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Abstract

Machine learning offers great promise for developing new treatment policies
from observational clinical data. However, a key challenge in this offline setting
is reliably assessing the performance of new policies. Meaningful evaluation
requires that the proposed policy is sufficiently similar to the data-collecting
policy—constraining the search for viable policies. In clinical settings, the
data-collecting policy is typically unknown, necessitating probabilistic modeling
for many evaluation methods. As a result, modeling, evaluating, and refining
clinical decision-making are closely interconnected. This thesis explores these
tasks with a focus on interpretability, essential for clinical validation and trust.

First, we examine representations of a patient’s medical history that support
interpretable policy modeling. As history accumulates over time, creating com-
pact summaries that capture relevant historical aspects becomes increasingly
important. Our results show that simple aggregates of past data, combined
with the most recent information, allow for accurate and interpretable policy
modeling across decision-making tasks. We also propose methods that leverage
structure in the data collection process—such as patterns in missing feature
values—to further enhance interpretability.

Second, in the context of policy evaluation, we emphasize the need for
assessments that go beyond estimating overall performance. Specifically, in
which situations does the proposed policy differ from current practice? To
address this question, we leverage case-based learning to identify a small set
of prototypical cases in the observed data that reflect decision-making under
current practice. We propose using these prototypes as a diagnostic tool to
explain differences between policies, providing a compact and interpretable
basis for validating new treatment strategies.

Third, motivated by the need for interpretable policies that are compatible
with offline evaluation, we propose deriving new policies from an interpretable
model of existing clinical behavior. By restricting the new policy to select from
treatments most commonly observed in each patient state—as described by
the model—we enable reliable evaluation. This standardization of frequent
treatment patterns may reduce unwarranted practice variability and offers
a promising alternative to current practice, as demonstrated in real-world
examples from rheumatoid arthritis and sepsis care.

Keywords: interpretability, observational data, off-policy evaluation, policy
modeling, reinforcement learning, sequential decision-making
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Chapter 1

Introduction

Informed decision-making is central to effective patient care. Good clinical
decisions rely on the integration of individual clinician expertise with the
best available external evidence, while also considering the unique needs and
preferences of each patient (Sackett et al., 1996). While clinical judgment
remains essential, the growing emphasis on personalized medicine highlights the
need for adaptive treatment strategies—or policies—to support consistent and
high-quality care (Chakraborty & Moodie, 2013, Chapter 1.2). Personalizing
medicine through evidence-based policies not only benefits individual patients
but also holds promise for standardizing care and reducing overall healthcare
costs (Chakraborty & Moodie, 2013, Chapter 1.1).

Clinical decision-making generates vast amounts of observational data,
including laboratory test results, radiology images, and clinical notes. Much of
this data is stored in electronic health records and clinical registries, providing a
strong foundation for applying machine learning techniques to both develop and
evaluate new policies aimed at improving clinical decision-making (Rajkomar et
al., 2018; Shortreed et al., 2011). Compared to conducting randomized clinical
trials—which are often prohibitively expensive and time-consuming—Ileveraging
observational data offers a more accessible and cost-effective alternative for
refining patient care. Eventually, it may help address a central question in
medical practice: Which intervention is most appropriate for a given patient at
a given time?

Using machine learning to develop new policies for clinical decision-making
involves several interconnected steps. A key challenge is evaluating the per-
formance of a proposed policy: Is it likely to outperform current practice?
Due to the difficulties associated with running clinical trials, such evaluations
must typically rely on historical data collected under existing clinical practices,
often through a model of clinician behavior (Precup et al., 2000). For a new
policy to be evaluable in this setting, it must be sufficiently similar to the
observed behavior (Gottesman et al., 2018), which ultimately constrains how
the policy can be derived. As a result, modeling, evaluating, and refining
clinical decision-making become tightly coupled processes.

This thesis—based on four published papers and one preprint—explores vari-



4 CHAPTER 1. INTRODUCTION

ous aspects of each of these components. As will become clear, interpretability
serves as a unifying theme throughout, motivated by the need for transparency
in high-stakes clinical decision-making (Rudin, 2019).

In the following sections, we introduce each area of contribution. Two types
of policies will recur throughout this discussion: the behavior policy, which is
assumed to be followed by clinicians in the observed data, and the target policy,
which represents a new policy being developed. Formally, we define a policy
as a mapping from a state to a set of possible actions. In the clinical context,
the state represents a summary of the patient and their medical history, while
each action corresponds to a medical intervention—for example, a choice of
treatment.

1.1 Modeling Clinical Decision-Making

While a model of the behavior policy is essential for many approaches to policy
evaluation, it can also serve as a tool to understand, describe, and validate
clinical practice—provided it is both accurate and interpretable (Deuschel et al.,
2024; Hiiytik et al., 2021; Pace et al., 2022). Accurate modeling requires careful
consideration of how to represent the patient’s state (Gottesman et al., 2018).
In particular, when used for policy evaluation, the state should account for all
confounding variables—factors that influence both treatment decisions and out-
comes. Although this assumption cannot be verified statistically (Rosenbaum,
2010), interpretability can aid in reasoning about whether it holds. As the
amount of historical information increases over time, selecting a representation
of the patient’s history that maintains interpretability becomes increasingly
important.

In Paper I, we compare different approaches to representing patient history
for interpretable behavior policy modeling. Specifically, we contrast representa-
tions learned through sequence representation learning with carefully crafted
summary features. Based on a comprehensive experimental evaluation across
four clinical decision-making tasks—including the management of rheumatoid
arthritis and sepsis—we find that incorporating only a few aggregated and
recent aspects of the patient’s history into hand-crafted representations allows
for learning interpretable models that perform comparably to black-box altern-
atives. Our analysis also highlights challenges specific to common use cases,
including policy evaluation.

In Paper II and Paper V, we develop methods that leverage structure in the
data-generating process to improve the interpretability of learned models. In
Paper II, we introduce missingness-avoiding (MA) machine learning, a general
framework for training models that avoid relying on features with missing
values. In healthcare, missingness is often structured—for example, the result
of one medical test may determine whether another test is performed. In
such cases, tree-based MA algorithms can partition the data according to
these missingness patterns, reducing the model’s reliance on missing features
and enhancing interpretability. As shown in our experiments, MA models
generally maintain predictive performance comparable to their unregularized
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counterparts.

In Paper V, we account for a common pattern in the treatment of primarily
chronic diseases: patients often remain on the same treatment across decision
points. Focusing on tree-based policy representations, we propose a simple
meta-estimator that decouples the prediction of whether a treatment change is
necessary from the prediction of which treatment to switch to. Compared to
a standard decision tree—in which many rules may be redundantly repeated
across subtrees, each tied to a specific treatment—this approach may better
reflect the decision logic used by clinicians. In experiments with rheumatoid
arthritis data, our method improves the accuracy of behavior policy model-
ing—especially when accounting for differences across treatment stages.

1.2 Evaluating Clinical Decision-Making

Evaluating a target policy involves answering the following question: What
would the expected outcome be if physicians treated patients according to this
policy? Ideally, this quantity—known as the value of the target policy—should
be higher than that of the behavior policy. While the value of the behavior
policy can be estimated simply as the average outcome in the recorded data,
estimating the value of the target policy is a challenging causal problem known
as off-policy evaluation (Precup et al., 2000). The difficulty arises because we
do not observe what would have happened if the treatment recommended by
the target policy differed from the treatment actually given in the data.

Most approaches to off-policy evaluation rely fully (Precup et al., 2000) or
partially (Farajtabar et al., 2018; N. Jiang & Li, 2016; Thomas & Brunskill,
2016) on importance sampling. This technique reweights the outcomes of
observed trajectories of state-action pairs based on the relative likelihood of
those trajectories under the target and behavior policies. A model of the
behavior policy is needed to compute the weights, as the true behavior policy
is generally unknown.

The standard importance sampling estimator provides an unbiased estimate
of the policy value, but it is known to suffer from high variance—especially when
there are significant differences between the target and behavior policies across
many state-action pairs (Gottesman et al., 2018). This issue is particularly
pronounced when the target policy is deterministic, since only a small subset of
the observed trajectories will align with the target policy and thus contribute
to the weighted average. While multiple works have sought to reduce variance
in off-policy evaluation estimates (Farajtabar et al., 2018; N. Jiang & Li, 2016;
Thomas & Bruuskill, 2016), a fundamental question remains: Can we trust the
estimated value?

We address this question in Paper III. In addition to estimating the policy
value, we argue that the following questions should be addressed as part
of the evaluation: “In what types of situations do the target and behavior
policies differ?” and “How do these differences affect the estimated value?” In
this work, we answer these questions by estimating the behavior policy using
prototypical learning—an interpretable machine learning technique primarily
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used for classification (Li et al., 2018; Ming et al., 2019). We use the learned
prototypical cases, which correspond to key patients in the state-action space, as
a diagnostic tool for off-policy evaluation. By comparing the target and behavior
policies in each case, we obtain a compact summary of the differences between
the policies, as demonstrated in the case of sepsis management. Moreover, we
decompose the estimated value into prototype-based contributions, revealing
in which situations the target policy yields higher outcomes than the behavior
policy, and vice versa.

1.3 Refining Clinical Decision-Making

Reinforcement learning (RL) offers a promising framework for learning new
policies to support clinical decision-making. RL is a subfield of machine learning
in which an agent learns how to act within an environment by interacting
with it and receiving feedback in the form of rewards or penalties (Sutton
& Barto, 2018). The agent’s goal is to learn an optimal policy—one that
maximizes the expected cumulative reward (or equivalently, minimizes the
expected cumulative penalty). While this interaction-based learning procedure
is ill-suited for most clinical settings, certain RL algorithms can instead be
applied to a fixed dataset of collected experiences—a setting known as offline,
or batch, RL (Levine et al., 2020).

A major challenge in many approaches to offline RL is managing out-
of-distribution actions, which may arise when the algorithm becomes overly
optimistic about actions that are rarely observed in the training data (Fujimoto
et al., 2019; Kumar et al., 2020). While this issue can be mitigated by
constraining the target policy to stay close to the behavior policy during
training (Fujimoto et al., 2019; Kostrikov et al., 2022; Kumar et al., 2020),
evaluating deterministic policies off-policy remains difficult—particularly when
using importance sampling-based methods (Gottesman et al., 2018; Voloshin
et al., 2021). This challenge is further compounded by the fact that much of
RL’s recent success stems from its integration with deep learning (i.e., deep
RL), where black-box neural networks are used to represent policies (Mnih
et al., 2013). Although interpretable RL is an active research area (Ernst et al.,
2005; Silva et al., 2020; Verma et al., 2019), the prevailing view is that deep
RL is not yet ready for high-stakes domains such as healthcare (Glanois et al.,
2024).

Because policy refinement relies on accurate offline evaluation, understand-
ing the available data is a critical first step toward improving patient care.
Fundamentally, what is not observed in the data cannot be evaluated. In
Paper IV, we examine treatment patterns in rheumatoid arthritis. Focusing
on therapy changes starting from the initiation of the first biologic or targeted
synthetic disease-modifying anti-rheumatic drug (defined as baseline), we ob-
serve substantial variation in post-baseline treatment decisions across patients.
While this practice variation enables the evaluation of a wide range of target
policies, it also introduces statistical challenges due to sparse observations.

In Paper V, we propose a pragmatic approach to policy refinement aimed
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at producing interpretable target policies that can be evaluated off-policy with
sufficient statistical support. Specifically, we derive the target policy from the
most frequently chosen treatments in each state, as estimated by a model of the
behavior policy—optionally incorporating their observed outcomes. By using
a tree-based model, we obtain an interpretable policy whose overlap with the
behavior policy can be controlled by adjusting the number of top treatments
considered. This approach can be viewed as a way to standardize common
treatment patterns, possibly reducing unwarranted practice variation. Our
experiments show that it provides promising alternatives to current practice,
particularly in the management of rheumatoid arthritis. In contrast, policies
derived from offline RL often yield value estimates with high variance, raising
questions about their practical utility.

1.4 Thesis Outline

This thesis is an extended summary of Papers [-V, which are included in full in
Part II. Chapter 2 introduces the interpretable machine learning methods used
throughout the thesis. The following three chapters, Chapters 3-5, address the
core components of using machine learning to improve clinical decision-making:
policy modeling, policy evaluation, and policy refinement. The ordering of these
chapters is motivated by the dependencies between the three components. Off-
policy evaluation typically relies on accurate behavior policy modeling, including
a sufficiently rich representation of the patient’s state. In turn, the challenges
associated with off-policy evaluation motivate our pragmatic approach to policy
refinement. Finally, Chapter 6 summarizes the main contributions, discusses
limitations, and outlines directions for future work.

1.5 Datasets and Experimental Setups

The experimental results presented in this thesis are primarily based on data
from the PPD™ CorEvitas™ rheumatoid arthritis (RA) registry (Kremer, 2016)
(hereafter referred to as the CorEvitas RA registry) and the Medical Information
Mart for Intensive Care (MIMIC-III) database (Johnson et al., 2016). However,
cohort selection and data preprocessing procedures vary slightly across the
different papers. These details are generally omitted in the following chapters,
but we refer the reader to each individual publication for a thorough description
of the experimental setup used in each case.
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Chapter 2

Interpretable Machine
Learning

Interpretable machine learning is a recurring theme in this thesis. Compared
to black-box models, such as unregularized deep neural networks, interpretable
machine learning models are more understandable to humans (Rudin et al.,
2022). When working with medical data, interpretability provides insights into
a model’s reasoning process, enabling troubleshooting and supporting human
decision-making (Afnan et al., 2021). In this context, we focus on models
that are directly interpretable—either fully, meaning their entire reasoning
process can be understood by humans, or partially, meaning some parts of their
internal logic are human-comprehensible—rather than on post hoc explanations
of inherently uninterpretable models (Guidotti et al., 2018).

