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Abstract

Several major advancements have recently been made within the field of Natural
Language Processing (NLP). Nowadays, NLP systems based on language models
(LMs) are readily available to the public in the form of chatbots, code assistants,
writing assistants, etc. Any task that can be described in text can be, and is,
addressed by NLP systems, covering the expected tasks as well as less expected
tasks. While these advancements have highlighted many strengths of NLP
systems, they have also highlighted weaknesses of NLP systems, hindering
their use in certain scenarios. For example, modern NLP systems are neither
reliable nor interpretable, limiting their usefulness for e.g. knowledge-intensive
or high-risk tasks. In this thesis, we focus on the application of NLP systems to
knowledge-intensive situations. We consider how methods leveraging different
types of representations of information, such as the parametric memory of a
model trained on multimodal information or retrieval-augmented generation
(RAG), can be used to improve the systems. We find that RAG can be used to
improve the stability of NLP systems for knowledge-intensive tasks, and bigger
LMs generally are more efficient in leveraging the external information in RAG.
We also develop datasets and methods to allow for more comprehensive and
precise evaluations of NLP systems in knowledge-intensive situations. We find
that insights gained from synthesised evaluation datasets are not guaranteed to
transfer to real-world scenarios and that evaluation results are sensitive to how
the knowledge under consideration interacts with the parametric memory of the
LM. Taken together, the work included in this thesis improves our understanding
of NLP systems for knowledge-intensive situations and highlights the important
role of representations of information as well as realistic benchmarks for NLP.
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Chapter 1

Introduction

The field of natural language processing (NLP) is currently in its deep learning
era, for which artificial neural networks (ANNs) are used to model language.
At the start of this era, in the 2010s, one of the main goals was to generate
coherent text (Wang et all 2018). For example, when OpenAl presented their
GPT-2 modeEI in 2019, they used the example of a generated news article on
talking unicorns to showcase the impressive abilities of the model (Radford
et al., [2019). In the recent six years, NLP systems have advanced well beyond
the problem of generating coherent text. The research frontline now spans
a plethora of more difficult and unsolved tasks, many of which are so called
knowledge-intensive tasks, i.e. tasks humans cannot be expected to solve based
on memory alone, for which access to some form of knowledge source is crucial
(Petroni et all 2021). Examples of such tasks are question-answering and
fact-checking tasks.

NLP systems suffer from issues related to hallucinations, i.e. the propensity
to generate text that appears coherent but contradicts factual knowledge or
system input, and unpredictable instability, i.e. seemingly insignificant changes
in input may cause critical changes in performance (Maynez et al., |2020; |[Elazar
et al 2021). These issues and our inability to interpret the blackbox systems
ultimately make most NLP systems too unreliable for safe use in knowledge-
intensive tasks. For these tasks, the user needs to be able to trust the system,
as they generally are unable to verify the answer themselves, and the benefit
of using the NLP system relies on not having to verify the answer. This task
is different from e.g. the task of rephrasing text for which the user easily can
verify the generated text themselves.

To address these issues, new system designs have been proposed. The
systems combine ANNs with external sources of information, such as Wikipedia,
the web or knowledge graphs (Lewis et al., 2020} |Shuster et al.; 2021} |Gao
et al., [2024). These systems are typically referred to as Retrieval-Augmented
Generation (RAG) or Retrieval-Augmented Language Models (RALMs). Recent
results have shown these system designs to mitigate issues with hallucinations
and instability in knowledge-intensive situations.

LA predecessor to ChatGPT.
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Figure 1.1: An illustration of NLP systems for knowledge-intensive situations,
potentially combining external information from e.g. the web with ANNs
to generate an output. Potential sources and transfer of information are
highlighted in purple . The research questions discussed in this thesis are also
depicted with the dashed boxes.

Recent results have also found ANNs capable of storing information in
their parameters (Petroni et al.l |2019). However, this storage is seemingly too
limited and unstable compared to alternatives that leverage external sources of
information.

These recent developments raise interesting questions related to how to
represent and leverage informatiorﬂ in NLP systems for knowledge-intensive
tasks, see Figure[[.1] For effective system designs, should the information come
from trained ANN parameters, or external representations of information, and
does it depend on the type of information? Furthermore, for trained ANNs, how
is information stored? For the evaluation of NLP systems, how can we know
the source of the outputted information? And how is information transferred
in NLP systems — is external information, when provided, always incorporated
in the ANN output? Much of the work included in this thesis focuses on these
questions, summarised by the following exploratory research question.

RQ1: How is information transferred in NLP systems and how
should it be transferred for effective system designs for knowledge-
intensive tasks?

Addressed in papers 1, 2, 4 and 5.

We also need sound and relevant evaluation methods to help us ascertain
whether novel NLP systems improve key traits for knowledge-intensive tasks.
Due to the blackbox nature of modern NLP systems, their performance can only
be measured via empirical approaches rooted in evaluation data that has been
designed to elicit and test the trait under consideration. Failures in designing
appropriate evaluation data may result in misleading conclusions that do not
generalise to the areas of interest (McCoy et al., 2019; |Zellers et al.,2019). The
development of sound evaluation data comes with many challenges; manual
annotation of data is the most appropriate approach, but comes with high

2In this thesis, we mainly consider representations of information with stored or learned
information about the world, see Chapter El



costs in money and time. Something that is solved by synthesising data, but
with the risk of inducing unwanted artefacts that interfere with the evaluation,
resulting in findings that do not generalise to real-world scenarios. This leads
us to the second and final exploratory research question investigated by the
work included in this thesis.

RQ2: How should we evaluate NLP systems for knowledge-intensive
situations?
Addressed in papers 1, 3, 4 and 5.

The content of this thesis starts by introducing models for natural language
processing ( We then move on to consider how representations of information
are used to support NLP systems ( and how NLP systems are evaluated in
knowledge-intensive situations ( Finally, the work included in this thesis is
summarised (§5]) and we consider final conclusions together with reflections on
future work (
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Chapter 2

Models for natural language
processing

Given some text input like “Q: What is the colour of the sky? A:...” or “This
movie was awesome!”, models for NLP are used to infer adequate outputs like
“Blue” or “Sentiment: Positive”. ANNs are widely used in NLP by virtue of
their adaptability and capacity to learn from unsupervised training on data
(Hornik et al., [1989), making them especially suitable for language processing.

A type of neural network that has found wide applicability in the field
of NLP is the Transformer ( Most modern NLP systems are based on
the Transformer. Depending on application area, different categories of NLP
models are used, corresponding to suitable modifications to the Transformer
network. The works included in this thesis have mainly focused on models for
language representation (7 language models (, and vision-and-language
models (§2.4), all modelled using the Transformer.

2.1 Transformer

The Transformer network is used for most modern NLP models (Vaswani
et al.l |2017). This deep network utilises stacked attention layers to model
dependencies between words in a sequence and has proven to be very performant
for NLP (Bahdanau et al., 2015)). This network setup works well also for
longer sequences where the model has to take long-distance word-to-word
relationships into account. Compared to the previous state-of-the-art NLP
models based on recurrence and convolutions, the Transformer architecture
largely avoids sequential computing. Thanks to its superior modelling capacity
and parallelisability, the Transformer is the current state-of-the-art network
for language processing.

The Transformer network was originally developed for language translation.
Since translation is a sequence-to-sequence task, the original Transformer
architecture consisted of two networks, an encoder network to encode the input
to be translated and a decoder network that generates the translation based

7
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on the encoded input and preceding output. Each of these network parts can
be, and have been, used separately in modern NLP models. The Transformer
encoder lends itself especially useful for representation learning, while many
design aspects of the Transformer decoder are useful for autoregressive language
modelling, for which we wish to generate continuations based on preceding
values of a provided sequence. The only remaining sequential aspect of this
model is the generation by the decoder, meaning that all other computations
can be parallelised for faster training.

