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A B S T R A C T

This study explores a core monitoring approach for two-dimensional Small Modular Reactors (SMRs) using 
neutron noise analysis and machine learning (ML) methods. Absorber of Variable Strength (AVS) perturbations 
are simulated in the frequency domain to analyze reactor noise behavior differences between large reactors and 
SMRs. It is demonstrated that SMRs exhibit stronger point-kinetic characteristics, complicating perturbation 
diagnosis. Thermal-group neutron noise is found to carry more diagnostic information than fast-group neutron 
noise. This makes thermal-group neutron noise more effective for localizing perturbations. A convolutional 
neural network (CNN) is trained on a dataset that contains only one or two AVS sources per sample. Despite this 
limited training dataset, the model can accurately localize up to 10 sources in a sample. The results demonstrate 
the model’s strong generalization capability and high nodal accuracy. To address sparse detector scenarios, a 
two-stage pipeline is designed to reconstruct full reactor noise fields from limited data points prior to source 
localization. The pipeline demonstrates effective reconstruction and localization with 50 % detector coverage, 
accurately capturing both global and local noise components. For reduced instrumentation scenarios of 11 %, 6 
%, and 3 % coverage, the model retains reasonable performance, with proximity-based metrics indicating robust 
localization capabilities. The results highlight the importance of strategic detector placement to balance global 
and local noise components for effective anomaly detection. The research demonstrates that ML techniques can 
enhance neutron noise analysis, even under limited data availability. This work contributes to enhancing the 
safety and operational reliability of SMRs, emphasizing the importance of advanced monitoring methods and 
data-informed instrumentation layouts to optimize performance, safety, and efficiency.

1. Introduction

Small Modular Reactors (SMRs) are gaining interest worldwide as a 
potential solution for clean energy in the future due to their compact 
design, availability, and enhanced safety features (IAEA, 2022a). Unlike 
conventional large reactors, SMRs are designed with smaller cores and 
operate at reduced power levels, which facilitates compliance with 
safety requirements. SMRs also have reduced capital investments and 
better availability due to modular and standardized components 
(Hussein, 2020). A new technology such as SMR requires the develop
ment of methods for monitoring its behavior to ensure its safety and 
reliable operation. These methods are essential for the early detection of 
anomalies within the reactor core, enabling intervention before they 
escalate into severe issues that could compromise reactor safety. Due to 
the difference in properties between SMRs and conventional reactors, 

methods should be studied for SMR conditions and geometries.
A promising approach for the early identification of perturbations 

within the reactor core is the analysis of reactor neutron noise (Pázsit 
and Demazière, 2010). In a nuclear reactor, the measured neutron flux 
contains fluctuations around the mean value, even at steady-state con
ditions. These fluctuations are called neutron noise, and they arise from 
the stochastic properties of nuclear reactions and possible perturbations 
of the medium in which such reactions take place. Neutron noise can be 
defined as the small stationary fluctuations found when measuring the 
neutron flux. They contain valuable information about underlying dis
turbances in the reactor core. By analyzing these fluctuations, operators 
can detect anomalies such as structural vibrations, temperature and 
density variations, coolant flow perturbations, or changes in core com
positions, ensuring the safe and efficient operation of the reactor. 
Analysis of the signal noise offers a wide range of applications such as 
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perturbation diagnosis, estimation of dynamic core parameters, and 
detection of turbulence and mechanical vibrations (IAEA, 2013).

The study of neutron noise dates back to the 1940s, with initial 
findings being documented during that period (De Hoffman, 1946). It 
was found that information from neutron noise can be used to derive 
power reactor transfer function (Moore, 1958) which can be used to 
understand the feedback effects of different phenomena inside the 
reactor on the neutron flux (Rajagopal, 1962). This has been studied by 
neutron noise pioneers, where the system variables such as the reactor 
power and the delayed neutron fraction were obtained from reactor 
noise information. In addition, oscillator experiments were carried out 
with different frequencies, where a spatial local component was found in 
the region of the applied oscillation. The local component had a higher 
neutron noise amplitude than the global component which is spread 
throughout the system (Weinberg and Schweinler, 1948). Other studies 
were done to study the effect of motion phenomena on the neutron noise 
such as the movement of control rods and the vibration of different 
structural components (Thie, 1963). Neutron noise for reactor di
agnostics involves the construction of a model describing the noise 
source in the system and calculating the induced neutron noise using the 
system’s transfer function. Thus, since early days, researchers were 
developing foundational models that describe how perturbations behave 
in different types of power reactors and how they impact the neutron 
noise (Thie, 1981; Williams, 1974).

Neutron noise analysis has been widely studied in commercial large- 
scale reactors, with emphasis on theoretical and modelling de
velopments as well as experimental validation of these approaches 
(Hursin et al., 2023). Further studies addressed point-kinetic behavior 
on one hand and global and local noise components on the other hand 
(Analytis, 1979). Studies on perturbation types, such as vibrating fuel 
assemblies, vibrating control rods, propagating coolant disturbances, 
and absorbers of variable strength (AVS) emphasized the importance of 
the deviation from point-kinetic component of neutron noise in identi
fying perturbation characteristics and locations. However, most of these 
studies were conducted on conventional reactor systems, and only a few 
were concerned with comparing the neutron noise behavior in large and 
small systems (Demazière et al., 2022; Hussein et al., 2024). The small 
core size in SMRs enhances the dominance of point kinetic noise, making 
it difficult to isolate and analyze local noise contributions. In this paper, 
we will discuss the unique challenges in reactor noise analysis due to the 
effect of reduced size in SMRs. Hence, we will also develop a neutron 
noise localization technique suitable for these small systems.

This paper focuses on neutron noise behavior in SMRs, particularly in 
the context of anomaly detection and localization. Due to the complex 
nature of neutron noise and the sparsity of information acquired by 
neutron detectors, advanced methods such as Machine Learning (ML) 
are required to extract relevant information.

Studies applying Machine learning (ML) and Artificial Intelligence 
(AI) have shown advancements in various fields including nuclear and 
radiation detection fields. There is ongoing work in nuclear applications 
such as medical imaging, radiotherapy, and nuclear nutrition assess
ment. In nuclear fusion, AI studies have shown potential in different 
areas such as creating surrogate models and developing hybrid models 
that combine data-driven and physics-based approaches. In the nuclear 
power industry, AI studies demonstrated its applicability in various as
pects, such as in automation, which can reduce safety risks in critical 
situations. It also showed potential in optimization of reactor design, 
which can increase the efficiency of the nuclear power plant. In radia
tion protection and nuclear security, research using AI showed promise 
in improving the detection and accounting of nuclear materials and 
control systems. In nuclear safeguards, AI holds significant opportunities 
to improve safeguards processes by classifying data and accounting for 
missing fissile material. Machine learning can also be used in predicting 
events inside the nuclear reactor such as potential failures, presence of 
anomalies, and in evaluating the current state of components. Data used 
for these predictions mainly comes from detectors and sensors placed in 

the reactor to monitor its state. Analyzing neutron noise signals using 
ML has a great potential since neutron noise is measured online with no 
disturbance to the reactor operation and ML provides a fast analysis 
method. Despite the numerous applications where ML demonstrate 
significant promise in nuclear power, its application requires thorough 
validation and adherence to regulatory processes, which it does not yet 
fully satisfy (IAEA, 2022b).