In general, an interpretable machine learning model can be obtained either
by selecting an interpretable model class—such as decision trees or linear
models—or by imposing constraints such as sparsity or decomposability. In
this short chapter, we briefly outline different approaches to interpretable
machine learning, focusing on two main types: models designed for tabular
data and models that are capable of handling sequential data. The latter is an
appropriate extension given the thesis’s focus on sequential decision-making.

2.1 Classical Methods for Tabular Data

Two of the most classical interpretable models are decision trees and generalized
linear models, including linear regression and logistic regression. These models
assume a tabular representation of the input data, where each feature X; of
the input X = [X1,..., X4]" is a meaningful predictor of the outcome Y € Y.

Generalized Linear Models

Generalized linear models (GLMs) are foundational in machine learning. These
models are parametric, meaning they rely on a set of parameters 6 that are
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learned from data. The GLM framework unifies various types of models with
linear components, such as linear regression and logistic regression, enabling
them to accommodate different relationships between the outcome variable y
and the input variables x = [1,21,...,24]". The leading constant one simplifies
notation in the following derivations. A GLM is expressed as

gEY | X =2]) =0y + 6121 + Oozo 4+ ... + Oqzqg =0z, (2.1)

where ¢ is the link function that connects the linear regression term 6z, or
logit, to the conditional mean of the output.

Depending on the assumed output distribution p(Y | X) and the choice
of link function g, we obtain different models with varying properties. For
example, assuming a normal distribution with the identity link g(p) = p yields
linear regression. In contrast, assuming a Bernoulli distribution with the logit
link g(p) = log(p/(1 — p)) results in logistic regression. As the inverse of
the logit link—the logistic function—maps to the interval [0, 1], the output of
logistic regression can be interpreted as a probability, allowing it to serve as
a classifier for binary outcomes. Logistic regression can also be extended to
multi-class classification problems, where the response variable takes values in
{1,..., K} with K > 2. This can be done by computing logits 0, = for each
class k and passing the resulting vector into the softmax function, a multi-class
generalization of the logistic function. Essentially, logistic regression for binary
and multi-class classification can be viewed as combining linear regression with
the logistic and softmax function, respectively.

To learn the parameters 6 of a GLM, we may use maximum likelihood
estimation. Given a dataset {(x;,v;)}" , the goal is to find the parameters
0 that maximize the likelihood of the data—or equivalently, minimize the
negative log-likelihood:

R 1 &
¢ = argmin —— lo i | xi;0) . 2.2
3 n; gp(yi | :;0) (2.2)

J(0)

For linear regression, the optimization problem (2.2) has a closed-form solution.
In more general cases, such as logistic regression, numerical optimization
methods are typically required. In multi-class logistic regression, where 6 =
{61,...,0k}, the cost function becomes J(0) = =1 3" | log gy, (z;;6), where
Gy, (x;;0) denotes the predicted probability for class y; obtained from the
softmax function.

As discussed in Rudin et al. (2022), we can interpret a GLM by inspecting the
individual components of the model, 6;x;, as functions of their corresponding
input variables x;. This allows us to understand how each feature contributes
to the model’s prediction. This kind of introspection is especially useful for
continuous input variables; for binary or categorical variables, the effect reduces
to a step function. In the case of multi-class classification—which is most
relevant for this thesis—interpreting the model becomes more challenging due
to the presence of K separate parameter sets, one for each class.
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Decision Trees

A decision tree is a type of rule-based model that partitions the input space
X into disjoint regions, each associated with a constant prediction value.
Unlike GLMs, decision trees are non-parametric models, meaning they make no
assumptions about the functional form of the underlying mapping i : X — ).
This flexibility allows them to effectively capture nonlinear relationships.

Decision trees consist of internal nodes v € V and leaf nodes ¢ € £. Each
internal node v applies a logical rule that directs an input x to one of its two
children, based on the value of a specific feature z;, and a threshold 7,. For
instance, if z;, < 7,, the input follows the left branch; otherwise, it follows
the right branch. When the input reaches a leaf node ¢, the tree outputs a
constant prediction value g,. In classification settings, this prediction is usually
determined by a majority vote—that is, the most common class among the
training samples that reach leaf £ is returned.

To learn the splitting rules that define a decision tree from training data,
it is common to use a recursive approach, starting from the root node and
building the tree from top to bottom. Let § = (j,, 7,) denote the parameters
defining the splitting rule at node v. At each node, we solve the optimization
problem

6 = argmin n}, ()@, (6) + ny (6)Q5(6), (2.3)
’ G(9)

where n! (6) and n7(#) denote the number of samples routed to the left and

right children of node v, respectively, under the split defined by 6. The terms
QL (0) and Q7() represent the impurity (or cost) of the left and right child
nodes. For classification tasks with K classes, a common choice of cost function
is the Gini index, defined as

K
. . . . 1
Qv = § pvk(l *pvk)v with  pox = ni 5 ﬂ[yi = k]a (24)
k=1

v 1:x; ESy

where S, denotes the set of samples assigned to node v and n, = |S,|.

Degrees of Interpretability

What makes a model interpretable? For generalized linear models and decision
trees, sparsity is often a key factor (Rudin et al., 2022). A sparse GLM—where
most parameters 0; are zero—is generally easier to understand than one in
which many parameters are nonzero, particularly when the number of potential
input variables is large. In decision trees, sparsity is closely tied to the number
of leaf nodes: the more leaf nodes a tree has, the harder it becomes to grasp
the overall structure and trace individual decision paths.

For GLMs, sparsity can be encouraged through L!-regularization, which in-
volves adding a penalty term X ||, to the cost function J(6), with A controlling
the strength of the regularization. In practice, L'-regularization encourages
many parameters to become exactly zero, which simplifies the model (Tibshir-
ani, 1996). Risk scores are a specific type of sparse linear classification models,
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Figure 2.1: Sparsity is often used as a proxy for interpretability in decision
trees and GLMs. Panel (a): Two decision trees with differing sparsity levels.
The upper tree, with only two inner nodes, accurately predicts flower species
in the classic Iris dataset (Fisher, 1936) and is easily interpretable. In con-
trast, the lower tree, trained on a synthetic regression dataset generated with
make_regression from scikit-learn (Pedregosa et al., 2011), has 100 leaves and
is less comprehensible. For clarity, node labels are omitted in the lower tree, as
they are not central to the point being illustrated. Panel (b): A simulation
of the sparsity—accuracy trade-off in a regularized GLM, trained on synthetic
data from make_regression. Increasing L!-regularization reduces the number
of features used by the model, thereby increasing sparsity at the potential cost
of accuracy.

in which the coefficients are constrained to small integers (Ustun & Rudin,
2019), further enhancing interpretability.

For decision trees, sparsity is commonly improved through cost-complexity
pruning, which begins with a fully grown tree and iteratively collapses leaf
nodes that contribute little to predictive performance. More recently, methods
have been proposed to directly learn decision trees that balance sparsity and
predictive accuracy (J. Lin et al., 2020). Figure 2.1 illustrates two decision
trees with different sparsity levels as well as the sparsity—accuracy trade-off in
a regularized GLM.

2.2 Flexible Methods for Sequential Data

When the input data has a sequential structure of varying length, such that X =
X1 ..., XT, with each X* = [X!,..., X}]T and T a random variable, tabular
methods such as decision trees and generalized linear models become difficult
to apply, as they typically require inputs of fixed shape. To clarify notation,
t=1,...,T denotes the sequence index (e.g., time), and j = 1,...,d denotes
the variable index. In this section, we discuss two types of interpretable models
that are designed to handle sequential data: prototypical neural networks and
recurrent decision trees.
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Prototypical Neural Networks

Prototypical neural networks represent an approach to case-based reason-
ing (Aamodt & Plaza, 1994). The core idea of prototype learning is to use the
training data to identify a set of representative examples—prototypes—that
capture key characteristics of, for example, each class in a classification task.
At test time, a new instance is compared to each prototype, and the prediction
is made based on the prototypes that most closely resemble it. This approach is
interpretable because the prototypes are actual training instances. For example,
in a clinical context, each prototype may correspond to a real patient, enabling
a domain expert to justify the model’s prediction based on the test instance’s
similarity to one or more prototype patients. Compared to nearest-neighbor
methods such as k-nearest neighbors, the most similar prototypes may better
represent a particular class than the set of nearest neighbors (Rudin et al.,
2022). Furthermore, since predictions only require comparisons to a fixed set
of prototypes, inference is typically faster than in standard nearest-neighbor
approaches.

The prototypical architecture consists of an encoding layer, a prototype
layer, and a linear output layer. The choice of encoder depends on the input
data. Here, we focus on sequential data and use a sequence learning model—
such as a recurrent neural network—as the encoder e. The prototype layer
contains m latent prototypes Z = [Z1,...,%m] " that reside in the encoding
space Z, which is induced by the encoder e : X — Z. Let

S(Z,e(x)) = [s(z1,e(x)), ..., $(Zm, e(sc))}T (2.5)

be the similarity vector that compares the encoded input e(z), where x =
zb, ..., 2T, to each prototype 3 using a fixed similarity function s : ZxZ — Rt.

A natural choice for s is the radial basis function kernel with unit bandwidth:

(2, e(2)) = exp(~||Z — e(2)]]3), (2.6)

Vo)

which returns a similarity score between 0 and 1, with 1 indicating complete
similarity and 0 indicating no similarity.

Finally, we apply logistic regression in the space defined by the similarity
vector S. Let 6, and 0y denote the parameters of the encoder and the logistic
regression model, respectively. The full set of parameters § = (6, Z, ) is
learned by minimizing the negative log-likelihood of the data, as defined in
Equation (2.2), using stochastic gradient descent.

The latent prototypes Z are not directly interpretable, as they are free
parameters in the latent space Z. To obtain interpretable prototypes X =
[Z1,...,Zm] in the input space, Ming et al. (2019) propose projecting the latent
prototypes onto the nearest encoded training samples at regular descent steps:

Ty < argmax s(Zx,e(x)) and Zg + e(Zy), (2.7)
xeD

where D denotes the training data.



14 CHAPTER 2. INTERPRETABLE MACHINE LEARNING

Figure 2.2: An illustration of a prototypical neural network architecture. The
input data X = X', ..., X7 has a two-dimensional structure, where each
Xt=1[X{,...,X!]T represents accumulated information about an individual
(e.g., a patient) over time. The encoder e maps the input into an embedding
space Z, where three prototypes represent distinct clusters. For prediction, the
similarity between the encoded input and each prototype is computed using
a user-defined similarity metric (e.g., the radial basis function kernel). The
resulting similarity vector is then used for output prediction. In this example,
a classification task is assumed, and the output is a probability distribution
over Y ={1,...,K}.

Recurrent Decision Trees

Recurrent decision trees were proposed by Pace et al. (2022) as an extension
of soft decision trees (Frosst & Hinton, 2017), primarily for policy modeling
applications (see Section 3.3). A soft decision tree is obtained by distilling
a decision tree from a neural network. Each internal node v is represented
by a gating function p,(z) = o(x"6,), where z = [1,z1,...,24]" are (non-
sequential) input variables, 6, € R4+ are learnable parameters, and o denotes
the logistic function. The gating function defines the probability that input
x follows the right branch of the (sub)tree. Let Py(x) denote the probability
that x reaches a given leaf node ¢. In classification settings, each leaf defines a
probability distribution over K classes using learnable parameters 6] € RE,
with g, = softmax(6}). To promote interpretability, the model outputs the
probability distribution associated with the leaf node ¢y, having the highest
path probability, that is, £yax = arg maxy Pp(x).

A soft decision tree can be optimized by minimizing the negative log-
likelihood between the true label distribution and the predicted distribution
at each leaf, weighted by the corresponding path probability. Interpretability
can be enhanced by retaining, at each internal node, the input feature with
the largest (non-bias) coefficient in 6, (Silva et al., 2020), thereby enforcing
unidimensional decision thresholds.

A recurrent decision tree extends the soft decision tree by accounting
for the sequential nature of the input data z = 2',...,27. Each leaf of the
tree updates a sequence embedding hj through an additional leaf parameter
07 € R™, where m is the embedding dimensionality. The embeddings are
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updated as h,™' = tanh(6}), and the embedding associated with the leaf ¢,

is appended to z**!, forming the full set of input variables at time step ¢ + 1.
With 0, € R&™+1 the gating functions are now defined as

m d
po (h',2!) =0 <01,,0 +) Opihl+ Y 97,,m+7;x§> : (2.8)
i=1 i=1

When creating unidimensional thresholds at each inner node, the sum Y, 6, ;hl
can be incorporated into the bias term 6, ¢, effectively adjusting the threshold
value.
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Chapter 3

Modeling Clinical
Decision-Making

In this chapter, we begin by formalizing the decision-making process, both in
general and within the context of healthcare. We focus on sequential processes,
as clinical decision-making is often inherently sequential: each choice influences
future options and outcomes, and the overall result depends on the entire
sequence of decisions. We then turn to modeling the policy that governs
current decision-making behavior, as reflected in recorded data. A key aspect
of policy modeling is the choice of representation for a patient’s medical history.
In Section 3.3, we explore different representations that support accurate and
interpretable policy modeling, where interpretability enables, for example,
explaining current practice and comparing alternative strategies (Pace et al.,
2022). Finally, we examine two cases in which modeling can be improved
by incorporating structural elements of the data-generating process—such as
systematic patterns in treatment selection or missing feature values.

