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 A B S T R A C T

Reservoir computing (RC) has emerged as a powerful computational paradigm, leveraging the intrinsic 
dynamics of complex systems to process temporal data efficiently. Here we propose to extend RC into 
ecological domains, where the ecosystems themselves can function as computational reservoirs, exploiting their 
complexity and extreme degree of interconnectedness. This position paper explores the concept of ecosystem-
based reservoir computing (ERC), examining its theoretical foundations, empirical evidence, and potential 
applications. We argue that ERC not only offers a novel approach to computation, but also provides insights 
into the computational capabilities inherent in ecological systems and offers a new paradigm for remote sensing 
applications.
1. Introduction

In the continuous evolution of computational paradigms, the inter-
play between the intelligence occurring in nature and evolved after 
millennia of optimization, and artificial systems built by humans, has 
given rise to unconventional approaches that transcend traditional al-
gorithmic methods. Among these, reservoir computing (RC) emerges as 
a flexible framework that exploits the high-dimensional, dynamic prop-
erties of physical substrates to process information in ways reminiscent 
of the human brain. Unlike conventional artificial neural networks, 
which require extensive training of internal weights, RC has emerged 
as a ‘‘lazy man’s’’ method to train these complicated systems. The 
approach uses the innate transient dynamics of a complex medium — 
referred to as the reservoir — to encode and transform input signals 
into meaningful reservoir states, which in turn are converted into out-
puts by employing a carefully optimized output layer (Schrauwen et al., 
2007). This principle aligns with the broader cybernetic perspective, 
which information processing is viewed as not just an abstract compu-
tational act but as a function emerging from the intrinsic organization 
of a system and the transition among its states.

Reservoir Computing (RC) operates on the principle that complex, 
high-dimensional systems can serve as computational substrates, trans-
forming input signals through their intrinsic dynamics without the need 
for explicit weight optimization. This framework finds its roots in liquid 
state machines (Maass et al., 2002) and echo state networks (Jaeger, 
2001), both of which exploit the transient, nonlinear responses of 
dynamical systems to encode and process information. While initial im-
plementations relied on artificial recurrent neural networks, subsequent 
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research extended RC into physical systems, including photonic (Duport 
et al., 2012), mechanical (Dion et al., 2018), colloidal (Fortulan et al., 
2024), and quantum (Fujii and Nakajima, 2017) reservoirs. These 
advancements illustrate the versatility of RC as a paradigm where com-
putation is an emergent property of matter’s interaction with energy 
and information flows (Yan et al., 2024).

Ecosystem-Based Reservoir Computing (ERC) represents a further 
evolution of this concept, clarified by exploring unconventional reser-
voirs that manifest at very large spatio-temporal scales, almost im-
possible to comprehend and hidden in the plain sight such as a part 
of a forest, a park, a lake, or even something bigger. The idea of 
using living systems as reservoirs is an attractive one if one has special 
purpose computation in mind. For example, a colony of bacteria can 
solve complex computation task via quorum sensing. However, large 
ecosystems exhibit properties unique only to them. In that sense the 
phrase ‘‘big is beautiful’’ gains a special meaning. Such systems exhibit 
key properties that align with RC principles:

• High-dimensional state space, where biotic and abiotic factors 
interact to produce a diverse range of responses;

• Transient memory effects, as biological networks retain and pro-
cess past inputs through bioelectric, biochemical, and mechanical 
signaling;

• Nonlinear transformations, enabling the encoding of complex pat-
terns through self-organized dynamics (Calvo and Friston, 2017).

These system implicitly ‘‘monitor’’ large surfaces and they do it 
for free. We only need to ask. These features suggest that natural 
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ecosystems can function as computational reservoirs, responding to 
external stimuli with structured, high-dimensional outputs that can be 
harnessed for computational tasks.

At its core, ERC is informed by cybernetics and dynamical systems 
theory, particularly the notion that life itself is a network of interrelated 
control loops (Ashby, 1956). In this framework, computation is not 
confined to distinct algorithms but emerges from the self-organizing 
properties of systems far from equilibrium (Prigogine and Nicolis, 
1985). This perspective aligns with the enactive approach to cogni-
tion (Varela et al., 1991), which posits that intelligence arises from 
an agent’s interactions with its environment rather than from isolated 
symbolic manipulation. ERC extends this view, proposing that large-
scale ecological systems process information through dynamic feedback 
loops that mirror the functional structure of RC.

