance 
of the dose of EMF absorbed with the basic restrictions limits recom-
mended by the guidelines set by ICNIRP [35]. For the whole body SAR 
the basic restrictions for general public are equal to 0.08W/kg for both 
the considered frequencies [35].
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6.5. Reference topologies

We consider two scenarios, both drawn from ETSI technical re-
port [7]:

• An indoor factory scenario (Indoor Factory with Dense clutter 
and High base station height in [7], or InF-DH), considering a 
20 × 80 m2 factory hall where 𝜌𝑐 = 40% of the floor space is 
occupied by clutter, whose typical height is 2 m;

• An urban canyon scenario (UMI-SC in [7]), describing a 40 × 800
m2 road stretch.

Indoor factory and urban canyon represent two of the most relevant 
scenarios for beyond-5G networks, hence, studying how CtM fares in 
such scenarios is of great interest. Furthermore, they are very different 
from one another, with challenges coming from different sources – 
clutter in the factory, buildings in the canyon: this allows us to explore 
to which extent CtM can adapt to diverse environment conditions. 

For EMF exposure estimation, we consider the four human anatom-
ical models described above, consisting of two adults, one adolescent 
and one child. Using models of people of different age and body 
structure allows us to enhance the human-centric aspect of our work, 
by more accurately estimating the effect of networks over the entire 
population. Notice that we only consider models of adults (Ella and 
Duke) for the indoor factory scenarios, as the youngest individuals are 
unlikely to be found there; on the other hand, we use all models for the 
urban canyon scenario. Also notice how, as per [7], the urban canyon 
requires a minimum of 10 meters distance between users and the PoAs 
serving them; humans, on the other hand, can be placed anywhere in 
the topology.

7. Performance evaluation

In the following, we first introduce the benchmarks we consider 
to assess the performance of our CtM solution (Section 7.1), and the 
simulator we developed for performance evaluation (Section 7.2). Sub-
sequently, we compare our CtM strategy against the benchmark called 
MaxRate, which uses simulated annealing, (Section 7.3), and then 
against two ML-based benchmarks (Section 7.4). The main parameters 
of our reference scenarios are summarized in Table  1.

Throughout our performance evaluation, we consider the following 
metrics:

• the data rate experienced by the users, as our performance related 
metric;

• the EMF exposure experienced by all humans and the total energy 
consumption, as human-centric metrics.

We will use energy as our objective, and data rate and exposure as 
constraints. 

7.1. MaxRate and ML-based benchmarks

We compare the performance of the proposed CtM solution against 
three different benchmarks.

The first we consider, called MaxRate, uses  the simulated anneal-
ing general-purpose optimization algorithm [41], combined with our 
system model as presented in Section 3, to optimize the following 
objective:

max
𝑦,𝑃tx ,𝜙,𝜃,𝜔

min
𝑑∈

𝖱𝖺𝗍𝖾(𝑦, 𝑃tx, 𝜙, 𝜃, 𝜔, 𝑑),

i.e., to find a solution that maximizes the minimum among the data 
rates achieved by devices (Section 7.3). 

By doing so, MaxRate can mimic the traditional approach of im-
proving the overall network performance while guaranteeing fairness 
among devices.  Examples of works following this approach in the 
field of next-generation network management abound, focusing on such 
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Table 1
Simulation parameters.
 Indoor factory scenario
 Hall size 80 × 20 × 8m3  
 PoA height 7m (3GHz), 6m (5GHz) 
 User height 1.5m  
 Clutter height 2 m  
 Clutter density 40%  
 No. of PoAs 8  
 Frequency 3GHz (PoAs 1–2)  
 5GHz (PoAs 3–8)  
 Bandwidth 20MHz  
 No. of end users 100  
 No. of humans 200  
 Required rate 100Mb/s  
 SARwb limit 80mW/kg [35]  
 Urban canyon scenario
 Scenario size 800 × 40 m2  
 PoA height 10m  
 User height 0.9m or 1.5m  
 No. of PoAs 8  
 Frequency 3.5GHz (PoAs 1–2)  
 5.2GHz (PoAs 3–8)  
 Bandwidth 20MHz  
 No. of end users 100  
 No. of humans 200  
 Required rate 100Mb/s  
 SARwb limit 80mW/kg [35]  