3.1 The Decision-Making Process

Sequential decision-making can be viewed as a sequence of interactions between
an agent and an environment (see Figure 3.1(a)). At each staget =1,...,T of
the process, the agent executes an action A; € A based on the current state
S; € S of the environment. As a result, the environment transitions to a new
state Sy+1, and the agent receives a scalar reward R; € R, which reflects the
quality of the action taken. The number of stages, T, is generally a finite
random variable; however, to simplify notation, we assume 7" to be fixed in the
following discussion. States, actions, and rewards are also random variables,
and we denote their observed values using lowercase letters, s, a, 7.

The interactions between the agent and the environment form a data-
generating process, giving rise to a trajectory 7 of states, actions, and rewards:
T=251,A1,Rq,..., S, Ar, RT. State transitions and rewards are determined
by the dynamics of the environment, which can be expressed by the conditional

17
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(a) Sequential decision-making. (b) Markov decision process.

Figure 3.1: Sequential decision-making is commonly modeled as an interaction
between a decision-maker, or agent, and an environment (panel (a)). At each
time step t, the agent selects an action A; based on the current state S; of
the environment. The environment then returns a reward R; and transitions
to a new state Syy1. A standard assumption is that the decision process is
Markov, meaning that the next state, action, and reward depend only on
the current state-action pair. The probabilistic graphical model of a Markov
decision process with horizon T = 3 is shown in panel (b).

distribution p(S¢t1, R | S1, A1, R1,..., S, A¢). In a Markov decision process
(MDP), the transitions and rewards depend solely on the most recent state-
action pair, that is,

p(Sty1, Ry | S1, A1, Ry, ..., S, Ay) = p(Sey1, Re | St, Ay). (3.1)

As discussed in Sutton and Barto (2018, Chapter 3.1), the MDP formulation
imposes a restriction on the state, not on the decision process itself: the state
must capture all information relevant for predicting future state transitions
and rewards. When this condition is met, the state is said to have the Markov
property, or to be a Markov state. Figure 3.1(b) shows the probabilistic
graphical model (Koller & Friedman, 2009) for an MDP with T'= 3. An MDP
is often represented as a tuple (S, A, R, p).

The agent’s decision-making strategy is defined by a policy ¥ € II. A policy
can be either deterministic or stochastic. On the one hand, a deterministic
policy ¥ : § — A maps each state s € S to a specific action a € A. On
the other hand, a stochastic policy ¥ : S — A 4 maps each state s € S to a
probability distribution over the action space. For a deterministic policy, we
use 1(s) to denote the selected action. For a stochastic policy, the probability
of taking action a in state s is denoted by py(A =a|S =s).

The policy ¥ induces a distribution over trajectories, denoted by py (7). For
an MDP, such as the one shown in Figure 3.1(b), this distribution factorizes as

T-1

p(S)py(Ar | S1) [ p(Se1: Re | Se, Apy(Asr | Ser)p(Br | Sr. Ar),
t=1
(3.2)
where components not influenced by the policy are written without the subscript
1. Let Ey to denote the expectation with respect to this distribution. The
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value of 1, denoted V¥, is defined as the expected sum of rewards under Py (T):

T
>n
t=1

We may condition the value on the initial state S; = s, resulting in the state-

VY i=Ey : (3.3)

value function: V¥(s) == E,, {Zle Ry | S = s]. Similarly, by conditioning on
both the initial state and the initial action, S; = s and A; = a, we define the
action-value function: Q¥ (s,a) == Ey [Zthl Ri| S1=s,4; =a].

Reinforcement Learning The MDP formalism for sequential decision-
making is commonly used in reinforcement learning (Sutton & Barto, 2018),
where the goal is to learn an optimal policy for future decisions. We return to
reinforcement learning in Chapter 5, where we discuss policy refinement.

3.2 Clinical Decision-Making

The decision-making process described in the previous section naturally trans-
lates to a clinical setting: the decision-making agent and the environment
correspond to a physician and their patient, respectively; the state S; rep-
resents the underlying condition of the patient; the action A; is a medical
intervention, such as a treatment administered to the patient; and the reward
R; corresponds to the observed outcome of this intervention. While the ex-
act causes of a patient’s response to treatment—that is, the dynamics of the
environment—are unknown, we can formulate clinical decision-making in this
way to develop policies for future decision-making, as further discussed in
Chapters 4 and 5.

Although the high-level translation is conceptually straightforward, the
challenges lie in the details. First, the patient’s underlying condition is only
partially observed, and it becomes our task to choose a state representation
based on the available information. Second, the granularity with which actions
are defined poses difficulties: should we model continuous medication dosages
or discrete treatment options? Finally, formulating rewards requires balancing
many important factors. In practice, we may care not only about clinical out-
comes but also about patient well-being during treatment, resource utilization,
and adherence to medical guidelines (Jayaraman et al., 2024).

Of the three challenges mentioned above, this thesis focuses on the choice of
state representation. Regarding the formulation of actions, we assume a finite
action space A = {1, ..., K}, where K denotes the number of available actions,
fixed across time. We return to the choice of reward functions in later chapters,
but in general, we follow conventions from prior work—for example, assigning
a positive signal for survival and a negative signal for death (Komorowski et al.,
2018).

To formalize the discussion on how to represent the patient’s state, we
introduce the notion of patient history. To this end, let X; € X denote the
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patient covariates or context available at time ¢, encompassing all currently ac-
cessible information about the patient—for example, demographics, diagnostic
test results, and comorbidities. For convenience, we assume that the reward
R; is included in the covariates X;,;. The patient’s history up to stage t is
defined as

Ht = Xl,AhXQ,AQ,...,At_l,Xt. (34)

The state S; is defined as a function of the history, S; = f(H;), ideally
providing a compact summary of relevant historical events (Sutton & Barto,
2018, Chapter 17.3). As discussed in the previous section, a state is said to be
Markov if it captures all information necessary to predict the future evolution of
the trajectory (3.4) or its distribution. For the purpose of off-policy evaluation,
discussed further in Chapter 4, the state should account for any confounding
variables—that is, variables that causally affect both the current action and
subsequent states or rewards (Namkoong et al., 2020).

In this thesis, we focus on two types of clinical decision-making processes:
therapy selection in rheumatoid arthritis (RA) and the management of intra-
venous fluids and vasopressors in sepsis. These two examples are fundamentally
different. While the treatment of RA is often a life-long process, with decision
points occurring several months apart, the management of sepsis in the intensive
care unit (ICU) typically spans only a few days, with continuous administration
of treatment and real-time patient monitoring. Below, we briefly describe how
states, actions, and rewards are defined in these two settings.

Therapy Selection in Rheumatoid Arthritis Rheumatoid arthritis
is an autoimmune disease that affects the joints, often causing painful
inflammation and stiffness. It is typically managed with disease-modifying
anti-rheumatic drugs (DMARDs), which fall into three main categories:
conventional synthetic DMARDs (csDMARDs), biological DMARDs (bD-
MARDs), and targeted synthetic DMARDs (tsDMARDs). Methotrexate
(MTX), Tumor necrosis factor (TNF) inhibitors, and Janus kinase (JAK)
inhibitors are the most commonly used csDMARDs, bDMARDs, and
tsDMARDs, respectively. Biological DMARDs can be further divided into
TNF inhibitor biologics and non-TNF inhibitor biologics. Both bDMARDs
and tsDMARDs are often combined with a csDMARD to form combination
therapies—in contrast to monotherapies, where only a single DMARD is
used.

In this thesis, we focus on therapy selection beginning with the initiation
of the first b/tsDMARD and onward. We define the action space based
on these main categories of DMARDs, where an action represents the
choice of a DMARD class rather than an individual drug. While the exact
state variables will be discussed in more detail later, important factors
include measures of disease activity, such as the clinical disease activity
index (CDAI). In this context, the reward could, for example, be defined
as the reduction in disease activity between two consecutive rheumatology
visits.
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Sepsis Management Sepsis is a severe, acute condition that occurs
when the body’s response to an infection causes damage to tissues and
organs. It is a leading cause of death among hospitalized patients (Gotts &
Matthay, 2016). In addition to administering antibiotics, the management
of sepsis involves providing intravenous fluids and vasopressors to control
the patient’s blood pressure.

Sepsis management has been well-studied in the machine learning con-
text (Komorowski et al., 2018; Luo et al., 2024; Raghu et al., 2017). In these
studies, the continuous doses of intravenous fluids and vasopressors are
discretized into five levels, which are then combined into a 25-dimensional
action space. The most straightforward reward setup is to associate pa-
tient survival with a positive reward and patient death with a negative
reward. Key state variables include vital signs and various laboratory
measurements.

3.3 Interpretable Policy Modeling

The sequential process by which clinicians treat patients over time generates
rich data that forms a basis for data-driven policy development. We define
the behavior policy u as representing the treatment patterns observed in this
process—averaged over clinicians and patients. We quantify the behavior policy
by estimating p,,(A: | St), the probability of selecting action A; given state S;.
In the first part of this thesis, we use p,,, or simply i, to refer to a probabilistic
model of the behavior policy.

Modeling the behavior policy has several important applications. First,
it can be used to understand, describe, and validate current clinical prac-
tice (Hiyiik et al., 2021; Pace et al., 2022). Second, by standardizing frequent
treatment patterns identified by the behavior policy model, we may reduce
unwarranted variation in clinical practice—an opportunity further explored
in Chapter 5. Finally, behavior policy models are a key component in many
approaches to off-policy evaluation (Raghu et al., 2018), which is the main
focus of Chapter 4.

Each application benefits from an interpretable model of the behavior policy.
Interpretability is essential when the goal is to explain current decision-making
strategies; it is also desirable when the model is used to support future decision-
making. In fact, interpretability is often considered a prerequisite for gaining
the trust of end users in the medical domain (Stiglic et al., 2020). In off-policy
evaluation of alternative treatment strategies, an interpretable behavior policy
model can help summarize how the proposed strategies differ from current
practice (see Paper III).

In Paper I, we ask: How should the patient history H;, as defined in
Equation (3.4), be represented to form a state S; that supports interpretable
and accurate behavior policy modeling? To address this question, we compare
sparse methods designed for tabular data (Section 2.1) with interpretable
methods based on sequence representation learning (Section 2.2). In sequence
representation learning, the entire history H; is fed into the model, which
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Figure 3.2: Examples of history truncation and history aggregation applied to
a fictitious patient trajectory Hs = X1, Aq,..., X5 in the context of treatment
selection for rheumatoid arthritis. Each context X; consists of three components:
the patient’s age, CDAI, and an indicator for co-existing cancer. The simplified
action space includes MTX, TNF inhibitors, and JAK inhibitors, with TNF
and JAK potentially administered alongside MTX. In history truncation, only
a fixed-length window of the most recent history is retained (here, a window of
size three is used). In contrast, history aggregation summarizes the full history
using an aggregation function, such as the max operator.

typically uses an encoder—for example, a recurrent neural network—to produce
a representation for downstream prediction tasks (cf. the prototypical neural
network described in Section 2.2). In contrast, tabular methods assume a
fixed-size input format, requiring the construction of summary variables to
represent historical events.

We focus on two summary approaches: history truncation and history
aggregation. On the one hand, history truncation selects a fixed-length window
of recent history, assuming distant events have limited impact on the action A;.
Formally, let H;_j). == (X¢—g, At—g, ..., Xt—1, At—1, X¢) denote the truncated
history up to stage t, with &k > 0. As illustrated in Figure 3.2, the truncated
history with & = 2 includes the current context X;, two preceding contexts, and
actions from stages t—1, t—2, and t —3. On the other hand, history aggregation
summarizes past information, assuming that the temporal order of events is
insignificant for the decision A4;. Let X} denote a component of the covariates
X;. Aggregating this information across time yields X; = agg, X}, where
typical choices for the aggregation operator are sum, max, or mean. Similarly,
binarized actions are aggregated as Al = agg, A%, resulting in the aggregated
history H; = {X;, A;_1}. Figure 3.2 exemplifies history aggregation using the
max operator.

Aimed at evaluating the fit of the behavior policy model, we compare
models relying on sequence representation learning to models utilizing hand-
crafted history representations across four distinct datasets, each representing
a clinical decision-making task: (1) whether to order a magnetic resonance
imaging (MRI) scan for patients with suspected cognitive impairment (ADNI),
(2) treatment selection for patients with RA, and (3) management of sepsis and
(4) acute exacerbation of chronic obstructive pulmonary disease (COPD) in
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Table 3.1: Average test AUROC, expressed as a percentage, in four tasks:
ADNI, RA, sepsis, and COPD. The upper section contains models that rely on
hand-crafted states, while the lower section includes representation learning
methods that use the entire history H; as the model input. MLP and RNN are
included as benchmarks. History aggregation H is performed using the sum
operator.