One of the key mechanisms enabling ERC is bioelectric communica-
tion, a modality through which cells, fungi, and plants transmit infor-
mation over long distances. Research on plant bioelectricity (Volkov, 
2012) and fungal mycelial networks (Adamatzky, 2018) suggests that 
these biological substrates can be leveraged as computational media, 
with electrical activity encoding environmental inputs in a manner 
analogous to artificial reservoirs (Chiolerio et al., 2023). Similarly, 
chemical signaling in bacterial biofilms (Liu et al., 2017) and metabolic 
networks (Fondi et al., 2016) exhibit dynamic responses that align with 
RC’s principles of transient, nonlinear information transformation.

The implications of ERC extend beyond theoretical interest, pointing 
to applications in biohybrid artificial intelligence for environmental 
monitoring. By treating ecosystems as computational substrates, ERC 
offers a framework for embedding intelligence within the biosphere 
itself, merging synthetic cognition with natural systems to create a 
sustainable, co-evolutionary paradigm for information processing. This 
shift represents not only a technological breakthrough but also a philo-
sophical realignment, challenging the conventional view of computa-
tion as an exclusively human-designed process and instead situating 
it within the broader evolutionary fabric of life. This brings us to 
the notion of ‘‘accidental computation’’ and how to recognize it and 
measure it (Konkoli, 2015), and ultimately exploit it which informs on 
the question ‘‘what is computation’’ (Adamatzky et al., 2017a).

This paper explores the theoretical underpinnings of ERC, drawing 
from concepts in cybernetics, nonlinear dynamics, and collective in-
telligence. Such intelligence can be traced back even to entities like 
epigenetic memories encoded by histone methylation that depend upon 
past experiences and drive gene expression regulation (Jarome and 
Lubin, 2013). We consider that ERC has profound implications for 
realizing large scale artificial intelligence, and environmental monitor-
ing, proposing a framework that merges computation with ecology in 
a manner that is both sustainable and fundamentally different from 
existing silicon-based architectures. By embracing ERC, we move to-
ward a post-digital paradigm where intelligence is no longer confined 
to silicon-based processors but is instead distributed across natural 
substrates, leveraging the computational capacity of life itself. This shift 
has profound implications not only for AI and machine learning but also 
for our understanding of cognition, adaptation, and the very nature of 
computation.

2. Theoretical foundations of ecosystem-based reservoir comput-
ing

What is the right theory to describe ERC? Can we design a program-
ming language to run an ecosystem as a computer? Every ERC can be 
viewed as a filter that operates on a time-series input signal 𝑞(𝑡) that 
changes its state 𝑥(𝑡) in such a way that the state at a particular time 
instance 𝑡 depends on what the system has experienced in the past.

For example 𝑞(𝑡) can represent a mathematical representation of 
environmental conditions, e.g. the amount or rain, the number of rainy 
days, etc. The meaning of 𝑥(𝑡) is harder to grasp. In principle it should 
be anything we can measure about the system, that is relevant for its 
2 
overarching dynamics. More examples for what 𝑥(𝑡) and 𝑞(𝑡) represent 
will be provided below where we discuss som pioneering efforts to 
implement this ERC agenda.

In such a way the state of the system contains information of what 
the system has experienced in the past. Mathematically this can be 
described as the mapping 𝑥(𝑡) = 𝑅[𝑞](𝑡) where the notation 𝑅[𝑞](𝑡)
describes what in the signal processing theory is referred as a filter. A 
dynamical system driven by an external signal represents a process of 
collecting information: the information that the system collected about 
the environmental signal 𝑞(𝑡) is accumulated over time whereupon 
being stored into the state variable 𝑥(𝑡). In principle, by studying 𝑥(𝑡)
one should be able to gain information on 𝑞(𝑡).

The variable 𝑥(𝑡) is referred to as an observable in statistical physics 
where it indeed has the meaning of something that we can measure 
about the system. For example, by connecting electrodes to a tree we 
can measure voltages that will depend on the state of the environment 
𝑞(𝑡). An example of a system that realizes the mapping 𝑥(𝑡) = 𝑅[𝑞](𝑡)
is the one that can be described by a differential equation 𝑑𝑥𝑑𝑡 =
𝐻(𝑥(𝑡), 𝑞(𝑡)) where 𝐻(𝑥, 𝑞) describes the dynamic laws that govern the 
system’s behavior. In physics, such an object is referred to as the 
Hamiltonian of the system.