Fig. 5. The ML-based benchmarks we compare against: DtM (top), replacing stage 1 
of CtM with DNN-based clustering [45], and ML-only (bottom), using a DNN to make 
all decisions. Additions and changes with respect to CtM (Fig.  3) are marked in purple.

disparate aspects as cognitive networking [42], reflective intelligent 
surfaces (RISs) [43], and multi-cell coordination [44]. 

Furthermore, we compare the performance of CtM against two ML-
based benchmarks, whose structure is summarized in Fig.  5. The first 
benchmark, depicted in Fig.  5(top), is called DNN-then-Match, or DtM 
for short. It essentially replaces the first stage of CtM, i.e., clustering, 
with a feed-forward DNN based upon [45]. The DNN is trained on 
historical data, i.e., past decisions and their outcome, and returns a 
user-to-cluster assignment that should result in the best performance.

The second benchmark, presented in Fig.  5(bottom), is called ML-
only, and reflects the recent trends towards model-free approaches 
where decisions are made with little contribution from domain-specific 
knowledge or algorithms.  ML-only reproduces the recent trend towards 
using ML techniques – most commonly, reinforcement learning – to 
solve network management problems, including beamforming [46–48], 
power control [46,47], and user assignment [46,48]. 

Importantly, both ML-based benchmarks require additional infor-
mation, i.e., the historical data marked in purple in Fig.  5, and must 
be trained before they can be used. Depending upon the concrete case 
at hand, historical data may or may not be available, and devoting the 
necessary resources and time to training may or may not be practical.
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Fig. 6. Scheme of the simulator used for performance evaluation.

7.2. System simulator

For our performance evaluation we leverage an ad-hoc simulator, 
whose architecture is summarized in Fig.  6 and includes three main 
components:

• a decision-making module, coded in Python and implementing 
the CtM and MaxRate strategies;

• an implementation of the channel model described in Section 6, 
coded in Matlab;

• a module computing EMF exposure values as described in Sec-
tion 6.4, coded in Matlab.

The architecture is highly decoupled: modules run as separate pro-
cesses, can be – indeed, are – coded in different languages, and commu-
nicate by exploiting local or remote inter-process communication (IPC) 
mechanisms. Such decoupling has the distinct advantage of naturally 
exploiting the multi-core capabilities of modern hardware; indeed, 
since each module runs as a separate process, they can efficiently 
exploit different processors. Even more important, multiple instances 
of the channel model and SAR computation values can be ran in 
parallel, so as to evaluate multiple decisions at the same time. This 
is especially useful for techniques based upon simulated annealing or 
Markov decision processes, where groups of alternatives (‘‘population’’, 
‘‘arms’’...) must be evaluated concurrently.

Notably, our decoupled architecture makes it trivial to replace any 
module with a different implementation thereof; as an example, we 
might have: (a) a decision-making module based on Markov decision 
processes or reinforcement learning; (b) a different channel model; 
(c) a different way to quantify EMF exposure, using alternative met-
rics and/or models. On the negative side, the communication and 
coordination between different processes inevitably results in an over-
head. However, compared to the running time of individual modules 
(especially the ones implementing channel models), such overhead 
is negligible. It can also be further reduced by using modern IPC 
techniques like message passing.