Both the encoder and decoder of the Transformer network build on stacks
of respective identical layers. The layer for the encoder consists of multi-head
attention and a fully connected feed-forward network components. The layer
for the Transformer decoder is similar to the encoder layer, while it contains
additional attention over the encoder output and masks the attention over the
decoder input to prevent information leakage from the tokens to be predicted,
i.e. causal attention. This stacked setup allows for easy re-scaling of the
Transformer, since one can simply change the number of layers in the stacks.

In the subsequent sections we explore how the Transformer is used for
three different categories of NLP models (language representations, language
models and vision-and-language models). While we here distinguish between
the different categories, it can generally be assumed that many of the insights
gained from the study of one model category transfer to the other, by virtue
of all models being based on the Transformer. For example, insights related
to the text processing performance and behaviour of models for language
representation are likely to transfer to language models.

2.2 Language representations

An NLP model can be used to generate a vector, a representation, of the text
input that then can be used instead of the text for any text related task, such
as sentiment classification or categorisation (Peters et al., [2018; Devlin et al.,
2019). Typically, a Transformer encoder is used for representation modelling.

A model frequently used for language representation is the Bidirectional En-
coder Representations from Transformers (BERT) model. It had a large impact
on modern NLP research after it was developed by [Devlin et al.| (2019), and
showed a promising path forward for NLP. BERT is a language representation
model that has been trained to generate contextualised token representations in
a bidirectional fashion, also considering the words after the word of interest in
a sequence. The BERT model comes in two sizes, BERT-base and BERT-large,
modelled by a Transformer encoder with stacks of 12 or 24 layers respectively.
The encoder generates representations for input tokens that can be used by a
smaller network to solve some downstream task, as illustrated in Figure [2.1
The assumption is that if the encoder is sufficiently trained, it should be able
to generate language representations that are useful for generic language tasks,
as in transfer learning.

The BERT model is trained in two steps. The first step is a pre-training
phase in which the model is tasked with Masked Language Modelling (MLM),
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Figure 2.1: An illustrative image of BERT for masked language modelling.
FNN denotes a feed-forward neural network.

i.e. predicting masked words in a text passage, and next sentence classification
on a large text corpus. The training data of the BERT model consists of English
Wikipedia and the Book Corpus (Zhu et all 2015). The second training step is
a fine-tuning phase during which the model can be specifically tuned to perform
some kind of specific linguistic task, usually by adding a feed-forward neural
network on top. With this setup, even low-resource tasks may be possible to
solve thanks to the general language capabilities that have been obtained by
the model in the pre-training step.

A more recent example of a model used for language representation is
the RoBERTa model (Liu et al., [2019). It was developed to be more robust
compared to the BERT model and is frequently used for language representation.
For example, it is used in the Transformer pipeline by the text processing

package spaCyE

2.3 Language models

For language modelling, the goal is to generate continuations to provided input
text. A language model (LM) expresses the probability of some next token z,,
based on preceding tokens x1, T2, ..., xp—1 as follows,

p($n|I1,I2,n-,In_1,9%

where 0 contains the parameters of the model. This format is useful for text
generation, used in e.g. chatbots, question answering or story generation
(Radford et al., [2018; Brown et al., [2020). Typically, models inspired by the
Transformer decoder architecture, with causal attention and an autoregressive
approach, are used as language models. It has been shown how most text-
based tasks can be cast into a word completion format, meaning that there is
practically no limit to what problems LMs can be applied to.

1www.spacy.io
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A famous language model is the Generative Pre-trained Transformer (GPT)
developed by [Radford et al| (2018); Brown et al| (2020). It builds on the
Transformer decoder and has been trained to generate the next token given
preceding tokens. Differently from BERT, the GPT model cannot see the
tokens after the token to be generated, in a true autoregressive fashion. More
recent examples of LMs are the Pythia, Llama, Mistral and Qwen models
(Biderman et al.l [2023} |Grattafiori et al, 2024} Jiang et al., 2023} [Yang et al.l
2024). These models have many properties in common with the GPT model;
they mainly differ with respect to training approach and slight variations in
model architecture.

Similarly to BERT, the GPT model, together with most modern language
models, is pre-trained on a large text corpus to learn to compose language. For
example, the GPT-3 model was trained on CommonCralel a big dump of
text from the internet, two internet-based books corpora and English-language
Wikipedia (Brown et all 2020)).

Layer
Y decoder block O Hidden state
|—|

- The ﬂ*(é atel I;Djw I;E]T Owo DAttenhon
capital G%{:}IL ’1 \é TL’T []T C]I .T DWord -
of C}-© oo’ ralel tal i@ ’1
B 250 S S
is I:I"%DIL .1 %ij Oj .T D Stockholm

Figure 2.2: A Transformer decoder applied to a text sequence for which the
computations have been rolled out. The Transformer model is applied to each
token in the input. A decoder block is indicated in the figure. Word embeddings
are denoted as ‘Word embed.’, applied either to the input tokens to encode
them into numerical vectors (i.e. embeddings), or to the model output to
decode numerical vectors into tokens. The figure is based on Figure 1 from
Meng et al.| (2022).

A closer look at the decoder part of the Transformer architecture
Some of the work included in this thesis are associated with interpretations
of components of the Transformer decoder. In this section, we explain the
components of the decoder in further detail. As seen in Figure the decoder
consists of decoder blocks stacked on top of each other. Different numbers
of decoding blocks are stacked depending on the size of the decoder model,
this number is typically referred to as the number of hidden layers of the
model. In each decoder block, attention is first applied to the input, after
which a multi-layer perceptron (MLP) is applied. Both the attention and MLP
output, A(z) and MLP(x) respectively, are applied to the input x via residual

?https://commoncrawl.org/overview
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Figure 2.3: A close-up of the attention component of the Transformer with k
attention heads.

connection, i.e. added in an incremental fashion to get an output y as follows.

y =2z + A(z) + MLP(z)

The attention component of the Transformer can be decomposed into subcom-
ponents as indicated in Figure Most importantly, multiple attention heads
make out the attention, allowing the model to pay attention to multiple details
at the same time.

2.4 Vision-and-language models

Visual Question Answering Image Captioning
Q: what fruit is this? a [MASK].
A: a lemon a lemon.

Figure 2.4: Two potential tasks for VL. models. In the question answering case,
the model usually generates an answer or performs a choice out of multiple
options. In the image captioning case, the model can either be queried in an
MLM fashion or generate a caption from scratch.

A modality that is frequently combined with text is the visual modality.
Models that process both visual information and textual information are
referred to as wvision-and-language (VL) models. Examples of VL models are
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VisualBERT, LXMERT, OSCAR, FLAVA and Vision Transformer (ViT) (Li
et al.,2019; | Tan and Bansal, |2019; [Li et al.l [2020; [Singh et al., |2022; [Dosovitskiy
et al., 2021)). All of these models, except for CLIP-BERT and to some extent
FLAVA, have been developed to solve predominantly VL tasks, such as Visual
Question Answering (VQA) or image captioning, as illustrated in Figure
Furthermore, all of these models were developed as general purpose models
and can similarly to BERT be adapted to different downstream tasks.

I
- Backbone —| \ I

(v ) o0
what is the

I

I

I

I

| /,
color of — | Embeddings —>: |

I

the lemon?

[

Figure 2.5: The typical setup for a VL model. Image features extracted by
a backbone are given to a main model together with the text representation,
usually formatted as embeddings. The dashed rectangle marks the part of the
model that fuses the visual and textual information and is further described in

Figure [2.6]

Early fusion Constrained fusion

- { Image encoder J

| |

| |

| |

| |

[ ! \

Y frm)
|

| . /

| |

| |

| |

I
—>[ Text encoder ] :
I
I

Figure 2.6: The two different fusion methods used by the VL models described
in this thesis. For the early fusion, the image and text representations are
simply concatenated and for the constrained fusion the representations are
processed separately before the information is fused in a constrained manner
through e.g. cross-attention. For the constrained fusion method the main
model can also be referred to as multimodal encoder.