ADNI RA Sepsis COPD
State LR DT MLP LR DT MLP LR DT MLP LR DT MLP
X 56.2 539 556 61.7 588 61.1 821 782 841 779 747 788
A1 539 53.8 537 947 947 947 8.0 906 91.1 929 950 95.0
H o) 56.8 54.3 56.8 956 95.7 96.1 91.3 921 947 94.0 96.0 954
H, 644 649 641 905 920 940 846 8.2 8.1 91.1 893 935

H(U),Eﬂ 65.3 65.0 658 96.1 96.5 969 91.9 923 953 947 96.7 96.3
Hay,H: 656 654 660 960 964 969 922 925 955 94.7  96.8  96.4
Hpy,H, 654 653  66.8 96.0 96.4 96.7 923 926 955 94.7  96.8  96.3

ADNI RA Sepsis COPD
State PSN RDT RNN PSN RDT RNN PSN RDT RNN PSN RDT RNN
H, 66.7 62.8 680 962 90.0 968 949 77.0 957 96.2 819 96.5

the ICU. We consider the following history representations for logistic regres-
sion (LR), decision trees (DT), and multi-layer perceptrons (MLP): X;, A;_1,
{Xt, Ava} = H(tfo):ta H, {H(tfo):taHt}a {H(t71):t7Ht}7 and {H(t72):t>Ht}~
To simplify notation, we define H) = H(;_y),;- For comparison, we also
include a prototypical neural network using a recurrent neural network as a
sequence encoder (PSN), a recurrent decision tree (RDT), and a recurrent
neural network (RNN). The black-box models, MLP and RNN, are included
primarily for reference: How well can the behavior policy be fit using each
input type without interpretability constraints?

In Table 3.1, we report the average test set area under the receiver operating
characteristic curve (AUROC) across five different train-test splits for each
dataset. We highlight the following key observations:

e Accounting for historical information—not just the current context—is
crucial for achieving a good model fit. This is particularly evident for
the RA and COPD datasets, where incorporating the entire history Hy
yields more than a 20 % increase in AUROC compared to using only the
current context X;.

e Combining current observations (X;), the most recent treatment (A;_1),
and summary features of the history (H;) captures most of the variance
in treatment selection. Including additional history information yields
only marginal improvements, as seen by comparing the performance of
the {H o), H} and {H s, H} states.

e The best-performing interpretable model, the prototypical neural net-
work, achieves performance comparable to the RNN, suggesting that
interpretable policy modeling is generally feasible. Interpretable models
using hand-crafted history representations become competitive when
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selected aspects of the history are included, as discussed in the previous
point.

An interesting observation is that models using the state S; = A;_; perform
surprisingly well in terms of average AUROC across tasks. Intuitively, the
previous action alone should not provide a sufficient representation of the
patient’s history, raising the question: Is average AUROC alone an adequate
metric for assessing model fit quality? To further explore this, we refine the
evaluation for the sepsis dataset by performing both group-wise and temporal
stratifications of the model fit.

In Figure 3.3(a), we stratify the results obtained with LR and PSN into
patient groups based on the rate of change of the National Early Warning
Score 2 (NEWS2), as defined by Luo et al. (2024). Patients in groups 1 and 6
exhibit large negative and large positive rates of change in the NEWS2 score,
respectively, indicating that they are likely to experience higher variation in
their treatment compared to patients in other groups. For these patients, the
state A;_1 provides an insufficient representation of the patient’s condition, as
evidenced by a sharp decrease in AUROC.

In Figure 3.3(b), we show the AUROC obtained with DT and PSN at
different stages of the disease course. In the early stages, using the state
Sy = A;_1 leads to highly inaccurate predictions compared to using the full
history as model input. In contrast, in later stages, the state A; 1 is, on
average, almost as predictive as the entire history. One possible explanation for
this pattern lies in the dynamics of sepsis management: at the onset of sepsis,
patients require careful monitoring and frequent treatment adjustments from
one decision point to the next, whereas once the patient’s condition stabilizes,
the default action often becomes maintaining the current treatment across
decision points.

3.4 Structured Policy Modeling

In the previous section, we showed that interpretable models—such as logistic
regression and decision trees—can accurately model the behavior policy across
diverse clinical decision-making tasks, provided a sufficiently rich state rep-
resentation. However, as discussed in Section 2.1, interpretability exists on a
spectrum, often influenced by a model’s sparsity. For instance, while decision
trees are generally considered interpretable, the interpretability of a specific
tree depends on factors such as its depth and the number of leaf nodes.

In Figure 3.4, we show the topmost nodes of a standard decision tree trained
on the RA dataset. The previous treatment variable, A;_1, dominates the left
side of the tree, reflecting a common pattern in chronic disease management:
the tendency for patients to remain on the same treatment across decision
points. Although not shown, this leads to an unbalanced tree with distinct
subtrees for each treatment type, resulting in repeated rules across subtrees.

In Paper V, we leverage this structure in the data-generating process to
create trees that are more accurate and more interpretable than standard
decision trees. Specifically, we construct a meta-estimator (SwitchTree) that
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Figure 3.3: By stratifying the predictive performance of various state rep-
resentations in the sepsis case by patient group (a) and treatment stage (b),
we gain valuable insights into the limitations of each representation. In both
cases, a prototypical neural network is used to fit the behavior policy using the
entire history H; as input. For the hand-crafted state representations, logistic
regression is used in (a), and a decision tree is used in (b). The shortcomings
of the A;_; state representation—which appears surprisingly effective in the
overall comparison—become evident in both stratified evaluations.

combines two separate decision tree classifiers: (1) a binary classifier that
predicts whether a patient switches treatment and (2) a multi-class classifier
that predicts the chosen treatment, trained on inputs (s¢, a;) where a treatment
switch occurs.

Let C; be a binary random variable at stage ¢, where C; = 1 denotes a
change in treatment and C; = 0 indicates continuation of the current treatment.
Let 5,(S¢) € [0,1] and §¢,(S;) € [0,1] denote the outputs of classifiers (1) and
(2), respectively: p7(S:) = pu(Cr = 11 S;) and py,(k | S;) = pu(As = k | St).
To explicitly model the probability of selecting a treatment k given that a
change occurs, denoted by ]52(/@ | S¢), we exclude the probability of continuing
the previous treatment a;_; from ﬁ’;(St). This gives

Lk # aralp (k| St)
SO F aalpl (G ] S

Finally, the meta-estimator combines the probabilities of staying on the same
treatment and switching treatments:

Pk | S)) =pu(Ar =k | S, Cr =1)

(3.5)

Pu(Ae =k | S1) = (1= py(Sh)) - L[k = ara] + 9 (Se) B (k [ Sp). (3.6)

In Table 3.2, we compare SwitchTree to a standard, single DT and an
RNN for behavior policy modeling in RA and sepsis. We measure AUROC
and static calibration error (SCE) (Nixon et al., 2019), since a good model
of the behavior policy should be both accurate and produce well-calibrated
probabilities. We also include another meta-estimator—BLSwitchTree—which
uses a separate decision tree for treatment classification at the first time step,
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A,_, = TNFc
Samples: 100.0%
Pr(TNFc) = 0.56
A1 = non-TNFc XCDALZ pign
Samples: 57.9% Samples: 42.1%
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Figure 3.4: The topmost nodes of a decision tree fitted to estimate the behavior
policy for RA treatment. The treatment selected at the previous time step,
A;_1, dominates the left branch of the tree, effectively creating distinct subtrees
for each treatment type. As a result, many splits—such as those based on
the CDAI—are repeated across subtrees, making the overall tree unnecessarily
complex. The suffixes “m” and “c” indicate monotherapy and combination
therapy, respectively.

Table 3.2: Average test AUROC and SCE for different models of the behavior
policy across 50 splits of the RA and sepsis datasets.

RA Sepsis
Estimator AUROC (1) SCE ({) AUROC (1) SCE ({)

DT 92.0 (91.8, 92.3) 2.7 (2.6,2.8) 86.9 (86.5, 87.3) 0.4 (0.4, 0.4)
SwitchTree 92.8 (92.7, 93.0) 2.6 (2.5, 2.7) 86.0 (85.8, 86.2) 0.5 (0.5, 0.6)
BLSwitchTree 94.9 (94.7,95.0) 1.3 (1.2,1.3) 86.8 (86.6,87.0) 0.5 (0.5, 0.5)
RNN 91.8 (91.7, 92.0) 2.4 (2.3,2.5) 88.1 (88.0,88.2) 0.5 (0.5, 0.5)

commonly referred to as the baseline (BL). This model accounts for the fact
that treatment selection at baseline may differ from subsequent decisions. For
example, as shown in Paper IV, TNF-based therapies dominate as baseline
treatments in RA.

Table 3.2 highlights a key difference between decision-making in RA and
sepsis. In the RA setting, explicitly modeling treatment switching—as done in
SwitchTree and BLSwitchTree—improves predictive performance compared
to using a standard decision tree or an RNN. The superior performance of
BLSwitchTree over SwitchTree, both in terms of AUROC and SCE, suggests
that handling baseline treatment selection separately from post-baseline de-
cisions significantly enhances behavior policy modeling in this case. In contrast,
for sepsis management, dividing the prediction task into two steps offers no
clear benefit, and the RNN outperforms the tree-based models. This may be
due to the continuous nature of sepsis care, where the decision-making process
is less naturally framed as a two-step problem.

A benefit of this combined modeling approach is that practitioners can
reason about two separate models, gaining insights into the mechanisms that
lead to treatment changes. In Figures 3.5 and 3.6, we show the learned switch
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Figure 3.5: A decision tree trained to predict therapy switch events in RA treat-
ment, as part of the BLSwitchTree model. The tree estimates the probability
pu(Cy =1 5,;) that a patient in state S; will switch treatment. The suffixes
“m” and “c” indicate monotherapy and combination therapy, respectively.

and treatment trees when fitting BLSwitchTree to the RA dataset. The switch
tree reveals that patients often change therapy after a period on csDMARDs
or without DMARDs—a pattern also noted in Paper IV. This tendency is
particularly pronounced when CDAI scores are high. Figure 3.6 shows that
the previous treatment variable, A;_1, provides a strong signal for determining
post-baseline treatment changes. Specifically, patients tend to switch from
TNF monotherapies to TNF combination therapies, from csDMARD therapies
to TNF combination therapies, and from non-DMARD therapies to non-TNF
monotherapies—transitions consistent with the results presented in Paper IV.

3.5 Handling Missing Data

Missing values are common in healthcare data. While tree-based models, such
as decision trees, can be designed to handle missing values by learning default
directions for each branch, most machine learning models require complete
input variables. To address this, imputation techniques—such as univariate
or multivariate feature imputation—can be applied. When missingness itself
is informative, adding missingness indicators can improve predictive perform-
ance (Van Ness et al., 2023), although this increases the size of the feature set.
Arguably, the use of imputation and missingness indicators complicates the
relationship between inputs and outputs, thereby reducing the interpretability
of the model and its predictions.

In clinical decision-making, decisions must be based on information that is
currently available. Ideally, the models we build should reflect this fundamental
principle. Sometimes, such as when clinicians gather information to establish
a diagnosis for a patient, decisions may be deterministic—dependent on the
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Figure 3.6: A decision tree trained to predict post-baseline treatment selection
in RA treatment, as part of the BLSwitchTree model. The tree estimates
the probability distribution over treatment options given a patient in state
S;, with each node label showing the probability of the most likely treatment.
The suffixes “m” and “c” indicate monotherapy and combination therapy,
respectively.

outcomes of previous decisions. As an example of a case where missingness
patterns follow a clear structure, consider the following data-generating process.

Preventive Care Patients registered with a general healthcare provider
undergo annual check-ups to assess their overall health. Demographic
variables, such as age, are always recorded, whereas some test results may
be missing due to clinical recommendations. For instance, cognitive tests
are consistently administered to individuals over 65 years old, ensuring
that mini-mental state examination (MMSE) scores are available for all
patients in this age group. Patients who receive a low MMSE score
subsequently undergo an MRI scan, which assesses hippocampal volume
(V1), categorized as either above or below average. MRI scans may also be
ordered for unrelated clinical reasons—for example, to investigate spine or
cartilage issues.

Assume we aim to predict whether a patient suffers from cognitive impair-
ment using data collected by the healthcare provider. The dataset contains the
following features: the patient’s age, the outcome of any MMSE test (classified
as normal or low), and the hippocampal volume from any performed MRI scan
(also classified as normal or low). Figure 3.7(a) shows a standard decision tree
fit to this data. The tree fails to reflect the underlying data-generating process,
as it splits on the MRI scan outcome at the root node. Since this information
is unavailable for most patients, the tree exhibits high missingness reliance
(p) (Stempfle & Johansson, 2024), as indicated by the coloring of individual
nodes. In contrast, the decision tree shown in Figure 3.7(b) has learned to avoid
relying on missing values. It more accurately represents the data-generating
process and achieves zero missingness reliance, while maintaining predictive
performance.
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Figure 3.7: Two types of decision trees trained to predict cognitive impairment
from data collected at a general healthcare provider. The data-generating
process follows a clear structure: the MMSE is administered to all patients over
65 years of age, and MRI scans—which measure hippocampal volume (V},)—are
primarily ordered for patients with low MMSE scores. The standard decision
tree (a) fails to capture this structure, splitting on the MRI scan outcome at
the root node. Although this variable is highly predictive, it is missing for
77 % of patients, resulting in high missingness reliance (p). In contrast, the
missingness-avoiding decision tree (b) accurately captures the data-generating
process, resulting in zero missingness reliance. Importantly, both trees achieve
similar predictive accuracy as measured by AUROC.

