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Abstract
Automatic Program Repair (APR) has garnered significant attention as a practical research 
domain focused on automatically fixing bugs in programs. While existing APR techniques 
primarily target imperative programming languages like C and Java, there is a growing 
need for effective solutions applicable to declarative software specification languages. This 
paper systematically investigates the capacity of Large Language Models (LLMs) to re-
pair declarative specifications in Alloy, a declarative formal language used for software 
specification. We designed six different repair settings, encompassing single-agent and 
dual-agent paradigms, utilizing various LLMs. These configurations also incorporate dif-
ferent levels of feedback, including an auto-prompting mechanism for generating prompts 
autonomously using LLMs. Our study reveals that dual-agent with auto-prompting setup 
outperforms the other settings, albeit with a marginal increase in the number of iterations 
and token usage. This dual-agent setup demonstrated superior effectiveness compared to 
state-of-the-art Alloy APR techniques when evaluated on a comprehensive set of bench-
marks. This work is the first to empirically evaluate LLM capabilities to repair declarative 
specifications, while taking into account recent trending LLM concepts such as LLM-
based agents, feedback, auto-prompting, and tools, thus paving the way for future agent-
based techniques in software engineering.

Keywords  Declarative specification · Automatic program repair · Formal methods · 
Alloy language · LLMs

1  Introduction

Declarative specification languages have become instrumental in addressing a multitude 
of software engineering challenges. Among these languages, the Alloy specification lan-
guage  (Jackson 2006) has emerged as a powerful tool, leveraging relational algebra and 
first-order logic to tackle a diverse array of tasks within the software engineering domain. 
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Its application spans across software verification (Bagheri et al. 2020), the security analy-
sis of cutting-edge platforms such as the IoT and Android systems  (Bagheri et al. 2016, 
2021; Alhanahnah et al. 2020), and the creation of test cases (Khurshid and Marinov 2004; 
Mirzaei et al. 2016). Integrating Alloy with the Alloy Analyzer has facilitated automated 
property verification, simplifying the process of checking whether specifications adhere to 
desired properties, and seamlessly integrating it into the Alloy environment. Despite these 
advancements, Alloy users, similar to developers in imperative languages, encounter chal-
lenges in debugging and correcting subtle bugs that may arise during specification writing, 
particularly for complex systems.

While the Alloy Analyzer aids in automatic property verification and counterexample 
generation, debugging and rectifying issues in Alloy specifications remain laborious and 
manual tasks. Unlike the rich literature and techniques available for automatic program 
repair (APR) in imperative languages, the landscape for APR in declarative languages is 
relatively sparse. Early approaches like ARepair (Wang et al. 2019) rely mainly on failing 
test cases to identify and rectify bugs, assuming the presence of tests for verification. How-
ever, this paradigm does not align well with Alloy’s assertion-based specification approach, 
where users articulate expectations using assertions rather than tests. Existing APR tech-
niques like ARepair  (Wang et al. 2019) may succumb to overfitting issues when the test 
coverage is insufficient, compromising the correctness of generated repairs. Despite efforts 
to mitigate these challenges with techniques like BeAFix (Brida et al. 2021), which lever-
ages assertions as correctness oracles, there is room for improvement in terms of efficiency 
and effectiveness.

The emergence of Large Language Models (LLMs) has revolutionized various domains, 
including natural language processing and code generation. These pre-trained models, such 
as GPT-3.5-Turbo and GPT-4, exhibit remarkable accuracy in predicting natural language 
and generating code. Inspired by these advancements and the persistent challenges in repair-
ing formal specifications, we embark on a systematic empirical study to explore the poten-
tial of using LLMs to repair faulty alloy specifications. Our research aims to investigate key 
questions regarding the effectiveness, performance, adaptive prompting, failure character-
istics, and repair costs associated with the use of LLM in Alloy specification repair. This 
investigation leverages recent advancements, including LLM-agents, tools, and feedback 
mechanisms.

This paper presents a systematic exploration and results of our comprehensive evaluation 
of the efficacy of LLMs in repairing faulty Alloy specifications, compared to state-of-the-
art Alloy APR techniques. We design a repair pipeline working iteratively and integrating 
a dual-agent LLM framework comprising a Repair Agent and an Instructor Agent 1. This 
iterative strategy centralizes around repairing bugs in defective specifications and generat-
ing specialized prompts to guide the repair process.

We conduct an extensive evaluation of LLM effectiveness in repairing defective Alloy 
specifications, comparing it against several state-of-the-art Alloy APR techniques, includ-
ing ARepair (Wang et  al. 2019), ICEBAR  (Gutiérrez Brida et  al. 2023), BeAFix  (Brida 
et al. 2021), and ATR (Zheng et al. 2022), shedding light on their capabilities, benefits, and 
potential limitations. Our evaluation encompassed two comprehensive sets of benchmarks, 
comprising 1,974 defective specifications sourced from ARepair  (Wang et  al. 2019) and 
Alloy4Fun (Macedo et al. 2021), developed by external research groups. For each defective 

1 Our implementation and artifacts are available at: ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​M​o​​h​a​n​n​a​​d​c​s​e​/​​A​l​l​o​y​S​​p​e​c​R​​e​p​a​i​r
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specification, we assess the repair pipeline across six distinct settings, conducting up to six 
iterations per setting.

Our findings contribute to advancing the field of automatic repair for declarative speci-
fications and provide insights into leveraging LLMs for effective Alloy specification repair.

2  Background and Motivation

This section provides an overview of multi-agent LLMs followed by an illustrative example 
of a faulty Alloy specification to motivate the research and help the reader follow the discus-
sions that ensue.

2.1  Multi-Agent Large Language Models

2.1.1  Large Language Models

Emerging pre-trained LLMs have demonstrated impressive performance on natural lan-
guage tasks, such as text generation (Brown et al. 2020; Chowdhery et al. 2022; Vaswani 
et al. 2017) and conversations (Thoppilan et al. 2022; OpenAI 2023a). LLMs have also been 
proven effective in translating natural language specifications and instructions into execut-
able code (Fan et al. 2023; Jain et al. 2022; Che 2021). These models have been trained 
on extensive corpora and possess the ability to execute specific tasks without the need for 
additional training or hard coding (Bubeck et al. 2023). They are invoked and controlled 
simply by providing a natural language prompt. The degree to which LLMs understand 
tasks depends largely on the prompting techniques used to convey user-provided instruc-
tions. These prompts are categorized into two frameworks: “zero-shot” learning and “few-
shot” learning (Brown et al. 2020). Within the “zero-shot” learning framework, the prompt 
includes a description of the problem and instructions for its resolution, aiming that LLMs 
can tackle previously unseen tasks. Conversely, in the context of “few-shot” learning, LLMs 
are provided with examples, supplementing the guidance offered in the “zero-shot” prompt.

2.1.2  Agentic LLMs

With recent advancements in LLMs, developers are embracing the idea of creating autono-
mous agents that can solve various tasks and interact with environments, humans, and other 
agents using natural language interfaces (Zhou et al. 2023a). These agents provide several 
features including planning, memory, tool usage, and multi-agent communication. There-
fore, LLM-based autonomous agents have gained tremendous interest in industry and aca-
demia (Wang et al. 2023). Several frameworks have been developed to support harnessing 
multi-agent LLM applications. AGENTS (Zhou et al. 2023b) is a unified framework and 
open-source library for language agents. AGENTS aims to facilitate developers to build 
applications with language agents. AutoGPT  (AutoGPT 2024) a multi-agent framework 
for LLMs, is designed to support autonomous applications of LLMs. LangChain  (Chase 
2022) supports end-to-end language agents that can automatically solve tasks specified in 
natural language. It also facilitates the connection between LLM agents and external tools. 
Langroid (Langroid 2024) is another framework that supports the development of multi-

1 3
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agent LLMs. It offers the capability to manage the history of messages, thus controlling the 
context window of LLMs. This is a crucial functionality for LLM apps operating iteratively 
(i.e., Self-Refine Madaan et al. 2023 and Reflexion Shinn et al. 2024). Moreover, Langroid 
enables seamless integration with a variety of LLMs.