Most VL models are largely similar in their model setup, as illustrated in
Figure [2.5] Typically, the models form initial representations for the visual
input and textual input separately before the information from the different
modalities is fused in the main model. Pre-trained word embeddings are
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typically used for the text input and a pre-trained visual model, generally
referred to as backbone, is used to generate a representation for the visual input.
VisualBERT, LXMERT and OSCAR use a frozen Faster R-CNN object detector
(Ren et all 2015) to extract detection features from the visual input, while
CLIP-BERT utilises a frozen CLIP model (Radford et al., 2021 and FLAVA
utilises a non-frozen Vision Transformer (ViT) model (Dosovitskiy et al.| 2021)
to generate image features. Also, all aforementioned models use Transformer
encoder networks and VisualBERT, OSCAR as well as CLIP-BERT are based
on a BERT model architecture.

The aforementioned VL models are also similar in their training procedure.
VisualBERT, OSCAR and CLIP-BERT are initialised from pre-trained BERT-
base model weights. All aforementioned VL models are then trained on
image-text datasets of varying size and information content. Common for all
datasets is that they either are visual question answering datasets or image
captioning datasets, as illustrated in Figure For example, Visual BERT is
trained on the image captioning dataset MS COCO and the Visual Question
Answering (VQA) dataset (Lin et al.| 2014} |Goyal et al., 2017)), while LXMERT
in addition to these datasets is trained on Visual Genome, GQA and VG-QA
(Hudson and Manning, [2019; |Zhu et all 2016]). The tasks the models are
trained on differ slightly depending on model. Examples of training tasks are
MLM, image-text matching and image feature prediction. Most VL models are
trained on at the least MLM and image-text matching.



14

CHAPTER 2. MODELS FOR NATURAL LANGUAGE PROCESSING




Chapter 3

Representations of
information for natural
language processing

More than linguistic knowledge is required for successful language processing.
To successfully process language, commonsense world knowledge and factual
knowledge is necessary. |Zhang et al.| (2021) suggest that the recent success of
large language models on NLU benchmarks can be attributed to the capability
of these models to store the required commonsense knowledge for solving the
benchmarks in their parametric memory. In addition, Lewis et al.| (2020)
propose retrieval-augmented generation (RAG), to complement the limited
knowledge of NLP models. Both the parametric memory of LMs and RAG
represent different approaches to how representations of information can be
used to support NLP systems (see Figure .

In this chapter, we take a closer look at representations of information
for NLP systems. We consider the parametric memory — which also could be
viewed as the knowledge of the model — (§3.1)) and RAG (§3.2).

3.1 Parametric memory of language models

Most modern NLP models are parametric models, in the sense that they are
fully described by and limited to their finite set of parameters. For some input
x and potential output token y, this can be described as,

p(y\m, 977)) = p(y|$79)’

where 6 contains the parameters that fully describe the network and D is
the data on which the network has been trained. Consequently, 6 contains
all of the information that has been learned from the training data. This is
very convenient in the sense that we only need to retain the neural network
parameters and not the data for subsequent text processing purposes.
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Given the input “The capital of France is”, most modern LMs are capable
of generating the correct completion “Paris”. LMs are considered to have
a parametric memory capable of storing factual information related to e.g.
capitals (Petroni et al.| 2019). It is not fully known what is stored in this
memory and how it is impacted by training data. Recent research has found
LMs more likely to have memorised popular facts, expected to have occured
more frequently in the training data (Mallen et al. [2023]). Zhang et al.| (2021))
also hypothesise that LMs require large amounts of training data to learn the
necessary knowledge for successfully processing natural language.

We may refer to the information represented by the parametric memory
of an ANN as parametric knowledge. However, we consider this knowledge to
be different to that of a human, since it cannot be expected to have the same
properties. For example, it is not known whether the parametric memory can
robustly represent information without contradiction, something that generally
can be expected of human knowledge (Brachman and Levesque, [2004]). For
example, |[Elazar et al.| (2021) probe the factual consistency of LMs, finding that
they are sensitive to insignificant changes in queries for factual information,
indicating that the parametric memory of LMs can be contradictory, or at least
difficult to access in a consistent manner.

3.2 Retrieval-augmented generation

External representations of information, as opposed to the internal parametric
memory, can also be used to support NLP systems. [Lewis et al.| (2020) argue
that the ability of LMs to access and precisely manipulate their parametric
knowledge is limited, making the models underperform on knowledge-intensive
tasks. As an alternative, |Lewis et al. (2020) propose to use retrieval-augmented
generation (RAG) — models which combine pre-trained parametric and non-
parametric memory for language generation. This can be described as,

p(y|x, 0) = p(y|x, R(.%'), 0),

where = denotes the input, y some output token, and 6 the model parameters.
R(z) denotes additional external information that has been retrieved based
on the input. 6 thus represents the parametric memory and R(z) the non-
parametric memory.

By now, many different RAG systems have been proposed and evaluated
(Gao et al.) |2024)). While the design of the systems may vary, they all share
certain features, see Figure 3.1] All RAG systems are based on a retrieval
corpus, which may cover any form of representation(s) of information (e.g.
an unstructured text dump, a knowledge graph, or both), combined with an
automated information retrieval component that, given a query, is capable
of fetching relevant information from the retrieval corpus. Furthermore, all
systems include some form of information fusion step, at which the retrieved
information is incorporated for the LM output, together with the query. Initial
RAG research typically involved quite advanced fusion methods, such as fusion-
in-decoder (Izacard and Grave), [2021). Nowadays, most methods simply provide
the retrieved information in the input, prepended to the query.
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Retrieval corpus

Retriever

Figure 3.1: An illustration of a typical RAG design. A query is passed to
both the retriever and LM (sometimes referred to as ‘reader’). The retriever
then fetches relevant entries from the retrieval corpus and provide these to the
LM. Finally, the LM generates an output based on the query and retrieved
information.

Examples of LMs used for RAG are Atlas (Izacard et al.l 2023) and standard
LMs such as the Llama and Qwen models (Grattafiori et al., 2024} [Yang et al.|
. Atlas has been specifically developed and tuned for RAG applications,
the same does not hold for standard LMs. In spite of this, standard LMs, for
which the retrieved information is simply prepended to the input in a zero-shot

fashion, have been found to work well in RAG systems (Ram et al., [2023]). This

is attributed to the strong generalisation abilities of modern LMs.

3.2.1 Utilisation of external information

Much of the work included in this thesis is focused on the ability of LMs to
utilise external information, also referred to as context utilisation. Context
utilisation is a key component of LMs used for RAG, as the benefits of retrieving
external information are realised only if the generative model makes adequate
use of the retrieved information. In this section, we consider challenges related
to context utilisation and methods for improving context utilisation.

Many weaknesses of LMs used for RAG are associated with context util-
isation. For example, LMs can easily be distracted by irrelevant contexts
Shi et al.| [2023a)) or ignore relevant contexts due to memory-context conflicts
Xu et al., 2024). The robustness of LMs to irrelevant contexts is important
as information retrieval systems used for RAG are not guaranteed to always
retrieve relevant information. Moreover, as information may be updated to
conflict with the training data of the LM, the model should prioritise the most
recently updated information.

As a consequence, many context utilisation manipulation techniques (CMTs)
have recently been proposed to improve LM context utilisation. Existing CMT's
can be categorised into one of four main groups based on intervention level,
i.e. what aspect of the model they manipulate. 1) fine-tuning CMTs update
model parameters to modify context utilisation. For example, fine-tuning on
distracting contexts was found to yield improved robustness to distracting
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contexts (Li et al., 2023} [Shen et al., 2024} [Yoran et all, [2024). Moreover,
specifically focus on different types of retrieval noise likely to be
encountered in real-world environments and develop a fine-tuning approach to
handle these. 2) prompting techniques modify the input to the LM to improve
context utilisation, representing minimally modified settings. 3) mechanistic
interventions on the LM modify certain model components at inference time to
alter context utilisation. Examples involve attention modification
[2024} |Jin et all, [2024) and SpARe interventions (Zhao et all [2025)). Lastly, 4)
decoding methods involve a modified decoding approach, applied to the output
logits, to manipulate context utilisation. Examples include context-aware
contrastive decoding (Yuan et al.} 2024} [Kim et al.,|2024; |Shi et al.l 2024} [Wang]
et al., 2024aj [Zhao et al.,2024) and lookback lens decoding (Chuang et al.,
2023)

Apart from intervention level, many of the CMT's have different objectives,
focused on improving one or multiple aspects of context utilisation. CMTs may
focus on improving robustness to irrelevant contexts, faithfulness to conflicting
contexts, or faithfulness to contexts in general.