Missingness-Avoiding Machine Learning

In Paper II, we propose missingness-avoiding (MA) machine learning as a
general framework for training models that minimize reliance on features with
missing values. Let h € H be a hypothesis that predicts a target variable
Y € Y from input variables X = [X1,..., X4]" € (X Una)?, where na denotes
a missing value.! The missingness in X is determined by a missingness mask
M € {0,1}4. Let ay(x,7) = 1 indicate that the hypothesis h requires access to
the variable z; to compute h(z); otherwise, let as(z, j) = 0. Following Stempfle
and Johansson (2024), we define the missingness reliance p(h,z) € {0,1} of h
for the input x as

p(h,z) = max 1[ap(z,j) =1 Az; = nal. (3.7)
jeld]
The expected missingness reliance of h under the distribution p(X, M,Y) is
then defined as p(h) = E,[p(h, X)].
The goal of MA learning is to find a suitable trade-off between expected
predictive performance and missingness reliance:

min B [L(Y, h(X))] + ap(h), (3-8)

IThis can be translated to a decision-making context by setting X = Sy and Y = A;.
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where L is a loss function and a > 0 is a trade-off parameter. In Paper II,
we provide algorithms for learning missingness-avoiding sparse linear models
(MA-Lasso), decision trees (MA-DT), random forests (MA-RF), and gradient-
boosted decision trees (MA-GBT). Here, we focus on the first two, as they align
with the thesis’s emphasis on interpretability.

To construct MA trees, we follow the greedy approach described in Sec-
tion 2.1. Let j, denote the index of the feature to split on at node v, and let
7, denote the corresponding threshold. We define missingness reliance at the
instance level as

p(h,z) = max 1[z; = nal, (3.9
vEmy (x)
where 7, is the sequence of nodes traversed when making a prediction for input
x using the hypothesis h. To construct trees that minimize both prediction
error and missingness reliance, we modify the optimization problem from
Equation (2.3) as follows:

mmG (4, 7) + « Z 7]1 naj, (3.10)
TES,

where S, denotes the set of training samples that reach node v during training
and n, = |S,|. For simplicity, we have omitted the subscript v in (j,, 7).

For generalized linear models of the form g(E[Y | X = z]) = 6Tz, where
g is the link function (see Section 2.1) and x = [1,z1,...,24]", we define
missingness reliance at the instance level as

p(h,x) = m]axlt [16;] > 0] 1 [x; = na], (3.11)

where h = g~1(0Tz). As evident from this definition, generalized linear models
cannot avoid missing values in a context-dependent manner as decision trees
can. However, we can encourage such models to avoid relying on features with
high missingness by modifying the optimization problem in Equation (2.2) as
follows:

d
man Z A+ am;)|6;], (3.12)

where A and o control the strength of the regularization, and m; = % >oim
is the empirical missingness rate of feature j, computed from the training
data {(z;,mq,y;)},. We solve Equation (3.12) by applying L! regularization
(Lasso) with regularization strength A to a dataset with rescaled features
r = f\‘—;a:j, where \; = A + am;.

In Paper II, we compare MA models to their unregularized counterparts,
as well as to several models specifically designed to handle missing values (Le
Morvan et al., 2020; McTavish et al., 2024; Stempfle & Johansson, 2024), across
six tabular datasets with varying degrees of missingness. Our results show that,
in most cases, MA models match the predictive performance of the baselines
while significantly reducing reliance on missing values.

In Figure 3.8, we show how predictive performance (AUROC) and missing-
ness reliance (p) vary with the maximum allowed tree depth when building
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Figure 3.8: A comparison of predictive performance, measured by AUROC (a),
and missingness reliance (b) across different maximum depths of a missingness-
avoiding decision tree, using various values of the regularization parameter c.
Setting o = 0 corresponds to a standard decision tree. While increasing « from
0 to 1 has little effect on predictive performance (a), it substantially reduces
missingness reliance (b).

MA trees with different strengths of the missingness regularization parameter
a. When a = 0, no regularization is applied, recovering the standard node
splitting criterion. The task is to predict whether a country’s life expectancy
is below or above the dataset median, using World Health Organization data
with 10 % missingness added to all predictors except the country’s region (the
country itself is not included as a predictor). As shown in Figure 3.8(a), a
near-optimal tree (with depth 3-4) can be obtained for « € {0,0.1,1}. However,
increasing « from 0 to 1 reduces missingness reliance from approximately 0.3
to 0.1—a two-thirds decrease.
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Chapter 4

Evaluating Clinical
Decision-Making

In the previous chapter, we formalized sequential decision-making and intro-
duced the concept of a policy as a mapping from states to actions. We then
focused on estimating a policy from observed data using interpretable machine
learning methods, allowing for human verification of the learned policy model.
In this chapter, we shift focus to a setting in which an alternative policy is
given, and our task is to evaluate it. As we will see, the learned policy model
continues to play an important role in this context.

4.1 Policy Evaluation

In Section 3.1, we defined the wvalue of a policy 1 as the expected sum of
rewards under the trajectory distribution py(7) induced by actions selected
according to that policy. For convenience, we restate the definition here:

VY =R, : (4.1)

T
S
t=1

The value provides a natural basis for comparing policies: the higher the value,
the better the policy. For example, in clinical settings, we often aim to compare
the behavior policy p with an alternative treatment strategy defined by a target
policy w. In the policy evaluation setting, the target policy is assumed to be
given.

In most practical settings, the expectation defined in Equation (4.1) is
intractable, as the dynamics of the environment—and possibly the policy
itself—are unknown. Fortunately, assuming access to a dataset of n sample

(i) () (i) (i ) (i)) }"

trajectories from py(7), Dy = {(51 a1 T Sy A T , a simple

33
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Monte Carlo estimator provides an unbiased estimate of the policy value:

1 n T )
VY = - SN (4.2)
i=1 t=1

While it is straightforward to compute the value of the behavior policy u
using Equation (4.2) on a dataset D,, collected under that same policy, we
typically do not have access to data collected under the target policy w. In
clinical settings, executing the target policy without first estimating its value
may be impermissible due to ethical concerns and safety regulations. Instead,
we need to estimate V™ using the dataset D,—a task known as off-policy
evaluation.

To ensure the identifiability of V™, we must make assumptions about
the behavior and target policies, © and m, as well as the data-generating
process underlying D,,. Before stating these assumptions and formalizing off-
policy evaluation, we introduce a key concept from causal inference: potential
outcomes.

4.2 Potential Outcomes

The notion of potential outcomes captures what would happen under a specific
action (Rubin, 2005). For example, consider a one-stage decision process
(T = 1) in healthcare, where two treatments, a and o', are available for a
patient represented by state s. The potential outcomes under a and a’ are
denoted by R(a) and R(a'), respectively. If treatment a is chosen, we observe
the reward r corresponding to the potential outcome R(a). The counterfactual
outcome R(a'), as well as the treatment effect A := R(a) — R(a’), remains
unobserved. As a result, treatment effects must be studied at the population
level—for example, through the conditional average treatment effect E[A | S].

The potential outcomes framework can be extended to multi-stage decision
processes (Chakraborty & Moodie, 2013, Chapter 2.1). In this setting, actions
influence not only observed rewards but also observed states. Thus, it is
useful to define the potential outcome of a general random variable Z. Let
Ay = (Aq,. .., A;) denote the sequence of actions up to stage t, and let Z(A;)
denote the potential outcome of Z resulting from A;. Specifically, Sy, 1(A;) and
Rt(f_lt) represent the potential outcomes of the state S;11 and reward Ry, re-
spectively, under A;. Ast increases, the full set of potential outcomes—including
states S1, ..., S¢(A;_1) and rewards Ry (A1), .., Ri(A;)—grows rapidly. In this

framework, the value of a policy ¢ is defined as E,, {Zthl Rt([lt)]

4.3 Off-Policy Evaluation

Off-policy evaluation poses the question: What would happen if we followed the
actions recommended by the target policy = (Uehara et al., 2022)? Answering
this requires counterfactual reasoning, since we only observe outcomes from
actions taken under a different policy—the behavior policy py—in a dataset
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D,, ~ pu(7). This thesis focuses on off-policy evaluation using importance
sampling (IS) techniques (Precup et al., 2000). To ensure that the value function
V™ is identifiable from the observed data, we assume sequential ignorability and
overlap. The assumption of sequential ignorability requires that the behavior
policy does not depend on confounding variables that also influence future
states or rewards (Namkoong et al., 2020).

Assumption 1 (Sequential ignorability). For all stages t = 1,...,T and
for any sequence of actions ar, conditional on the history Hy, the action Ay
generated by the behavior policy p is independent of future potential outcomes
Ri(at), Si+1(ay),...,Sr(ar—1), Rr(ar). We say that the behavior policy u
satisfies sequential ignorability.

Assumption 2 (Overlap). For all pairs of actions Ay € A and histories
Hy € ", pu(A¢ | Hy) > 0 whenever pr(A; | Hy) > 0. We say that overlap holds
between the target policy and the behavior policy.

In Assumptions 1 and 2, we condition on the entire history H;. However,
if the state S; retains all relevant information from the history—that is, if it
is a Markov state (see Section 3.2)—then we can replace H; with S; in these
assumptions. We assume a Markov state in what follows.

In addition to sequential ignorability and overlap, we assume that any
uncertainty in the target policy p. (A | St) arises from an exogenous variable.
Under these assumptions, the value of the target policy 7 is defined as

T T
VT =E, |Y Ri| =E, lwz R|, (4.3)

t=1 t=1

where the weight W is obtained via importance sampling:
T
pr (Ar | St)

W = —_ 4.4
1:1;[1 P (Ar | St) (44

In practice, the behavior policy p,, (A¢ | Si) is often unknown. To compute the
importance weights in Equation (4.4), we must therefore estimate the behavior
policy from data D,, using a model p,, (A; | S¢). This estimation problem was
discussed in detail in Chapter 3. Given such a model, we can compute a
sample-based estimate of Equation (4.3):

I S e (e )
%S:ﬁ;wi;q with wi:HW- (4.5)

t=1 ﬁu

If the target policy is deterministic, we replace p, (agi) | sﬂ) with the indicator

1 [agi) = (sgz))} As a result of Equation (4.3), the importance sampling
estimator Vg is unbiased provided that the importance weights W are correctly

specified.
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Other Approaches to Off-Policy Evaluation

While IS-based off-policy evaluation is widely used in practice, it suffers from
high variance, as discussed in the following section. To reduce variance, we
can improve the vanilla IS estimator in Equation (4.5) by leveraging the fact
that the reward r; does not depend on future state-action pairs (sy, ay) for
t" > t. This insight leads to the per-decision importance sampling (PDIS)
estimator (Precup et al., 2000):

n T t

Crm 1 i i : (atl | 8 )

Vibis = - E g wt(z)rgl) with wt | I ( | (4.6)
i=1 t=1 = at/ S )

To further reduce variance, we can form a weighted (per-decision) importance
sampling estimator by normalizing the weights.

A different class of off-policy evaluation methods is known as direct methods,
which use regression-based techniques to estimate the state-value function
V7 (s) or the action-value function Q™(s,a) (Voloshin et al., 2021). Model-
based approaches model the dynamics of the Markov decision process (MDP),
p(St41, Re | Sty Ar), and then use this model to estimate V™ (s) or Q™ (s, a).
Let V™(s) and Q7 (s, a) denote model-based approximations of these functions.
These approximations can be obtained, for example, by solving the Bellman
equations (Sutton & Barto, 2018, Chapter 3.5) using dynamic programming;
see Chapter 5. The overall value of the target policy can then be estimated as

V]STM:Zp(Sl:s) Zp S1=8)px(A1 =al|S; =s)Q"(s,a),

(4.7)
where the subscript “DM” denotes that a direct method is used. Alternative,
a model-free direct method, such as fitted Q-evaluation (Le et al., 2019), may
be used to produce V™ (s) and Q7 (s, a).

Direct methods are biased and can be sensitive to the accuracy of the
underlying models (Gottesman et al., 2018). To mitigate this issue, doubly
robust (DR) estimators combine importance sampling with DM approxim-
ations (Farajtabar et al., 2018; N. Jiang & Li, 2016; Thomas & Brunskill,
2016):

= L33 ul? (10 -7 (+0,)) w7 (), )

i=1 t=1

where the importance sampling weights are computed in a per-decision manner,
as defined in Equation (4.6). These hybrid approaches retain the unbiasedness
of importance sampling while benefiting from the variance reduction offered by
direct methods.
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4.4 Challenges With IS-Based Off-Policy Eval-
uation

The importance sampling estimator (see Equation (4.5)) provides an unbiased
estimate of the target policy’s value. However, due to the product of importance
weights pr(a¢ | s¢)/Pu(as | s¢), the variance of the estimator can become large,
especially when the target policy 7 differs significantly from the behavior policy
1 across many state-action pairs. While normalizing the weights or using
per-decision importance sampling can reduce variance, it may still remain high
in practice, particularly for long time horizons 7. The problem is further
exacerbated when 7 is deterministic, since only trajectories 7; ~ p,(7) that
exactly match the actions of 7 contribute to the value estimate.

To assess the reliability of importance sampling estimates, we can compute
the effective sample size n, (Owen, 2013, Chapter 9), defined as

(3 wi)?

