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Abstract

This thesis addresses the challenge of making interpretable predictions when
feature values may be missing at deployment (at “test time”). Although im-
putation is a common strategy for handling missing values, it can obscure
the relationship between inputs and predictions, thereby undermining inter-
pretability and trust— especially in safety-critical domains such as healthcare.
Alternatively, incorporating missingness indicators may introduce complex-
ity and further reduce model interpretability. Tree-based models can handle
missing values natively but are limited to specific model classes, potentially
restricting flexibility and generalizability. To overcome these limitations, this
thesis develops methods that (i) retain or improve predictive performance, (ii)
handle missing values effectively at test time, and (iii) produce models that
are simple and interpretable.

We first leverage missingness patterns by introducing Sharing Pattern
Submodels, where a separate interpretable submodel is trained for each unique
missingness pattern, with parameters shared across submodels via sparsity to
enhance generalization. Next, we investigate training models that rarely require
the values of missing (or imputed) features at test time. We introduce MINTY, a
linear rule-based model that avoids imputation by allowing logical substitutions
for missing features. We then generalize this idea through a missingness-
avoiding framework, which extends to multiple model classes, including decision
trees, sparse linear models, and ensembles, by incorporating classifier-specific
regularization terms into their learning objectives to discourage reliance on
missing values. To support the development of clinically valuable models, we
conducted a clinician survey revealing that medical professionals favor models
that natively handle missingness. Finally, we explore interpretable patient
history representations for modeling policies in sequential clinical decision-
making, shifting the focus from missingness to temporal modeling. Collectively,
this work establishes methods for interpretable machine learning with test-time
missingness, supported by both technical innovations and human-centered
insights, to enable transparent and practical decision support.
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Chapter 1

Introduction

Most machine learning methods assume that all relevant input features will be

available at deployment (at “test time”) (Little & Rubin, |2019)). However, in
practice, missing values are common: they arise whenever a required observation
is missing, underscoring the imperfect and evolving nature of data collection
in real-world settings (Emmanuel et al., |2021)). This issue frequently arises
in tabular data across scientific domains (Chourib, 2025). In healthcare,
missing values in data sets may result from incomplete patient records, missed
appointments, or delays in diagnostic tests (Marston et al.,|[2010; Wells et al.,
2013); in industrial settings, it can be due to sensor failures, communication
errors, or data corruption (Dasu & Johnson, [2003; Ehrlinger et al., [2018]).
These missing values are not rare anomalies; they are persistent, arising from
diverse and domain-specific causes (Schafer & Graham, [2002). However, in
real-world settings, missing values often arise not only during training but also
at test time, posing challenges for predictive performance and reliability. Users
must either assign values to missing inputs or rely on the model’s internal
handling, both of which can affect its behavior and interpretability. This is
particularly relevant in settings where humans provide input and interpret the
output, such as clinical decision support systems or risk scoring tools.

To illustrate this, consider the example shown in Figure A 67-year-old
woman arrives at the emergency department with weakness and fatigue. A
machine learning model is used to estimate her risk of developing sepsis within
six hours. At triage, four vital signs are available, but serum lactate, a key
biomarker for sepsis, is missing because it has not yet been ordered, which is
common early in care. Faced with test-time missingness, the clinician must
decide how to handle the uncertainty: Should they impute, meaning fill in a
plausible value for the missing entry, leave it blank, or rely on the model’s
internal handling of missingness? This scenario exemplifies the real-world
complexity of making interpretable predictions when key values are missing at
test time.

A common strategy is to impute missing values before prediction, thereby
restoring the input to a fully observed form (Rubin, |1976). Simple techniques
like zero, mean, or median imputation are computationally efficient but often
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Figure 1.1: Early sepsis prediction with missing serum lactate (SL = NA):
NA indicates that the value is not available at test time. (1) Impute the
missing SL value using a population average (e.g., 2.2 mmol/L), or (2) follow a
default direction learned during training, such as the majority decision path in
a tree-based model (e.g., follow the right side of the tree without replacing the
missing lactate value). In practice, clinicians may rely on these model outputs
to guide urgent interventions. However, imputing with an average can obscure
important individual variation, as it is chosen without consideration of the
outcome, e.g., a patient with truly elevated lactate may be misclassified as low
risk. Default paths, despite being informed by the smallest prediction error on
the training data, still bypass personalized information and may lead clinicians
to overlook patients who deviate from the norm.

fail to reflect the true data distribution (Little & Rubin, [2019). More advanced
methods, such as Multiple Imputation by Chained Equations (MICE) (Van Bu-
uren & Groothuis-Oudshoorn, , iteratively model each variable conditional
on the others, generating multiple completed datasets to capture the uncertainty
of the imputation. These methods may introduce bias and rely on assumptions
such as Missing-at-Random (MAR) (Pedersen et al., Rubin, [1976). In
this example, clinicians might impute a missing serum lactate value using the
population average. However, if lactate is typically measured only when sepsis
is suspected, its absence carries clinical meaning. Since the population used for
imputation may reflect only a specific subset of patients, such as those with
suspected sepsis, the resulting estimate can be misleading. Yet imputation may
be suboptimal when missingness arises at prediction time (Le Morvan, Prost
et al., . Indeed, in such settings, the Bayes-optimal predictor depends
not only on the observed inputs but also on the missingness itself (Le Morvan

et al., [2021)).

Alternatively, one can include missingness indicators in the model (Rubin,
, which are additional binary features denoting whether a value is missing
or observed. For example, if a test like lactate was not ordered, the correspond-
ing indicator would be set to 1 (missing); if ordered, it would be 0 (observed).
These indicators can be used with a wide range of models and help capture
patterns in the missingness structure (Van Ness et al., . However, they



do not provide any information about the actual missing values themselves.