Chapter 4

Knowledge-centered
evaluations of systems for
natural language processing

As explained in the introduction, much of the work included in this thesis
is focused on developing sound evaluation methods for knowledge-intensive
tasks. In this chapter, we further expand on the necessity of proper evaluation
methods (§4.1)) and describe current approaches for measuring the parametric
knowledge of LMs (§4.2)) as well as their ability to leverage external information

(3.

4.1 Evaluating systems for natural language pro-
cessing

All NLP models based on ANNs need to be carefully evaluated to assert that
they work as intended, since they risk learning to make correct inferences with
an incorrect method. Very few modelling constraints are necessary or imposed
on the models to guide their inference process, as this is also a strength of
neural networks. However, this means that the performance of ANNs only can
be measured via empirical approaches rooted in evaluation data that has been
designed to elicit and test the trait under consideration. This in turn means
that the models may learn to make use of spurious correlations or artifacts in
the training data to solve the evaluation data and not the task (Feder et al.
2022)). NLP models have been noted to base predictions that should be factual
on the style of their prompts, meaning that they might switch their prediction
when they are queried for the same fact but in a different way (Elazar et al.l
2021; |Cao et all 2021; |Jiang et al., |2020)). Additionally, NLP models solve the
grounded commonsense inference task SWAG by picking up on dataset-specific
distributional biases instead of learning to perform commonsense inference
(Zellers et al., [2018, |2019)). It has also been observed that BERT picks up on
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Astrid Lindgren was a Swedish writer and children’s book author best known
for her character Pippi Longstocking. She was born on November 14, 1907
in Vimmerby, Sweden. Lindgren grew up in a family with strong storytelling
traditions, and she began writing stories and poems from a young age.

After completing her education, Lindgren worked as a secretary and later as a
journalist. In the 1930s, she married Sture Lindgren and had two children. In
the 1940s, she began writing children’s books, starting with the character Pippi
Longstocking, which became her most well-known and beloved creation.

Lindgren’s books have been translated into more than 70 languages and have sold
millions of copies worldwide. In addition to Pippi Longstocking, Lindgren is also
the author of numerous other children’s books, including the Ronia the Robber’s
Daughter series, The Children of Noisy Village, and Karlsson-on-the-Roof.

Lindgren was also a strong advocate for children’s rights and was involved
in various humanitarian and political causes throughout her life. She received
numerous awards for her work, including the Hans Christian Andersen Award for
Children’s Literature in 1958 and the Right Livelihood Award in 1979. Lindgren
passed away on January 28, 2002 at the age of 94.

Figure 4.1: Hallucination in ChatGPT. The model was prompted with the
query “Give me the biography of Astrid Lindgren.”. Passages marked in yellow
are questionable or clearly incorrect.

shallow heuristics such as lexical overlap to solve a general natural language
inference task (McCoy et al., [2019).

Generative NLP models also suffer from hallucinations, which may be
particularly difficult to detect (Maynez et al., 2020; |Shuster et all 2021)). As
illustrated in Figure even sophisticated models such as ChatGPT may
generate plausible but incorrect facts. The text generated by the model states
that Lindgren received the Right Livelihood Award in 1979, while she actually
received it in 1994. If these models are used for low-risk scenarios such as
storytelling, there is no immediate danger. It is, however, a problem for
situations in which correct information is important and expected.

4.2 Evaluating for parametric knowledge

There is much interest in extracting and measuring the different types of know-
ledge that supposedly resides in NLP models (i.e. the parametric memory). For
BERT-like models, sentence completion tasks, also known as cloze statements,
are typically used to evaluate knowledge since the models are tuned to this
format from their MLM pre-training. [Petroni et al.| (2019)) use this format
to test for factual and commonsense knowledge with their LAMA (LAnguage
Model Analysis) probe based on Wikipedia and commonsense knowledge. They
find that much knowledge is stored in language models and further hypothesise
that these models have a potential use as knowledge bases. For GPT-like
models, a similar approach can be applied, asking the model to generate the
continuation that completes a fact. Weir et al.| (2020) also test for commonsense
knowledge, such as “A dog has fur.”, and find that these are present in different
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BERT based models. West et al.| (2022)) experiment with extracting latent
commonsense knowledge from a GPT-2 model to create a knowledge graph,
and use different prompting techniques for this.

Orthogonal to this, [Elazar et al.| (2021)) consider the factual consistency of
LMs. Situations related to factual knowledge require not only high accuracy but
also consistency, i.e. robustness to lexical variations in semantically equivalent
queries. Recent LM developments have mainly improved on accuracy, while
the question of consistency has seen less attention. |Elazar et al.| (2021)) find
that even SoTA models may produce different outputs depending on lexical
variations in semantically equivalent queries.

Apart from black box model evaluations focused only on the model output,
there is also work that tries to open the black box to perform a deeper inspection
of the parametric knowledge of LMs. Meng et al.| (2022)); |Geva et al.| (2023))
locate stored information in LMs and inspect how it flows through the model
to finally be expressed in its output. They focus on the inference process of
LMs for fact completion for simple (subject, relation, object) fact tuples, such
as subject Tokyo, relation capital_of and object Japan (e.g. for the query
“What is the capital of Japan?”). To enable these investigations, it is first
asserted that the model under consideration has the necessary knowledge, such
that it can be located in the model parameters. This is done by querying the
model for different facts (e.g. “What is the capital of Japan?”), and checking if
the model gets the facts correct. It is assumed that the model has the factual
information stored in its parameters if it correctly answers the corresponding

query.

4.3 Evaluating for the utilisation of external
information

LMs used for knowledge-intensive tasks or RAG need be good at leveraging
external information, i.e. have good context utilisation. A large body of
recent research has focused on evaluating the context utilisation of LMs using
context-intensive datasets, i.e. datasets representing tasks that are difficult to
solve without good context utilisation. The samples in these datasets usually
contain both a query and the corresponding context, dropping the information
retrieval step in RAG to be able to control for context characteristics and their
impact on context utilisation.

We consider two main categories of context-intensive datasets: 1) datasets
representing knowledge-intensive tasks, i.e. tasks for which access to external
context is crucial, and 2) datasets designed to diagnose model adaptability to
external information. Examples of knowledge-intensive datasets representative
of the former category are Natural Questions (NQ), the KILT datasets and
PubMedQA (Kwiatkowski et al.l 2019; [Petroni et al., |2021; |Jin et al., |2019).

Examples of diagnostic datasets representative of the latter category are
CounterFact and ConflictQA (Meng et all 2022 Xie et al., |2024). These
datasets contain synthesised queries based on fact triplets from LAMA (Petroni
et all |[2019) (e.g. (Thomas Ong, citizen_of, Singapore)) for which contexts
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have been synthesised to induce knowledge conflicts by promoting answers in
conflict with the parametric memory of the studied LM (e.g. Pakistan as
opposed to Singapore). Diagnostic datasets have found widespread use for
work on mechanistic interpretability and the evaluation of context utilisation
(Meng et al., |2022; Geva et al., 2023; Ortu et al., 2024).

Work in information retrieval and RAG has identified several qualities in
retrieved or synthesised contexts that impact context utilisation by humans
and/or LMs. Retrievers typically provide overly long or corrupted text, which
are difficult to understand, and impact LM output (Gao et al., 2024; Vladikal
land Matthes| 2023)). Similarly, typos (Cho et al. |2024)) and high perplexity
(Gonen et all 2023) have been identified as potential disruptors for RAG
systems. Furthermore, implicit contexts, lacking an explicit connection to the
query, have been identified as a prevalent failure cause in RAG 2024).
For automated retrieval situations, the rate of implicit contexts can be high
due to chunking of text (Wang et al., 2024b)). Instead, LMs have been shown
to prefer context with high query-context similarities (Wan et al.l [2024).