Neutron noise numerical techniques, such as Green’s function 
inversion, provide an exact solution for perturbation identification 
problems. However, this requires the knowledge of the spatial neutron 
flux distribution everywhere inside the nuclear core. In practical reactor 
environments, the spatial distribution of neutron detectors is typically 
sparse, often limited to ex-core and a small number of in-core mea
surements. Thus, the sparse neutron noise information requires more 
advanced techniques to extract meaningful information. In this case, ML 
methods provide a solution, since they are well-suited to infer complex 
mappings from limited and noisy data without the need for explicit 
inversion or idealized assumptions.

Given this potential, advancements in deep learning have been 
applied to neutron noise analysis and for anomaly detection in different 
works. A study used the time series of delayed neutron count for 
anomaly detection by applying a nearest-neighbor-based technique. The 
approach aimed to detect potential anomalies indicative of leaks in 
nuclear reactor channels, supporting predictive maintenance in nuclear 
power plants (Agarwal et al., 2013). Other studies investigated the use of 
machine learning techniques in hexagonal reactors. Some studies aimed 
to reconstruct the noise sources using ANNs (Hosseini and Vosoughi, 
2014), while others aimed to identify and localize perturbed fuel as
semblies using decision tree, random forest, k-nearest neighbors, 
multilayer perceptron, support vector machine, and 1D-convolutional 
neural network (Kamkar and Abbasi, 2025). A separate research pro
posed an anomaly detection framework using neutron noise in the time 
domain by applying Recurrent Neural Networks (RNN) and in the fre
quency domain using 3D convolutional neural networks (Durrant et al., 
2019).

Advanced ML methods were studied for typical large reactors 
showing significant potential in diagnosing and identifying different 
perturbations in the core (Kollias et al., 2022). This was studied within 
the CORTEX project which launched in 2017 seeking to advance neutron 
noise-based core monitoring techniques for early anomaly detection in 
nuclear power plants. Running for four years, it addressed the com
plexities of interpreting neutron noise by employing ML algorithms 
trained on simulated data. The project prioritized the development of 
mechanical and neutronic models to simulate neutron noise, which were 
verified computationally and validated experimentally. Additionally, 
different methods were employed to optimize ML architectures for 
precise anomaly detection and characterization (Demazière, 2025).

In this work, we make use of advances in machine learning by pre
senting a methodology that combines physics-based noise modeling 
observations with data-driven techniques to localize noise sources in 
SMRs, even under challenging conditions such as limited instrumenta
tion. The study explores the theoretical basis of neutron noise, in
troduces novel methods for handling complex noise data using machine 
learning, and evaluates the performance of these methods under prac
tical constraints.

The structure of this paper is organized as follows: Section 2 de
scribes the SMR system employed in this study along with details of the 
perturbation type considered. Section 3 discusses physics-based con
siderations for neutron noise in SMRs, highlighting the key differences 
between conventional large reactors and smaller reactors. In Section 4, 
the application of ML is shown for detecting perturbation locations from 
full-core reactor noise. The datasets and model development are pre
sented, followed by a detailed analysis of the results. Section 5 addresses 
the problem of instrumentation availability in the reactor, aiming at 
reconstructing the neutron noise from sparse detectors before proceed
ing with perturbation localization. Finally, Section 6 concludes the 
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paper by summarizing the key findings, discussing their implications for 
SMR design, and outlining potential directions for future research.

2. Description of the system studied

2.1. Small modular reactor model

For this study, a critical SMR core is derived from a typical large 
Pressurized Water Reactor (PWR). We consider a 2-dimensional (2D) 
plane of an SMR with an equivalent diameter of 172 cm and an active 
fuel region of 150.5 cm. The 2D SMR has 37 assemblies surrounded by a 
reflector as shown in Fig. 1. The reactor core is modelled using CORE 
SIM+, a two-energy group, diffusion-based neutron noise solver in the 
frequency domain (Mylonakis et al., 2021). CORE SIM + calculates the 
static flux, adjoint flux, and reactor noise in the fast and thermal neutron 
energy groups. The code calculates the first-order neutron noise 
assuming small stationary perturbations in the cross-sections at a certain 
frequency, according to the following equation: 

{
∇.[D(r)∇]+Σdyn(r,ω)

}
×

[
δϕ1(r,ω)

δϕ2(r,ω)

]

=

[
S1(r,ω)

S2(r,ω)

]

, (1) 

here δϕ1(r,ω) and δϕ2(r,ω) are the induced neutron noise in the fast and 
thermal groups, respectively. 

D(r) =
[

D1,0(r) 0
0 D2,0(r)

]

, (2) 

Σr,0(r) =Σs0,1→2(r) − Σs0,2→1(r)
ϕ2,0(r)
ϕ1,0(r)

. (4) 

The notations are standard and can be found in (Mylonakis et al., 
2021).

The neutron noise source on the right-hand side of Eq. (1) is calcu
lated by user-defined perturbations of absorption, fission and removal 
macroscopic cross-sections using the following equation: 
[

S1(rʹ,ω)

S2(rʹ,ω)

]

=ϕr(rʹ)δΣr(rʹ,ω)+ϕa(rʹ)
[

δΣa,1(rʹ,ω)

δΣa,2(rʹ,ω)

]

+ ϕf (rʹ,ω)
[

δυΣf ,1(rʹ,ω)

δυΣf ,2(rʹ,ω)

]

, (5) 

ϕr(r) =
[

ϕ1,0(r)
− ϕ1,0(r)

]

, (6) 

ϕa(r) =
[

ϕ1,0(r) 0
0 ϕ2,0(r)

]

, (7) 

ϕf (r,ω)=

⎡

⎢
⎣
−

ϕ1,0(r)
keff

(

1 −
iωβ

iω + λ

)

−
ϕ2,0(r)

keff

(

1 −
iωβ

iω + λ

)

0 0

⎤

⎥
⎦ . (8) 

where δΣx,g(ŕ ,ω) is the perturbation in cross-section x of group g at 
location ŕ  at frequency ω represented in the frequency domain.

Since the reactor noise is given in the frequency domain as the 
Fourier transform of the time domain signal, the reactor noise δϕg(r,ω)

is a complex number. The complex number contains the amplitude 
representing the magnitude of fluctuations and the phase indicating 
their time variation.

The SMR is modelled in CORE SIM + where each assembly is divided 
into 4x4 nodes. The core is surrounded by a reflector of 2 nodes, 
resulting in the final 2D core represented as a 32x32 mesh grid as shown 
in Fig. 1. Using CORE SIM+, we calculate the static neutron flux and 
reactor neutron noise for the fast and thermal groups.