Beyond imputation and indicator-based strategies, a small class of methods
avoids both by handling missing values natively. For example, XGBoost (T.
Chen & Guestrin, |2016) and other tree-based models can learn “default” deci-
sion paths during training, determining how to route instances when a feature
is missing. This allows the model to operate directly on incomplete data. In
the example shown in Figure [I.1] a decision tree trained to predict sepsis risk
could learn to send patients with missing lactate values along the right-side
path. However, native handling of missing values remains limited to a few
specialized models, and the decision paths are often derived from approximate
or ad hoc learning procedures. Although this enables prediction without impu-
tation, heuristics can misrepresent underlying data patterns and introduce bias.
Additionally, because the logic behind these paths is not always transparent, it
can be difficult to interpret or validate the model’s behavior, particularly in
critical applications like healthcare. Overall, it is crucial to design models that
prioritize the information actually observed at test time, rather than relying
heavily on imputation or learned defaults that may obscure uncertainty.

Since the goal of predictive models is often to support actionable decision-
making, it is essential to focus not only on accuracy but also on interpretabil-
ity (Vellido, [2020). By interpretability, we mean the ability to understand
and reason about how a model arrives at its predictions in ways that are
comprehensible to humans (Biran & Cotton, [2017; Kim, Khanna & Koyejo,
2016). For instance, in healthcare, this is essential for enabling domain ex-
perts to assess trust, identify errors, and consider model outputs in clinical
decision-making (Ahmad, Eckert & Teredesai, 2018; Bénard et al., 2021a; Liu,
Kumara & Reich, [2021; Ustun & Rudin, [2019). Current interpretable machine
learning (IML) models, such as logistic regression, decision trees, and rule-based
models (Molnar & Freiesleben, 2024)) struggle to handle missing values at the
point of prediction. Like many other machine learning methods, they typically
rely on imputation strategies or default handling mechanisms learned during
training. For instance, rule-based models, despite being interpretable, face this
challenge: if a rule relies on a missing feature, the model must either ignore
the rule or make assumptions that may not hold, reducing both reliability and
interpretability (as seen in clinical risk scores (Afessa et al., |2005)).

This thesis is guided by two central questions: How can we achieve high
predictive accuracy in the presence of missing values at test time, and how can
we ensure that the resulting models remain simple and interpretable?

This thesis aims to develop methods that (i) retain or improve predictive
performance, (ii) effectively handle missing values at test time, and (iii) yield
models that are simple and interpretable. We pursue this through two comple-
mentary methodological directions. First, we leverage pattern missingness and
enforce parameter sharing through sparsity in pattern coefficient specializations
via regularization. Second, we reduce the reliance on frequently missing inputs
through regularization, allowing the model to make accurate predictions despite
missing values at test time. We complement these contributions by conducting
an expert survey, which shows that clinicians prefer models that handle missing-
ness directly at test time, prioritizing interpretability over complex imputation
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strategies or the use of missingness indicators. Finally, we turn to the challenge
of capturing temporal patterns in patient data and evaluating interpretable
representations of patient histories to support clinical policy learning, beyond
a particular focus on the missing-value setting considered earlier.

The main contributions of the thesis can be summarized as follows:

e Paper A (Stempfle, Panahi & Johansson, 2023)) introduces Sharing Pattern
Submodels (SPSM), a method that leverages the structure of missingness
by learning both global parameters shared across all data and pattern-
specific parameters for groups of samples with the same observed features.
This is achieved through sparsity-inducing regularization, encouraging ef-
ficient parameter sharing while adapting to the missingness pattern. SPSM
handles missing values at test time while maintaining or improving pre-
dictive performance compared to baselines that rely on imputation. This
method enhances interpretability by producing concise model descriptions
and is theoretically proven to lead to consistent estimation.

e Paper B (Stempfle & Johansson, [2024b)) proposes MINTY, a rule-based
learning method that avoids reliance on missing values by leveraging
disjunctions between variables that can replace each other. This results
in a sparse linear rule model that balances interpretability and achieves
comparable predictive performance to baselines that rely on imputation
or missingness indicators. This paper extends the workshop version
presented by Stempfle and Johansson (2024a)).

e Paper C (Stempfle et al.,|[2025) extends the idea from Paper B of reducing
reliance on missing values by introducing a general missingness-avoiding
(MA) machine learning framework that minimizes the need to access
missing (or imputed) features at test time. We develop tailored MA
algorithms for decision trees, tree ensembles, and sparse linear models by
incorporating classifier-specific regularization terms into their learning
objectives. Empirical experiments demonstrate that these models effec-
tively reduce reliance on features with missing values while maintaining
predictive performance compared to their unregularized counterparts
across various datasets.

e Paper D (Stempfle et al., 2024)) surveyed 55 clinicians from 29 French
trauma centers to examine their interaction with interpretable ML models
to predict hemorrhagic shock with missing values. Our findings show
that clinicians prefer models that natively handle missing values over
imputation-based approaches, aligning better with their decision-making
process.

e Finally, we shift the focus from handling missing values to modeling time-
series data by exploring how to efficiently represent patient histories in an
interpretable way when learning clinical policies. Paper E (Matsson et al.,
2025) analyzes learned policies across patient subgroups, critical states,
and treatment stages, showing that interpretable sequence models using
learned representations perform comparably to black-box models, while



models relying solely on hand-crafted representations require minimal
historical context to remain competitive.