We take advantage of our decoupled architecture when implement-
ing the ML-only benchmark, and replace the whole CtM block with a 
feed-forward DNN taking as an input the decisions (beam orientation, 
width, and power) and the resulting performance.  For DtM and ML-
only, we train the DNN over a dataset including 10,000 examples of 
randomly-generated decisions, along their outcome, i.e., the resulting 
rate, exposure, and energy consumption. The DNN is then used to 
obtain the set of decisions deemed to yield the best performance. 
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7.3. CtM performance against MaxRate

We now study the performance of the basic CtM algorithm described 
in Section 5 and compare it to the MaxRate benchmark in the two 
scenarios described in Section 6.5.
Indoor factory scenario. We begin by investigating the most basic 
aspect of CtM’s and MaxRate’s performance, i.e., the incurred energy 
consumption. Concerning this critical aspect, Fig.  7(left) shows that 
CtM outperforms MaxRate, yielding a power consumption that is almost 
an order of magnitude lower. Groups of bars in the plot correspond 
to different PoAs, and confirm that CtM can significantly reduce the 
transmission power of all PoAs compared to MaxRate. Also notice how, 
for both strategies, PoAs 1 and 2, operating at 3 GHz and typically serv-
ing farther-away end users, get assigned higher values of transmission 
power than the other PoAs that operate at 5 GHz.

Striking as Fig.  7(left) is, one might rightfully wonder whether such 
a reduced energy consumption comes at a cost in terms of data rate and 
service quality. The answer, as shown in Fig.  7(center), is both positive 
and negative. Indeed, under the CtM strategy (blue line in the plot) end 
users get lower data rates than under MaxRate (red line in the plot); 
however, such data rates are always (and sometimes significantly) 
above the required level (yellow line in the plot). This is consistent 
with the way data rates are included in our problem formulation in 
Section 4 and, more specifically, with constraint (2): so long as all end 
users are guaranteed 𝖱𝖺𝗍𝖾min(𝑑), there is no reason to further increase 
data rates. At a more general level, Fig.  7(left) and Fig.  7(center) 
suggest how adopting a human-centric approach, hence, using data rate 
performance as a constraint and not an objective, can bring substantial 
energy savings without jeopardizing service requirements.

In Fig.  7(right), we move to the other human-centric metric we 
consider, i.e., EMF exposure as quantified through SARwb. Once can 
immediately see that CtM yields a much lower SARwb than MaxRate; 
further, SARwb levels for either strategies are significantly below the 
limit values recommended in [35], to wit, 80 mW/kg. It is perhaps 
even more interesting to remark how there are two lines in the plot 
for each strategy, one dashed and one dotted, corresponding (resp.) 
to the Ella and Duke models introduced in Section 6.4. This further 
confirms that our approach can account for individual characteristics 
when assessing SARwb.

We now check whether there is any clear space pattern in the 
distribution of rate by plotting, in Fig.  8, the location of each end 
user and the rate they get under the MaxRate and CtM strategies. 
Consistently with Fig.  7(center), MaxRate ensures to virtually all end 
users a data rate that is much higher than required, hence, all markers 
in the left-hand side map are deep blue. In the right map, instead, 
we can see many lighter markers, though no red ones – highlighting 
the fact that CtM yields rate values that are closer to, but above, the 
required one. As one might expect, nodes with lower rate tend to be 
farther away from the PoA serving them, hence, experience higher 
attenuation and/or interference.

Similarly, Fig.  9 presents the SARwb levels experienced by humans 
in , under the MaxRate and CtM solutions. As we can expect from Fig. 
7(right), CtM results in uniformly low SARwb values, hence, dark green 
markers. MaxRate, on the other hand, results in higher SARwb levels, 
hence, slightly lighter markers. As per Fig.  7(right), however, all SARwb
values are significantly lower than the limit, thus, there are no purple 
markers on the plot. Also notice how the shape of the marker identifies 
the model (Ella or Duke) used to determine the SARwb of that specific 
human.