The state of the system is used to infer about the environmental 
signal (weather conditions, forest state, etc.) and produce a verdict 
𝑦(𝑡) = 𝜓(𝑥(𝑡)). The mapping 𝜓 is one of the components of the 
system that we can hope to control. Together, this chain of mappings, 
embedded in the ERC realizes a filter 𝑦(𝑡) = 𝜑[𝑞](𝑡).

More than just a filter, an ERC can be viewed as a database one can 
query that encodes and retrieves information about its environment. 
This raises a fundamental question: How can such a system be queried 
effectively?

A straightforward way would be to simply collect information about 
the observables 𝑥(𝑡). This approach is the most common way to exploit 
any sensor networks. The information flow is linear. The environment 
impacts the ecosystem, the system adopts a certain state, and we 
observe certain features about that state. The obvious appeal of such an 
approach is its modularity. One can selectively zoom on different parts 
of the information processing apparatus, building better sensors, infor-
mation transfer facilities, and increasing the power of the computing 
center, all to our hearts desire or ability.

However, the most direct approach discussed above does not scale 
well in terms of the environmental impact. Large-scale monitoring 
requires widespread sensor deployment, continuous data collection, 
transmission to a central analysis hub, and subsequent processing. As 
the environmental impact grows, so does the logistical and compu-
tational burden, making this approach inefficient for large, dynamic 
ecosystems. Further, there might be subtle correlations in the system’s 
behavior that might be lost over time, or significant glitches in the 
signals that are easily interpreted as noise.

An alternative approach to querying the system draws inspiration 
from the response theory in physics. The fundamental idea is to expose 
the system to a weak external signal and infer the state of the system 
by observing its response. By collecting multiple input-response pairs 
(𝑢𝑖, 𝑦𝑖), where 𝑢𝑖 represents the applied input and 𝑦𝑖 the observed 
response, one can systematically infer the system’s internal state. This 
method has proven to be highly effective in various problem settings. 
What is remarkable is that the signal that disturbs the system does 
not have be necessarily strong to make accurate inference about the 
systems state.

In reservoir computing, a similar approach has previously been 
proposed in the form of the SWEET algorithm (Konkoli, 2016). The 
SWEET algorithm relies on the indirect sensing idea from the linear 
response theory in physics, but with a heavy modification by trying 
to actively leverage non-linearities in the system’s behavior. The idea 
is to equip the reservoir with an external auxiliary signal 𝑢(𝑡) that the 
user controls. This signal is used to increase its ‘‘intelligence’’ with a 
marginal implementation cost. The idea has been successfully employed 
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and tested in a range of information processing scenarios ranging from 
ECG signal classification (Athanasiou and Konkoli, 2020) to sepsis 
prediction for intensive care unit patients (Athanasiou and Konkoli, 
2019). The accuracy of the prediction with reservoirs consisting of 
a relatively few non-linear components matched the one obtained by 
employing deep neural networks.

The suggested implementation of the SWEET algorithm in the con-
text of ERC is as follows. Instead of dissipating many sensors in space, 
one observes the system over prolonged periods of time while ‘‘tickling’’ 
it with carefully chosen inputs, drive signals 𝑢(𝑡). Formally, one engi-
neers the following filter: 𝑥(𝑡) = 𝑅[𝑞, 𝑢](𝑡) where 𝑢(𝑡) denotes the signal 
provided by the user. One can think of it as a query to the database. 
Using the language of differential equations, one can describe the newly 
formed filter as 𝑑𝑥𝑑𝑡 = 𝐻(𝑥(𝑡), 𝑞(𝑡), 𝑢(𝑡)) where 𝐻(𝑥, 𝑞, 𝑢) describes all the 
dynamical laws how the user signal interacts with the system. Assume 
that the goal is perform the query 𝑄 on the system, i.e. apply the filter 
𝑦(𝑡) = 𝑄[𝑞](𝑡). The question is whether we can find the drive signal 𝑢(𝑡)
such that 𝑄[𝑞](𝑡) = 𝜓(𝑅[𝑞, 𝑢](𝑡)). This naturally brings several important 
questions with increasing degree of complexity. But let us illustrate 
what is mean but all this abstract theory.