2.1.3  Tools and Function Calling

Multi-agent frameworks and recent versions of OpenAI’s LLM have introduced a feature 
known as function calling2. This feature enables users to provide function descriptions to 
the LLM. In turn, the LLM responds with a structured response (i.e., JSON data contain-
ing the requisite arguments for invoking any available functions). These functions serve as 
action executors and provide the option to supply APIs that the LLM can query to obtain 
essential information for responding to users. For example, when a user inquires about the 
current weather in a specific city and provides the LLM with a weather API call description, 
the LLM can augment its response with information retrieved from the API. This facili-
tates a seamless and efficient interaction between the user and the LLM and provides rich 
responses to avoid hallucinations.

2.2  Alloy - Illustrative Example

Alloy, a formal modeling language, provides a comprehensible syntax inspired by object-
oriented notations and is grounded on first-order relational logic (Jackson 2006). Within an 
Alloy specification, three primary components shape its structure: data types, constraints 
expressed through formulas, and commands to initiate the analyzer.

The language uses signature (sig) definitions to define sets of elements, with fields speci-
fying relationships between these sets. Additionally, Alloy employs fact to introduce con-
straints that hold in every instance of the specification. These constraints restrict the model 
space, ensuring its consistency. Further structuring of formulas is achieved through pred and 
fun, which are named parameterized Alloy expression, and assert encapsulates the proper-
ties intended for verification.

Commands such as check and run activate the automated analyzer. Check verifies asser-
tions, while run executes predicates, aiming to identify model instances that satisfy specified 
conditions. Alloy’s expressiveness stems from its use of relational logic, a first-order logic 
extended with relational operators. These include all, some, one, and lone quantifiers, along 
with operators like relational join and transitive closure.

To illustrate the Alloy language and provide motivation for this research, we examine 
the specification shown in Listing 1 from the ARepair benchmark (Wang et al. 2019). This 
model represents a university context with students, professors, classes, and assignments. 
The specification defines relationships such as teaching assistants (students assigned as 
assistants), instructors (professors), and the association of assignments with both classes 
and students.

The predicate PolicyAllowsGrading determines who can grade assignments, 
allowing only instructors or teaching assistants (TAs) of a class. However, a bug in the 
policy allows a student to grade their own assignment if they are TA for the same class. 
The fix is explicitly preventing students from grading their own assignments by adding the 

2 https://pla​tform.opena​i.com/docs/​guides/t​ext-generation/function-calling
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condition (at line 15). This condition ensures a person “s” who qualifies as a grader (either 
as a TA or an instructor) must not be among the students assigned that specific assignment.

The assertion repair_assert_1 and predicate repair_pred_1 at the end formal-
ize and check the requirement that no individual is allowed to grade an assignment assigned 
to themselves.

Reasoning about and addressing this defect through direct prompting of LLMs can be 
challenging, as demonstrated in Hasan et  al. (2023). Additionally, conventional state-of-
the-art Alloy repair techniques, such as ARepair  (Wang et  al. 2019) and BeAFix  (Brida 
et al. 2021), also struggled to effectively address this defect. Given recent advances in LLM 
agents and prompt engineering techniques, this study aims to evaluate the capabilities of 
LLMs in light of these developments to repair such cases and evaluate their effectiveness 
in contrast to state-of-the-art Alloy repair techniques. In the following sections, we explore 
the ability of LLMs to address such challenges and the specific conditions under which they 
can do so3.

3 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​g​​u​o​l​o​​​n​g​-​z​h​e​​​n​g​/​a​t​​m​p​​r​​e​p​/​b​​l​​o​b​/​m​a​​​s​t​e​r​/​​b​e​n​c​​h​​m​a​r​k​/​a​r​​e​p​a​i​r​/​g​​r​a​d​e​1​.​a​l​s
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2.3  Underconstrained and Overconstrained Specifications

2.3.1  Underconstrained Specifications

Underconstrained specifications arise when essential constraints are omitted, permitting 
behaviors that deviate from the intended semantics. This class of defects often results in 
models that allow for unintended or invalid configurations. As illustrated in Listing 2, the 
specification enforces that each Tree must have at least one root, but does not restrict the 
number of root nodes. Consequently, multiple nodes could simultaneously serve as roots 
for a single tree, contradicting the common assumption of a unique root in tree structures. 
Repairs addressing this issue typically involve replacing some with one, or introducing 
explicit uniqueness constraints to ensure the intended behavior.

2.3.2  Overconstrained Specifications

In contrast, overconstrained specifications impose overly restrictive conditions, uninten-
tionally excluding valid model instances. This type of defect typically results in models that 
are too limited, preventing the representation of legitimate scenarios. As shown in Listing 3, 
while the first constraint correctly enforces a unique root, the second constraint forbids any 
Node from having children–effectively eliminating all hierarchical structures. As a result, 
the specification precludes valid tree configurations. Repairs in such cases often involve 
relaxing the restrictive constraint, such as substituting no with some, to reintroduce per-
missible structure while preserving correctness.

3  Methodology

This section outlines the repair pipeline, detailing its architecture and workflow. The pipe-
line is derived from the APR phases described in Zhang et al. (2023), including localization, 
repair, and verification. The LLM is responsible for the localization and repair steps, while 
the verification step is facilitated by granting the LLM access to the Alloy analyzer. Conse-

1 3
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quently, the LLM can autonomously execute all APR phases to repair the defective model. 
Our implementation of this pipeline utilizes the Langroid framework (Langroid 2024).

3.1  Overall Workflow

This section presents the design of the repair pipeline specifically designed for iterative 
self-refinement,

wherein the repair process for a defective Alloy model operates within a predetermined 
budget, defined by the number of iterations allocated. Previous research has indicated that 
this iterative prompting method produces superior results compared to traditional single-step 
approaches, improving task efficiency by an average of 20% (Madaan et al. 2023). Should 
the repair process exceed this limit without success, the pipeline halts further attempts. After 
each unsuccessful repair iteration, feedback is collected and used to update the prompt, 
refining the initial draft generated by the LLM.

The workflow of our APR pipeline, as depicted in Fig. 1, comprises two primary com-
ponents: the Repair Agent and the Instructor Agent. Each agent maintains its context, tools, 
and prompts, but they collaborate to adaptively refine the Repair Agent prompt for enhanced 
effectiveness, as elaborated below. Our pipeline supports various feedback levels, employ-
ing a zero-shot prompting approach (Paul et al. 2023), where tasks are performed without 
explicit examples, as detailed in Table 1.

Upon receiving defective Alloy specifications and the prompt, our APR pipeline dis-
patches these elements to the LLM, which generates a patched version aimed at rectifying 
the defect. Subsequently, the Repair Agent compares the proposed model with the buggy 
ones to evaluate the ability of LLM to locate faults and adhere to instructions. The accuracy 
of the proposed model is then assessed by triggering the Alloy Analyzer tool, which runs 
the proposed model for validation. If the Alloy analyzer confirms the bug’s resolution, the 

Fig. 1  APR Pipeline for Alloy specifications. It supports Single-Agent (Repair Agent Only) and Dual-
Agent (Repair Agent and Instructor Agent) paradigms
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repair process concludes. Conversely, if errors persist, the pipeline initiates another itera-
tion, depending on the remaining repair budget. If the budget is depleted, the pipeline ter-
minates operations. The adaptive prompt is designed to evolve and refine based on different 
settings (detailed in Section 3.3), ensuring continuous improvement after each unsuccessful 
attempt. The following sections provide a comprehensive overview of each component of 
the repair pipeline.

3.2  Pipeline Agents

As depicted in Fig. 1, the pipeline comprises two agents. This design facilitates evaluating 
the recent deployment of LLM apps as multi-agent applications.

3.2.1  Repair Agent

This agent is the core component of the APR pipeline. It has access to tools/functions (i.e., 
“run_alloy_analyzer”), maintains its context (i.e., history of messages) over the iterations, 
and decides the process for handling subsequent iterations.