During my PhD, I have co-authored the following publications, which are
not included in this thesis: Dansson et al. (2021)), Ivarsson Orrelid et al. (2025)
and Stempfle and Johansson (2024al).

The thesis is structured as follows. Chapter [2 explores learning with missing
values, beginning with an overview of prediction challenges when missingness
occurs not only during but also at test time. We introduce missingness mecha-
nisms and common strategies for handling missing values, highlighting their
limitations. Chapter |3| defines interpretable machine learning in the context
of this thesis and highlights its importance in safety-critical applications. It
presents interpretable-by-design techniques such as sparse linear models, deci-
sion trees, and rule-based methods used in the proposed algorithms. Evaluation
methods for interpretability are briefly discussed. Chapter [4 brings the back-
ground together by outlining three key challenges in supervised prediction
under test-time missingness, showing why current methods fail to provide the
interpretability needed for trust and accountability in high-stakes decision-
making. Chapter [5]summarizes the papers on which this thesis is based, followed
by Chapter [6] which presents conclusions and directions for future research.
The original papers are included in Part [T} reformatted for consistency but
otherwise unchanged.
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Chapter 2

Learning with missing
values

In this section, we introduce the mathematical notation for prediction with miss-
ing values and outline the challenges of handling missingness at test time. We
then present missingness mechanisms and briefly discuss missingness patterns.
Finally, we review common strategies for handling missing values during both
training and testing, highlighting their assumptions and limitations. This back-
ground provides the necessary context for understanding the methodological
choices and contributions of the subsequent papers.

2.1 Prediction with missing values at test time

In supervised learning, the goal is to predict an outcome Y € Y from an input
vector X = (X1,...,Xq) € X CR? where the value of any of the features X;
may be missing, either at training time or at test time.

Missingness is indicated by a binary mask M = (My,..., My)" € {0,1}?
applied to a complete feature vector X*, such that:

X M =0
T A if M =1

as introduced in (Little & Rubin, 2019 Rubin, [1976). To learn a predic-
tor, we are given a training dataset D = {(x;, m;,y;)}",, drawn from a
distribution p, assumed to be the same for both training and test data.
Here, z; = (%i1,...,7iq) € (RU{NA})? is a partially observed feature vec-
tor, m; = (m1,...,miq) € {0,1}% is the corresponding missingness mask (with
m;; = 1 if z;; is observed and m;; = 0 if x;; is missing), and y; € R is the
outcome.
Our objective is to learn a function h that minimizes the expected loss over
the distribution p:
R(h) == Ep~p[L(h(X),Y)], (2.1)

9
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where h : (R U {NA})? x {0,1}¢ — R and L is a suitable loss function (e.g.,
squared loss or logistic loss) (Hastie, Tibshirani & Friedman, [2009)).
The Bayes-optimal predictor minimizes the conditional risk:

h*(x,m) = argminE[L(a,Y) | X =z, M = m], (2.2)
acA

where A is the set of possible predictions (e.g., R for regression or {0,1}
for classification), and a denotes a candidate prediction. For squared loss,
the Bayes-optimal predictor corresponds to the conditional expectation, i.e.,
h*(x,m)=E[Y | X =2, M =m].

In practice, we learn h by minimizing the empirical risk:

n

R() = 1>~ Llh(as,mi). o). (2.3

i=1

The function h in Equation 2.3 may be implemented as a composition of
an imputation step followed by a prediction model, or as a model that directly
incorporates the missingness pattern M. We discuss classical approaches to
learning with missingness in Section [|2.3]

2.2 Missingness mechanisms

We introduce missingness mechanisms, as they guide how to handle missing val-
ues by informing assumptions about the data-generating process and influence
modeling or imputation strategies (Little & Rubin, 2019).

The missingness mechanisms are commonly categorized into three types by
Rubin (1976): missing completely at random (MCAR), where the probability
of missingness is independent of the data; missing at random (MAR), where
the probability that a variable X; is missing depends only on the observed
data; and missing not at random (MNAR), where missingness may depend on
the unobserved value of the variable itself or other unobserved factors. Note
that under MCAR, while missingness is independent of the data, correlations
between missingness indicators (e.g., M; and M;/) can still exist if they stem
from external, data-independent sources.

The mechanisms behind missingness are defined by the relationship between
missing and observed values, which addresses the following: What is causing
the data to be missing?

The notation used in this thesis will be close to Rubin (1976|) and Schafer
(1997), with some exceptions to ensure consistent notation throughout the
thesis. As defined before, the observations of X (both observed and missing) can
be partitioned into X°, indicating the observed features, and X™, representing
the missing feature part, such that X = (X°, X™). As defined in the previous
section, M is the missingness mask and is assumed to be known.

The missingness mechanisms express the probability that a set of values is
missing given the values taken by the observed and missing observations. It
can be denoted by: P(M | X°, X™).



2.2. MISSINGNESS MECHANISMS 11

We define MCAR as the case where the probability of missingness is
independent of both observed and unobserved measurements:

P(M | X°,X™) = P(M).

This implies that the missingness is unrelated to the data values, meaning any
pattern of missing data arises purely by chance. While the missingness does not
depend on the data, dependencies between missingness indicators themselves
(e.g., M; and M) are still possible—for instance, due to a lab device failure
affecting several variables simultaneously. A typical example of MCAR is a
clinical trial where patients are randomly excluded due to scheduling conflicts,
unrelated to any of their medical characteristics. Another example is random
dropout in survey data due to unrelated technical issues (van Buuren, [2018).