The symbol 𝑄[𝑞](𝑡) represents user’s desire to know about the sys-
tem. For example, one might wish this to represent the question ‘‘What 
is the chance that it will rain tomorrow?’’. Obviously, we cannot ‘‘ask’’ 
the forest a direct question like this. Assuming that we treat a hunter 
moving in the forest as a part of the system we could try to observe 
their clothes. If they are carrying an umbrella, then it is naturally to 
expect that the probability of the rain is high. Of course, this would be 
cheating. We must ‘‘ask’’ the forest somehow and we want to do it over 
a prolonged period of time by asking small questions and accumulating 
the answers.

The first question the illustration above motivates is this. What is 
the right interplay between choosing the readout layer 𝜓 and the drive 
signal 𝑢(𝑡), both of which we fully control, so that we can achieve 
a one-to-one mapping between 𝑄 and (𝜓, 𝑢). If this were possible 
this would be ideal. For example, can we for any query 𝑄 that we 
wish to make about the system find the related (drive signal, readout 
layer) configuration that will realize this query? Of course, the answer 
depends on what the expressive power of our ecosystem computer is. 
The real forests probably cannot tell much from scratch, but if queried 
properly they might.

The second question is about balancing resources. For example, how 
to choose the best possible drive signal 𝑢(𝑡) so that the complexity of 
the readout layer 𝜓 can be kept at a minimum. Again, it all depends 
on the complexity of our ecosystem computer. If it has low expressive 
power, then we have to engineer more intelligent readout-layer, which 
will likely come with increasing implementation cost in terms of the 
resources needed of realizing it.

Clearly the choice of the external drive 𝑢(𝑡) is central to this novel 
way of thinking. There is an intrinsic problem to the whole idea due to 
the scale one wishes to target. Namely, it is not clear that one can find 
a suitable drive signal 𝑢(𝑡) that will have a global effect on the system 
both in terms of larger spatial and temporal scales. We wish to engineer 
signals that will propagate through the system and that will no dissipate 
after causing some local disturbances. For example, an example of a 
very local input to the system would be to splash a bucket of water on 
a tree in the forest. One could most definitively affect the tree during 
the times of drought but this will not alter the system during a heavy 
rain period. This is one of the key research challenges, to identify which 
drive signals are the most useful. Several examples already tested in the 
literature will be discussed in the forthcoming sections.

3. Empirical evidence supporting ERC

The realization of Ecosystem-Based Reservoir Computing (ERC) as 
a viable computational paradigm requires empirical validation across 
diverse biological and ecological substrates. Recent research has begun 
3 
Fig. 1. Electrodes in Schlumbergera cactus used for reservoir computing (Adamatzky 
et al., 2017b).

Table 1
Number of gates mined from the frequency responses of the Schlumbergera (Adamatzky 
et al., 2017b).
  Cfg. Inputs 𝑥𝑦 Number of gates  Gate  
 FF FT TF TT  
 1 F F F F 95718 Constant False  
 2 T F F F 366 𝑥 NOR 𝑦  
 3 F T F F 304 NOT 𝑥 AND 𝑦  
 4 T T F F 430 NOT 𝑥  
 5 F F T F 304 𝑥 AND NOT 𝑦  
 6 T F T F 430 NOT 𝑦  
 7 F T T F 74 𝑥 XOR 𝑦  
 8 T T T F 314 𝑥 NAND 𝑦  
 9 F F F T 510 𝑥 AND 𝑦  
 10 T F F T 104 𝑥 XNOR 𝑦  
 11 F T F T 863 𝑦  
 12 T T F T 307 NOT 𝑥 AND NOT 𝑦 OR 𝑦 
 13 F F T T 863 𝑥  
 14 T F T T 307 𝑥 OR NOT 𝑦  
 15 F T T T 512 𝑥 OR 𝑦  
 16 T T T T 94564 Constant True  

to uncover the computational capacities inherent to natural systems, 
demonstrating their ability to encode, process, and recall informa-
tion in a manner analogous to artificial reservoirs. This section ex-
amines key experimental findings that support ERC, focusing on bio-
electric networks, chemical communication in microbial consortia, and 
ecosystem-scale information processing.