The agent’s prompt encompasses a set of messages combined as a system message. 
These messages are listed in Table 1.

Table 1  Zero-shot prompts used by the repair pipeline
Agent Message Type Message content
Repair 
Agent

Agent-Instruction You are an expert in repairing Alloy declarative specifications. You 
will be presented with Alloy <Faulty_SPECIFICATIONS>. Your 
task is to FIX/REPAIR the <Faulty_SPECIFICATIONS>. Use the 
tool ‘run_alloy_analyzer‘ to demonstrate and validate the <FIXED_
SPECIFICATIONS>. Wait for my feedback, which may include error 
messages or Alloy solver results. You will have 5 trials to fix the 
<Faulty_SPECIFICATIONS>. **Adhere to the Following Rules**: 
- The <FIXED_SPECIFICATIONS> should be consistent (having 
instances) and all the assertions should be valid (no counterexample). - 
DO NOT REPEAT the <FIXED_SPECIFICATIONS> that I sent you. 
- DO NOT provide any commentary and always send me anything 
ONLY using the tool ‘run_alloy_analyzer‘. - The <FIXED_SPECIFI-
CATIONS> MUST be different than the <Faulty_SPECIFICATIONS>.

Tool-instruction ALL AVAILABLE TOOLS and THEIR JSON FORMAT INSTRUC-
TIONS: You have access to the following TOOLS to accomplish your 
task: TOOL: run_alloy_analyzer, PURPOSE: To show a <FIXED_
SPECIFICATIONS> to the user. Use this tool whenever you want to 
SHOW or VALIDATE the <FIXED_SPECIFICATIONS>. NEVER 
list out a <FIXED_SPECIFICATIONS> without using this tool. JSON 
FORMAT: “type”: “object”, “properties”: “request”: “default”: “run_
alloy_analyzer”, “type”: “string”,“specification”: “type”: “string”, “re-
quired”: [“specification”, “request”]. When one of the above TOOLs is 
applicable, you must express your request as “TOOL:” followed by the 
request in the above JSON format.

Instruc-
tor 
Agent

Agent-Instruction You are Expert in Analyzing Alloy Analyzer reports. Can you describe 
concisely and precisely the modifications needed to fix the error in at 
most 2 sentences? Based on this report from Alloy Analyzer: {Alloy_
report_msg} After running this Alloy Model is: {proposed_spec}

1 3
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	– Agent Instruction. This message provides a general guideline to the Repair Agent, 
commencing with the agent’s persona as an “expert in repairing Alloy specifications”. It 
proceeds to notify LLM of defects within the provided Alloy model, without disclosing 
the defects’ locations. The message finally describes the tools (i.e., “run_alloy_ana-
lyzer”) to which this agent has access. In conclusion, it enumerates a set of procedural 
steps to be executed by the LLM.

	– Tool Instruction. Offers instructions delineate the conditions and procedures for utiliz-
ing the tool “run_alloy_analyzer”. It further specifies the data required from the LLM 
to ensure the proper activation of this tool. This instruction guides the LLM to transmit 
a JSON formatted response, encapsulating two fields: (1) request, denoting the tool 
designation intended for use by the LLM, and (2) proposed_specification, rep-
resenting the LLM’s suggested version for rectifying the identified bug.

3.2.2  Instructor Agent

This agent has its LLM settings and context and generates feedback based on the report 
generated by Alloy Analyzer and the proposed specification. This agent leverages the Auto-
Prompt concept (Shin et al. 2020) by automatically constructing a prompt using LLMs. The 
produced feedback (i.e., the automatically constructed prompt) guides the Repair Agent on 
the methods for rectifying the bug. The system message that provides the instructions to this 
agent is described in Table 1. Unlike the system message of the Repair Agent, the agent’s 
persona is described as “Expert in Analyzing Alloy Analyzer reports”. This agent does not 
share the same context or prompts with the Repair Agent. But the response of the Instructor 
Agent is appended to the prompt that will be used in the next iteration by the Repair Agent, 
as illustrated in Fig. 1.

3.3  Feedback Messages

The initial prompt contains only Agent Instruction and Tool Instruction defined by the 
Repair Agent, as described in Table 1.

The pipeline refines the prompts in response to the behavior of the proposed specifica-
tion. This refinement process is contingent upon repetitive buggy specifications, errors that 
emerge after executing these specifications through the Alloy analyzer, or LLM failure to 
send a response based on the required JSON format.

To this end, Table 2 presents the feedback messages that are supported by the pipeline. 
These feedback messages will be appended to the initial prompt. Following is a description 
of these:

	– Tool fallback. This message informs LLM that the response received does not com-
ply with the tool’s JSON format, impeding the proposed specification’s extraction. To 
address this issue, we developed a parser atop the Langroid JSON parser to retrieve 
Alloy specifications from the response. Nonetheless, the parser cannot handle all sce-
narios, resulting in the dispatch of this feedback to the LLM, soliciting adherence to the 
mandated JSON format.

1 3

Page 9 of 38    149 



Empirical Software Engineering          (2025) 30:149 

	– Repeated Spec. This message is triggered when the proposed spec is the same as the 
buggy specification. In this situation, this message tells the LLM not to repeat the buggy 
specification.

	– Alloy Analyzer Report. This message relays the feedback of the verification process 
using Alloy Analyzer. Table 2 presents three feedback levels.

In the following, we discuss the details of the various feedback levels supported by the 
pipeline.

4  Alloy Analyzer Feedback Levels

The verification stage involves running the proposed specifications with the Alloy Analyzer. 
Subsequently, feedback conveying the Alloy Analyzer’s report is generated, available at dif-
ferent levels of detail. This process aids in assessing the effectiveness of various refinements 
made to the prompts.

In this study, we consider three feedback levels to refine the prompt as outlined in Table 2. 
These levels reflect errors, counterexamples, and instances identified after running the Alloy 
Analyzer in each iteration. They also mimic different repair scenarios, as described below: 

1.	 No-feedback. In this setting, the Alloy Analyzer agent returns only a single response 
(i.e., The proposed specification DID NOT fix the bug.) to LLM with-
out describing the details of the report generated by the Alloy Analyzer. This setting is 

Feedback Type Gener-
ated 
By

Message Content

Tool-fallback Repair 
Agent

You must use the CORRECT 
format described in the tool 
‘run_alloy_analyzer‘ to send me 
the fixed specifications. You either 
forgot to use it, or you used it with 
the WRONG format. Make sure all 
fields are filled out.

Repeated spec The proposed <FIXED_SPECIFI-
CATIONS> is IDENTICAL to the 
Alloy <Faulty_SPECIFICATIONS> 
that I sent you. **DO NOT** send 
Alloy specifications that I sent 
you again. ALWAYS USE the tool 
‘run_alloy_analyzer‘ to send me a 
new <FIXED_SPECIFICATIONS>.

No-feedback The proposed specification DID 
NOT fix the bug.

Generic-feedback Below are the results from the Alloy 
Analyzer. Fix all Errors and Coun-
terexamples before sending me the 
next <FIXED_SPECIFICATIONS>.

Auto-feedback Instruc-
tor 
Agent

The message content will be dy-
namically constructed by the agent 
based on the supplied information.

Table 2  Feedback Messages used 
by the repair pipeline
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designed to demonstrate the ability of LLMs to identify and fix errors in a faulty model 
solely based on the content of the buggy model itself, mirroring the function of a pro-
gramming language compiler.

2.	 Generic-feedback. We use a template to send the Alloy Analyzer report to LLM. This 
report summarizes counterexamples, instances, and errors. This scenario represents a 
common situation where the developer shares a summary of the issue on a question-
and-answer platform (such as Stack Overflow) to get help.

3.	 Auto-feedback. When this setting is enabled, the feedback response to LLM will be 
generated by another LLM agent (i.e., Instructor agent), which represents the 
dual-agent repair pipeline. We forward the report generated by the Alloy Analyzer and 
the proposed Alloy specifications to the prompt agent, which generates a prompt to 
instruct the Repair Agent.