2.2. Absorber of Variable Strength (AVS) noise source

A specific type of perturbation, the Absorber of Variable Strength 
(AVS), is the focus of this study. Although AVS is an artificial type of 
perturbation, it provides a well-defined and theoretically significant test 
case for developing models and methods that can be applicable to 
broader anomaly detection scenarios.

To model the AVS perturbation, we first solve the Green’s function 
by treating a spatial Dirac delta function as the neutron noise source. We 
apply this to a single node in the reactor system such that Eq. (1)
becomes: 

{
∇.[D(r)∇]+Σdyn(r,ω)

}
×

[
Gg→1(r, ŕ ,ω)
Gg→2(r, ŕ ,ω)

]

=

[
δ(r-rʹ)

0

]

g=1
or

[
0

δ(r-ŕ )

]

g=2
.

(9) 

for a perturbation in the fast group and thermal group, respectively.
Fig. 1. Radial 2D layout of the SMR core showing the fuel assemblies in yellow 
and the core reflector in blue.

Σdyn(r,ω)=

⎡

⎢
⎢
⎢
⎣

−

(

Σa,1,0(r) +
iω
ν1

+ Σr,0(r) −
υΣf ,1,0(r)

keff

(

1 −
iωβ

iω + λ

))
υΣf ,2,0(r)

keff

(

1 −
iωβ

iω + λ

)

Σr,0(r) −

(

Σa,2,0(r) +
iω
ν2

)

⎤

⎥
⎥
⎥
⎦
, (3) 

S.M. Hussein and C. Demazière                                                                                                                                                                                                             Progress in Nuclear Energy 189 (2025) 105950 

3 



This Green’s function response represents the system’s noise 
response to a localized perturbation. To model an AVS response, we 
utilize the Green’s function response in combination with neutron noise 
sources, which are represented by fluctuations in various neutron cross- 
sections within the system. Each type of cross-section perturbation has a 
different effect on the neutron noise source as observed in Eq. (5), and 
thus has a different effect on the resulting neutron noise.

To calculate the neutron noise from different perturbations in one 
location, we use the Green’s function response at this location by 
applying the following equation: 

[
δϕ1(r,ω)
δϕ2(r,ω)

]

=

⎡

⎣

∫

{G1→1(r, rʹ,ω)S1(rʹ,ω) + G2→1(r, rʹ,ω)S2(rʹ,ω)}d3rʹ
∫

{G1→2(r, rʹ,ω)S1(rʹ,ω) + G2→2(r, rʹ,ω)S2(rʹ,ω)}d3rʹ

⎤

⎦

(10) 

By studying AVS cases, we can explore the fundamental relationship 
between reactor neutron noise and perturbation location. By varying the 
source location and the neutron noise sources of the AVS perturbations, 
we generate a dataset of various AVS scenarios to be the basis for 
training and evaluating the machine learning framework presented in 
this paper.

3. Physics-based considerations about neutron noise in water- 
cooled SMRs

3.1. Theoretical considerations

Neutron noise arises from small, time-dependent fluctuations in the 
static neutron flux due to perturbations in reactor parameters which 
require analyzing and interpreting neutron noise in SMR systems. In this 
section, we will decompose the reactor noise into its components to 
better understand its behavior in SMRs.

3.1.1. Point-kinetic and non-point-kinetic components
Reactor neutron noise in nuclear reactors can be decomposed into 

two principal components: the point kinetic (PK) component and the 
deviation from point-kinetic component (the non-point-kinetic compo
nent). These components play distinct roles in describing the system 
response to perturbations.

The point kinetic component of the reactor noise has the same spatial 
distribution as the static neutron flux. This means that it lacks any 
sensitivity to the type or location of the perturbation within the reactor 
in terms of spatial response. While its amplitude reflects the reactor 
overall reactivity effect of the noise source, it does not provide any 
localized information that could be used to identify the nature or posi
tion of noise sources. The factorized form of the reactor noise is given by 
(Pázsit and Demazière, 2010): 

δϕg(r,ω)=ϕg,0(r)
δP(ω)

P0
+ P0 δψg(r,ω), (11) 

where the first term on the right-hand side is the point kinetic compo
nent represented by the multiplication of the static flux and the integral 
value expressed by: 

δP(ω)
P0

=

∫
[

1
v1

ϕϯ1,0(r)δϕ1(r,ω) + 1
v2

ϕϯ2,0(r)δϕ2(r,ω)

]

dr

∫
[

1
v1

ϕϯ1,0(r)ϕ1,0(r) + 1
v2

ϕϯ2,0(r)ϕ2,0(r)
]

dr
. (12) 

The point kinetic term can be calculated by an alternative method 
using the reactivity of the noise and the zero-power reactor transfer 
function as shown in the following equations (Demazière and Andhill, 
2005; Pázsit and Demazière, 2010): 

δP(ω)=P0 G0(ω)δρ(ω) (13) 

G0(ω)=
1

iω
(

Λ0 +
β

iω+λ

) . (14) 

The non-point-kinetic component, represented by the second term on 
the right-hand side of Eq. (11), consists of the non-point kinetic shape 
function δψg(r,ω) multiplied by the static reactor power amplitude. This 
term contains valuable information about the characteristics of the 
perturbation. This component is highly dependent on the location and 
type of perturbation, making it the primary focus for applications such 
as anomaly detection and noise source localization.

In smaller systems like SMRs, the point kinetic component becomes 
relatively stronger than the non-point-kinetic component compared to 
large systems (Demazière et al., 2022; Pázsit and Demazière, 2010). This 
dominance of the PK component makes it more challenging to extract 
meaningful information about anomalies and noise sources. Conse
quently, detecting and localizing perturbations in SMRs becomes a more 
problematic task than in larger reactor systems.

3.1.2. Global and local components
An alternative representation for understanding reactor noise in

volves decomposing it into a global component with a long spatial 
relaxation length and a local component with a short relaxation length. 
The global component represents the reactor-wide effects of noise, 
which typically propagates through the entire core. On the other hand, 
due to the short relaxation length of the local component, its effect does 
not extend beyond the vicinity of the noise source. In a one-dimensional 
(1D) homogeneous reactor, the global and local components for the 
reactor noise — denoted as δϕμ and δϕν, respectively — are given by: 
[

δϕ1(r,ω)

δϕ2(r,ω)

]

=

[
1

cμ(ω)

]

δϕμ(r,ω) +
[

1
cν(ω)

]

δϕν(r,ω), (15) 

cμ(ω)=
Σr,0

Σa,2,0 +
iω
v2
+ D2,0μ2 , (16) 

cν(ω)=
Σr,0

Σa,2,0 +
iω
v2
− D2,0ν2 , (17) 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− D2,0b2(ω) − Σ1(ω) υΣf ,2,0

(

1 −
iωβ

iω + λ

)

Σr,0 − D2,0b2(ω) −

(

Σa,2,0 +
iω
v2

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=0 . (18) 

Eq. (15) has a non-trivial solution when the following determinant is 
equal to zero (Demazière and Andhill, 2005):

This equation has two roots for b2, namely μ2 and − ν2.
The interplay between these components determines the spatial 

characteristics of neutron noise and influences the strategies employed 
for noise source localization.