MAR is a broader class than MCAR, allowing the probability of missingness
to depend on observed variables, but not on the missing values themselves
or other unobserved factors P(M | X°, X™) = P(M) | X°. For example,
consider a university that surveys its alumni to gather information on their
current employment and income levels. Suppose alumni working in a particular
sector are less likely to disclose their income, but they do report their sector of
employment. In this case, the missingness pattern is related to an observed
variable (sector), making it MAR rather than MCAR (van Buuren, [2018).
MAR is more general and more realistic than MCAR. Modern missing value
methods generally start from the MAR assumption.

If neither MCAR nor MAR holds, we speak of missing not at random.
MNAR means that the probability of missing varies for reasons that are
unknown to us. The reason why a variable is missing still depends on the
unobserved variables themselves. For example, in clinical settings, patients with
more severe depression symptoms may be less likely to attend follow-up visits
due to fatigue or lack of motivation. As a result, depression severity scores may
be missing precisely when symptoms are worst, leading to a biased outcome
distribution that underrepresents the most affected individuals. Another exam-
ple of MNAR arises in public opinion research, where individuals with weaker
opinions may be less likely to respond, making their views underrepresented.
MNAR is the most difficult case to handle.

Identifying the underlying missingness mechanism is crucial because each
requires different handling strategies. Although simple imputation may suffice
under MCAR or MAR, it can lead to significant bias under MNAR (Sperrin
et al., |2020). However, the true mechanism is rarely known and cannot be
directly verified from observed data alone. MCAR and MAR can sometimes be
distinguished using statistical tools such as Little’s MCAR test (Little, [1988)),
which assesses whether missingness is independent of the data. In practice,
missingness is often suspected to be MNAR. Recent work seeks to better under-
stand these mechanisms, identify their causes, and mitigate the risks introduced
by imputation algorithms using high-accuracy glass-box explainable booster
machines (EBMs) (Z. Chen et al., 2023)). Their focus lies on helping users
detect, understand, and mitigate missing value issues, rather than automatically
fixing datasets. However, identifying the type of missingness mechanism is
notoriously difficult, as it is typically not testable from observed data alone.



12 CHAPTER 2. LEARNING WITH MISSING VALUES

Several works have investigated this challenge by proposing statistical tests for
specific assumptions—especially MCAR, (Little, [1988)); developing modeling
approaches to account for or infer MNAR structure (Mohan, Pearl & Tian,
2013); and exploring the fundamental limits of identifiability (Mealli & Rubin,
2015; Mohan & Pearl, 2021)).

Remark on missingness patterns. Missingness patterns describe the struc-
ture of observed and missing entries in the previously defined missingness mask
M (Little, [1993). It is important to distinguish between missingness patterns
and missingness mechanisms: mechanisms explain why values are missing,
but not where missing values occur, such as empty cells or invalid entries.
Missingness patterns arise in data-generating processes with structural reasons
for why certain variables are measured. As a result, samples in the datasets
can be grouped by recurring patterns of observed and missing variables (Little,
1993)). For instance, samples may contain only a subset of observed variables
when different measurements are systematically taken using different sensors
or instruments, such as in hospital settings.

Visualization plays a central role in exploring missingness patterns, especially
in large datasets where structure is difficult to detect (Josse & Husson, [2012)).
Case-variable matrix plots are commonly used to display one column per
variable, highlighting where values are missing. Tools like visdat and the
scalable visna plot in R enable such visualizations (Unwin, |2020)). These
methods group rows by recurring missingness patterns, helping structure emerge
even in high-dimensional settings such as genomics or EHRs. Additional R tools,
such as the missMDA package (Josse & Husson, |2016]), combine visualization
with imputation techniques for exploratory multivariate analysis. The CRAN
Task View on missing values (Josse et al., [2025) provides an overview of
available tools for visualization, modeling, and imputation. Together, these
visual summaries help assess whether missingness is random or concentrated
in specific subsets (Molenberghs et al., |[2014)), guiding downstream modeling
decisions.

Some prediction methods explicitly exploit structured missingness patterns
to improve learning. For example, Mercaldo and Blume (2020) fit separate
models per missingness pattern, though this may lead to inefficient data
use. Building on this, the algorithm in Paper A introduces sparsity-based
parameter sharing across pattern-specific models. It leverages missingness
patterns by allowing each to use a sparse subset of parameters drawn from a
shared model, capturing both common structure and pattern-specific effects.
Pattern mixture models (Little, [1993) also explicitly model the missingness
pattern M by decomposing the joint distribution P (Y, X, M), allowing Y to
depend on M; however, they often require strong assumptions for identifiability.
Similarly, Zaffran et al. (2023]) propose a latent variable model that disentangles
missingness-related artifacts from signal, explicitly incorporating structured
missingness into representation learning.
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Figure 2.1: Simplified visualization of missingness patterns showing the presence
(blue) and absence (gray) of eight clinical features across n patients. Features
include cognitive assessments (MMSE), biomarkers (Total Tau, CSF Afas,
FDG PET), demographics (Age, Sex), genetic risk (APOE status), and brain
imaging (MRI Hippocampal Volume). Visualizing missingness helps identify
dependencies between features, detect features frequently missing alone, and
potentially inform modeling decisions such as imputation strategies.

2.3 Classical strategies for learning with test-
time missingness

This section presents commonly used strategies for making predictions with
missing values in supervised learning. These include: complete-case analy-
sis (Janssen et al., 2009)); impute-then-predict approaches, where a standard
machine learning model is trained on imputed data (Rubin, [1976)); the use
of missingness indicators to capture informative missingness patterns (Little
& Rubin, 2019)); and models that handle missing values natively, such as
XGBoost (T. Chen & Guestrin, 2016)).