Noteworthy, the No-feedback and Generic-feedback mechanisms are used under the single-
agent paradigm, whereas the Auto-feedback approach enables the dual-agent paradigm. The 
different reports reflect the ability of LLMs to (1) locate bugs and (2) correctly perform 
the repair process. For example, Generic-feedback and Auto-feedback show the ability of 
LLM to perform its reasoning based on a human-created prompt versus an LLM-generated 
prompt, which has no access to the repair context. Also, the latter reflects a real scenario 
wherein the user cannot repair the buggy specification, then they consult experts or other 
forums to get assistance.

5  Experiment Design

In this study, we address the following research questions (RQs):

	– RQ1 (Effectiveness): How effective is the APR pipeline in repairing compared to the 
state-of-the-art and how various repair settings contribute to the effectiveness?

	– RQ2 (Performance): What is the repair performance when employing pre-trained 
LLMs?

	– RQ3 (Failure Characteristics): What are the characteristics of failures encountered 
during the repair process?

	– RQ4 (Repair Costs): What is the cost associated with using the APR pipeline with 
various LLMs?

5.1  Dataset

In our evaluation, we utilize two distinct benchmark suites: ARepair  (Wang et  al. 2019) 
and Alloy4Fun (Macedo et al. 2021). These benchmark suites have undergone extensive 
study and developed by independent research groups, enabling a fair comparison of various 
techniques. The benchmark datasets consist of specifications varying from tens to hundreds 
of lines, featuring real bugs authored by humans. The defects within the benchmarks span 
a diverse range, from straightforward issues that can be addressed by modifying a single 
operator to complex challenges necessitating the synthesis of novel expressions and the 
substitution of entire predicate bodies.

1 3
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The ARepair benchmark  (Wang et  al. 2019) encompasses 38 faulty specifications 
extracted from a total of 12 Alloy problems. Within this benchmark, both single and multi-
line errors are present, distributed across 28 faulty models with single-line errors and 10 
faulty models with multi-line errors. The Alloy4Fun benchmark (Macedo et al. 2021) com-
prises a collection of 1,938 handwritten defective models sourced from student submis-
sions across six different Alloy problems. All bugs within this benchmark are single-line 
bugs. Both benchmarks are accompanied by correct versions of the specifications, serving 
as ground truths for verifying the accuracy of the obtained results.

5.2  Pre-processing Benchmark Dataset

As mentioned earlier, the benchmark datasets include comments indicating the locations of 
the bugs and their corresponding fixes. To ensure a fair evaluation, we perform two steps: 
(1) determining the uniqueness of Alloy specifications and (2) removing fix comments from 
the defective models.

Uniqueness of Alloy Specifications  To ensure that all specifications in the ARepair and 
Alloy4Fun benchmarks are unique, we applied a systematic normalization and hashing 
process. Each specification was processed in its entirety, preserving the original content. 
We removed block comments, and collapsed all whitespace (spaces, tabs, line breaks) to a 
single space. This normalization step eliminates superficial differences such as formatting 
and comments, allowing us to focus on the core logic of each Alloy specification. After nor-
malization, we computed an MD5 hash for each specification, treating the hash as a unique 
fingerprint. Specifications with identical hashes were considered duplicates. We grouped 
specifications by hash and maintained counts for each benchmark and for the combined 
dataset. Our analysis found that all 38 ARepair specifications and all 1936 Alloy4Fun files 
were unique–no duplicates were detected in the combined set of 1974 specifications. This 
confirms the diversity and uniqueness of the Alloy specifications in both datasets.

Removal of Fix comments  We have removed these comments from the defective models. 
Specifically, we have eliminated all lines starting with the phrase “Fix:” in the defective 
models. This line typically outlines the necessary changes required to resolve the bug. Mod-
els with multiple “Fix:” comments are categorized as having multi-line bugs, whereas those 
with only one “Fix:” comment are considered to have single-line bugs. Removing com-
ments is essential to prevent LLMs from receiving explicit clues about bug locations and 
fixes. This ensures an accurate assessment of their repair capabilities and effectiveness in 
localizing bugs within defective models. Importantly, this reflects a realistic scenario in 
which the user employs LLMs without prior knowledge of the bug location and the fix.

5.3  Implementation

Our implementation of the APR pipeline was realized using Python 3.11, with the assistance 
of Langroid to facilitate the integration of multi-agent LLMs. This implementation encom-
passes several crucial functionalities. Firstly, it offers support for various LLMs, including 
local LLMs, ensuring flexibility in model selection. Secondly, it incorporates a message 
history control mechanism, essential for preventing context-length limitations, particularly 
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during iterative repair processes. Lastly, our implementation facilitates the creation and cus-
tomization of tools, allowing for the definition of response formats and fields. Additionally, 
we developed a specialized parser to address issues caused by special situations that could 
impede the extraction of proposed specifications.

The experiments were carried out on a system equipped with a 2.3 GHz Quad-Core Intel 
Core i7 processor, 32 GB of RAM, and running macOS Sonoma. Furthermore, the system 
was configured with Oracle Java SE Development Kit 8u202 (64-bit version), ensuring 
compatibility and optimal performance throughout the execution of the APR pipeline.

5.4  Subject LLMs

To assess the performance of existing pre-trained LLMs, we have carefully chosen three rep-
resentative models. We explored local LLMs such as Llama-2 and Mistral, but they lacked 
support for tools and JSON responses, making it challenging to process their responses, 
which often contained incomplete Alloy specifications. Following is a description of the 
selected models, which are summarized in Table 3:

	– GPT-3.5-Turbo. This standard LLM, provided by OpenAI and utilized in ChatGPT, 
boasts a sophisticated architecture with 175 billion parameters, endowing it with 
extensive capabilities. Engineered to tackle a wide array of natural language process-
ing (NLP) tasks, including text generation and completion, GPT-3.5-Turbo epitomizes 
advanced computational linguistics.

	– GPT-4-32k. This model contains over 1.76 trillion parameters, demonstrating signifi-
cantly enhanced capabilities compared to GPT-3.5. For our study, we leverage the GPT-
4-32k-0613 model version.

	– GPT-4-Turbo. Another iteration of the GPT-4 model, GPT-4-Turbo features an updated 
knowledge cutoff as of April 2023 and introduces a 128k context window. Moreover, 
it offers cost-effectiveness compared to GPT-4, alongside notable enhancements such 
as improved instruction following, JSON mode, and reproducible outputs  (OpenAI 
2023b).

	– GPT-4o. This model shares features with GPT-4-Turbo but is more cost-effective and 
has an updated knowledge base as of October 2023.

5.5  Subject SOTA Systems

We conducted a comparative analysis of repair performance against several state-of-the-art 
Alloy repair tools: ARepair (Wang et al. 2019), ICEBAR (Gutiérrez Brida et al. 2023), BeA-

Table 3  Characteristics of Pre-trained LLMs
Model Version Cut-off Context Win-

dow (Tokens)
Input Cost per 
1M tokens

Output 
Cost per 
1M tokens

GPT-3.5 Turbo 1106 Sep 2021 16,385 $1 $2
GPT-4-32k 0613 Sep 2021 32,768 $60 $120
GPT-4 Turbo 1106-preview Apr 2023 128k $10 $30
GPT-4o 2024-05-01-preview Oct 2023 128k $5 $15

1 3

Page 13 of 38    149 



Empirical Software Engineering          (2025) 30:149 

Fix (Brida et al. 2021), ATR (Zheng et al. 2022), and Hasan et al. (2023). Each tool employs 
a distinct development approach and tackles specification attributes differently.