Most studies on RAG have focused on open-domain question answering
(Kasai et all, [2023; [Wu et all [2024). [Yoran et al.| (2024)); [Shi et al| (2023b))
found that LMs are fragile to irrelevant information in the context, harming
performance. Furthermore, in the case of knowledge conflicts, when context
conflicts with parametric knowledge, LMs have been shown to ignore the
conflicting context (Longpre et al.,[2021)), while other studies show that models
prefer contextual information, as long as it is coherent and convincing
let al] [2023)). [Sun et al.| (2025) also connect knowledge conflicts to prediction
uncertainty in fact-checking settings. Recently, have proposed
more granular categories for knowledge conflicts, using context-memory conflict
to denote the aforementioned phenomenon, and inter-context conflict to refer
to different contexts contradicting each other.

Unreliable contexts have been studied by [Chrysidis et al.| (2024) in a fact-
checking setup, for which misinformation is prevalent. This type of information
is typically overlooked in more generic RAG QA setups, potentially because
the retrieval corpora usually are based on Wikipedia or pre-curated datasets.
References to external sources may convince a human reader of the credibility
of some context, yet LMs seem to be unaffected by references (Wan et al.
2024). However, expressed certainty/uncertainty in text and its impact on LM
context usage has recently been studied by |Du et al.|(2024a)), where assertive
contexts are found to be more convincing.




Chapter 5

Summary of included
papers

The papers in this thesis have mainly focused on the intersection between
LMs, knowledge and representations of information. LMs used for knowledge-
intensive tasks need not only be accurate, but also factually consistent, updat-
able and, ultimately, reliable (RQ1). To elicit and measure these aspects of
interest in knowledge-intensive situations, we also need appropriate evaluation
data and evaluation methods (RQ2). RQ1 is addressed in papers 1, 2, 4 and 5.
RQ2 is addressed in papers 1, 3, 4 and 5.

5.1 Paper 1: Transferring Knowledge from Vis-
ion to Language: How to Achieve it and
how to Measure it?

Paper 1 studies and evaluates the acquisition of knowledge related to visual
concepts (such as the colour of different well-known items). We investigate
the use of visual data to complement the knowledge of large language models
and propose a method for evaluating visual knowledge transfer to text and
introduce a novel text-only task, Memory Colors, querying for knowledge of
memory colours, i.e. typical colours of well-known objects (Pérez-Carpinell
et al.} |1998). The task is in English and contains 109 object types paired with
their memory colour according to the knowledge of 11 human annotators. An
example of a query from Memory Colors is “What is the color of a lemon?
[MASK]”, where [MASK] should be filled in with the correct answer (yellow),
see Figure p.1

Similarly to the case for humans, we assume that a model with sufficient
knowledge of visual concepts should be able to answer text-only queries about
their colours without necessarily being provided with images of the concepts.
To support this point, we complement Memory Colors with a human baseline
from 11 human annotators that did not have access to images while answering
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a lemon yellow .

descriptor item color picture

Figure 5.1: One entry in the Memory Colors dataset. When evaluating a
model on Memory Colors, the descriptor and item are slotted into a pre-defined
template, e.g. “What is the color of [descriptor] [item]?”.

the queries.

We also introduce a novel VL model architecture, CLIP-BERT that utilises
CLIP as backbone and BERT-base as main model. We train it on 4.4M captions
and 2.7M images. After training, it can be used to make inferences in an implicit
or explicit mode. In the implicit mode, the model is queried with only text
and in the explicit mode it is also provided with a visual representation of
the text generated by CLIP. Since CLIP has been trained to map visual and
textual representations to the same space, it has a potential use for “imagining’
a visual representation corresponding to text when no image is available. We
also measure an upper bound for the CLIP-BERT performance by evaluating
it when it is provided with images corresponding to the text.

)

To separate and investigate the knowledge contributions from text versus
images, we experiment with removing information about visual concepts from
the text part of the training data by using different filtering methods. For
example, we might remove a training example from the data if it contains an
object and its corresponding colour from Memory Colors. In this way we can
clearly separate knowledge contributions from images and text respectively.

Finally, we evaluate CLIP-BERT on Memory Colors in the different modes
with the different filterings of the training data. We also evaluate its text-only
counterpart, BERT-base, trained on the same different filterings of the training
data. We find that CLIP-BERT outperforms BERT in every filtering setting,
and with a larger margin if visual information is filtered out from the text data
used for training. We also find that a CLIP-BERT model in explicit mode
has a larger performance margin when visual information has been removed
from the training corpus. This indicates that our method can successfully be
used to measure visual knowledge transfer capabilities in models and that our
novel model architecture shows promising results for leveraging multimodal
knowledge in a unimodal setting.

Taken together, Paper 1 provides insights related to how uni- and mul-
timodal LMs acquire and utilise visual knowledge. To enable these insights,
the paper introduces an evaluation dataset that measures visual knowledge,
Memory Colors. A noteworthy finding of the paper is related to prompt sensitiv-
ity; model performance is greatly influenced by the phrasing of the query, more
so than for humans. This raises the question of how to handle measurements
of knowledge of a LM, when it is subject to change from insignificant changes
in the query, further studied in Paper 2.
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Contributions T. Norlund mainly contributed to the design of the study,
implemented the CLIP-BERT model and code for evaluating it. He also made
major contributions to the writing of the paper.

L. Hagstrom mainly contributed to the design of the study and developed
the Memory Colors dataset. She also made major contributions to the writing
of the paper.

R. Johansson provided supervision on the work and writing for the paper.

5.2 Paper 2: The Effect of Scaling, Retrieval
Augmentation and Form on the Factual
Consistency of Language Models

Paper 2 moves away from the visual and multimodal domains, sharpening the
focus on evaluating LMs for factual knowledge. Given that LMs are increasingly
applied to knowledge-intensive tasks, it is important that they are consistent
and robust to insignificant changes in their input. However, [Elazar et al.| (2021)
found that modern LMs have poor factual consistency. For example, the same
LM may predict “Anne Redpath’s life ended in London” and “Anne Redpath
passed away in Edinburgh”. In this paper, we further investigate the factual
consistency of LMs and explore methods for improving it, see Figure [5.2

Fact Anne Redpath - place of death - Edinburgh

Queries 1. Anne Redpath expired at (X).
2. Anne Redpath’s life ended i1 (X).
3. Anne Redpath passed away in (X).

Retriever

Answers 1. Southampton
2. London
3. Edinburgh

LLaMA

Wikipedia

Figure 5.2: Overview of how consistency is computed in ParaRel for Atlas and
LLaMA.

We evaluate the effectiveness of two mitigation strategies for improved
factual consistency; up-scaling to larger model sizes and augmenting the LM
with a retrieval corpus. Increasing the size of LMs has previously been shown
to work well as an multi-purpose tool for improving most aspects of model
performance. More recently, another approach has been proposed for improving
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LM performance: change the model design itself to be guided by inductive
biases that promote various desirable properties. Examples of such models are
text retrieval-augmented models that condition predictions on retrieved text
passages for improved adaptability, interpretability and efficiency, also referred
to as retrieval-augmented generation (RAG) (Lewis et al., 2020).

To evaluate effects of upscaling on factual consistency, we study the perform-
ance of Llama models of sizes 7B, 13B, 33B and 65B parameters (Touvron et al.,
2023). To evaluate effects of retrieval augmentation, we study the performance
of Atlas-base and Atlas-large, two retrieval-augmented models corresponding
to 330M and 880M parameters, respectively, augmented with text passages
retrieved from Wikipedia (Izacard et al., 2023).