One of the simplest approaches to handling missing values is complete case
analysis (also known as list-wise deletion), where rows with any missing values
are excluded prior to model fitting. This method can perform adequately when
data are MCAR or when the extent of missingness is negligible (Janssen et al.,
2010; Knol et al., [2010). However, these assumptions are often violated in
practice, which can introduce bias and lead to loss of statistical power (Janssen
et al.,2009). Moreover, complete case analysis is inefficient in terms of data
usage, especially problematic in domains like healthcare, where data are often
scarce (Z. Chen et al., |2023)). It also fails to leverage the potential informative-
ness of the missingness itself, and, critically, it does not address missing values
that may occur at test time. For these reasons, we do not consider this method
further in this work.
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2.3.1 Impute-then-regress

A widely used strategy for handling missing values in supervised learning
is the impute-then-regress approach. It first imputes the missing entries in
the partially observed feature vector x € (R U {NA})? using a function ¢ :
(RU{NA}Y x {0,1}% — R?, yielding a completed vector 2! = ¢(z,m) € R%.
The prediction function f : R* — R is then trained on the imputed data.
Given a chosen, fixed imputation function ¢, the learning objective becomes:

arg;nin; Ep~p [L(f (¢(X, M)), Y], (2.4)

where L is the same loss function as before (e.g., squared error or logistic
loss), and ¢(X, M) denotes a transformation of the incomplete data. Note that
the objective is not optimized jointly with respect to f and ¢; ¢ is fixed a
priori and only f is learned from the data. This formulation typically assumes
that the missingness mechanism is MAR, allowing us to rely on observed data
during training (Carpenter et al., [2023} Seaman et al., 2013) and that the
imputation function generalizes well to the test-time missingness patterns. The
MAR assumption is widely used because it makes model estimation feasible
without modeling the missingness mechanism directly. However, it cannot be
verified from the observed data alone, unlike MCAR, which is testable via
statistical procedures such as Little’s test (Little, [1988). Thus, MAR is often a
practical rather than verifiable assumption. Even though powerful, this impute-
then-regress approach under the MAR assumption may be suboptimal under
distribution shifts or when the missingness pattern itself is informative (Le
Morvan, Prost et al.,|2020)). Josse et al. (2019) reviewed approaches to handling
missing values in supervised (non-deep learning) settings and showed that, under
certain assumptions, even simple imputation strategies like mean imputation
can be consistent. Complementing this, Le Morvan, Prost et al. (2020) studied
linear predictors with missing values in covariates and demonstrated that the
optimal predictor may no longer be linear. They further showed how constant
imputation of each feature can be optimized with respect to the model loss.
For an extensive review of imputation strategies, see Shadbahr et al. (2023]).
Imputation techniques can be broadly categorized into single imputation meth-
ods, where each missing value is imputed once, and multiple imputation methods,
which create several completed datasets to reflect uncertainty about the missing
data. Single imputation methods often fill in missing values with deterministic
estimates, such as zeros or means, which tend to underestimate variability and
can bias results, even under MCAR (Jamshidian & Schott, [2007; van Buuren,
2018]). Regression-based imputation improves accuracy by leveraging observed
relationships, but still distorts uncertainty. Stochastic variants, in contrast, in-
corporate random noise to better reflect the underlying data distribution (Buck,
1960). In contrast, multiple imputation (e.g., MICE) generates several com-
pleted datasets, capturing uncertainty through pooled estimates (de Goeij et al.,
2013; Van Buuren, [2007). Other state-of-the-art imputation methods include
MissForest (Stekhoven & Biihlmann, [2012), KNN Imputer (Troyanskaya et al.,
2001), matrix completion techniques (Mazumder, Hastie & Tibshirani, 2010;
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Yu, Rao & Dhillon, 2016|), and generative approaches such as deep generative
models (Mattei & Frellsen, 2019; Yoon, Jordon & Schaar, 2018)).

While our proposed methods aim to reduce reliance on imputed values,
some level of imputation remains necessary and is incorporated in different
ways. In Paper A, we obtain shared coefficients through a main model that
requires imputed inputs, for which we use both zero imputation and MICE(Van
Buuren & Groothuis-Oudshoorn, |2011)). Papers B and C focus more explicitly
on minimizing dependence on imputed features, yet still rely on imputed
data (zero, mean, or mode imputation) to enable comparison and integration
within standard pipelines. To benchmark our approaches, we compare them
against commonly used imputation-based baselines, including logistic regression,
LASSO (Tibshirani, [1996), decision trees, and MLPs (Rumelhart, Hinton &
Williams, [1986)), using several imputation strategies. This allows us to assess
whether comparable predictive performance can be achieved while limiting
or avoiding reliance on imputed values. In Paper E, the absence of prior
history necessitates imputation, especially since the behavior policy model
requires a fixed-size input. Here, missing values are primarily imputed at the
patient level using the last observation carried forward, followed by mean or
frequent-category imputation.

2.3.2 Missingness indicators

A common strategy for handling missing values in supervised learning is to
use the input with missingness indicators, where a binary mask M € {0,1}4
denotes whether each feature is missing. The model then learns a function
f(XT, M) that captures the conditional distribution E[Y" | X1, M], where X’
is a simply imputed version of X (for example, zero- or mean-imputation).
Then, when trained on data with similar missingness patterns, such models can
better adapt to test-time missing values—particularly when the missingness
itself carries predictive information (i.e., is informative) (Rubin, [1976).