ARepair (Wang et al. 2019) generates fixes for Alloy specifications that violate test cases. 
ICEBAR (Gutiérrez Brida et al. 2023) utilizes ARepair as a backend tool to repair faulty 
Alloy specifications based on a predefined set of Alloy tests. ATR (Zheng et al. 2022) adopts 
a template-based methodology to enhance the repair process, leveraging fault localization 
strategies to identify potentially erroneous Alloy expressions that lead to assertion failures. 
BeAFix  (Brida et  al. 2021) relies on user input to identify faulty statements. It exhaus-
tively explores all possible repair candidates up to a certain threshold through mutation and 
employs Alloy counterexamples to evaluate the feasibility of generalization. Finally, Hasan 
et al. (2023) employed ChatGPT (GPT-3.5-Turbo) for repairing faulty specifications across 
five scenarios. This approach employs a purely LLM-based method, wherein a single repair 
iteration is conducted without the implementation of agent setup or feedback mechanisms. 
For our comparison, we exclude scenarios where ChatGPT is provided with “Fix:” com-
ments, as this represents an unrealistic setting and does not align with our “Benchmark Pre-
processing” step (cf. Section 5.2).

Since the state-of-the-art tools–ARepair, ICEBAR, BeAFix, and ATR–were evaluated 
on static Alloy models prior to the release of Alloy 6, our experimental analysis focused 
exclusively on static Alloy models to ensure a fair comparison. These tools do not support 
mutable specifications or recently introduced features such as linear temporal logic (LTL), 
making them incompatible with models that leverage Alloy 6’s new capabilities. Addition-
ally, due to structural dependencies and the absence of updated implementations, these tools 
could not be reliably executed on datasets incorporating Alloy 6-specific features. Neverthe-
less, our repair technique is not inherently limited to static specifications and, in principle, 
can be extended to support the dynamic capabilities introduced in Alloy 6.

5.6  Experimental Configuration and Settings

LLM Temperature  To balance between deterministic progression and iterative refinement, 
we set the temperature parameter of the Large Language Models (LLMs) to 0.2, allowing 
for a moderate level of randomness while maintaining some level of determinism through-
out the repair process (Kong et al. 2024; Zhang et al. 2024).

Number of Iterations  Initially, we conducted a preliminary experiment using the ARepair 
benchmark framework with GPT-4-32k, allocating a budget of ten iterations. However, we 
observed diminishing returns after six iterations in most cases. Therefore, we opted for a 
six-iteration budget in the APR pipeline.

Metric for Comparing Repair Performance of LLMs  We employ the Correct@k metric (Liu 
et al. 2024) to evaluate the success rate of the techniques in repairing defective Alloy speci-
fications. This metric quantifies the number of defects successfully repaired within a maxi-
mum of k iterations, where k is set to 6 in our study (denoted as Correct@6). The formula 
for this metric is described in (1).

	
Correct@k =

(
# of bugs successfully repaired within k iterations

Total number of bugs evaluated

)
× 100� (1)

1 3
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Experiment Settings and Baseline  Our evaluation encompasses a total of 1,974 defective 
models. We assess three distinct LLMs, as outlined in Table  3. The APR pipeline sup-
ports three levels of report granularity and permits multiple iterations, resulting in a total 
of 106,596 repair attempts (calculated as the product of 1,974 benchmarks, three LLMs, 
three feedback levels, and up to six iterations). The Single-agent paradigm utilizes the No-
feedback and Generic- feedback mechanisms, whereas the dual-agent paradigm employs 
the Auto-feedback approach within the repair pipeline.

The repair experiment on the Alloy4Fun benchmark leverages GPT-4o–the most cost-effec-
tive option among GPT-4-32k and GPT-4-Turbo–for a randomly sampled subset of 357 
models, maximizing both efficiency and performance. For comprehensive coverage, GPT-
3.5-Turbo is applied to the entire Alloy4Fun dataset, taking advantage of its substantially 
lower cost compared to the GPT-4 family. This experimental design enables a broad and 
cost-efficient evaluation across all models, while also allowing for targeted, high-perfor-
mance analysis using GPT-4o on a representative subset. Table 4 presents the settings cor-
responding to different combinations of LLMs and feedback levels.

6  Experimental Results

This section summarizes the data we collected, its interpretation, and our results.

6.1  Results for RQ1: Effectiveness

This research question investigates the effectiveness of LLMs in repairing Alloy specifica-
tions under various settings within the repair pipeline. To address this, we (1) compare the 
repair pipeline with state-of-the-art Alloy repair tools and (2) assess the impact of different 
feedback levels, LLMs, and agent paradigms on repair performance, and study the influence 
of LLMs on the repaired models.

Comparing with SoTA  Tables 5 and 6 present a comprehensive comparison of our approach 
against state-of-the-art Alloy repair techniques, including ARepair (Wang et al. 2019), ICE-
BAR (Gutiérrez Brida et al. 2023), BeAFix (Brida et al. 2021), ATR (Zheng et al. 2022), 

Setting No. # Agents LLM Feedback Level
Setting-1 Single GPT-4-32k No-Feedback
Setting-2 Single GPT-4-32k Generic-Feedback
Setting-3 Dual GPT-4-32k Auto-Feedback
Setting-4 Single GPT-4-Turbo No-Feedback
Setting-5 Single GPT-4-Turbo Generic-Feedback
Setting-6 Dual GPT-4-Turbo Auto-Feedback
Setting-7 Single GPT-4o No-Feedback
Setting-8 Single GPT-4o Generic-Feedback
Setting-9 Dual GPT-4o Auto-Feedback
Setting-10 Single GPT-3.5-Turbo No-Feedback
Setting-11 Single GPT-3.5-Turbo Generic-Feedback
Setting-12 Dual GPT-3.5-Turbo Auto-Feedback

Table 4  Settings correspond-
ing to various combinations of 
LLMs and feedback levels
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and Hasan et  al. (2023), on the ARepair and Alloy4Fun benchmarks, respectively. Each 
table reports the number of defects addressed and repairs achieved by each tool, as well as 
by various LLM settings described in Table 4. For the ARepair benchmark (Table 5), results 
are shown across all settings, enabling a detailed evaluation of repair effectiveness. For the 
Alloy4Fun benchmark (Table 6), GPT-4o is applied to a representative subset of models to 
balance performance and computational cost, while GPT-3.5-Turbo is evaluated on the full 
dataset.

The “Defects Count” column reports the total number of bugs identified within each model 
category, providing insight into the distribution of defects across specifications. When the 
value in “Defects Count” is equal to “Total #specs,” it indicates that each specification 
contains exactly one defect, suggesting the presence of only single-line bugs. In contrast, 
if “Defects Count” exceeds “Total #specs,” this reveals that some specifications contain 
multiple defects, indicative of multi-line bugs. For example, in Table 5, the balancedBST 
model exhibits 8 defects across 3 specifications, clearly demonstrating the occurrence of 
multi-line bugs.

The subsequent columns present the number of correctly repaired specifications for each 
state-of-the-art Alloy repair tool, with the remaining columns reporting the repair outcomes 
under the various settings described in Table 4.

The results highlight the superior performance of the GPT-4 family–particularly GPT-4o 
and GPT-4-Turbo–over both GPT-4-32k and traditional state-of-the-art Alloy repair tools. 
In contrast, GPT-3.5-Turbo (Settings 10–12) demonstrates significantly lower repair effec-
tiveness than traditional tools, which aligns with previous findings by Hasan et al. (2023).

Furthermore, across all evaluated LLMs and benchmarks, the Auto-feedback configura-
tion (Settings 3, 6, 9, and 12 in Tables 6 and 5) consistently delivers the strongest repair 
performance. Notably, the Generic-feedback configuration (Setting 8) achieves results com-
parable to Setting 9 on the Alloy4Fun sampled benchmark with GPT-4o, a phenomenon 
attributed to the inherent stochasticity of LLMs. To further investigate, we re-executed 
repair experiments on five models that were initially only repaired under Generic-feedback; 
two of these were successfully repaired upon rerunning with Auto-feedback. This outcome 
underscores the effectiveness of LLM-driven prompt construction over generic, human-
crafted prompts and supports the adoption of multi-agent LLM configurations for auto-
mated specification repair.