3.2. Numerical investigations

In an SMR, the core size is significantly smaller than in a conven
tional reactor, leading to different physical and operational character
istics. The compact geometry affects the spatial distribution of the 
neutron flux and alters the balance between the point-kinetic and non- 
point-kinetic components of the noise. In this study, we aim to high
light the effect of the reactor core size on the reactor noise behavior and 
understand possible challenges that arise in localizing noise sources.

For demonstration purposes, we study two 1D homogenous reactors, 
a large reactor of size a = 344 cm and a reactor of size a = 172 cm, 
respectively. We consider two local cases of 1 Hz AVS sources of 5 % 
perturbation in the thermal absorption cross-section δΣa,2 = 5% Σa,2,0, 
one located at the center of the core and the second located at a distance 
− a/4 from the core center.
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The cases with the central and non-central AVS are demonstrated in 
Figs. 2 and 3, respectively, where the total reactor noise amplitude is 
shown in the fast and thermal groups for both reactors in comparison 
with the point-kinetic component, global component and local compo
nent. We can observe the difference between the reactor noise shape in 
the large and small reactors that arises from the distinction between the 
levels of the point-kinetic component. The deviation of the total noise 
from point-kinetics is clearly visible, and it can be noted that the reactor 
noise shape in the small reactor follows a similar behavior as the point- 
kinetic component, although it is slightly shifted in the second case due 
to the off-center perturbation. This distinction highlights the challenge 
in the detection of the neutron noise source in small-size reactors 
compared to conventional large reactors.

It can be seen in Fig. 2 that the effect of the global component in the 
large and small reactors spreads throughout the reactor and peaks at the 
noise source location, dominating the reactor noise response. However, 
in the non-central perturbation case shown in Fig. 3, the peak effect is 
less pronounced in the small reactor while it is clearly visible in the large 
reactor. By examining the local component response, we can find that it 
is only visible in the neighborhood of the source due to its short relax
ation length.

Since the global component is visible far from the noise source 
location, it is the component responsible for providing information 
about the noise source from remote neutron detectors. It is also worth 
noting that the local component is visibly stronger in the thermal group 
of reactor noise than in the fast group, giving an advantage to the 
thermal noise in localizing noise sources in the vicinity of the noise 
origin. Therefore, in the vicinity of the noise source, the local component 
plays a significant role, especially with thermal neutrons.

Since the point-kinetic component contains no information about the 
location of the AVS source, it is beneficial to account for the deviation of 
the total noise as well as its components, i.e. the global and local com
ponents, from the point-kinetic component. We represent this deviation 
as the fraction between each component and the point-kinetic compo

nent: δϕg(r,ω)
δϕgpk

(r,ω),
δϕμg (r,ω)

δϕgpk
(r,ω)

, and δϕνg (r,ω)
δϕgpk

(r,ω). The deviation from point-kinetics is 

estimated from the deviation of those quantities from unity. This is 
observed in Fig. 4 for the central AVS and in Fig. 5 for the off-central 
AVS, where it is clear that for all components it is much more signifi
cant in the large core than in the small core. To quantify this deviation, 
we subtract unity to estimate the distance of the total noise and the 
global component from the point-kinetic component according to: 

1
a

∫ 1
2 a

−
1
2 a

⃒
⃒
⃒
⃒
⃒

δϕgc (x,ω)

δϕgpk
(x,ω)

− 1

⃒
⃒
⃒
⃒
⃒
dx . (19) 

where δϕgc 
is the reactor noise ‘c’ component for group g neutrons. ‘c’ 

can be the total noise, the global component, or the local component.
The closer to zero this measure is, the larger point-kinetics prevails, 

and the more difficult it is to make efficient diagnostics. Since the local 
component is significantly smaller than the point-kinetic component, its 
deviation from point kinetics is nearly zero. Thus, subtracting unity to 
account for this deviation is not representative of the local component. 
Such a metric is thus not reported hereafter. Table 1 shows the values of 
the deviation. The values confirm the larger quantity of information 
available in the large reactor than the smaller reactor. We can also 
confirm that the total reactor noise in the thermal group contains higher 
deviation from point-kinetics, offering more information compared to 

Fig. 2. Reactor noise amplitude for a central perturbation in a 1D homogenous core and its point-kinetic, local and global components. The right plots are for the fast 
group, the left plots are for the thermal group, the upper plots are for the large core, and the lower plots are for the small core.
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the fast group. Notably, the global component deviation from point ki
netics is comparable in both fast and thermal groups. This suggests that 
the additional information provided by the total thermal noise primarily 
arises from the local component.

The numerical findings emphasize the need for advanced methods, 
such as machine learning, to effectively interpret the reactor noise 
response among the strong influence of point kinetic effect. In addition, 
the observation of thermal noise containing more deviation from point 
kinetics than the fast neutrons can be used to our advantage. These re
sults lay the foundation for the subsequent sections, which explore the 
application of machine learning for neutron noise source localization in 
an SMR.

4. Noise source detection using machine learning

In this section, we present our approach for localizing AVS sources in 
an SMR core using machine learning. In this method, we use the 
complex-valued relative reactor noise as input. The relative noise is 
calculated by dividing the reactor noise generated by CORE SIM+ in the 
frequency domain by the static flux. We train our model using simulated 
data since it is the only available training resource that enables node- 
level control over perturbation scenarios. We use the relative reactor 
noise as practically the measurement of this value eliminates the need to 
know the detector efficiency. This has some practical implications in 
terms of the implementation of noise techniques in reactors. In addition, 
the relative noise emphasizes the deviation of the neutron noise from the 
static flux (Hursin et al., 2023). We apply a convolutional neural 
network (CNN) (LeCun et al., 2015) to our data to capture the space 

information in the reactor noise and detect the locations of one or more 
AVS sources. CNNs are particularly well-suited for this task, as the 
reactor noise data can be represented in an image-like format, enabling 
the network to effectively learn and exploit spatial features and extract 
relationships between neighboring points.

In this work, we restrict the study on perturbations with a frequency 
of 1 Hz. This frequency falls within the typical range of possible 
perturbation frequencies, which spans approximately from 0.1 Hz to 25 
Hz. Furthermore, 1 Hz falls within the frequency plateau region of the 
neutron noise spectrum, where similar perturbations with different 
frequencies induce similar neutron noise amplitude distributions with 
minor phase variations. Therefore, selecting 1 Hz provides a practical 
baseline for the ongoing analysis.