If the missingness mechanism is informative, that is, ift P(M | Y) # P(M),
then the missingness pattern M contains predictive information about the
target Y that is not captured by the imputed features X7 alone. In this setting,
conditioning on both X! and M can yield more accurate predictions. Formally,
let f{(XT) = E[Y | X!] and f;(X!, M) = E[Y | X!, M] denote the Bayes
optimal predictors for each set of conditions. Then:

E[(Y - f{(XN))?*] > E[(Y - f3(X,M))*]. (2.5)

This reflects the fact that missingness patterns can help explain part of the
variability in Y, and ignoring them may result in suboptimal models. Consider-
ing the mutual information I(Y; M | XT) > 0, omitting M means discarding a
relevant signal. This phenomenon, known as informative missingness (Rubin,
1976)), implies that even perfect recovery of the missing entries in X cannot
substitute the predictive value carried by M. For example, in clinical data,
the presence or absence of a measurement often reflects underlying decision
processes or patient states (Groenwold, |2020). This means that even a theo-
retically perfect imputation model cannot fully recover predictive signals that
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are inherently encoded in the pattern of missingness itself. Ignoring M in such
cases leads to a systematic loss of information, and may result in suboptimal
predictions even with accurate imputations (Little & Rubin, [2019)).

Several methods incorporate missingness directly into predictive models. A
common approach is the Missing Indicator Method (MIM), which augments
inputs with binary flags for missingness, enabling models to exploit missingness
patterns and improve performance under informative missingness (Van Ness
et al., |2023). NeuMiss(Le Morvan, Josse et al.,|[2020) further integrates miss-
ingness by multiplying zero-imputed inputs with the missingness mask, directly
encoding absence into the model. Liu, Kumara and Reich (2021)) take an
interpretable approach, using a mixed-integer programming framework that
encodes missing survey responses as binary indicators rather than imputing
them, allowing the model to learn from both observed and intentionally skipped
answers. More recently,McTavish et al. (2024]) introduced M-GAM, a gen-
eralized additive model that learns sparse interactions between features and
the missingness mask, which we compare to the MA-methods in Paper C.
In MINTY, missing values are replaced using zero-imputation, and a binary
mask is simultaneously stored to capture the missingness pattern. This setup
allows the model to process complete input vectors while retaining information
about which values were originally missing—information later used to assess the
model’s reliance on missingness

2.3.3 Native Strategies for Handling Missingness

Tree-based models offer native strategies to handle missing values without
relying on imputation, integrating missingness into their decision processes. For
example, the Classification and Regression Trees (CART) algorithm handles
missing data using surrogate splits. When evaluating splits, CART uses only
the subset of data where values are observed for a candidate feature, computing
split criteria accordingly. Once the best splitting feature is chosen, if its value is
missing for a specific observation during inference, CART identifies alternative
features, known as surrogates, that most closely replicate the primary split.
These surrogates are ranked by their predictive agreement with the primary
split and used to guide the decision path (Lewis, [2000). Figure illustrates
this mechanism in a clinical example predicting sepsis risk, where heart rate
serves as a surrogate split when temperature is missing.

In contrast, XGBoost handles missing values by learning optimal default
directions during training. When evaluating a potential split on a feature
with missing values, XGBoost considers only the non-missing observations
to compute gain. Simultaneously, it learns whether instances with missing
values should be assigned to the left or right child node, choosing the direction
that minimizes training loss. This mechanism allows XGBoost to integrate
missingness directly into the learned tree structure (T. Chen & Guestrin,
2016). Another notable approach is Missingness Incorporated in Attributes
(MIA) (Josse et al., 2024} Kapelner & Bleich, 2015; Twala, Jones & Hand, |2008)),
which treats missingness as an informative signal. For continuous variables,
MIA expands the decision space by allowing explicit branching for missing
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values, for instance, using rules such as X; < t, X; > ¢, or X; = NA. For
categorical variables, the missing value is treated as an additional category. This
allows the model to leverage potential predictive information in the missingness
pattern itself, making it effective under test-time missingness. While all these
strategies are effective within their respective model classes, they are inherently
model-specific and thus less generalizable to other architectures.

Decision tree to predict risk of If temperature is missing:

Sepsis Surrogate Split
Is Temperature > Is Heart Rate > 100
38.5°C? bpm?
Yes No Yes No

Low
Sepsis risk

/ \
Sepsis risk Sepsis risk Sepsis risk
Figure 2.2: Decision tree for sepsis risk prediction using surrogate splits. The
model first splits on temperature. If the temperature is missing, it uses heart
rate as a surrogate to guide the decision. This illustrates how CART maintains
predictive paths despite missing values.



18

CHAPTER 2. LEARNING WITH MISSING VALUES




Chapter 3

Interpretable Machine
Learning

Interpretability in machine learning is a nuanced and context-dependent
concept, and defining it precisely, especially from a mathematical standpoint,
remains challenging (Molnar & Freiesleben, 2024). In general, interpretability
refers to the degree to which a human can understand the cause of a decision
or predict the behavior of a model (Biran & Cotton, 2017; T. Miller, 2019)).
Kim, Khanna and Koyejo (2016) defines:

A method is interpretable if a user can correctly and efficiently
predict the method’s results.