In Fig.  10, we look a little deeper into the relationship between the 
transmission power selected by PoAs and the SARwb level experienced 
by humans. Each marker in the plot corresponds to a solution (includ-
ing infeasible ones) considered by any of the strategies. Its positions 
along the 𝑥- and 𝑦-axes correspond, respectively, to the total power 
level and 95th percentile of SAR  (computed over all humans). We 
wb
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Fig. 7.  Indoor factory scenario, CtM and the MaxRate benchmark: transmitted power (left), distribution of data rates (center), and SARwb values (right).  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Indoor factory scenario: data rate experienced by different end users under the MaxRate (left) and CtM (right) strategies. The black marker on the color bar corresponds 
to the required rate. Red stars represent PoAs.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Indoor factory scenario: SARwb experienced by different humans under the MaxRate (left) and CtM (right) strategies. The black marker on the color bar corresponds to the 
ICNIRP limit. Square and triangle markers correspond (resp.) to humans associated with the Duke and Ella models. Red stars represent PoAs.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10.  Indoor factory scenario, all solutions considered by all strategies: relationship 
between total emitted power and 95th percentile of SARwb, with the color of each 
marker corresponding to the rate experienced by the 5th percentile of end users.  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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can observe a very strong correlation between these two quantities. 
Even more interestingly, from the color of the markers, one can see that 
solutions with high power are almost invariably feasible. On the other 
hand, low power levels are associated with many infeasible solutions 
but also – critically – some feasible ones. Indeed, CtM can explore that 
part of the solution space, and find solutions that are consistent with 
the data requirements while incurring little energy consumption and 
EMF exposure.

The latter two quantities, although distinct, are linked: indeed, en-
ergy consumption is a global metric describing the PoAs and how much 
power they emit ; SAR, on the other hand, depends upon the power level 
humans receive, and is a quintessentially local metric. In other words, 
there could be corner cases where a globally good solution, i.e., one 
with small energy consumption, has a locally unacceptable SAR for 
some specific human. 

Finally, Fig.  11 sheds additional light on how PoAs operating at 
different frequencies are employed by the MaxRate and CtM strategies. 
Each marker in the plots corresponds to an end user; its position 
along the 𝑥- and 𝑦-axes corresponds, respectively, to the achieved data 
rate and the incurred interfering power; marker colors represent the 
frequency of the PoA serving the associated end user. We can observe 
that the higher frequency (5 GHz, purple markers) is associated with 
higher interfering power and lower data rates. Nonetheless, CtM (right 
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Fig. 11. Indoor factory scenario: data rate (x-axis) and interfering power (y-axis) experienced by all end users under the MaxRate (left) and CtM (right) strategies. The color of 
each marker denotes the frequency of the PoA serving the corresponding end user.  (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
Fig. 12.  Urban canyon scenario, CtM and the MaxRate benchmark: transmitted power (left), distribution of data rates (center), and SARwb values (right).  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Urban canyon scenario: data rate experienced by different end users under the MaxRate (left) and CtM (right) strategies. The black marker on the color bar corresponds 
to the required rate. Red stars represent PoAs.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Urban canyon scenario: SARwb experienced by different humans under the MaxRate (left) and CtM (right) strategies. The black marker on the color bar corresponds to the 
ICNIRP limit. Square and triangle markers correspond (resp.) to humans associated with the Duke and Ella models. Red stars represent PoAs.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
plot) can leverage such a frequency to serve a much larger number of 
end users, while MaxRate (left plot) leverages almost exclusively the 
lower, 3 GHz frequency (gray markers in the plots). As also highlighted 
in Fig.  7(left), however, intensively using that frequency necessitates 
higher transmission power, which results in higher energy consumption 
and EMF exposure.
Urban canyon scenario. We now move to the urban canyon scenario, 
and assess whether the behavior of CtM and MaxRate follows the same 
behavior as in the indoor factory.
11 
Fig.  12(left) confirms the behavior we observed in Fig.  7(left), 
with CtM resulting in a significantly lower power consumption than 
MaxRate. However, we can notice that the power used by CtM is higher 
than in the indoor factory scenario (Fig.  7(left)); the main reason for 
this difference is the larger size of the urban canyon scenario, which 
results in longer distances between PoAs and users, hence, higher 
attenuation. By looking at the columns reporting the power used by 
individual PoAs, we can also observe how CtM tends to use PoAs 1 
and 2, placed on the two ends of the road stretch, to a larger extent 
than MaxRate. This is due to the elongated shape of the urban canyon 
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scenario: serving many users through PoAs 3–8 (placed along the long 
sides of the area under study) would require using wider beams, which 
would result in more energy (and EMF exposure); on the other hand, 
PoAs 1 and 2 (placed on the short sides of the area) can serve many 
users with narrower beams.