4.1. Data processing

Processing complex values for the CNN poses a challenge since the 
complex numbers need to be represented as the amplitude of the relative 
reactor noise response and its phase angle. Normalization of input values 
to artificial neural networks (ANNs) is a common practice to enhance 
convergence and training stability by ensuring that all features have a 
similar scale. Normalization of phase angles is shown to be problematic 
because of their periodic nature. Phase angles measured in degrees are 
typically found between 0◦ and 360◦, where 0◦ and 360◦ represent the 
same phase angle, only differing by a full cycle. Treating these values 
linearly, we can see that they are numerically far apart, even though 
they represent the same angle. Standard normalization techniques fail to 
account for this cyclic nature and will lead to incorrect angle 

Fig. 3. Reactor noise amplitude for a non-central perturbation in a 1D homogenous core and its point-kinetic, local and global components. The right plots are for the 
fast group, the left plots are for the thermal group, the upper plots are for the large core, and the lower plots are for the small core.
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representations. To address this problem, we represent the phase angles 
using the cosine and sine of the phase angles. The input used for our 
model has 3 channels per energy group. 

• One channel for the amplitude of the relative reactor noise where the 
amplitude is normalized using min-max normalization, thus repre
sented by values between 0 and 1.

• Two channels representing the angle as the cosine and sine of the 
relative reactor noise phase, respectively. Since the cosine and sine 
naturally lie between − 1 and 1, no further normalization is needed. 
This ensures that the angular information is maintained in the model 
input.

This three-channel input per energy group allowed the CNN to 
extract the features and properties of the neutron noise in the system 
required for the localization of available AVS perturbations.

In this section, we considered three cases of input data to our model. 

i. A case using only relative fast-group reactor noise as input (3 
channels)

ii. A case using only relative thermal-group reactor noise as input (3 
channels)

iii. A case using both relative fast and thermal groups reactor noise as 
input (6 channels)

4.2. Model architecture

The CNN aims to analyze the neutron noise distribution throughout 
the 2D SMR for spatial pattern recognition. The model input consists of a 
2D mesh grid with the size (32 x 32) representing the relative reactor 
noise distribution throughout the core using 3 channels per energy 
group as described above. One convolutional hidden layer is used by 
applying 2048 filters of 3x3 size. The convolutional layer extracts in
formation from the input using 3x3 kernel-size filters with 1-node stride. 
This layer utilizes a ‘ReLU’ activation function to capture the non- 
linearity in the system allowing to capture the spatial dependencies 
within the data (Dubey et al., 2022). A convolutional output layer is 
used to reconstruct the shape of system (32 x 32 nodes), where each 
node corresponds to its original location in the 2D system. Each node is 
assigned a binary classification label: ’0′ indicating no perturbation and 
’1′ indicating the presence of a perturbation. A ‘Sigmoid’ activation 
function is used such that each node holds the probability of the cor
responding location having an AVS perturbation source. The used model 
architecture is demonstrated in Fig. 6.

The model is trained using the Adaptive Moment Estimation ‘AdaM’ 
optimizer (Kingma and Ba, 2015) with an initial learning rate of 0.0005 
to minimize a binary cross-entropy loss function given by (Terven et al., 
2023): 

Fig. 4. Deviation of the total noise and its global and local components from point-kinetic component represented as fractions divided by the point-kinetic 
component in the central AVS case. The right plots are for the fast group, the left plots are for the thermal group, the upper plots are for the large core, and the 
lower plots are for the small core.
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Binary crossentropy=

−
1
N

∑N

i=1

[
ytrue log

(
ypred

)
+(1 − ytrue)log

(
1 − ypred

)]
. (20) 

where N is the total number of locations (32x32) in one sample. ytrue is 
the actual value for one location given by the ground truth; either a ‘0’ 
representing no AVS source or a ‘1’ representing an AVS source. ypred is 
the value predicted by the model for one location, given by a value 
between 0 and 1, showing the confidence of the model in the presence of 
an AVS source in the corresponding location.

During training, the model minimizes the loss function using the 

training dataset in batches of 100 samples and for 100 epochs. Different 
hyperparameters are tested for each case through grid search with cross- 
validation and the optimal values are selected. The hyperparameters 
mentioned in the text are for the case using relative thermal reactor 
noise only.

4.3. Training and validation datasets

The training and validation datasets for the CNN model are gener
ated by simulating multiple cases of AVS perturbation sources. Our 
dataset is divided into two types of cases. 

1. Cases with a single AVS source present in the 2D SMR. 349,872 cases 
of this type are present in the dataset, covering multiple cases for all 
possible locations of AVS sources in the system with different fast and 
thermal source intensities. These cases are fundamental to capture 
the locations where neutron noise sources could be present with 
varying intensities. Each sample input is represented using the 
relative reactor noise distribution by three channels (six channels in 
case of fast and thermal input), and the output is represented by the 
32x32 grid of zeros and one in the location of the AVS source.

2. Cases with two AVS sources present simultaneously in the system. 
For this type, a similar number of samples as the first type is 
generated for the dataset such that the model can learn from 
balanced data to avoid bias towards a certain type and to achieve 
more robust results. The presence of this type in the dataset is 

Fig. 5. Deviation of the total noise and its global and local components from point-kinetic component represented by fractions divided by the point-kinetic 
component in the central AVS case. The right plots are for the fast group, the left plots are for the thermal group, the upper plots are for the large core, and the 
lower plots are for the small core.

Table 1 
Values quantifying the deviation of the total and global component from point- 
kinetic (PK) component.

Case Small reactor Large reactor

δϕg(r,
ω)

δϕμg
(r,

ω)

δϕg(r,
ω)

δϕμg
(r,

ω)

Central AVS Fast (g = 1) 0.0438 0.0440 0.1472 0.1474
Central AVS Thermal (g =

2)
0.0467 0.0438 0.1501 0.1473

Non-central 
AVS

Fast (g = 1) 0.1417 0.1420 0.4436 0.4439

Non-central 
AVS

Thermal (g =
2)

0.1478 0.1420 0.4497 0.4440
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essential to enable the model to capture the effect of having more 
than one source in the system and recognize the relation between 
them. The cases cover all possible combinations of two simultaneous 
AVS sources available in the 2D system. Each AVS source has inde
pendent fast and thermal source intensities and phases.

The dataset is limited to cases with one and two AVS sources to 
enable the model to learn the complex relationships between pertur
bations through a large number of relatively simple scenarios. This 
approach is particularly advantageous, as the model is designed to 
predict an arbitrary number of AVS sources in the system without 
requiring training samples for every possible number of sources. This is 
shown in further detail hereafter.

By studying practical cases of perturbations in the SMR system, we 
observe that the fast source intensity is usually 10 orders of magnitude 
higher than the thermal source intensity. However, less probable cases 
have a higher thermal source intensity than the fast source intensity. 
Based on this observation, our AVS sources are modelled by randomly 
sampling the thermal sources from a narrower range than those used for 
the fast sources. This resulted in 99.5 % of the cases having a higher fast 
source intensity and only 0.5 % of the cases having a higher thermal 
source intensity, representing a distribution of cases closer to reality.