- (4.9)

> Wi

The effective sample size equals n when the target and behavior policies are
identical, and it approaches 1 in the worst case—meaning the estimate is
effectively based on a single observation. Finding n. < n indicates that only
a few weights dominate the weighted sum, suggesting that the importance
sampling estimate may be unreliable.

To illustrate the challenges of IS-based off-policy evaluation, we consider
treatment selection for patients with rheumatoid arthritis. Using a cohort of
1,565 patients, we repeatedly split the data into two halves: one for learning a
target policy and the other for performing off-policy evaluation. Following the
approach for modeling sepsis treatment described by Komorowski et al. (2018),
we cluster all observations in the training data to obtain a discrete state space
defined by the cluster centroids. Transition probabilities p(Si+1 | St, A¢) are
estimated by counting observed transitions between clusters, and the reward r;
is defined as the change in the clinical disease activity index relative to 10—the
threshold between low and moderate disease activity (Aletaha & Smolen, 2005).

The (deterministic) target policy is obtained using Q-learning (see Chapter 5)
via environment simulation, and off-policy evaluation is performed using
weighted importance sampling. Across 50 iterations, an average of 779 patient
trajectories are used for off-policy evaluation. However, the effective sample
size is, on average, only 3, indicating that the IS estimate relies on less than
one percent of the available trajectories. If we soften the policy so that every
action has a 1% probability of being chosen, the effective sample size increases
to 5—still a very small number.

Ne =

4.5 Case-Based Off-Policy Evaluation

A fundamental challenge with off-policy evaluation is that the ground truth
value V7 is unknown. In addition, the sequential ignorability assumption (see
Assumption 1) cannot be verified by statistical means (Rosenbaum, 2010), and
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the extent of overlap (see Assumption 2) is unknown when the behavior policy
w1 is unknown—which is typically the case in clinical settings. Consequently,
assessing the quality of the value estimate v ultimately requires human
expertise.

As discussed in the previous section, the analyst may compute the effective
sample size to understand potential variance issues and diagnose the overall
reliability of the value estimate. In addition, by inspecting individual weights
w; and estimated propensities p,(a: | s¢), the analyst can obtain a sample-
wise view of evaluation, allowing for the removal of samples with excessive
weights (Crump et al., 2009). However, both the average and sample-based
perspectives fail to reveal patterns in states, actions, and rewards. In which
situations do the target and behavior policies recommend substantially different
actions? And when are the actions suggested by 7 preferable to those suggested
by u?

In Paper III, we develop a diagnostic tool for off-policy evaluation by estim-
ating the unknown behavior policy p,(A; | S¢) using prototypical learning (Li
et al., 2018; Ming et al., 2019). As described in Section 2.2, a prototypical
neural network is an interpretable deep learning architecture that combines an
encoder with a prototype layer containing m prototypes—each corresponding
to an input identified during training—followed by a linear output layer. The
prototype layer compares a testing input to each prototype using a user-defined
similarity metric, producing a similarity vector that is used for output regres-
sion. We use a recurrent neural network as the encoder, allowing the state S;
to be formed based on the entire patient history Hy.

The parameters of the model, including the prototypes, can be estimated
using maximum likelihood estimation. By regularizing the learning objective
to encourage a clustering structure in the encoding space—where each cluster
is associated with a unique prototype—the learned prototypes induce a soft
clustering of the state space. Since the prototypes are learned under action
supervision, they intuitively describe common treatment patterns under the
behavior policy. Moreover, because each prototype corresponds to a state in
the training data D,,, they can be readily interpreted by domain experts.

Assuming the number of prototypes, m, is relatively small, the learned
prototypes provide a useful tool for understanding differences between the
target and behavior policies. By comparing the actions recommended by the
target and behavior policies in each of the prototypical states, the analyst can
assess the degree of overlap between the policies and evaluate the validity of the
actions suggested by the target policy. In Paper I1I, we demonstrate this idea
using the example of sepsis management, comparing the Artificial Intelligence
(AI) Clinician proposed by Komorowski et al. (2018) to the behavior policy
followed by physicians.

In Figure 4.1(a), we visualize 3 of the 10 prototypes learned by the model,
each corresponding to a particular state of a distinct patient in the training
data. For reference, Figure 4.2(a) shows a principal component analysis (PCA)
plot of the encoded training data, with each prototype numbered from 1 to
10. By plotting the trajectories of three key features (SOFA score, mean
blood pressure, and heart rate), as well as the actions selected at each time
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Figure 4.1: By modeling the behavior policy p,(A: | S¢) for sepsis manage-
ment using prototypical learning, we obtain a set of learned prototypes, each
corresponding to a state s; in the training data D,. Each prototype can be
interpreted by visualizing covariates and selected actions up to and including
stage t (a). The time points corresponding to the state s; of each prototype are
indicated with filled markers. We use the prototypes as a diagnostic tool for
off-policy evaluation by comparing the actions recommended by the behavior
policy p to those recommended by the target policy 7 for each prototypical state
(b). For prototype 9, the Al Clinician (Komorowski et al., 2018) recommends
a more aggressive use of vasopressors compared to physicians.

point, we gain insight into the types of patients the prototypes represent.! For
example, the patient corresponding to prototype 5 has a high heart rate, low
blood pressure, and a high SOFA score—signs of severe sepsis—and receives
aggressive treatment. In contrast, the prototype 7 patient, who has a lower
heart rate, higher blood pressure, and a lower SOFA score, receives low doses
of intravenous (IV) fluids and vasopressors.

At the initial stage of treatment (¢ = 1), the encoded state s; of each patient
in D, is most similar to one of two prototypes: prototype 7, which clearly
corresponds to a relatively healthy patient, and prototype 9, which corresponds
to a patient for whom the model assigns equal probability to each dose of

ISOFA is an abbreviation for sequential organ failure assessment. The SOFA score is
used to evaluate the severity of a patient’s condition in the ICU by measuring the extent of
organ dysfunction.
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Figure 4.2: A PCA plot of the encoded training data for modeling sepsis
management, including the learned prototypes numbered 1-10, is shown in
panel (a). The abbreviations “f” and “v” refer to fluids and vasopressors,
respectively. The learned prototypes allow for stratifying the value estimates
for the target and behavior policies (panel (b)), effectively breaking down the
estimated values by types of situations.

intravenous fluids. As shown in Figure 4.1(b), by comparing the distribution
over treatments according to the behavior policy model p, (A | S) and the
target policy pr(A4 | S) for each of these prototypical states, we gain insight
into how the policies differ at the initial stage of treatment. For example, as
shown in the lower panel, the target policy suggests a more aggressive use of
vasopressors compared to the behavior policy, potentially violating the overlap
assumption required for identifying V™ through off-policy evaluation. A domain
expert may ask: Is this strategy medically sound?

The learned prototypes also provide a natural way of stratifying the value
estimate V™. Following the notation from Section 2.2, the latent prototypes—
which reside in the latent space induced by the encoder e—are denoted by
Z1y.-ey Zm. Let J € {1,...,m} be a random variable representing the assign-
ment of a state s; to prototype j at time ¢. The probability of s; being assigned
to prototype j at time ¢ is defined as

I = 1 8= s0) = i) (4.10)

iy s(Eke(se)”

where s(-, -)—in accordance with the notation in Section 2.2—is the user-defined
similarity metric. The value V™ (j) of prototype j at time ¢ is defined as

Vi (j) = Ex

T
> Ry |y j] . (4.11)

t/'=t

With pr(J; = j§) = Ex[p(J: = j | St = s¢)] denoting the marginal probability of
being assigned to prototype j at time ¢ under the target policy w, we obtain,
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Figure 4.3: For a fixed target policy m and evaluation dataset D,, an IS-
based estimate of V™ depends on the estimated behavior policy probabilities
Du(A¢ | S¢). Panel (a) shows the median of the inverse probability products,
Hi/:ﬂau (ay | s¢)~ 1, across stages t, using different state representations in
rheumatoid arthritis. A logistic regression model is used for all states except
S = Hy, for which a prototypical network (PN) is used. Note the logarithmic
scale on the y-axis: using a state based solely on the previous action results in
rapidly increasing probability products compared to using the full history as
state. Panel (b) illustrates how the ratio of IS weights, computed using the
true behavior policy p and its estimate fi, diverges from 1 as the number of
stages increases, using a multi-layer perceptron (MLP) and various prototypical
networks as behavior policy models in a synthetic experiment.

for any t,
m

VT = Zpﬂ(Jt = V(). (4.12)

Each term j in the sum in Equation (4.12), which can be estimated from
observed data D, using importance sampling, reflects the contribution of
prototype j at time ¢ to the overall value. This effectively stratifies the value
by types of clinical situations.

Figure 4.2(b) shows the prototype-based value contributions for prototypes
1, 7, and 9—each belonging to the same cluster in Figure 4.2(a)—under both
the target and behavior policies at the initial stage. Notably, for the target
policy (AI Clinician), the variance of the estimate for prototype 9 is larger
than that for prototype 7, reflecting the differences in overlap illustrated in
Figure 4.1(b).

4.6 The Choice of History Representation

The prototype-based stratification of the value V™ (see Equation (4.12)) raises
an important question: How does the number of prototypes, m, affect the
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overall value estimate? If m is too small, the model class may become overly
restrictive, making it difficult to learn an accurate behavior policy. Conversely,
if m is too large, the learned model may become difficult to interpret, limiting
its usefulness as a diagnostic tool for off-policy evaluation.

In the case of sepsis management, as shown in Paper III, we find that
a relatively small number of prototypes (e.g., 10) is sufficient for accurately
modeling the behavior policy. At test time, it is typically enough to retain
only the 2-3 largest components of the similarity vector for output regression,
meaning that predictions can be made using only the most similar prototypes
(so-called prediction prototypes). However, since the true behavior policy is
unknown, it remains difficult to precisely quantify the bias introduced into the
importance weights used for off-policy evaluation.

To better understand this effect, we use the simple sepsis simulator provided
by Oberst and Sontag (2019). We estimate the parameters of the underlying
MDP from transitions sampled in each state-action pair and then learn an op-
timal behavior policy using policy iteration (Sutton & Barto, 2018, Chapter 4.3);
see Chapter 5. Next, we collect trajectories s1,a1,71, ..., St, as, ¢ by executing
the behavior policy in the environment for up to ¢ stages. These samples are
then used to estimate the behavior policy using prototypical networks with
10 and 100 prototypes, respectively. In Figure 4.3(b), we compare the ratio
of per-decision importance weights w,’g‘ Jw!' at each stage.? Compared to a
multi-layer perceptron, the prototype-based models introduce a larger bias in
the importance weights, and this bias increases with the trajectory length.

In Paper I, we conduct a similar experiment to assess the bias introduced
in vV~ by different history representations in rheumatoid arthritis therapy
selection. In this setting, the true behavior policy is unknown and considerably
more complex than in the simulator example. However, assuming a fixed
target policy 7 and evaluation dataset D,,, we can still assess the relative bias
introduced by different history representations by comparing the median of the
inverse probability products Hi’:l Pulay | sp)~! across varying numbers of
stages t, as shown in Figure 4.3(a). We observe that using a state based only
on the previous action, S; = A;_1, results in probability products that deviate
significantly from those obtained when using the full history H; as the state.
This underscores the importance of evaluating policy models in the context of
their intended use.

2The target policy is arbitrary in this comparison, as the target policy probabilities cancel
in the ratio w# /wH.



Chapter 5

Refining Clinical
Decision-Making

In the previous two chapters, we discussed various aspects of policy modeling
and evaluation in a clinical context. Until now, we have assumed that the
target policy is given. In this chapter, we shift focus to the process of proposing
alternative treatment strategies based on observational health data. The goal
is to improve clinical decision-making within the constraints imposed by the
available data. Fundamentally, any target policy must remain sufficiently
similar to the observed behavior policy to enable reliable off-policy evaluation.

Because of this constraint, improving clinical decisions requires a clear
understanding of current practice patterns: What treatment sequences are
commonly observed in the data? We begin by investigating this question in
the context of rheumatoid arthritis (RA) management. We then introduce
reinforcement learning (RL) as a method for optimizing treatment strategies
using the Markov decision process (MDP) formulation introduced in Chapter 3.
Next, we focus on the offline setting, where the learning agent cannot interact
with the environment during learning. Finally, we present a pragmatic approach
for generating target policy candidates based on a model of the behavior policy,
allowing for control over the degree of policy overlap to ensure reliable off-policy
evaluation.

5.1 Understanding Observational Health Data

In Paper IV, we study patterns in the sequential treatment of RA. The goal is
to understand the marginal distribution over actions, p(Ay,..., Ar), without
accounting for individual patient variation. There are several motivations for
this analysis. First, summarizing common treatment sequences helps identify
which alternative strategies can feasibly be evaluated in an observational setting.
If observed treatment paths follow a narrow set of patterns, radically different
strategies may not be evaluable without strong assumptions. Second, the
marginal distribution p(Ay,..., Ar) provides an upper bound on the estimate

43
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Figure 5.1: In Paper IV, we analyze patterns in the sequential treatment
of patients with rheumatoid arthritis using data from the CorEvitas RA re-
gistry (Kremer, 2016). A treatment pattern is defined as a unique sequence
of k therapy changes, starting with and including the first-line b/tsDMARD
therapy (baseline). Understanding these patterns is important for evaluating
the potential of observational data to inform alternative treatment strategies.
Panel (a) shows the distribution of b/tsDMARD therapies at baseline. While
TNF inhibitors are the most common, JAK inhibitors have become increasingly
prevalent in recent years. Panel (b) shows how the number of patients varies
with sequence length k. As k increases, both the total number of patients and
the number of patients per treatment pattern decrease.

of variation in clinical practice. Once patient-specific factors are taken into
account, this variation decreases, and fewer distinct treatment patterns are
observed within each subgroup. Third, unlike behavior policy modeling (as
discussed in Chapter 3), analyzing treatment sequences requires no modeling
assumptions and can be based purely on counts from the data.