3.1. Bioelectric networks as computational reservoirs

Bioelectric signaling, long recognized as a fundamental mechanism 
in neural networks, extends to non-neuronal tissues, plants, and micro-
bial communities, offering a natural substrate for reservoir computa-
tion. Levin (Levin et al., 2017) demonstrated that bioelectric gradients 
in multicellular systems encode spatial information, guiding morpho-
genesis in a self-organizing manner. Such bioelectric fields exhibit 
transient responses to external stimuli, fulfilling the criteria for reser-
voir computing: high-dimensional state space, nonlinearity, and fading 
memory. Similarly, Adamatzky (Adamatzky, 2018) explored the electri-
cal activity of fungal mycelial networks, revealing their ability to pro-
cess environmental data through complex oscillatory patterns. When 
stimulated with mechanical and chemical inputs, fungal networks ex-
hibited signal propagation and adaptive responses characteristic of 
reservoir systems.

In 2015 Adamatzky and colleagues (Adamatzky et al., 2017b) 
demonstrated that living plants make a fruitful substrate for reservoir 
computing. Eight electrodes, each connected to the digital outputs of 
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Fig. 2. Eleven days bioelectric potentials recorded from eight different Vitis vinifera 
individuals, belonging to Barbera variety. B: dead log; C to E: healthy individuals; F 
to I: different stages of Flavescence dorée disease.

the Mecobo via 4.7kOhm resistors, were inserted into a single stem 
segment of a Schlumbergera (Christmas Cactus) plant, as shown in 
Fig.  1. An exhaustive search was performed by applying all binary 
combinations of various frequency pairs (250 Hz, 500 Hz, 1 kHz, 
2.5 kHz) to 7 input pins, with one pin used as the output. Each 
frequency pair, represented by square waves at 3.3 V, was tested to 
observe plant’s response under different input conditions. Table  1, 
shows a summary for all of the runs. We see that all possible 2 input 
Boolean gates were implemented.

Plant electrophysiology further supports ERC. Volkov (Volkov, 2012)
showed that plants generate action potentials in response to envi-
ronmental changes, propagating information through vascular tissues. 
Recent studies (Volkov and Markin, 2015) demonstrated that plant 
bioelectric responses can be harnessed as computational signals, with 
artificial neural networks decoding their dynamical states to infer envi-
ronmental conditions. This is an example of the linear information flow 
discussed earlier where the system is being observed without any at-
tempt to alter it. These findings suggest that living bioelectric networks 
function as information-processing reservoirs, dynamically encoding 
sensory inputs within distributed, nonlinear systems (Chiolerio et al., 
2022), proven to be capable of tracking planetary events (Chiolerio 
et al., 2025). An example of eight collected biopotential recordings 
from a barbera vineyard (cantina Adorno, Vigliano d’Asti, Italy) is 
shown in Fig.  2. The reader can appreciate a periodicity in the signals, 
given by the eleven day/night cycles, as well as a different level of 
noise, depending on the health conditions of the specific Vitis vinifera 
individual which has been characterized.

3.2. Microbial chemotaxis and collective information processing

However, one can also look towards micro-scales. Microbial com-
munities exhibit emergent behaviors that mirror the principles of RC, 
particularly in their ability to adapt to dynamic environments through 
collective decision-making. Liu (Liu et al., 2017) observed that bacterial 
biofilms utilize long-range chemical signaling to coordinate metabolic 
activity, effectively encoding past and present nutrient conditions. The 
capacity of bacterial populations to integrate multiple stimuli and 
produce structured, temporally dependent responses aligns with the 
core mechanisms of reservoir computing.

Beyond bacterial biofilms, engineered microbial consortia have 
been employed as computational reservoirs. Tamsir (Tamsir et al., 
2011) demonstrated that synthetic genetic circuits can process logical 
operations through quorum sensing pathways, enabling microbes to 
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perform distributed computation. More recently, Fondi (Fondi et al., 
2016) reported that metabolic networks in microbial ecosystems exhibit 
information processing capacities that surpass individual cellular com-
putation. The unicellular organism Tetrahymena thermophila has been 
used in real-time ecological reservoir computing, where its population 
dynamics were harnessed to perform computational tasks (Masayuki 
et al., 2023). These findings support the hypothesis that microbial 
consortia function as biochemical reservoirs, encoding input signals 
within dynamic, nonlinear metabolic landscapes.