To measure the factual consistency of LMs we use an improved version
of ParaRel, denoted ParaRel*. ParaRel was originally developed by [Elazar
et al.| (2021) and is improved by us via the removal of duplicated samples and
addition of four query-level metrics to estimate query related inconsistency
sources. ParaRel is based on LAMA (Petroni et al., 2019, an evaluation task
based on Wikidata that measures factual knowledge stored in LMs through
prompting for the missing object given a subject-relation tuple. ParaRel adds
a layer of semantically equivalent cloze-style prompts to LAMA, which in turn
allows us to measure the consistency of LMs with respect to the knowledge
triples represented by LAMA (see Figure . The idea is that a model is
consistent if it is invariant to query paraphrases.

Evaluations of the Llama and Atlas models on ParaRel* reveal that both
upscaling and retrieval-augmentation improve factual consistency. However,
retrieval-augmentation is found to be more efficient compared to upscaling; the
Atlas-base model performs on par with the Llama 65B model despite being 90
times smaller.

To better understand why and when LMs can be expected to be factually
(in)consistent, we investigate potential causes of inconsistency. We find that
different aspects of form impact consistency. High lexical similarity between
subject and object (the correct answer) generally leads to improved consistency.
Samples for which the correct prediction would produce an unidiomatic sentence
(e.g. “Solar Mass is named after Sun” as opposed to “Solar Mass is named
after the Sun”) are also found to correspond to lower consistency. Altogether,
these results show how LMs may prioritise correct form over consistency, which
may not be entirely surprising as LMs have previously been found to learn form
and syntax faster than semantics and general natural language understanding
(Zhang et al., [2021)). This also raises questions related to the effects of using
synthesised datasets, e.g. by slotting fact tuples into prompt templates with
the risk of producing less fluent sentences, to probe for model capabilities.
How can we be certain that our findings reflect the phenomenon of interest, as
opposed to consequences of data artifacts?

We further investigate the consistency of Atlas, focused on effects of the
retriever. We find that retriever consistency is weakly correlated with Atlas
consistency and that consistent and relevant retrieval causes more consistent
predictions. However, not even for perfectly consistent retrieved passages does
Atlas achieve perfect consistency, indicating that more inconsistency sources
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are involved and persistent in spite of consistent conditioning.

Altogether, Paper 2 evaluates the effectiveness of different types of LMs in a
fact-intensive setting, for which factual consistency is important. We find that
RAG excels in these settings, corroborating previous work which has found
RAG to work well for fact-intensive QA (Izacard et al., 2023} |Lewis et al., [2020)
and reduced hallucination (Shuster et al. 2021; [Thoppilan et al.l [2022). Paper
2 thus provides further guidance on how to obtain reliable NLP systems for
knowledge-intensive situations.

Contributions L. Hagstrom implemented and evaluated the Atlas models.
She also contributed to the development of ParaRel* and the deeper investiga-
tions into causes of (in)consistency. She also made major contributions to the
writing of the paper.

D. Saynova helped evaluate the models. She also contributed to the devel-
opment of ParaRel* and the deeper investigations into causes of (in)consistency.
She also made major contributions to the writing of the paper.

T. Norlund implemented and evaluated the Llama models. He also consulted
on the writing of the paper.

M. Johansson provided supervision on the work and writing of the paper.

R. Johansson provided supervision on the work and writing of the paper.
He also helped write the paper.

5.3 Paper 3: A Reality Check on Context Util-
isation for Retrieval-Augmented Generation

As observed in Paper 2, RAG can be used to alleviate different problems arising
from the imperfect parametric knowledge of language models (LMs), which
may encode unstable, limited or potentially outdated information (Gao et al.,
2023; [Vu et al., [2024). However, as also found in Paper 2, the benefits of
RAG are only realised if 1) the retrieval module retrieves helpful information
and 2) the generative model successfully leverages the retrieved information.
Paper 3 takes a closer look at the latter aspect, introducing DRUID (Dataset
of Retrieved Unreliable, Insufficient and Difficult-to-understand contexts) to
facilitate investigations into context utilisation in real-world scenarios.
Previous work on context utilisation has mainly studied RAG in a disjoint
manner, where studies of the quality and relevance of the retrieved information
are detached from studies of LM context usage (Shi et al., 2023b; Xie et al.|
2023; [Tan et al) [2024} Du et al., 2024a) (see Figure . Hence, little
is understood about 1) the characteristics of retrieved contexts and 2) their
impact on LM context usage (see Figure . Previous studies of context
utilisation have mainly been based on synthesised datasets like CounterFact
(Ortu et al.} 2024) and ConflictQA (Xie et al., |2024)), most likely since these are
easy to obtain and control. However, the scenarios described by these datasets
are not representative of real-world RAG scenarios, as the context types do not
reflect the diversity and complexity of the ones returned by an actual retriever
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Figure 5.3: Comparisons between ConflictQA, CounterFact and DRUID.

present in RAG (Longpre et all [2021; Ravaut et all [2024}; Ortu et all, [2024).
DRUID aims to address this.

To create DRUID, we focus on the prototypical information-seeking task of
fact verification, where retrieving and utilising real-world information is vital.
For the task, an agent is provided with a statement about the world — a claim
— and needs to decide whether it is true or false using context retrieved from an
external source — evidence . We take real fact-checked claims
as ‘queries’ and evidence retrieved from the web by an automated information
retrieval pipeline as ‘context’ to evaluate RAG in this real-world setting, which
naturally facilitates our goal of studying real-world context properties in RAG
(Samarinas et al. 2021} |Atanasova et al., [2022; |Chrysidis et al., 2024} |Glockner]
et al., 2024). To assess the relevance and stance of the retrieved evidence,
necessary for studies of context utilisation, we crowd-source evidence-level
annotations. A DRUID sample consists of a {claim, evidence, labels) triple,
and we collect a total of 5,490 double-annotated samples.

To understand the gap between the context provided in synthesised dia-
gnostic datasets for context utilisation and real RAG scenarios, we compare the
characteristics within DRUID to the synthesised CounterFact and ConflictQA
datasets. We consider context characteristics previously observed to impact
context utilisation by humans and/or LMs. These are related to the stance
of the context, query-context similarity, whether the context is difficult to
understand, whether the context only implicitly refers to the query, whether
the context refers to an external source, and whether the context is uncertain
or unreliable. We find that the real-world samples in DRUID contain many
contexts (50%) that are insufficient, i.e. they are relevant to the query but do
not contain sufficient information to answer the query, compared to Counter-
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Fact and ConflictQA for which only sufficient contexts are found. For the other
context characteristics considered, we also find a great discrepancy between
CounterFact, ConflictQA and DRUID, further proving the need of datasets
aligned with real-world RAG scenarios like DRUID (see Figure .

We also evaluate LM context utilisation on DRUID and compare this to
insights based on synthesised datasets. To this end, we measure the context
utilisation of Pythia 6.9B and Llama 3.1 8B on the CounterFact, ConflictQA
and DRUID datasets. To measure context utilisation we introduce the ACU
metric that compares the softmaxed-normalised model logits for inputs without
context and with context. ACU values lie in the range [—1,1], for which a
value of 1 indicates perfect context usage and a value of -1 indicates context
repulsion, for which the LM output fully contradicts the context. We find that
synthetic datasets suggest an over-preference of supporting evidence, and that
context utilisation differs between the LMs studied, for which Llama generally
is better at utilising contexts compared to Pythia.

Finally, we evaluate the influence of different context characteristics on
model context usage. For this, we calculate Spearman correlations between
each context property and our context usage metric, ACU, stratified by the
evidence stance for each dataset. We find that contexts from fact-check sources
correspond to greater ACU scores, that references to external sources show
low correlations with ACU and that correlations with query-context similarity
are low for DRUID while they are high for ConflictQA. Our results indicate
that real-world queries and contexts come with a greater complexity for which
context usage cannot be predicted solely based on e.g. query-context similarity.

To summarise, Paper 3 grounds studies of context utilisation to real-world
RAG scenarios. It also provides deeper insights related to how LMs use context
of different characteristics. As a result, our understanding of how LMs interact
with external knowledge representations, here represented by passages retrieved
from the web, is improved.