The treatment of RA typically begins with a conventional synthetic disease-
modifying anti-rheumatic drug (csDMARD) (Smolen et al., 2020). When
initial therapy proves ineffective and poor prognostic factors—such as high
disease activity—are present, clinical guidelines recommend adding a biologic
DMARD (bDMARD) or a targeted synthetic DMARD (tsDMARD), thereby
initiating the first line of b/tsDMARD treatment. Among these options, Tumor
necrosis factor (TNF) inhibitors—a subgroup of bDMARDs—are the most
frequently prescribed. Because clinical guidance is less clear on how to proceed
when patients do not respond to the initial TNF therapy, many studies have
examined the choice of second-line b/tsDMARD (Keystone et al., 2009; Salliot
et al., 2011). Other research has investigated transitions between therapy
lines (Fletcher et al., 2022; Zhao et al., 2022) or traced pathways to specific
drugs (Solomon et al., 2021), but few studies provide a comprehensive overview
of coherent treatment sequences.

Our analysis is based on data from the CorEvitas RA registry (Smolen
et al., 2020), an ongoing longitudinal clinical registry in the United States,
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covering the period from January 2012 to December 2021. We identify a cohort
of 6,015 b/tsDMARD-naive patients who initiated their first b/tsDMARD
therapy during this period. The distribution of first-line b/tsDMARD therapies
is shown in Figure 5.1(a). We focus on drug classes rather than individual
medications, with combination therapies defined as a b/tsDMARD administered
alongside one or more csDMARDs.! As expected, therapies involving TNF
inhibitors are most common, although a shift from TNF inhibitors to Janus
kinase (JAK) inhibitors (the main class of tsDMARDSs) is observed over the
study period.

We define a treatment pattern as a unique sequence of k therapy changes
starting from and including the first-line b/tsDMARD therapy, which we
consider the baseline. Due to censoring, the number of observed therapy
changes varies across patients in the cohort. As shown in Figure 5.1(b), just
over half of the patients experience one post-baseline therapy change; fewer
than one-sixth of the patients undergo five or more therapy changes after
baseline. For comparison, we also show how the number of patterns grows
with sequence length. For longer sequences of therapy changes, the number
of patterns approaches the number of patients, indicating that most patients
follow a distinct treatment sequence.

In Figure 5.2, we summarize the most common treatment patterns of length
k = 3. In total, 2,615 patients underwent at least three therapy changes. A
frequent theme among these patterns is therapy cycling, where patients return
to a drug class previously used. For example, 423 patients resumed a TNF
inhibitor combination therapy after a period on a csDMARD-only regimen.
Similarly, 85 patients returned to TNF inhibitor monotherapy after a period
without any DMARD treatment. Among patients who switched to a new
b/tsDMARD as their third-line therapy, combination therapies involving JAK
inhibitors and abatacept—a bDMARD-—were the most common.

From the perspective of proposing and evaluating alternative treatment
strategies based on these data, the diversity in treatment selection presents both
opportunities and challenges. On the one hand, variation in clinical practice
allows for the evaluation of strategies that deviate from standard care. On
the other hand, statistically robust evaluation of such strategies requires large
datasets. As a result, in Section 5.4, we propose a pragmatic approach to derive
target policy candidates from a model of the behavior policy, allowing control
over the degree of overlap between target and behavior policies. We compare
this approach to policies learned using reinforcement learning techniques, which
we introduce in the following sections.

5.2 Reinforcement Learning
Reinforcement learning is a machine learning paradigm for solving sequential

decision-making problems. An RL problem is typically formalized as an MDP
(S, A, R,p) (see Section 3.1). The goal of RL is to learn an optimal policy 7*

1See the paper for the full list of included therapies.
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Figure 5.2: The most common treatment patterns of length tree in a cohort of
6,015 patients extracted from the CorEvitas RA registry. A treatment pattern
is defined as a unique sequence of therapy changes starting from and including
the first-line b/tsDMARD therapy, which was defined as the baseline. In total,
2,615 patients underwent at least two therapy changes after baseline. Only
patterns observed in at least 20 patients are shown. The length of each segment
reflects the average duration of that therapy among patients in the cohort.

that maximizes the expected return:

7" =argmax V", (5.1)

™

where V™ denotes the value of policy 7, as defined in Equation (3.3).

RL algorithms can broadly be categorized into model-based and model-free
methods. Model-based RL assumes that the dynamics of the environment,
p(St41, Rt | St, At), are either known or can be learned. In contrast, model-free
RL makes no such assumptions about the dynamics. Model-free RL algorithms
are further divided into value-based and policy-based approaches. On the
one hand, value-based methods focus on learning action values by estimating
the action-value function Q(s,a). On the other hand, policy-based methods
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directly learn a parameterized policy without necessarily relying on any value
estimates.

Providing a comprehensive overview of reinforcement learning algorithms is
beyond the scope of this thesis. Instead, we focus on two algorithms that are
used in Paper III and Paper V: policy iteration and Q-learning.

Policy Iteration

When the dynamics p(S¢i1, Re | St, A+) of an MDP with finite state and
action spaces are known, it is possible to use dynamic programming (DP) to
compute an optimal policy 7*. DP relies on the Bellman equation for the
state-value function V7 (s) under a deterministic policy 7 (Sutton & Barto,
2018, Chapter 3.5):

VT(s) =Y _p(s',r | s,7(s) [r+ V()] (5.2)

Because DP assumes knowledge of the dynamics, it is considered a model-based
reinforcement learning approach.

A classic DP algorithm is policy iteration, which alternates between evalu-
ating a given policy and improving it. The algorithm begins with an arbitrary
initial policy 7, for example w(s) = a for all s € S, and arbitrary initial values,
such as V™ (s) = 0 for all s € S. In each iteration, the algorithm first performs
policy evaluation by updating V™ (s) for all s € S according to Equation (5.2)
until convergence. Then, it performs policy improvement by updating the
policy as follows:

7(s) = arg;naXZp(s’, r|s,a)r+ V(s (5.3)

s'r

The policy improvement step yields a greedy policy, meaning a policy that
always selects the action with the highest estimated value. According to the
policy improvement theorem, the new policy is guaranteed to perform at least
as well as the previous one (Sutton & Barto, 2018, Chapter 4.2). As a result,
repeated application of policy evaluation and improvement ensures that policy
iteration converges to an optimal policy 7*.

As discussed in previous chapters, the dynamics of the environment are
typically unknown in clinical contexts. However, if the state and action spaces
are finite and a model p(s¢41,7+ | ¢, ar) is available, it may still be possible
to apply policy iteration in such settings. For example, Komorowski et al.
(2018) constructed a finite state space by clustering continuous states and
assigning each of them to its nearest cluster centroid; the set of centroids then
defined the discrete states. Given observed transitions (s¢,a,r¢, S¢41), one
can estimate the transition probabilities p(s’ | s,a) and the expected reward
7(s,a,s"), where r(s,a,s’) = E[R; | S; = s,A+ = a,St41 = §'], using the
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following formulas (Moerland et al., 2023):

!/
1
p(sl | sva) = M and 72(8,0,,8/) = — Z Tiy

7 7
Es’ n(s,a,s’) n(s, a, ') i:(si=s,a;=a,s|=s’)

(5.4)
where n(s,a,s’) denotes the number of times the transition from state s to
state s’ occurred after taking action a.

Q-Learning

Q-learning is arguably the most widely used model-free RL algorithm in
practice. As the name suggests, Q-learning estimates the action-value function,
or Q-function, Q(s,a). Assuming a finite state space, the classical Q-learning
algorithm (Watkins & Dayan, 1992) iteratively updates the initial action-
values—which may be chosen arbitrarily—based on observations (s, a;, ¢, St4+1)
according to:

Q(s,a) < Q(s,a) + o |r+ 'VH};}XQ(SI7 a/) - Q(s, a)} ) (5.5)

where a is a step size parameter and v € [0,1] is a discount factor that
determines the relative importance of future versus immediate rewards. A
higher discount factor places greater emphasis on long-term rewards, while a
lower value prioritizes short-term gains.

Classical Q-learning is an online algorithm, meaning it assumes access to
the environment during learning. Starting from an initial state s; ~ p(S1),
the action-values are incrementally updated as the agent interacts with the
environment. For each visited state s;, the action a; is chosen according to
a policy derived from the current action-values. A common choice is the
epsilon-greedy policy: with probability 1 — ¢, the agent selects the action
arg max, Q(s:, a), and with probability €, it selects an action uniformly at
random.

In practice, the state space may be infinite or too large for a tabular repres-
entation of the Q-function. In such cases, the Q-function can be approximated
using a parameterized function, such as a neural network with parameters
0. Let Qy(s,a) denote this parameterized Q-function. The parameters 6 can
be updated via gradient descent to minimize the squared error between the
current estimate Qg(s,a) and the target r + vy max, Qg(s’,a’):

0+ 60—aVy (r +ymax Qg (s, a’) — Qo(s, a))2 . (5.6)

Intuitively, this update step encourages the Q-function to satisfy the Bellman
equation for the optimal Q-function Q*:

Q*(s,a) =E {Rt +ymax Q*(Ssy1,a’) | Sp =5, A = a} . (5.7)

There are many variants of the original Q-learning algorithm. For example,
the fitted Q-learning algorithm (Ernst et al., 2005) updates parameters based
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on a batch of transitions rather than a single one. Modern approaches often rely
on a replay buffer (L. Lin, 1992), alternating between adding new transitions to
the buffer and updating the parameters using a sampled batch. This approach
is, for example, used in the deep Q-network (DQN) algorithm (Mnih et al.,
2013). It is also common to use a lagged version of the parameters, denoted by
0’ to compute the targets (Mnih et al., 2013).

5.3 Offline Reinforcement Learning

In healthcare, it is typically unrealistic to assume that an agent can interact
with the environment during learning. Offline reinforcement learning refers
to the setting in which the agent must learn solely from a static dataset of
sgi) (@) (&) ()

n
transitions, D = {( PO PR +1)} . This setting is generally more
i=1

appropriate in clinical contexts than the classic online setting. In practice, D
can be derived from a dataset of trajectories D,, collected under a behavior
policy .

Fitted Q-learning algorithms such as DQN can be adapted to the offline
setting by pre-populating the replay buffer with transitions from D, effectively
solving the following optimization problem:

2
argminEs 4 ¢ D [(r +ymax Qg (s',a") — Qg(s,a)) ] : (5.8)
0 a

Jpan(0)

However, as discussed by Levine et al. (2020), naively applying Q-learning in
this way may fail due to distributional shift between the state-action distri-
bution observed during training and that encountered during deployment. In
particular, actions that are rarely observed in the dataset often have overestim-
ated values (Kumar et al., 2020). To address this issue, a common approach
is to constrain the learned policy 7 to remain close to the behavior policy
u (Fujimoto et al., 2019; Kumar et al., 2019; Siegel et al., 2020), or to regu-
larize the Q-network in order to avoid overestimation for out-of-distribution
actions (Kumar et al., 2020). We discuss two such methods in the remainder
of this section.

Batch Constrained Q-Learning

A key challenge in applying Q-learning to the fully offline setting is that the
target value, r + ymaxy, Q7 (s',a’), is computed using a target policy that
is implicitly defined by the Q-function: m(s) = argmax, Q™ (s,a’). If the
resulting action distribution p,(4 =a | S = s) = d(a = argmax, Q™ (s,a’)),
where § denotes the Kronecker delta, differs substantially from the behavior
policy p,(A | S) observed in the training data, the target value may become
highly unreliable (Levine et al., 2020). Because the target policy is optimized
to maximize action-values, it can become biased toward out-of-distribution
actions whose values are erroneously overestimated (Kumar et al., 2020). In
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the online setting, such overestimations are naturally corrected as the agent
receives feedback from actual transitions. However, in the offline setting, this
correction is not possible.

Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019) addresses this
problem by restricting the distribution over actions used to compute the target
values, ensuring it stays close to the behavior policy distribution p, (A | S)
during training. The learning objective can written as

argminE, 4 s/ ~p
9 ’ a’'€Ay

(r+7 max_ Qe'(s a’) - Qe(sﬂ))Q]’ (5.9)

where Ay (s") denotes a set of actions in state s’ that are likely under the
behavior policy. This set is generated using a conditional variational autoen-
coder (Kingma & Welling, 2013) G with parameters ¢, which learns to model
the behavior policy’s action distribution: Ag(s’') = {a; ~ Gy(s')}. After
training, a policy can then be constructed by sampling candidate actions from
Gy(s') and selecting the one with the highest Q-value under Q.