During the training phase, 90 % of the dataset is used for training, 
while the remaining 10 % was used for validation purposes.

4.4. Numerical results

After training our CNN binary classification model, we test its per
formance on unseen cases for one and two AVS sources. We also aim to 
test our model’s ability to generalize and detect more than two AVS 
sources. Since we are interested in the predicted source positions, i.e., 
the classified ‘1’s, which are a minority in the 32x32 grid space, it is 
informative to use typical classification performance metrics such as the 
recall, precision, and their harmonic mean, i.e., F1 score. The definitions 
of these metrics are as follows (Terven et al., 2023): 

Recall=
True positive

True positive + False negative
, (21) 

Precision=
True positive

True positive + False positive
, (22) 

F1 score=
2* Precision* Recall
Precision + Recall

. (23) 

where a true positive is a ‘1’ predicted where there is an actual source, a 
true negative is a ‘0’ predicted where there is no source, a false positive 
is a ‘1’ predicted where there is no source, and a false negative is a ‘0’ 
predicted where there is a source.

As mentioned earlier, the model is trained using a binary cross- 
entropy loss function, which optimizes both recall and precision by 
minimizing the discrepancy between predicted and true classifications. 
To assess the consistency of the model, Table 2 reports the recall and 
precision values across the training, validation, and test datasets for the 
relative thermal neutron noise input model. The close values of the 
metrics across the three datasets for 1 and 2 sources indicate stable 
performance and suggest that the model generalizes well without signs 
of overfitting.

In section 3, we showed that the thermal noise includes more in
formation deviating from the point kinetic component, thus holding 
more information about the noise source. In Fig. 7, we present the dif
ference in performance for the location detection model for relative fast- 
group, relative thermal-group, and relative fast and thermal groups 
neutron noise cases. The results show that the thermal reactor noise has 
higher recall and F1 score in comparison to the fast-group reactor noise, 
in addition to a comparable precision for different number of sources. 
These results support our previous conclusion that thermal noise out
performs fast noise in localization of the noise source. Using relative fast- 
group neutron noise in addition to thermal noise is computationally 
much more expensive than using only one type. Despite that it holds 
information from both energy groups, we can observe that it does not 
contribute significantly to better performance. Based on these consid
erations, we select relative thermal neutron noise for our analysis.

The relative thermal neutron noise model is highly accurate in pre
dicting the location of one AVS source, with recall, precision, and F1 
score very close to unity. For two sources, the model also performs very 
well with a slight decrease in recall, precision, and F1 score. The model 
accurately identifies both source locations with minimal errors. We also 
test our CNN model on cases with multiple AVS sources (up to 10 per
turbations at a time). The model shows a slightly decreasing trend in the 
performance metrics as the number of perturbation sources increase. 
However, the performance remains very good, even up to 10 AVS 
sources with a recall value around 99 %, precision around 99.9 %, and 
F1 score 99.4 %. This demonstrates the robustness of the model in 
handling multiple AVS sources with minimal false positives and 
negatives.

Fig. 6. Localization model architecture using full neutron noise.

Table 2 
Training, validation, and testing performance for cases with 1 and 2 sources.

Training Validation Testing

1 
source

2 
sources

1 
source

2 
sources

1 
source

2 
sources

Recall (%) 100.00 99.96 100.00 99.92 100.00 99.97
Precision 

(%)
100.00 99.99 100.00 99.98 99.99 99.96
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5. Impact of limited instrumentation on reactor core

In this section, we introduce the challenge of instrumentation 
availability in a reactor core and its impact on the ability of the model to 
detect accurate AVS source locations. In practice, reactor noise infor
mation is only available at discrete locations inside the core where 
reactor noise detectors are placed. In this work, we investigate the 
performance of our model using different densities of available detectors 
to approximate the performance of our model to realistic operating 
conditions.

In an actual reactor core, neutron detectors cannot be available at 
every point in the system due to geometric, cost, and technical limita
tions. In a PWR, the number of detector is typically low to minimize 
interference with reactor operations, and radiation exposure. Accord
ingly, our 32 x 32 grid should contain sparse information where the 
detectors are present and zeros in unavailable locations. In this section, 
we evaluate the impact of reduced availability of neutron noise mea
surements on the accuracy and robustness of AVS source localization.

5.1. Model architecture for limited data cases

To adjust our model to accommodate missing information, we apply 
a two-model pipeline approach for the study. The pipeline takes sparse 
reactor noise data as input, reconstructs the full noise information, then 
localizes the AVS sources. 

i. Model 1: Noise reconstruction model

The first model of the pipeline is designed to take spatial reactor 
noise information from the available sparse locations and predict the full 
reactor noise map. The model follows an encoder-decoder architecture 
(Ronneberger et al., 2015) with convolutional layers and inception 
blocks (Szegedy et al., 2016) optimized to infer the missing values using 
spatial dependencies in the 32 x 32 grid space.

The input layer for model 1 consists of 4 channels for 32 x 32 grid 
points. The first channel contains the reactor noise amplitude at the 
available sparse locations. The amplitude values in these available lo
cations are normalized using minmax normalization and the remaining 
location values were set to zero. The second and third channels consist of 
the cosine and sine values of the noise phase angles, respectively. Similar 
to the first channel, the missing locations are set to zero. The fourth 
channel is a mask channel, containing unity at locations with available 
detectors and zeros everywhere else.

An encoder-decoder architecture is used to reconstruct the full noise 
representation. An encoder captures the features of the input data by 
compressing it into a dense representation called the latent space. The 
decoder then uses the latent space to reconstruct the full data repre
sentation including data points missing from the input. Our encoder- 
decoder model incorporates inception blocks, which allows the model 
to capture features by branching the same input layer on multiple scales 
by using different filter sizes. In addition to the multiscale extraction of 
the inception blocks, it allows the model to go deeper and learn more 
complex representations with reduced dimensionalities, leading to 
lower computational costs and improved efficiency. The architecture for 
model 1 is shown in Fig. 8.

The decoder has three branches to the output layer, each to recon
struct one of the 3 full channels (normalized amplitude, cosine phase, 
and sine phase) to be used next in the AVS localization model. The model 
is trained and validated by the same original samples used for training 
and validation of the localization model described in section 4. Thus, the 
model is trained on samples with 1 AVS and 2 AVS sources. The training 
of the model is done by minimizing the Mean Square Error (MSE) loss 
function given by (Terven et al., 2023): 

Fig. 7. Metrics for the performance using relative thermal-group, fast-group, 
and thermal-group + fast-group noise as input for location detection model.
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MSE=
1
N

∑N

i=1

(
ytrue − ypred

)2
. (24) 

ii. Model 2: AVS localization model

The AVS localization model takes the 3-channel full representation of 
the system and predicts the locations for present AVS sources in the 32 x 
32 system grid. For this purpose, the model described in section 4 is used 
directly.