Contributions L. Hagstrom was the project leader, designed the automated
retrieval pipeline for context collection, collected the manual annotations
for DRUID, evaluated the LMs under consideration, performed the context
characteristics analysis and contributed to the writing of the paper.

S.V. Marjanovi¢ helped design the annotation guidelines and contributed to
the design of the context utilisation metric. She also consulted on the general
design of the method and made major contributions to the writing of the paper.

H. Yu helped design the annotation guidelines and contributed to the
automated retrieval of contexts. She also consulted on the general design of
the method and contributed to the writing of the paper.

A. Arora helped design the annotation guidelines. He also consulted on the
general design of the method and made major contributions to the writing of
the paper.

C. Lioma provided supervision on the work and writing of the paper.

M. Maistro provided supervision on the work and writing of the paper. She
also provided comprehensive advice for the annotation collection and automated
retrieval of contexts.
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P. Atanasova helped design the annotation guidelines and made major con-
tributions to the implementation of the annotation platform and the collection
of the annotations. She also consulted on the general design of the method and
made major contributions to the writing of the paper.

I. Augenstein helped design the annotation guidelines and provided supervi-
sion on the work and writing of the paper. She also made major contributions
to the writing of the paper.

5.4 Paper 4: Fact Recall, Heuristics or Pure
Guesswork? Precise Interpretations of Lan-
guage Models for Fact Completion

Papers 2 and 3 have mainly studied how LMs interact with external knowledge
representations used in retrieval-augmented generation. In Paper 4 we instead
study the internal knowledge representations of LMs, i.e. the knowledge LMs
have acquired from pre-training on vast corpora.

LMs have been found to store significant amounts of factual information
(Petroni et al., [2019). While there are many research results documenting
the fact proficiency of LMs (Kandpal et al. 2023 |Mallen et al., |2023)), our
understanding of how these models perform fact completion is still under
development. Mechanistic interpretability is a growing area of research aiming
to explain model behaviour (Elhage et al.| |2021; (Geiger et al., |2021)), and has
already yielded insights into where LMs store and process factual information
for accurate predictions (Meng et all 2022; |Geva et al.l [2023; Haviv et al.
2023).

Kun-Woo Paik is alsoa  ig* ~ the
regular guest artist at Generic language
modelling

Eksi Ekso originated in a&%‘ﬂ% Russia

? Guesswork

Kye Ji-Su, a citizen of vé?ﬂ South Korea

1. Heuristics recall

Tokyo is the capital city of v“éw Japan

, Exact fact recall

Figure 5.4: Prediction scenarios and corresponding prompt completion examples.
Each scenario yields distinct interpretability results.

With Paper 4, we expand on the scenarios studied in mechanistic inter-
pretability, extending the analysis to cover four scenarios (generic language
modelling, guesswork, heuristics recall, and exact fact recall) as opposed to
one (accurate prediction), see Figure We hypothesise that the ‘accurate
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prediction’ scenario studied in previous work in reality is a blend of multiple
fine-grained scenarios, as it is well known that LMs can make correct predic-
tions based on many different signals in the prompt, not all corresponding
to exact fact recall (Zellers et all 2019; Niven and Kao|, 2019; [McCoy et al.
2019; [Poerner et al., |2020; |Cao et al., |2021; |[Ladhak et al., 2023). The four
disentangled prediction scenarios identified in our work are defined as follows:
1) Generic language modelling, when the model does not respond with facts,
such as when generating a story. 2) Guesswork, when the model responds
with a fact but is uncertain. 3) Heuristics recall, when the model uses shallow
heuristics, e.g. that people with Korean-sounding names are more likely to
live in Korea. 4) Ezact fact recall, when the model has indeed memorised the
correct answer and recalls it for the prediction.

We propose the PrISM method for creating a diagnostic dataset with
distinct test cases. The method is based on three necessary and comprehensive
diagnostic criteria for which we define measurements: (1) Does the prediction
represent fact completion rather than generic language modelling? (2) Is the
prediction confident and robust to insignificant signals in the prompt? (3) Is
the prediction based on the exact factual information expressed in the query
or on heuristics triggered by surface-level cues? These criteria provide a more
fine-grained testing setup compared to using a single accuracy-focused criterion.
Using the criteria, we build PrISM datasets with (query, prediction) samples
representative of each of the four prediction scenarios, following the process
described in Figure 5.5

generic language modelling

fact

9~ guesswork

) 5 .
_\confident? heuristics recall

no heuristics used?

Jeo>exact fact recall

Figure 5.5: Diagnostic criteria (in green) for defining the four prediction
scenarios (in black).

To test whether the proposed four prediction scenarios yield different in-
terpretability results, we apply two mechanistic interpretability approaches —
causal tracing (CT) (Meng et all |[2022) and information flow analysis (Geva
et al.l 2023) — to LMs evaluated on PrISM. We find that different prediction
scenarios yield distinct interpretability results if studied in isolation, while
model interpretations over the ‘accurate prediction’ scenario yield averaged and
imprecise results in comparison. Our results corroborate and clarify previous
insights related to how LMs process factual queries. We also provide new
insights related to how LMs process factual information for heuristics recall
and guesswork scenarios.

To summarise, Paper 4 facilitates precise interpretations of LMs by expand-
ing on and delineating fact completion scenarios for which we can interpret
LMs. Consequently, it helps to improve our understanding of how LMs leverage
the internal knowledge representations found in their model parameters.
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Contributions D. Saynova contributed to the identification method of pre-
diction scenarios, the creation of the PrISM datasets and to the causal tracing
evaluations. She also made major contributions to the writing of the paper.

L. Hagstrom contributed to the identification method of prediction scenarios,
the creation of the PrISM datasets and to the causal tracing evaluations. She
also implemented the information flow analysis and made major contributions
to the writing of the paper.

M. Johansson provided supervision on the work and writing of the paper.

R. Johansson provided supervision on the work and writing of the paper.
He also contributed to the writing of the paper.

M. Kuhlmann provided supervision on the work and writing of the paper.
He also contributed to the writing of the paper.

5.5 Paper 5: CUB: Benchmarking Context Util-
isation Techniques for Language Models

Paper 5 largely builds on Paper 3 by taking a closer look at LM context
utilisation. Specifically, it develops CUB (Context Utilisation Benchmark)
to allow for a comprehensive evaluation and comparison of context usage
manipulation techniques (CMTs), see Figure
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Figure 5.6: The Context Utilisation Benchmark. We evaluate a range of LMs
under different CMTs on samples from NQ, DRUID and CounterFact for gold,
conflicting and irrelevant contexts.

Context utilisation is a key component of LMs used for RAG, as the benefits
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of retrieving external information are only realised if the generative model
makes adequate use of the retrieved information. While recent research has
identified many benefits of augmenting LMs with retrieved information (Shuster,
et al., 2021; Hagstrom et al., [2023), it has also identified weaknesses of LMs
used for RAG, of which many are associated with context utilisation. For
example, LMs can easily be distracted by irrelevant contexts (Shi et al., [2023a))
or ignore relevant contexts due to memory-context conflicts (Xu et al.l [2024)).
As a consequence, many different methods for increasing or suppressing LM
context utilisation have been proposed. The methods encompass a broad range
of approaches (Shi et al.| [2024; [Kim et al.| 2024; [Li et al., |2023; [Liu et al.
2023; |[Feng et al., [2024; [Du et al., [2024b; (Ortu et al., [2024; [Jin et al., [2024]).
While each method yields promising results in isolation, their evaluation is
often limited to narrow or idealised settings, leaving open the question of which
approaches are applicable in real-world RAG scenarios.