As one might expect, CtM’s lower power and reliance on the lower-
frequency PoAs result in a significantly lower rate than MaxRate, as 
shown in Fig.  12(center). However, all rate values are consistent with 
the 100 Mb/s requirement (denoted by a yellow line in the plot), 
hence, CtM’s solutions are feasible. Importantly, this is essentially the 
same behavior as in Fig.  7(center); in both scenarios, CtM can provide 
users with the required data rate while minimizing power consumption, 
configuring the PoAs in the way that best suits the scenario at hand.

Consistently with Fig.  12(center), and similarly to Fig.  7 (right), 
Fig.  12 (right) shows that CtM yields a much lower exposure than 
MaxRate. This is true for all phantoms (notice that all four are used for 
the urban canyon scenario), even though individual phantoms do have 
different exposure distributions. Finally, similarly to Fig.  7(right), the 
EMF exposure is always significantly smaller than the ICNIRP reference 
level, marked with a yellow line in the plot.

Fig.  13, depicting the data rate experienced by each network user, 
further highlights the different way in which MaxRate (left map) and 
CtM (right map) use the PoAs. The difference is especially clear by 
considering the users around the middle of the topology: as CtM mostly 
uses PoAs 1–2, those users consistently have a lower rate. MaxRate is 
instead able to give some (not many) users therein higher rates by using 
the other PoAs, at the cost of a higher energy consumption.

Last, Fig.  14 confirms that, consistently with Fig.  12(right) and 
similarly to Fig.  9, SARwb levels experienced by all humans in the 
topology are comfortably within the ICNIRP reference values. This 
is true for all phantoms (represented with different markers in the 
maps), and even for humans in the coverage areas of multiple PoAs, 
e.g., around the top-left part of Fig.  14(left).
Runtime. For our performance evaluation, we ran CtM on a server 
equipped with IBM POWER9 processors and a total of 1 TiB of RAM, 
running the Linux 4.18.0-305.el8.ppc64le kernel. With reference to Fig. 
6, the decision-making module ran on Python 3.9, and the rate and 
exposure computation ones ran on GNU Octave 9.1 (this is because 
there is no MATLAB version for the Power ISA architecture used by 
POWER9 systems). Our reference implementation is extremely simple 
and, most significantly, lacks multi-processing capabilities. The running 
time are as follows:

• Octave (SAR computation): 4 s;
• Octave (rate computation): 39 s;
• Python (decision-making): 3 s;
• total: 47 s.

Notice that the individual components sum up to 46 seconds, but 
the total time includes additional contributions due to inter-process 
communication, context switching, and other types of overhead. Such a 
time is acceptable, since we are not reconfiguring the network in a real-
time manner, but rather reacting to longer-scale mobility and demand 
patterns, e.g., due to traffic. Accordingly, we can expect to run CtM 
several times per day.

Furthermore, it is important to stress that there are vast margins 
to further optimize our running time, most importantly, by exploiting 
the multi-processing capabilities that are commonplace in modern 
hardware, as well as enabling GPU acceleration (which is supported 
in MATLAB but not in Octave). 

7.4. CtM performance against ML-based benchmarks

Back to the indoor factory scenario, we now compare the perfor-
mance of CtM against the ML-based benchmarks presented in Sec-
tion 7.1: DtM, which replaces the clustering stage in CtM with a 
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Fig. 15.  Total power consumption under CtM, DtM and ML-only approaches as a 
function of the number of epochs allowed for DNN.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

DNN-based block, and ML-only, seeking to replace the whole CtM with 
a DNN.