The repair results for the ARepair benchmark, as presented in Table 5, show that Settings 
6 and 9 deliver substantially superior performance compared to all SoTA tools, including 
traditional program repair approaches. Notably, the APR pipeline is able to repair specifica-
tions that remain unresolved by most, or even all, existing SoTA techniques. For instance, 
the grade specification (see Listing 1), which could not be repaired by the majority of 
SoTA tools, was successfully addressed under both Settings 6 and 9. Similarly, the farmer 
specification, which contains a multi-line bug and was not repaired by any SoTA tool, 
was successfully fixed by all APR configurations. The ctree specification, which was 
addressed by only a single SoTA tool, was also repaired by all APR configurations leverag-
ing GPT-4 models.

These results demonstrate that models from the GPT-4 family are particularly effective 
at handling complex specifications, especially those involving multi-line bugs. In particular, 
the findings underscore the promising potential of agentic LLMs enhanced with feedback 
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mechanisms. As shown in Table 7, which provides a comparative analysis of repair perfor-
mance across all evaluated LLMs using the Correct@6 metric, the dual-agent paradigm 
(Auto-Feedback) consistently outperforms the single-agent approach across all models. 
Within this paradigm, GPT-4o achieved the highest repair performance.

To gain deeper insights into the complementarity of these methods, the Venn diagrams in 
Fig. 2 illustrate cases fixed exclusively by one tool but not by others, as well as the overlap 
between techniques (i.e., cases correctly repaired by multiple tools). In particular, the repair 
pipeline successfully addresses faulty models that other SoTA repair tools cannot resolve.

Influence of Defective Model Complexity/Size on Repair Performance  To investigate the 
relationship between model complexity and repair performance, we assessed complexity 
based on the number of variables clauses in the propositional formulas generated by the 
Alloy Analyzer from LLM-produced repairs (see Tables 8 and 9) and conducted a detailed 
analysis thereof.

GPT-4o consistently outperforms GPT-3.5-Turbo in repairing faulty specifications, 
despite the latter generating more complex formulas with significantly more clauses. The 
clause-to-variable ratio further highlights this difference (2.87 for GPT-3.5-Turbo vs. 1.36 
for GPT-4o), indicating that GPT-4o constructs more concise and efficient logical expres-
sions. This suggests that GPT-4o achieves more efficient and accurate repairs by leveraging 
simpler logical structures while maintaining correctness.

The tendency of GPT-3.5-Turbo to generate more verbose and constraint-heavy for-
mulas, even with comparable variable counts, underscores the limitations imposed by its 
smaller context window and less sophisticated reasoning capabilities. The consistently 
higher clause-to-variable ratios across benchmarks for GPT-3.5-Turbo further support this 
conclusion. These findings confirm that model capability–especially in context comprehen-
sion and logical reasoning–is a critical factor for successful Alloy repair. GPT-4o’s superior 
performance, as highlighted in the %repair row of Table 6, demonstrates how advances in 
LLM architecture directly enhance formal reasoning and model repair effectiveness.

Discussing LLMs repair performance  The evaluation reveals a clear performance gap 
between GPT-3.5-Turbo and the GPT-4 family across all experimental configurations. GPT-
3.5-Turbo consistently exhibits the lowest repair rates, largely due to its architectural limi-
tations such as a smaller context window and less advanced reasoning capabilities. These 
constraints hinder its ability to effectively incorporate iterative feedback and maintain 
coherence over successive repair attempts, often causing context overflows and semantic 
inconsistencies. Additionally, GPT-3.5-Turbo frequently generates Alloy-specific errors, 
including incorrect operator usage, type mismatches, and hallucinated constructs, that are 
less common in specialized repair tools designed with native Alloy semantics. These short-
comings persist even in simpler Alloy4Fun models, limiting its practical utility in auto-
mated specification repair. In contrast, GPT-4 models, including GPT-4-32k, GPT-4-Turbo, 
and GPT-4o, demonstrate significantly improved repair performance across all settings and 
benchmarks. Benefiting from larger context windows and enhanced reasoning abilities, 
these models handle complex specifications and multi-line bugs more effectively. Among 
them, GPT-4o and GPT-4-Turbo achieve comparable results, with GPT-4o often leading 
in agentic (Auto-Feedback) configurations that leverage multi-agent prompt construction 
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Table 7  Comparison of repair performance for different LLMs across various feedback levels–No-Feedback 
(NF), Generic-Feedback (GF), and Auto-Feedback (AF)–as measured by the Correct@6 metric
GPT-3.5-Turbo GPT-4-32k GPT-4-Turbo GPT-4o
Single-agent Dual-agent Single-agent Dual-agent Single-agent Dual-agent Single-agent Dual-agent
NF GF AF NF GF AF NF GF AF NF GF AF
10.5 15.8 47.4 39.5 42.1 57.9 44.7 50.0 73.4 63.2 71.1 73.4

Fig. 2  Venn diagrams showing the exclusive and overlapping successful repairs for the ARepair bench-
mark achieved by different repair methods. These illustrate the complementary and unique capabilities of 
the APR pipeline compared to state-of-the-art (SoTA) repair tools
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and iterative feedback. This dual-agent paradigm consistently boosts repair success, high-
lighting the advantages of advanced LLM architectures combined with adaptive prompting 
strategies.

Table 8  Average number of variables and clauses in propositional formulas generated by the Alloy Analyzer 
from LLM-produced repairs on the ARepair benchmark
Model Total 

# 
spec

LLM Models

GPT-4-32k GPT-4-Turbo GPT-4o GPT-3.5-Turbo
addr 1 variables: 333 variables: 567 variables: 66 variables: 187

clauses: 368 clauses: 627 clauses: 74 clauses: 215
arr 2 variable: 1,973 variable: 7,578 variables: 6,364 variables: 1,482

clauses: 4,969 clauses: 16,284 clauses: 6,096 clauses: 3,314
balancedBSt 3 variables: 2,001 variables: 15,312 variables: 4,155 variables: 1,797

clauses: 3,720 clauses: 52,602 clauses: 8,616 clauses: 3,306
bempl 1 variables: 2,249 variables: 700 variables: 744 variables: 694

clauses: 3,489 clauses: 1,012 clauses: 1,071 clauses: 1,003
cd 2 variables: 294 variables: 280 variables: 288 variables: 576

clauses: 196 clauses: 164 clauses: 326 clauses: 1,188
ctree 1 variables: 2,976 variables: 1,130 variables: 1,721 variables: 1,679

clauses: 2,857 clauses: 1,035 clauses: 1,591 clauses: 1,524
dll 4 variables: 21,572 variables: 20,012 variables: 21,524 variables: 6,324

clauses: 66,088 clauses: 65,248 clauses: 50,128 clauses: 4,108
farmer 1 variables: 1,468 variables: 1,213 variables: 2,252 variables: 1,199

clauses: 2,808 clauses: 2,177 clauses: 4,096 clauses: 2,429
fsm 2 variables: 894 variables: 2,224 variables: 540 variables: 1,080

clauses: 1,816 clauses: 4,556 clauses: 1,108 clauses: 2,278
grade 1 variables: 4,763 variables: 2,830 variables: 1,024 variables: 491

clauses: 7,930 clauses: 4,578 clauses: 1,585 clauses: 604
other 1 variables: 477 variables: 264 variables: 113 variables: 268

clauses: 78 clauses: 352 clauses: 128 clauses: 358
Student 19 variables: 100,548 variables: 63,992 variables: 31,236 variables: 

63,878
clauses: 321,727 clauses: 208,696 clauses: 20,520 clauses: 208,354

Total 38 variables: 
139,548

variables: 116,102 variables: 
70,027

variables: 
79,655

clauses: 416,046 clauses: 357,331 clauses: 95,339 clauses: 228,681
Results are reported as overall averages across all evaluated settings for each LLM model
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6.2  Results for RQ2: Performance

This research question delves into the repair performance of various pre-trained LLMs con-
cerning factors such as repair iteration budget, bug type, localization capabilities, and adher-
ence to instructions.