5.2. Cases of different densities of available instrumentation

To evaluate the performance of the pipeline concept with different 
densities of available instrumentation, we create 4 models with different 
levels of sparsity of instrumentation and test the performance of the full 
pipeline. As shown in Fig. 9, the selected detector locations are arranged 
symmetrically in all four models considered. However, since the neutron 
noise distribution in the system is inherently asymmetric — except in the 
special case where the perturbation is centrally located — each detector 
responds differently to the induced neutron noise, irrespective of its 
geometric symmetry. 

i. 50 % Instrumentation coverage

In this case, 50 % of the neutron noise data points (296 out of 592 in- 
core points) are available for reconstruction, which represents a rela
tively dense detector coverage. However, it shows the impact of 
removing half of the in-core information on the model. 

ii. 11 % Instrumentation coverage

For the second case, approximately 11 % of the noise data points (66 
in-core points) are available, a scenario moving closer to realistic con
straints. This case aims to determine the model’s robustness when data is 
significantly reduced. 

iii. 6 % Instrumentation coverage

The third case represents one detector per assembly, covering 6 % of 
the core points (37 points) in the 32x32 grid. Although denser than 
realistic cases, it offers a useful intermediate step for evaluating the 

pipeline’s performance with low-density instrumentation while retain
ing some spatial information. 

iv. 3 % Instrumentation coverage

To simulate a realistic scenario more closely, this configuration in
cludes only one detector for every second assembly, representing 3 % 
coverage (21 points). This minimal instrumentation level tests the 
model’s effectiveness with a very sparse, potentially feasible detector 
layout.

5.3. Numerical results

The pipeline performance is evaluated by measuring the precision, 
recall, and F1 score metrics when localizing AVS sources in unseen cases 
after using the pipeline.

5.3.1. Results for 50 % instrumentation coverage
The pipeline is tested on 592,000 cases with different number of AVS 

sources. With 50 % of the neutron noise data available, the recon
struction model is able to reconstruct the full relative thermal noise with 
test MSE shown in Table 3 for multiple AVS sources. The MSE values 
show the high ability of reactor noise reconstruction from 50 % available 
data with low error. Reconstruction error increases as the number of 
neutron noise sources in the system grows, reflecting the reduced ability 
to fully capture the complexity arising from the superposition of mul
tiple sources. Nonetheless, the reconstruction remains highly effective 
even with a large number of noise sources. A reconstruction example 
containing 8 AVS sources is shown in Fig. 10. As described earlier, the 
model input contains zeros in locations with no detectors, however the 
zeros are removed from the figures for a clearer view. The figure shows 
the similarity between the reconstructed neutron noise and the true 
neutron noise, demonstrating the capability of inferring missing noise 
data points. The successful reconstruction can be attributed to the 
presence of the global information from the available detectors as well 
as the local information since there is a detector relatively close to all 
points inside the core. Retrieving global and local information enables 
the model to accurately capture the detailed behavior of the noise. 
Model 2 in the pipeline uses the reconstructed full noise to localize the 
AVS sources.

Given the limited information available in the input data, it becomes 
important to adopt a proximity range when evaluating the final 

Fig. 8. Model 1 (reconstruction model) architecture. ‘m’ value differs for different detector densities. m = 3,5,7,9 for detector densities of 50,11,6,3 % respectively as 
shown in section 5.2.
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performance of the pipeline. If the detected source falls within a defined 
range in the vicinity of the true source, it is considered correct within a 
margin of acceptable deviation in detection. In Fig. 11, we present the 
exact performance in addition to results assessed at three different 
proximity levels: 3 × 3, 5 × 5, and 7 × 7 as described in Fig. 12. For 
example, in the 3x3 proximity, a source detected within one node of the 
true source location is considered correctly detected. This means that the 
detected source can be one node away in any direction, forming a 3x3 
area centered around the true source. The localization results of the 
pipeline show high precision, recall, and F1 scores for single and 

multiple AVS sources as shown in Fig. 11. The performance enhances as 
a wider proximity range is considered; however, the exact performance 
is still considerably very good, with recall, precision, and F1 score as 
high as 0.94, 0.98, and 0.06, respectively, for 10 AVS source cases. While 
cases involving multiple sources are generally more difficult to localize 
accurately, using a relaxed proximity threshold helps account for small 
spatial errors. In such cases, incorrect predictions often fall near one of 
the true source locations, which still counts as a correct detection under 
the proximity range. On the other hand, in single source cases, incorrect 
predictions are more likely to be far from the actual source. As a result, 

Fig. 9. Layouts for 4 cases with different instrumentation coverage densities. a. 50 %, b. 11 %, c. 6 %, and d. 3 %. The blue nodes represent the reflector, the red 
nodes represent the positions of detectors.

Table 3 
Test MSE for reconstruction model using 50 % detector coverage.

N. of sources 1 2 3 4 5 6 7 8 9 10

MSE 3.8× 10− 5 0.00018 0.00029 0.00043 0.00057 0.00074 0.00091 0.00108 0.00127 0.00146

S.M. Hussein and C. Demazière                                                                                                                                                                                                             Progress in Nuclear Energy 189 (2025) 105950 

12 



even though multi-source localization is more complex, the precision 
score can appear higher than in single source cases when evaluated with 
proximity tolerance.

It is worth mentioning that both precision and recall are important 
for evaluating the performance of the proposed localization model. 
However, in the context of reactor core monitoring, recall holds 
particular significance, as missing a true perturbation could lead to more 
serious safety implications.

The final output for the reconstruction example given in Fig. 10, is 
displayed in Fig. 13, showing that having 50 % less detector points does 
not significantly impact the AVS localization performance.

5.3.2. Results for 11 %, 6 %, and 3 % instrumentation coverage
To evaluate pipelines with significantly reduced instrumentation, the 

test cases are conducted for models with detector coverage reduced to 
11 %, 6 %, and 3 % as discussed earlier. For each pipeline, the recon
struction accuracy and AVS localization performance are analyzed.

The reconstruction models are tested to assess their ability to infer 

the full relative neutron noise field with highly limited data. The test 
MSE for these cases is presented in Fig. 14, indicating a steady increase 
in reconstruction error as detector coverage decreases and as the number 
of AVS sources increases. Despite the challenges posed by reduced 
instrumentation, the model retains a reasonable ability to reconstruct 
global noise patterns.

After reconstruction, the full relative thermal noise is then used to 
localize AVS sources. The localization performance of the pipelines for 
11 %, 6 %, and 3 % detector coverage is summarized in Figs. 15–17, 
respectively. The metrics include precision, recall, and F1 scores for 
exact detection as well as for different proximity levels as described in 
Fig. 12.

As expected, reducing the number of detectors leads to a progressive 
decrease in the exact performance, particularly as the number of AVS 
sources increases. For different coverage levels, precision and recall for 
exact localization are substantially lower compared to the 50 % 
coverage case. However, when using wider proximity levels, the per
formance improves notably, showing that the pipeline can 

Fig. 10. Example for the reconstruction model with 8 AVS sources. The upper row shows the amplitude, the middle row shows the cosine phase, and the lower row 
shows the sine phase. The right column shows the input to the model with only 50 % data available in the system, the middle column is the full true induced neutron 
noise representation, and the left column is the induced neutron noise reconstructed by the model.