Fig.  15 presents the total power consumption yielded by DtM (green 
bars) and ML-only (purple bars), with the power consumption of the 
original CtM reported as a blue, dashed line as a reference. We can 
immediately see that the green bars are consistently lower than the 
alternatives; indeed, DtM outperforms the original CtM provided that a 
sufficient number of epochs is allowed for training. As for ML-only, it 
results in a power consumption that is much higher than the alterna-
tives. The situation improves as more training epochs are performed; 
however, even after tens of thousands of epochs, ML-only is unable to 
match CtM.  The advantage of CtM and DtM lies in the fact that they 
exploit domain-specific knowledge and approaches; this allows them 
a much better efficiency compared to fully-automated, model-agnostic 
approaches. 

The results in Fig.  15 confirm the intuition behind the design of 
DtM: ML is best used to complement domain-specific knowledge and 
approaches, as opposed to replacing them. One may conjecture that 
additional training (i.e., going further to the right in Fig.  15) might lead 
to ML-only eventually outperforming CtM; however, the resources and 
time needed for such training would render that approach infeasible 
or impractical in many real-world cases.  The comparison between 
CtM and DtM also suggests that 𝑘-means is a reasonable choice as our 
clustering algorithms. Indeed, DtM’s performance does exceed CtM’s 
– which suggests better user-to-PoA association decisions –, but doing 
so requires a state-of-the-art DNN, thousands of training samples, and 
hundreds of training epochs: we can conjecture that a comparable 
complexity would be required from any alternative clustering algorithm 
to exceed 𝑘-means’ performance. 

Last, let us focus on the two ML-based benchmarks, and seek to un-
derstand the effect of combining ML with a domain-specific approach, 
as opposed to replacing the latter with the former. Specifically, Fig. 
16(left) shows that DtM uses substantially lower power levels than ML-
only, for all PoAs. This further highlights the effectiveness of retaining 
the blocks of CtM in charge of making power and width decisions, as 
per Fig.  5(top). For the same reasons, DtM yields a lower exposure than 
ML-only (Fig.  16(right)) while honoring the minimum-rate constraint 
(Fig.  16(center)).
Training time. The training time, using the same hardware we lever-
aged for the CtM tests, is about 24 s per epoch. It follows that it takes 
about three hours of training for DtM to match CtM’s performance, and 
ML-only is unable to do so even after five days of training. Although the 
same remarks we made for CtM hold here, i.e., our implementation is 



E. Chiaramello et al. Computer Networks 270 (2025) 111522 
Fig. 16.  DtM and ML-only for 1000 training epochs: transmitted power (left), distribution of data rates (center), and SARwb values (right). 
susceptible to significant improvements, this major difference suggests 
that the long training times required by ML-based approaches render 
them suitable for some, but not all, concrete scenarios. 

8. Conclusions

We have addressed the scenario of cell-less networks, where there is 
no fixed, a priori association between users and PoAs, and management 
decisions must be made in a human-centric fashion, accounting for 
network performance as well as power consumption and EMF exposure. 
In order to cope with the problem complexity, we proposed a solution 
concept called CtM, for cluster-than-match. As its name suggests, CtM 
performs two main steps: first clustering end users, and then associating 
PoAs with clusters. CtM is able to minimize energy consumption; at 
the same time, CtM meets the rate requirements of all users and 
honors EMF exposure limits for all humans on the topology, includ-
ing those who are not network users. Our performance evaluation, 
which leverages detailed models for EMF exposure estimation and 
standard-specified signal propagation models, compares CtM’s perfor-
mance against that of traditional and ML-based benchmarks, showing 
that CtM can reduce the power consumption by over 80%.

Future work will seek to improve CtM along two main directions: 
performance and user-to-PoA assignment. Concerning the former, we 
will optimize our implementation of CtM in order to further reduce 
the runtime and associated overhead; we may even consider departing 
from our current, modular architecture if the performance gain we 
obtain warrants it. Concerning the latter, we will explore approaches 
alternative to clustering, aiming to match the effectiveness of DtM’s 
association decisions. 
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