This analysis leverages a comprehensive benchmark that includes all evaluated LLMs 
and a diverse range of defect types, encompassing both single-line and multi-line bugs. As 
shown in Table 5, each defective model was tested across up to 12 distinct settings and up 
to 6 repair iterations, resulting in a total of 2,736 repair trials–effectively corresponding to 
the repair of 2,736 defective models. This extensive experimental setup provides a robust 
and representative evaluation of the repair capabilities of the LLMs across a wide variety 
of scenarios.

Repair Iteration Budget  The box-whisker plot in Fig. 3(a) illustrates the iterations needed 
by different settings to rectify faulty specifications. Across all settings, the median number 
of iterations predominantly centers around 1.0, except for Settings 3, 6, and 10-12. Although 

Fig. 3  (a) Iteration count distribution for repairing specifications across various settings; (b) Repair distri-
bution categorized by bug type: single-line or multi-line (higher values preferred); (c) The incident count 
for initial repair attempts mirroring the buggy specification (lower values preferred)

 

GPT-4o GPT-3.5-Turbo
Model # 

specs 
used

Variables # 
specs 
used

Variables

classroom 60 variables: 35,760 60 variables: 3,580
clauses: 47,340 clauses: 4,691

cv 60 variables: 105,660 60 variables: 31,320
clauses: 8,640 clauses: 34,620

graphs 60 variables: 17,040 60 variables: 7,902
clauses: 37,200 clauses: 6,180

lts 60 variables: 26,100 60 variables: 88,560
clauses: 26,820 clauses: 199,260

production 60 variables: 16,560 60 variables: 61,380
clauses: 19,560 clauses: 124,560

trash 57 variables: 7,068 57 variables: 23,598
clauses: 8,892 clauses: 43,605

Total 357 variables: 
208,188

357 variables: 
216,340

clauses: 148,452 clauses: 412,916

Table 9  Average number of 
variables and clauses in proposi-
tional formulas generated by the 
Alloy Analyzer from LLM-
produced repairs on the A4F 
benchmark

Results are reported as overall 
averages across all evaluated 
settings for each LLM model. 
For a fair comparison, results 
are based on the same set of 357 
specifications for both GPT-3.5-
Turbo and GPT-4o
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Settings 3 and 6 exhibit superior repair capabilities, they may require a marginally higher 
number of iterations to achieve optimal results. However, median values for Settings 1, 2, 
4, and 5 remain at 1.0, suggesting that at least half of the issues are resolved within the first 
iteration. In contrast, the median values for Settings 7–9 are consistently 1.0, indicating that 
such settings require the fewest repair iterations, independent of the employed feedback 
mechanism.

Repairing Based on Bug Type  Figure 3(b) illustrates the repair effectiveness of various con-
figurations in the repair pipeline with respect to bug types–specifically, single-line and multi-
line defects. The dual-agent configurations in Setting-6 (auto-feedback, GPT-4-Turbo) and 
Setting-9 (auto-feedback, GPT-4o) demonstrated the highest overall repair rates, success-
fully fixing 16 single-line and 12 multi-line bugs, and 15 single-line and 13 multi-line bugs, 
respectively. In comparison, the best-performing configuration for GPT-4-32k (Setting-3, 
auto-feedback) showed relatively stronger performance on single-line bugs, repairing 12 
Alloy models, versus 10 for multi-line bugs.

Following Instructions  Adherence to instructions is crucial, in tasks such as automated 
repair, to ensure repair quality and control costs. Figure 3(c) reveals that both GPT-4 models 
sometimes repeat buggy models in their initial repair iterations, despite system instruc-
tions to avoid this. GPT-4o generally shows better compliance, under all settings, with zero 
number of repeated buggy specifications. Interestingly, GPT-3.5-Turbo exhibited similar 
behavior to GPT-4o.

6.3  Results for RQ3: Characteristics of Failed Repairs

This research question explores the underlying causes of unsuccessful repair iterations. 
Figure 4 illustrates the distribution of failed iterations in different settings and provides a 
comprehensive breakdown of the reasons for the failure. Predominantly, failures arise when 
the proposed repairs fail to fulfill the assertions, resulting in the generation of counterex-
amples. Additionally, syntax errors in proposed repairs impede the compilation process by 
Alloy Analyzer. Settings 1-3, employing GPT-4-32k, manifest instances of failures attrib-
uted to incorrect message formats, a phenomenon absent in Settings 4-6 utilizing GPT-4-
Turbo. Such disparities suggest discrepancies in the compliance of LLM responses with 
the JSON format mandated by the alloy_analyzer_tool. Categories such as “Repetition” 
and “No instances” exhibit lower prevalence. “Repetition” denotes instances where pro-
posed repairs same as the supplied defective models, while “No instances” signify scenarios 
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where proposed models fail to generate instances, indicative of an incapacity to meet model 
constraints.

Figure 5 tracks the results across all iterations in Setting-6, revealing the evolving nature 
of failure categories during the iterative prompting process. Although instances of “Coun-
terexample” failures are effectively addressed, challenges persist to rectify issues classified 
under “Repetition”.

We investigated the repair behavior of the ten defective models that remained unresolved 
after six iterations. Among these models, five were categorized as “Counterexample,” four 
exhibited syntax errors, and one was identified as a “No instance”. Notably, the statuses of 
these ten specifications have remained largely unchanged since iterations 3 and 4. Particu-
larly, the defective model arr1 consistently exhibited the same status from the first itera-
tion onwards. This persistent behavior corroborates our preliminary analysis regarding the 
number of iterations, wherein no further progress was observed beyond the sixth iteration.

Constraint-Related Issues  Our analysis of LLM-generated results reveals an important 
nuance in constraint-related issues: underconstrained and overconstrained specifications 
often coexist with various error manifestations. These fundamental constraint problems can 
simultaneously present as syntax errors, type errors, absence of valid instances, and counter 
examples. Rather than being distinct categories, constraint issues and error types frequently 
intersect. Addressing these interrelated challenges requires sophisticated specification engi-
neering techniques that can balance constraint expressiveness with feasibility, ultimately 
leading to more reliable and robust LLM-based specification repairs.

Fig. 4  Error types observed in failed repair iterations across all settings
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Our analysis proceeds in two principal steps to identify specification constraint defects 
across LLM-generated models. First, we detect overconstrained specifications by inspect-
ing counterexamples and the presence of instances. If a counterexample is present and 
no instance is found–or if only a counterexample is detected, indicating overly restrictive 
constraints–we classify the model as overconstrained. This suggests that the model’s con-
straints are too strict to allow any valid instance. Second, for specifications not flagged as 
overconstrained, we identify underconstrained issues by comparing each model against our 
ground-truth benchmarks. If there is a discrepancy in the constraints–such as a missing con-
straint or an implementation that fails to reflect the intended semantics–we label the model 
as underconstrained. This two-stage procedure ensures that each model is categorized into 
exactly one defect class or deemed correct if neither condition applies.

Table 10 summarizes the distribution of overconstrained and underconstrained specifi-
cations among all unfixed issues across various LLM configurations on the ARepair and 
Alloy4Fun benchmarks, respectively. Notably, the results reveal that the constraint tenden-
cies of each LLM can vary substantially depending on the benchmark context. On ARepair, 
GPT-4-32k and GPT-4-Turbo most frequently produce overconstrained specifications, with 
over 56% of unfixed issues falling into this category across most settings. GPT-4o shows 
mixed behavior, with some settings demonstrating a greater tendency toward undercon-
straining, particularly settings 7 and 9 (57.1% and 50.0% respectively).