The more interpretable a machine learning model, the easier it is for someone
to understand why certain decisions or predictions were made. A model is
considered more interpretable if its decisions are easier for humans to com-
prehend (Molnar, 2020). In this thesis, interpretability refers to models and
methods that make the behavior of machine learning systems comprehensi-
ble to humans (Doshi-Velez & Kim, 2017)). This includes extracting relevant
knowledge about relationships present in the data or learned by the model
itself (Murdoch et al., 2019)). Importantly, interpretability does not require full
transparency of internal mechanisms, but rather a sufficient understanding to
support informed decision-making, especially in high-stakes domains such as
healthcare, credit scoring, and criminal justice (Rudin et al., [2022).

Why and when do we need interpretability? Interpretability is crucial
in high-stakes domains, where prediction errors can have serious consequences,
such as in healthcare or criminal justice. In contrast, it may be less impor-
tant in low-risk settings like ad serving or postal code sorting (Rudin, [2019)).
In such sensitive contexts, interpretability supports model auditing, justifi-
cation, and trust. Designing interpretable models remains challenging, as it
requires balancing simplicity, transparency, and actionable explanations with-
out oversimplification (Rudin et al., 2022). Moreover, recent methods have
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proven effective for model debugging and identifying dataset issues (Adebayo
et al., 2020; Koh & Liang, |2017)). When high predictive performance alone
is insufficient, interpretability becomes essential for validating and refining
models (Doshi-Velez & Kim, |2017)).

Interpretability also plays a critical role in scientific discovery. Molnar and
Freiesleben (2024) argue that for supervised learning to genuinely support
understanding of real-world phenomena, models must be equipped with tools
such as causal reasoning, domain knowledge, interpretability, and uncertainty
estimation. These tools help transform predictions into actionable insights,
support decision-making, and generate new hypotheses (Wysocki et al., [2023)).

How to achieve interpretability in machine learning? Lipton (2018])
examines model properties and techniques commonly associated with inter-
pretability, distinguishing between transparency and post-hoc explanations,
which provide insight after model training. Broadly, the field differentiates
between interpretable-by-design models, which are inherently transparent and
allow users to directly understand or reason about the model’s predictions, and
post-hoc methods, which provide approximations or explanations after the fact
to gain insight into their decision-making processes (see Molnar (2020) for a
comprehensive overview).

This thesis focuses on interpretable-by-design models, which embed ex-
planations directly into their structure (e.g., decision trees, linear models).
These models are preferred in high-stakes contexts because they allow users
to reason about predictions without relying on post-processing steps. In con-
trast, post-hoc methods attempt to explain black-box models after training.
Common techniques include LIME (Local Interpretable Model-agnostic Expla-
nations)(Ribeiro, Singh & Guestrin, 2016, which fits a simple interpretable
model locally around a prediction to approximate the black-box behavior, and
SHAP (SHapley Additive exPlanations)(Lundberg & Lee, [2017)), which assigns
feature importance scores based on Shapley values from cooperative game
theory. These methods can offer useful insights, but they often approximate
rather than faithfully represent the model’s behavior, which may reduce their
reliability in certain settings (Covert, Lundberg & Lee, |2021} Slack et al.,[2020)).
Moreover, their explanations rely on perturbations or extrapolations in regions
with little or no training data, and methods like SHAP can be computationally
expensive for complex models.

3.1 Examples of interpretable machine learning

We focus on interpretable-by-design models to ensure transparency and enable
direct insights into both the data and model behavior. Prior work (Kaur et al.,
2024)) has emphasized the cognitive burden that can arise when users must
adapt to unfamiliar model formats—even if they are interpretable. To mitigate
this challenge, we prioritize familiar model representations, such as risk scores
and decision trees, which are widely used in healthcare and other domains for
their balance of simplicity and clarity (Molnar, |2020). In the following, we
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highlight several well-established interpretable models from the literature that
have informed the design of the methods presented in this thesis.

3.1.1 Linear Models

Linear models are widely regarded as interpretable due to their transparent
structure and ease of understanding. A linear regression model predicts an
outcome y as a weighted sum of input features:

Yy =ao+airy + -+ aqrq + ¢

where a; are feature weights and ¢ ~ N (0,0?%) represents additive Gaus-
sian noise, capturing the error between the prediction and the actual out-
come (Hastie, Tibshirani & Friedman, 2009). The coefficients a; provide direct
insight into how each feature influences the prediction, which supports both
transparency and trust in decision-critical domains.

Sparsity. Sparsity enhances interpretability by reducing the number of fea-
tures and parameters used in a model, making it easier to understand and ana-
lyze. This is typically achieved via regularization methods such as LASSO (Tib-
shirani, [1996)), which solves:

ST T (02

min -3 aTa? —y O+l
where ||a|l; = Zj:l |a;| is the ¢1-norm, and « controls the level of sparsity
in the parameters. This penalty encourages many coefficients to shrink to
zero, leaving only the most influential features and thus reducing model com-
plexity. Compared to dense models, sparse models are easier to inspect and
communicate, especially in high-stakes domains such as healthcare or criminal
justice.

To further promote interpretability, Takada, Suzuki and Fujisawa (2020)
modifies LASSO by penalizing the selection of correlated features, encouraging
diverse and informative predictors. Integer programming approaches such as
Supersparse Linear Integer Models (Ustun & Rudin, [2016; Ustun, Traca &
Rudin, 2013) offer feature sparsity with integer coefficients, producing concise
scoring systems interpretable by non-experts. integrate sparsity with handling of
missingness indicators to mitigate overfitting and avoid combinatorial explosions
raised in earlier work (Van Ness et al., [2023)). In practice, sparse models have
been used to build transparent decision rules relying on just a handful of
variables, such as age, blood pressure, and comorbidities in clinical triage (Ustun
& Rudin, 2019).