3.3. Ecosystem-scale information processing

At a larger scale, ecosystems themselves exhibit computational 
properties. Canarini (Canarini et al., 2021) demonstrated that soil 
microbial communities’ composition change, allowing the formation of 
ecological memory in soil that may enhance the resilience of ecosys-
tems. Again, this is an example of the linear information flow with well 
defined observables 𝑥(𝑡) responding the environmental changes 𝑞(𝑡). 
Similarly, Braga (Braga et al., 2016) analyzed decentralized, adaptive 
systems, where nutrient fluxes and microbial populations (representing 
𝑥(𝑡)) encode environmental changes over time.

Forests, as complex adaptive systems, also display computational 
characteristics. Beiler (Beiler et al., 2010) showed that mycorrhizal 
networks mediate resource exchange between trees, dynamically ad-
justing connectivity patterns in response to external stressors. This 
form of decentralized information processing mirrors RC principles, 
where mycelial networks serve as substrates for distributed signal 
transformation.

A study demonstrated that ecological dynamics could be harnessed 
as a computational resource by developing two frameworks based on 
reservoir computing. These frameworks utilized the natural interactions 
within ecological networks to perform computations, highlighting the 
potential of ecosystems to function as reservoirs (Masayuki et al., 
2023).

Taken together, these empirical studies provide compelling ev-
idence that biological and ecological systems naturally implement 
reservoir-like computation. The observed behaviors — ranging from 
bioelectric signaling to microbial chemotaxis and ecosystem-scale feed-
back loops — align with the fundamental properties of RC, reinforc-
ing the feasibility of ERC as a biologically embedded computational 
framework.

3.4. Dormancy as a source of long-term memory in ERC

A crucial element that can significantly enhance ERC is the phe-
nomenon of dormancy, in other words the ability of certain ecosystem 
components to enter reversible states of metabolic inactivity. This 
mechanism could generate an ecological ‘‘memory bank’’, where past 
environmental experiences are archived and can later influence system 
dynamics across extended timescales. As highlighted by Lennon et al. 
seed banks and microbial dormancy are widespread in ecosystems, con-
tributing to the emergence of multiscale complexity by preserving in-
formation from prior conditions (Lennon et al., 2021). In the context of 
RC, dormancy introduces a powerful long-term fading memory: the sys-
tem’s current state may reflect inputs from the distant past which have 
been incorporated in the genetic structure of seeds, thereby increasing 
its computational expressivity. Incorporating dormancy mechanisms 
into ERC enriches the temporal depth of the reservoir, enabling it to 
handle longer temporal dependencies in input signals. This represents a 
substantial advancement over earlier biologically inspired approaches, 
such as Kohonen Self-Organizing Maps or Hopfield networks (Gigante 
et al., 2023), by providing a natural substrate with intrinsic long-term 
memory capabilities embedded in ecological dynamics.
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4. Potential applications of ERC

The integration of ERC into computational practices offers several 
promising applications:

• Environmental Monitoring: ERC can be utilized to process com-
plex environmental data, aiding in the detection of ecological 
changes and the prediction of environmental trends.

• Climate Modeling and Forecast: by leveraging the computational 
capabilities of ecological systems, ERC can contribute to more 
accurate climate models, enhancing our understanding of climate 
dynamics, and allowing for local weather forecasts.

• Bio-inspired Computing: ERC provides a framework for develop-
ing bio-inspired computational systems that mimic the adaptive 
and resilient properties of natural ecosystems.

5. Conclusions

The concept of ERC challenges traditional boundaries between com-
putation and ecology, suggesting a bidirectional relationship where 
ecological systems can both inspire and implement computational pro-
cesses. This perspective aligns with the broader field of unconven-
tional computing, which seeks to exploit the computational potential 
of physical and biological systems.

However, the practical implementation of ERC presents challenges, 
including the need to accurately model ecological dynamics and to 
develop interfaces that can effectively harness these dynamics for com-
putation. Addressing these challenges requires interdisciplinary col-
laboration, integrating insights from ecology, computer science, and 
complex systems theory.

Ecosystem-based reservoir computing represents a frontier in com-
putational intelligence, leveraging the inherent dynamics of ecological 
systems for processing information. By exploring the computational 
capabilities of ecosystems, ERC not only offers novel approaches to 
computation but also deepens our understanding of the complex in-
terplay between ecological dynamics and information processing. As 
research in this area progresses, ERC has the potential to inspire inno-
vative applications across environmental monitoring, climate modeling, 
and bio-inspired computing.
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