In contrast, on the Alloy4Fun benchmark, GPT-4o consistently produces overconstrained 
specifications (60-62% of unfixed issues), while GPT-3.5-Turbo maintains a similar ratio 
of overconstrained issues (approximately 60%). This reversal in behavior between bench-
marks is particularly notable, suggesting that its constraint tendencies are heavily influ-
enced by the specific characteristics and complexities of the benchmark rather than being 
an intrinsic property of the model. These findings underscore a consistent trade-off between 

Fig. 5  Repair progress in dual-agent Setting-6 (GPT-4-Turbo and Auto-Feedback) across iterations. Per-
centage numbers show transition volumes between statuses in subsequent iterations. Cumulative counts 
of fixed models follow each “Fixed” block
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generating overly strict and overly permissive constraints, with distinct patterns emerging 
for each model and benchmark. Our systematic categorization method robustly captures 
these nuanced behaviors, providing insight into both model capabilities and the influence of 
benchmark design on LLM-driven specification repair.

6.4  Results for RQ4: Repair Costs

We consider two primary cost factors to assess the financial implications of utilizing the 
APR pipeline with different LLMs: (i) time taken for bug resolution and (ii) monetary 
expenses associated with token consumption, based on OpenAI’s pricing as of March 2024.

Time Analysis  We measure the time taken for bug resolution using the results presented 
in Table 5. Figure 6 illustrates the runtime analysis, contrasting fixed and unfixed scenar-
ios. Across different settings, the median duration required for bug repair varies from 37.3 
seconds in Setting-1 to 120.3 seconds in Setting-3. Notably, the maximum time spent on 
repairs reached 493.28 seconds in Setting-5. Conversely, the median duration associated 
with unfixed bugs amounted to 273.8 seconds and 392.2 seconds in Settings-1 and 4, respec-
tively. Interestingly, all settings supporting the dual-agent setup (i.e., 3, 6, 9, and 12) consis-
tently exhibit increased running time compared to the single-agent configuration, across all 
LLMs and under both fixed and unfixed bug scenarios.

Monetary Costs  Figure 7 presents the monetary costs incurred under each setting for both 
fixed and unfixed models. Settings utilizing GPT-3.5-Turbo show the lowest costs for both 
fixed and unfixed models, attributed to the cheaper cost per token for GPT-3.5-Turbo com-
pared to GPT-4 family models (see Table  3). Additionally, settings employing the dual-
agent (3, 6, 9, and 12) exhibit marginally higher costs than their counterparts utilizing the 
same LLM under the single-agent setup.

Fig. 6  Distribution of running time across all settings for fixed bugs (left) and unfixed bugs (right)

 

1 3

Page 29 of 38    149 



Empirical Software Engineering          (2025) 30:149 

7  Threats to Validity

Internal Validity  Variations in prompt design and format may introduce biases in the repair 
process, affecting the outcomes independently of the LLM’s capabilities. To mitigate this 
threat, we carefully standardized the prompt design across all experiments, ensuring con-
sistency in the information provided to the LLMs. Additionally, we conducted analyses to 
assess the impact of prompt variations on repair performance, enabling us to isolate the 
effects of LLM capabilities from potential biases introduced by prompt design.

External Validity  The generalizability of our findings may be limited by the specific charac-
teristics of the benchmarks used. To address this, we utilized diverse benchmark suites and 
evaluated the performance of the repair pipeline across various scenarios. Furthermore, we 
documented the experimental setup comprehensively to facilitate replication and external 
validation of our results. Finally, some repair instances in our benchmark have been fixed 
in prior work and may have been included in the training data of the LLMs. This raises the 
concern that the models might be memorizing existing repairs rather than generating novel 
solutions, which could limit their applicability to Alloy models they have not been trained 
on. As a result, this poses a threat to the generalizability of our findings, as the LLMs may 
perform well on known faults but struggle with previously unseen ones. Future work could 
further investigate this aspect, following the approach of Salerno et al. (2025), and introduce 

Fig. 7  Monetary distribution across all settings for fixed bugs (left) and unfixed bugs (right)
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a new benchmark dataset–analogous to the ConDefects dataset (Wu et al. 2024)–designed 
specifically to mitigate the issue of data leakage.

Construct Validity  Biases in the measurement of repair performance metrics could distort 
our assessment of LLM capabilities. To mitigate this, we employed standardized metrics 
and conducted sensitivity analyses to validate the robustness of our findings. Additionally, 
we ensured transparency and reproducibility in our methodology to enhance the validity of 
our measurements.

8  Related Work

Several recent studies have explored the integration of Large Language Models (LLMs) into 
software engineering tasks, particularly in the realm of program repair.

AlphaRepair (Xia and Zhang 2022) leverages LLMs for APR in a zero-shot setting, but 
it requires removing the buggy line and replacing it with masked tokens. It then queries 
the LLM to fill-in the masked tokens with the correct tokens to generate patches. Xia and 
Zhang (2023a) improve APR performance by incorporating test feedback into prompts, 
while Kang et  al. (2023) enabled LLMs to utilize a debugger for information gathering 
and patch generation. Additionally, Fuzz4All (Xia et al. 2024) leverages LLMs as an input 
generation and mutation engine, employing an auto-prompting phase to generate concise 
input prompts. RepairAgent (Bouzenia et al. 2024) employs LLMs, agents, and dynamic 
prompts for APR, albeit in the context of repairing Java applications. TestPilot  (Schäfer 
et  al. 2024) uses LLMs to generate unit test cases for JavaScript, employing a few-shot 
learning approach to refine prompts with failed tests and error messages.

In contrast to these efforts, our study focuses on using LLMs for automated specifica-
tion repair, a less explored area in software engineering. We adopt an approach similar 
to Fuzz4All’s auto-prompting phase, specifically by incorporating LLM to construct the 
prompt  (Shin et al. 2020). Moreover, while existing work predominantly uses LLMs for 
program repair in imperative languages like Java and JavaScript, our study extends the 
application of LLMs to the domain of Alloy specifications, addressing a gap in the litera-
ture regarding specification repair techniques for declarative languages. Consequently, a 
direct quantitative comparison is largely infeasible, with the exception of the tool proposed 
by Hasan et al. (2023), which utilizes LLMs to repair Alloy specifications. Nevertheless, 
Table 11 presents a comparative analysis of state-of-the-art LLM-based APR tools. This 
comparison highlights that our APR pipeline incorporates recent advances and techniques 
in LLMs that are also employed by contemporary repair tools.

Table 11  Comparing the feature that we considered in the APR pipeline with contemporary state-of-the-art 
LLM-APR tools, the column labeled “Autoprompt” denotes that the LLM generates the prompt
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9  Conclusion

In this study, we explore the potential of pre-trained LLMs to facilitate the repair of Alloy 
specifications, taking into account recent advancements in LLMs, including the use of 
agents, feedback mechanisms, zero-shot learning capabilities, and auto-prompting tech-
niques. The investigation reveals that employing a dual-agent repair pipeline enhances the 
repair process, albeit with a marginal increase in token consumption. The comparative eval-
uation highlights the superior performance of the GPT-4 model family over GPT-3.5-Turbo, 
underscoring their promising applicability. Overall, the findings of this research indicate a 
positive outlook for applying LLMs in automated program repair for declarative specifica-
tions, particularly through repair pipelines that integrate contemporary innovations in the 
field of LLMs.

Appendix Additional Results

This section presents the results for the Alloy4Fun benchmark based on settings 7-12.
Figs. 8, 9, 10, 11, 12 and 13.

Fig. 8  Venn diagrams showing the exclusive and overlapping successful repairs for the Alloy4Fun bench-
mark achieved by different repair methods. These illustrate the complementary and unique capabilities of 
the APR pipeline compared to state-of-the-art (SoTA) repair tools. Settings 7-9 are based on the sampled 
357 models, while settings 10-12 are based on the entire set of models in the benchmark. Accordingly, the 
results are reported for the SoTA tools
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Fig. 11  Error types observed in 
failed repair iterations for the 
Alloy4Fun benchmark across 
settings 10-12

 

Fig. 10  Error types observed in 
failed repair iterations for the 
Alloy4Fun benchmark across 
settings 7-9

 

Fig. 9  Alloy4Fun benchmark results: (a) Iteration count distribution for repairing specifications across 
various settings. (b) Incident count for initial repair attempts mirroring the buggy specification (lower 
values preferred)
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(left) and unfixed bugs (right)
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