To address this knowledge gap, CUB systematically tests the sensitivity
of CMTs to underlying model and naturally occurring context types (gold,
conflicting and irrelevant) on tasks representative of synthesised and realistic
RAG scenarios. To evaluate the model sensitivity of CMTs, CUB perform
evaluations on up to nine different LMs. To evaluate how CMTs respond
to different types of contextual information, CUB evaluates each CMT on
CounterFact (Meng et al., [2022)), NQ (Longpre et al. |2021)) and DRUID. The
inclusion of these datasets is based on three key criteria: (i) diversity in task
difficulty, (ii) diversity in realistic and synthesised RAG scenarios, and (iii) high
utilisation in related work. For each dataset, we curate samples representative of
the three types of contexts that may be encountered in realistic RAG scenarios:
1) gold contexts that are relevant and do not contradict LM memory, 2)
conflicting contexts that are relevant but contradict LM memory or gold
labels, and 3) irrelevant contexts that should be ignored by the LM (Fang
et al.} 2024)).

A total of seven different CMTs are benchmarked on CUB, all of which are
state-of-the-art representatives from the main categories of CMTs (fine-tuning,
prompting techniques, mechanistic interventions, and decoding). Our results
reveal several interesting findings related to the context utilisation of LMs and
CMTs; context utilisation is impacted by model size, improving as the model
grows in parameter count on the realistic NQ and DRUID datasets. We also
find that all evaluated CMTs struggle to improve context utilisation across all
context types; a CMT may be good at e.g. improving the utilisation of edited
contexts but degrades performance on irrelevant contexts etc.

Taken together, Paper 5 provides insights related to context utilisation and
methods for improving it. As a result, our understanding of how LMs interact
with external knowledge representations is improved.

Contributions L. Hagstrom collected the datasets used in CUB, and imple-
mented the prompting and PH3 CMTs. She also contributed to the design of
the benchmark and made major contributions to the writing of the paper.

Y. Kim implemented the decoding and multi-agent CMTs. She also con-
tributed to the design of the benchmark and made major contributions to the
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writing of the paper.

H. Yu implemented the fine-tuning CMT. She also consulted on the design
of the benchmark and the writing of the paper.

S. Lee provided supervision on the work and writing of the paper.

R. Johansson provided supervision on the work and writing of the paper.
He also contributed to the writing of the paper.

H. Cho provided supervision on the work and writing of the paper. He also
contributed to the writing of the paper.

I. Augenstein provided supervision on the work and writing of the paper.
She also made major contributions to the writing of the paper.



Chapter 6

Conclusions and future
work

The work in this thesis has ultimately focused on knowledge and representations
of information for NLP. For knowledge-intensive situations, it is important that
our NLP systems can effectively represent and leverage information (RQ1). To
better understand the systems and whether they can be considered reliable
for knowledge-intensive tasks, it is also important that we can measure their
knowledge and how information is transferred (RQ2). In this concluding chapter,
we summarise the findings corresponding to our overarching research questions
and consider future work. We can broadly conclude that representations of
information have an important role for NLP, and that they likely will see an
undiminished focus in future research.

6.1 RQ1: What are effective system designs for
knowledge-intensive tasks?

Paper 1 shows that LMs are capable of acquiring parametric knowledge related
to visual concepts from multimodal training. This indicates that training on
visual data can be used to complement and enhance the parametric knowledge
of LMs, to potentially mitigate issues stemming from the limited and biased
information available in text. However, this has only been verified on simplistic
knowledge-intensive tasks related to memory colours, further work is necessary
to verify the potential of multimodal training for more complex knowledge-
intensive tasks. Moreover, a cost analysis is also necessary to evaluate the
benefits of visual training against the costs of the more complex vision-and-
language models and the high computational costs associated with training on
visual data.

Paper 4 similarly considers the parametric knowledge of LMs, but from a
perspective of stability and interpretability. Here we find that the source and
transfer of parametric knowledge is sensitive to what type of knowledge is being
queried for and how well represented it is in the LM. For example, the flow of

35
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information in the LM is very different in exact fact recall scenarios compared
to guesswork scenarios. The latter scenario also seems to trigger some form of
parametric knowledge, but with different characteristics compared to for the
former scenario. These insights bring us closer to understanding and preventing
instability in LMs for knowledge-intensive tasks.

Related to effective system designs for knowledge-intensive tasks, we find
in Paper 2 that RAG is more effective for improved stability compared to
upscaling. This confirms prior expectations on suitable designs for improved
stability and reliability. It also shows us how external information may be
preferred over parametric knowledge with respect to stability. Meanwhile,
Paper 5 shows how RAG benefits from upscaling, since context utilisation
improves with model size. Seemingly, retrieval-augmentation together with
upscaling combines the stability from retrieval-augmentation with the greater
processing capacity of larger LMs, resulting in more reliable models. At the
same time, we find that methods for improving context utilisation, excluding
upscaling, typically work well for only one context type, while realistic RAG
scenarios involve multiple.

For future work, to acquire new insights on effective systems for knowledge-
intensive tasks, we may combine interpretations of the parametric knowledge of
LMs with investigations into context utilisation. For example, successful context
utilisation can be considered to rely on two components: 1) comprehending
the provided context and 2) leveraging the provided context. Both potentially
necessitate adequate parametric knowledge. It would also be interesting to
expand the investigations to tool-use, another RAG-like system. Lastly, RAG
promises improved interpretability by the virtue of prediction provenance,
while it has yet to be investigated whether retrieval-augmented LMs are more
interpretable compared to standard LMs — this would also be interesting to
investigate.

To summarise the findings with respect to RQ1, this work has mainly
established the necessary components of effective system designs for knowledge-
intensive tasks, and overarching design recommendations for these, while more
fine-grained recommendations remain to be explored. We can conclude that
external information sources, accessed via retrieval-augmentation, are important
for more stable and reliable systems for knowledge-intensive tasks. Seemingly,
the parametric memory is a too unstable source of information compared to
external non-parametric sources of information. At the same time, larger
LMs are more effective at leveraging external information, making them more
suitable for RAG. However, it is still not clear what makes these models better
at context utilisation, what the main drivers for context utilisation are, and
how these drivers interact with the parametric memory.

6.2 RQ2: How should we evaluate NLP systems
for knowledge-intensive situations?

Paper 1 highlights the importance of accounting for LM instability, here
expressed in terms of prompt sensitivity, for knowledge-centered evaluations.



6.2. RQ2: HOW SHOULD WE EVALUATE NLP SYSTEMS FOR KNOWLEDGE-INTENSIVE
SITUATIONS?

Papers 3 and 5 further show how evaluations of RAG systems are sensitive to the
underlying data, and in particular to whether the data has been synthesised or
sampled from real-world scenarios. Insights gained from synthetic datasets are
not guaranteed to transfer to real-world datasets, and it is therefore preferable
to evaluate NLP systems on real-world data. Furthermore, Paper 4 shows
how evaluations also should account for the interaction between the knowledge
queried for and how well-represented it is in the model, as this is found to have
a direct impact on how the query is processed by the LM.

For future work on evaluation methods for knowledge-intensive situations, we
need to improve on our coverage of realistic usage scenarios. This thesis involved
the development of DRUID, a dataset situated in a real-world fact-checking
task. Using only DRUID, we were able to acquire several new insights related
to the performance of LMs in knowledge-intensive situations. Meanwhile, there
are several other interesting knowledge-intensive scenarios worthy of study. For
example, it is not yet fully known how LMs behave under different knowledge-
intensive domains, such as fact-checking compared to QA. Only with more
evaluation datasets and corresponding evaluations can we fully map out the
reliability of NLP systems for knowledge-intensive situations, and identify
necessary avenues of improvement.

To summarise the findings with respect to RQ2, evaluations of NLP systems
for knowledge-intensive situations should ensure that the characteristics of
the evaluation dataset align with the application areas of interest and their
key challenges. Insights gained from synthesised scenarios are not guaranteed
to transfer to real-world scenarios, especially if the synthesised scenarios fail
to represent the key characteristics of the real-world scenarios. Furthermore,
evaluation methods should consider the stability and reliability of the systems
under evaluation, accounting for prompt sensitivity and how different types
of input may work more or less well for the system under consideration, for
example in terms of irrelevant and sufficient contexts. In addition, evaluations
should be careful about what types of knowledge are measured and/or inspected,
and whether these should be disentangled for the evaluation.
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