Conservative Q-Learning

Conservative Q-Learning (CQL), proposed by Kumar et al. (2020), addresses
the issue of overestimated action-values by learning a conservative estimate of
the Q-function—that is, one that serves as a lower bound on the true values. In
practice, this is done by adding a regularization term to the standard Q-learning
objective:

argemin Jpon(0) + AE4p |log Z exp(Qo(s,a)) — Eanp, (- 19)[Qo(s,a)] | ,

(5.10)
where A is a regularization parameter, and p,(- | s) denotes the empirical
distribution over actions taken in state s under the behavior policy. This
regularization penalizes Q-functions that assign high values to actions not seen
in the data, thereby reducing overestimation for out-of-distribution actions.

5.4 Policy Refinement via Interpretable Beha-
vior Modeling

While applying offline RL in clinical settings holds great promise, it also presents
several well-known challenges (Jayaraman et al., 2024). One major difficulty is
performing reliable off-policy evaluation when there are substantial differences
between the target and behavior policies. This issue is especially pronounced
with importance sampling-based techniques, but it also affects other methods.
For instance, the direct methods described in Section 4.3 rely on extrapolation
to account for the mismatch between policies. Although constraining the
policy learning process can help mitigate this issue (see Section 5.3), another
key challenge is interpretability: policies that are difficult to understand may
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struggle to gain trust within the medical community (Lipton, 2017; Pace et al.,
2022).

Motivated by a growing interest in transparent decision-making, inter-
pretable reinforcement learning has emerged as an active area of research. For
instance, decision trees can be used to parameterize either the action-value func-
tion (Ernst et al., 2005) or the policy directly (Likmeta et al., 2020; Silva et al.,
2020). Differentiable decision trees enable gradient-based optimization (Pace
et al., 2022; Silva et al., 2020). Another approach involves reformulating the
MDP into an equivalent MDP whose optimal solution corresponds to a decision
tree policy in the original problem formulation (Topin et al., 2021). Beyond
decision trees, interpretable RL methods have also employed, for example,
first-order logic (Delfosse et al., 2023; Z. Jiang & Luo, 2019) and program
synthesis (Qiu & Zhu, 2022; Verma et al., 2019).

Most existing approaches to interpretable RL are not designed for the
offline setting. Combining ideas from offline and interpretable RL to learn
robust, transparent policies solely from batch data is a promising direction
for future work. As a pragmatic starting point, however, we propose using
behavior policy modeling to derive interpretable and evaluable target policies
for clinical decision-making. This approach rests on two key principles. First, by
constructing the target policy based on the most frequently chosen treatments
in each state, as estimated by the behavior policy model, we can ensure sufficient
overlap between the target and behavior policies, making the target policy
amenable to reliable off-policy evaluation. Second, by using an interpretable
model for the behavior policy, we preserve transparency in the derived target
policy, facilitating trust and understanding among practitioners.

In Paper V, we implement this idea using the tree-based meta-estimator
introduced in Section 3.4 as the behavior policy model. Once trained, decision
trees naturally partition the state space with respect to treatment, making
them well-suited for identifying common treatment patterns across groups of
patients (Keramati et al., 2022). In contrast, while sparse generalized linear
models are also interpretable, they do not induce such a natural partitioning.
Assuming that the state captures all relevant confounding variables, variation
in treatment across the leaves of a trained decision tree reflects clinical practice
variation that is not due to confounding. Importantly, matching subjects on
the propensity score is sufficient to adjust for confounding when estimating
causal effects (Rosenbaum & Rubin, 1983).

We construct target policy candidates based on the set of the k actions with
the highest probability in state s; under the behavior policy model i, denoted
as Top-k(s; fi). Formally, we define the “most common” (MC) target policy as:

e =1 8= 018070 o e
(5.11)
where the normalization constant Zj = ZaETOp—k:(st;ﬂ) pula| Sy = s¢) ensures
that p, defines a valid probability distribution. By adjusting the parameter k,
we can control the degree of overlap between the target and behavior policies.
When k = 1, the resulting policy is deterministic, recommending for each state
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s the single most commonly chosen treatment according to the behavior policy
model. For 1 < k < K, the policy becomes stochastic, emphasizing the k£ most
frequently used treatments while ignoring the remaining K — k.

We can extend this idea to account for observed outcomes among patients
in each leaf of the trained decision tree. Let O(s,a; /i) denote the average
observed outcome for patients in state s who received treatment a under the
behavior policy model ji. Then, in state s;, an outcome-guided target policy
(MC+0) selects the action

argmax  O(s, a; fi), (5.12)
aETOp—k(st;/l)

that is, the treatment with the highest observed outcome among the k most
common treatments in that state. While this approach may yield policies with
higher estimated value than those based solely on treatment frequency, it is
sensitive to unmeasured confounders. If such confounders are present within
the leaves of a fully grown tree, the estimated value of an outcome-guided
policy may be biased and potentially overstated.

We evaluate our approach using the case studies of sepsis management
and treatment selection in RA, as introduced in Chapter 3. For sepsis, we
adopt a standard reward formulation used in prior work (Komorowski et al.,
2018; Luo et al., 2024), assigning a positive reward for patient survival and
a penalty for death. In the RA case, we define the reward function as R; =
10 — I;1 1, where I is the clinical disease activity index (CDAI).2 In Table 5.1,
we report the estimated value using weighted importance sampling (Precup
et al., 2000) of policies derived using our framework, alongside policies learned
using several RL methods: standard Q-learning applied to a finite MDP
with estimated parameters (QL), DQN, BCQ, and CQL; see Section 5.3. We
compare these policies to a random policy, which selects a treatment uniformly
at random for each state, as well as the behavior policy followed by clinicians.
In addition to the estimated policy value, we report the effective sample size
(see Equation (4.9)) to indicate the reliability of the evaluation.

In both case studies, we find that the target policy based on the most
common treatment (k = 1) is, on average, estimated to have a higher value
than the behavior policy. This difference is particularly pronounced in the
RA case. While RIL-based policies show promise—especially for sepsis—their
estimated values tend to exhibit high variance, resulting in small effective
sample sizes. In contrast, policies derived under our framework offer direct
control over variance through the parameter k. For the MC policies, increasing k
reduces variance; interestingly, in the RA case, the variance remains relatively
constant across value estimates. For the MC+0 policies, the opposite holds:
reducing k leads to lower variance. While the outcome-guided policies appear
promising in terms of estimated value, the high variance suggests that these
estimates should be interpreted with caution.

In Figure 5.3, we take a closer look at the RA results for the MC and MC+0
policies across different values of k. By normalizing the estimated target policy

2A CDALI of 10 marks the threshold between low and moderate-to-high disease activity.
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Table 5.1: The average value estimate 1% using weighted importance sampling
(WIS) and effective sample size (ESS) for different target policies in RA and
sepsis. The value of the behavior policy is estimated as the average reward in
the data. The confidence intervals represent the interquartile range of each
distribution.

RA Sepsis
Target policy s (1) ESS (1) Vs (1) ESS (1)
MC (k=1) 0.7 (0.4, 0.8) 406.1 (388.1, 415.6)  74.1 (66.8, 82.9) 64.1 (46.1, 80.8)
MC (k=2) 0.0 (0.2, 0.2) 566.1 (553.3, 575.0)  74.6 (72.0, 79.4) 277.7 (250.6, 296.0)
MC (k=3) —0.5 (-0.6, —0.2)  639.2 (624.6, 650.3)  75.1 (73.7, 76.6) 628.9 (604.9, 647.7)
MC+0 (k=1) 0.7 (0.4, 0.8) 406.1 (388.1, 415.6)  74.1 (66.8, 82.9) 64.1 (46.1, 80.8)
MC+0 (kK =2) 1.2 (0.1, 2.7) 19.2 (7.4, 31.7) 80.7 (75.7, 93.9) 15.5 (7.8, 24.7)
MC+0 (k= 3) 3.2 (0.8, 4.1) 17.1 (9.0, 25.7) 85.3 (68.5, 95.5) 6.9 (3.0, 14.2)
RL (QL) 0.0 (-4.2, 3.7) 3.0 (2.1, 4.3) 86.0 (80.3, 92.3) 14.0 (6.8, 24.5)
RL (DQN) 0.0 (—4.3, 3.0) 5.3 (2.4, 9.5) 89.3 (70.9, 98.9) 1.7 (1.1, 8.0)
RL (BCQ) —1.8 (—4.6, 0.4) 7.3 (4.4, 10.5) 83.0 (76.3, 88.2) 19.3 (12.7, 28.9)
RL (CQL) —0.9 (-5.3, 1.2) 5.7 (2.8, 11.4) 67.3 (34.4, 85.2) 6.5 (2.7, 11.5)
Random 1.7 (-4.8, 5.1) 1.3 (1.0, 2.0) 97.9 (59.7, 99.6) 1.6 (1.1, 2.3)

Behavior policy —1.1 (-1.2, —1.0) 779.0 (770.3, 788.8)  71.6 (70.7, 72.2)  2297.0 (2297.0, 2297.0)
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(a) Average change in CDAL (b) Effective sample size.

Figure 5.3: Off-policy evaluation using weighted importance sampling of target
policies derived from an interpretable model of the behavior policy in the
case of RA. The target policies are based on the most commonly selected
treatments under the model (MC), optionally incorporating observed outcomes
(MC+0). Panel (a) shows the average change in CDAI that could be achieved
by replacing the behavior policy with each target policy. As shown in panel
(b), high variance in the estimates is typically associated with smaller effective
sample sizes.

values relative to the value of the behavior policy, see Figure 5.3(a), we interpret
the results as the average change in CDAI per patient and stage if the target
policies were used instead of the behavior policy. Although the estimates for the
outcome-guided policies (MC+0) exhibit high variance—consistent with the small
effective sample sizes shown in Figure 5.3(b)—the MC policies with k£ = {1, 2,3}



54 CHAPTER 5. REFINING CLINICAL DECISION-MAKING

consistently suggest a potential reduction in CDAI through standardization of
the most commonly used therapies. Given that practice variability is a well-
documented issue in RA management (DeMaria et al., 2014), standardizing
the most frequently used treatment patterns may improve care quality and
reduce treatment costs.



Chapter 6

Concluding Remarks

In this thesis, we studied three interconnected areas of clinical decision-making:
policy modeling, off-policy evaluation, and the development of alternative
treatment strategies (policy refinement). Across all these tasks, we emphasized
interpretability—supporting sanity checks, facilitating clinical validation, and
enhancing end-user trust in the models. For policy modeling, we investigated
different representations of patient history to enable accurate and interpretable
descriptions of the observed behavior policy. We also proposed methods for
leveraging structure in the data-generating process to further improve model
interpretability. In the context of off-policy evaluation, we introduced the use
of prototype learning to identify representative cases in the observed data,
enabling interpretable comparisons between the target and behavior policies and
extending evaluation beyond value estimation. Finally, we proposed a pragmatic
approach to deriving alternative treatment strategies that can be reliably
evaluated using an interpretable model of the behavior policy—effectively
connecting the three focus areas.

Each of the included works has its own limitations, which are discussed
in the appended papers (see Part II). However, there are a few overarching
limitations worth highlighting. First, this thesis primarily focuses on off-policy
evaluation based on importance sampling (IS). While IS-based techniques are
widely used in practice, alternative methods—such as doubly robust estimators
and model-based approaches—can sometimes provide lower variance and more
reliable value estimates. Second, the datasets used in this thesis are mainly
tabular and relatively small in size. In contrast, much of the data in healthcare is
unstructured (Kong, 2019), highlighting the need for models capable of handling
multi-modal data. Third, this thesis assumes the absence of unmeasured
confounders. In practice, however, we are limited to observed variables, and
unmeasured confounding may exist in both the rheumatoid arthritis and sepsis
case studies.

As a direction for future work, it remains an open question how the bias
introduced by restricting behavior policy models to use prototypes propagates
to the importance weights and the estimated policy values. In the meantime, we
recommend a pragmatic approach to using prototypes in off-policy evaluation:

95
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use them primarily for diagnostic and interpretability purposes, and, if needed,
fit a more accurate behavior policy model to compute importance weights.
Another promising avenue is the integration of interpretable reinforcement
learning (RL) with offline RL, which could enable the development of optimal
policies that are both robust to distributional shifts and interpretable to end
users. Alternatively, it would be interesting to investigate how the set of
(interpretable) policies that can be reliably evaluated might itself be learned.
Finally, our results on different representations of patient history suggest that
stage-dependent representations offer a compelling direction for future research.

The potential impact of this work lies in applying machine learning to
improve and personalize clinical decision-making based on observational data,
particularly for chronic conditions such as rheumatoid arthritis. From a prac-
tical standpoint, we believe that the emphasis on interpretability can enhance
the reliability of new policies and their estimated values, thereby increasing
the potential utility of the policies in clinical practice. We also hope that
the focus on interpretable models will help bridge the gap between computer
scientists and medical practitioners, as such models facilitate dialogue and build
trust among end users. Finally, we believe that our framework of missingness-
avoiding machine learning offers a new perspective on how missing data should
be handled in clinical applications.

During the time this research was conducted, the field of machine learning
and artificial intelligence (AI) underwent dramatic changes. Most notably, the
rise of foundational models—especially large language models—has opened
up new possibilities, making AI a central topic of public and scientific discus-
sion. In the healthcare domain, a medical foundational model could provide
treatment recommendations (Moor et al., 2023), effectively serving as a policy
for personalized decision-making. However, while these models are capable
of explaining their reasoning (Huang & Chang, 2022; Wei et al., 2022), their
internal workings remain complex and intractable, underscoring the need to
validate their behavior against current medical practice.
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