S.M. Hussein and C. Demazière                                                                                                                                                                                                             Progress in Nuclear Energy 189 (2025) 105950 

13 



approximately identify AVS source locations even in conditions with 
limited instrumentation. When evaluating precision and recall across 
different proximities, both show significant improvement for the 11 % 
and 6 % coverage cases, even within a small range like 3 × 3. This 
suggests that in the majority of the cases the predicted sources are close 
to the true locations, although they may sometimes be identified as 
multiple adjacent sources, or with minor deviations from their true lo
cations due to the limited detector coverage.

For sparser distribution of detectors as in the case of 3 % instru
mentation coverage, the task becomes more challenging. This is 
demonstrated by a reconstruction example with 8 AVS sources shown in 

Fig. 11. Different proximity metrics for pipeline performance of 50 % detec
tor coverage.

Fig. 12. Diagram showing different proximities used in assessing the perfor
mance of the pipeline. The orange: no proximity, the green: 3x3 proximity, 
blue: 5x5 proximity, and purple: 7x7 proximity.

Fig. 13. Pipeline results for a 50 % detector coverage case with 8 AVS sources.
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Fig. 18, where the final localization output is presented in Fig. 19. The 
reconstructed relative thermal reactor noise closely aligns with the true 
reactor noise field in regions influenced by the global component, 
demonstrating the model’s ability to capture broad noise behavior. The 
local noise component, which requires more spatially dense data for 
accurate reconstruction, is notably less pronounced in the reconstructed 
field. Nevertheless, the model is able to infer the approximate locations 
of most noise sources with reduced precision and recall compared to 
higher coverage cases.

The reduced instrumentation study highlights the challenges of AVS 
localization in systems with sparse detector coverage. At 3 % coverage, 
the model’s reliance on the global noise component became evident, 
with local information largely unavailable. Despite this limitation, the 
pipeline still demonstrates the ability to infer approximate noise source 
locations, particularly when evaluated using broader proximity ranges.

6. Discussion and conclusions

In this study, a core monitoring technique for SMRs using neutron 
noise and ML was investigated. CORE SIM+ was used to simulate AVS- 
type perturbations in the frequency domain with frequency of 1 Hz. We 
compared the behavior of reactor noise in large and small reactors and 
found that the point-kinetic behavior is more dominant in smaller sys
tems making it more challenging to diagnose perturbations in SMRs. 
This challenge was clearer when we analyzed the global and local 
components of the neutron noise and examined their deviation from 
point-kinetics behavior. The global component, i.e., the component 
responsible for observing the neutron noise at distant locations from the 
neutron noise source, was closely related to the point-kinetic component 
in small systems compared to large ones. This reactor noise nature 
highlighted the difficulties in detecting and localizing perturbations 
with limited instrumentation. Furthermore, we demonstrated the 
behavior of the fast-group and thermal-group neutron noise and their 
deviation from point-kinetics behavior showing that the thermal noise 
contains more useful information for the localization of noise sources.

This study demonstrated the ability of our CNN to localize up to 10 1 
Hz AVS sources with very high nodal accuracy using the full relative 
thermal reactor noise distribution. This showed the generalization 
ability of the model since it was trained using samples containing 1 and 2 
sources only. To account for the limitations in detectors inside a reactor 
core, we used a two-model pipeline where we reconstructed the reactor 
noise distribution from a few available points before localizing the AVS 
sources. The performance of the pipeline with 50 % reduced 

Fig. 14. Test MSE for reconstruction model using 50 %, 11 %, 6 %, and 3 % 
detector coverage.

Fig. 15. Results for different proximity metrics for pipeline performance of 11 
% detector coverage.
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Fig. 16. Results for different proximity metrics for pipeline performance of 6 % 
detector coverage.

Fig. 17. Results for different proximity metrics for pipeline performance of 3 % 
detector coverage.
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instrumentation shows the ability to reconstruct both the global and 
local components of the noise. Thus, the model was able to accurately 
locate the AVS sources, especially when considering AVS predicted 
within the vicinity of the true source as correctly predicted.

More practical cases were considered with a significant decrease in 
instrumentation, i.e., with 11 %, 6 %, and 3 % detector coverage. In 
these cases, the performance of the pipeline gradually decreased, but the 
model still demonstrated a reasonable ability to infer the approximate 
locations of AVS sources, especially when evaluated with wider prox
imity metrics. These results highlighted the importance of both the 
global and local noise components, as the model tended to rely on global 
noise information when detector coverage was sparse.

The results displayed the challenges posed by limited instrumenta
tion in SMRs where sensor placement is often sparse and limited. 
However, the ability of the pipeline to effectively localize AVS sources 
with reduced data suggested that further advancements in reconstruc
tion algorithms could improve the performance under limited 

conditions. Future research should focus on enhancing the accuracy of 
source localization in low-density detector systems and exploring how 
prior knowledge of reactor behavior can be integrated into these models 
to further improve performance in realistic operational environments.

This research provided a foundation for advancing monitoring 
techniques in SMRs and highlights the potential of ML-based methods to 
improve safety and reliability in next-generation reactor designs. Even 
though the localization model was trained on simulated data, the results 
remain relevant, since nuclear reactor applications in real-life will need 
to rely on simulated data for training ML models. The findings high
lighted the importance of strategically positioning detectors to maxi
mize coverage of both global and local noise components. It also 
emphasized the need for careful instrumentation planning in the design 
phase of SMRs to ensure effective noise source localization, even with 
sparse detector networks.

Future work will expand this study by transitioning from the current 
two-dimensional analysis to realistic three-dimensional models of SMRs. 

Fig. 18. Example for the reconstruction model with 8 AVS sources. The upper row shows the amplitude, the middle row shows the cosine phase, and the lower row 
shows the sine phase. The right column shows the input to the model with only 3 % data available in the system, the middle column is the full true noise repre
sentation, and the left column is the noise reconstructed by the model.
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This will enable a more comprehensive understanding of neutron noise 
behavior in small systems including vertical spatial variations. Addi
tionally, future investigations will incorporate a broader range of 
perturbation types, such as coolant flow perturbations and fuel assembly 
vibrations, thereby addressing more complex and realistic reactor sce
narios. These perturbations will be analyzed across a wider spectrum of 
frequencies. In addition, uncertainty quantification will be applied at 
different stages of the methodology, to evaluate the robustness of the 
proposed ML model under non-ideal and more realistic conditions. 
Furthermore, a comprehensive ML framework that identifies and lo
calizes different perturbations with no prior reconstruction re
quirements will be explored. The insights gained will help improve the 
design of SMR instrumentation, leading to safer and more efficient next- 
generation nuclear reactors. Furthermore.
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