We use sparsity in different capacities in our work to develop interpretable
models. For instance, in Paper A, we introduced sparsity into patterns-specific
modeling (SPSM) to allow concise descriptions of specialized submodels. By
limiting the number of differences (nonzero coefficients) between submodels, we
allowed clinicians to meaningfully interpret variable relevance, directionality,
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and magnitude. In LASSO-MA introduced in Paper C, we train sparse models
that avoid relying on frequently missing features, instead prioritizing features
that are both predictive and commonly available.

Generalized Linear Models. Generalized Linear Models (GLMs) extend
linear regression to handle non-Gaussian outcomes and nonlinear relationships
through a link function (Nelder & Wedderburn, (1972). A GLM assumes
the conditional distribution of the response variable Y | X belongs to the
exponential family and models the expected outcome via:

g(E[Y | X]) =ag + a1z1 + - - + aqzq,
where g(+) is the link function. The distribution of Y | X introduces a noise
model appropriate for the outcome type (e.g., Bernoulli noise for binary data,
Poisson noise for counts).
For continuous targets with additive Gaussian noise, the identity link
g(z) = z is used, reducing the GLM to a classical linear regression model:

E[Y | X] =ao +a1x1 + -+ +agrq, with Y | X ~ N(E[Y | X],0?)

(McCullagh, |2019)).
As GLMs remain interpretable in low dimensions, complexity increases with
interactions and high-dimensional inputs (Wei et al., 2019).

Risk Scores. When learned directly from data, risk scores yield sparse,
interpretable models that are widely used in healthcare (Ustun & Rudin, 2019).
They assign integer points to features based on logistic regression coefficients
and are often used in screening tools (e.g., sleep apnea (Ustun et al., [2016)
or diagnosis (e.g., Alzheimer’s (Souillard-Mandar et al., |2016))). These models
benefit from integer coefficients, enabling mental calculation and facilitating
clinical adoption (Rudin, Wang & Coker, 2020).

As the example in Figure shows, interpretable models output humanly
understandable summaries of their calculations that help us understand how
they produce predictions (Rudin, 2019). This transparency can help build trust
in machine learning systems (Molnar, 2020).

In Paper B, we introduced MINTY, a sparse linear rule model designed for
test-time missingness. The model builds on generalized linear models and
incorporates rule-based logic using disjunctions (logical ORs) across substitute
features, an approach that aligns with how clinicians often reason about
risk factors. MINTY uses LASSO regularization to produce a compact and
interpretable rule set, particularly in the presence of redundant features. Its
output can be visualized and is inspired by the structure of widely used clinical
risk scores.

3.1.2 Decision Trees

Decision trees are interpretable models that capture nonlinearities and interac-
tions by recursively splitting data according to feature thresholds (Souza et al.,
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Risk Factor Points

Frequency > 2Hz 2 1

Sporadic Epileptiform Discharges 1
LPD/BIPD/LRDA 1

Plus Features ® 1
1

2

Prior Seizure

Brief Ictal Rhythmic Discharge

Total Score

Total Score: 0 1 2 3 4 5 >6

Seizure Risk: <5%  12% 27% 50% 73% 88% >95%

Figure 3.1: Illustration of variables used to calculate the 2HELPS2B risk
score (Struck et al.,|2020). The total score is calculated by summing over the
points on the right column, associated with a particular seizure risk. The rules
explain medical details such as the brief independent periodic discharge (BIPD),
continuous EEG (cEEG), generalized periodic discharg (GPD), lateralized
periodic discharge (LPD), lateralized rhythmic delta activity (LRDA). Plus
features are defined as superimposed rhythmic, fast, or sharp activity for
LRDA, BIPDs, LPDs, or GPDs.

2022)). Each path from the root to a leaf corresponds to a set of rules, and the
prediction on the leaf reflects the average of training examples reaching that
node (example of tree in Figure in the previous section). Their structure
allows for step-by-step traceability of predictions, especially when trees are shal-
low (Molnar, [2020). As shown by Grinsztajn, Oyallon and Varoquaux (2022),
decision trees often outperform deep learning models on medium-sized tabular
datasets and they remain competitive and often state-of-the-art on medium-
sized datasets (~10K samples), even without considering their advantages in
speed and computational efficiency.

Short trees remain interpretable, but as trees grow deeper, they become
harder to follow and lose transparency (Souillard-Mandar et al., |2016)). En-
sembles like Random Forests (Breiman, [2001) and Gradient Boosted Trees
(e.g., XGBoost (T. Chen & Guestrin, 2016))) further trade interpretability for
accuracy by combining multiple trees to enhance predictive performance. These
methods have been successfully applied in clinical settings (Caruana et al.,
2015; Lundberg & Lee, 2017)).

3.1.3 Rule-based Methods

Rule-based models express decision logic using a set of human-readable IF-THEN
rules. These rules are semantically meaningful and align closely with human
reasoning. For example:

IF age > 60 AND blood pressure > 140 THEN risk = high



24 CHAPTER 3. INTERPRETABLE MACHINE LEARNING

Each rule defines a logical conjunction of feature conditions, making model
decisions easy to trace and understand. This transparency is a key reason
why rule-based models are considered interpretable. Unlike complex black-box
models, the decision-making process in rule-based systems can be examined
and validated by domain experts, which is particularly important in high-
stakes areas like healthcare or policy-making. In falling rule-based models, the
importance of features is implicit, features in early rules with high impact are
considered more influential (Wang & Rudin, 2015]).

Rule-based models can be learned algorithmically from data. One widely
used method is RuleFit (Friedman & Popescu, 2008]), which extracts decision
rules from ensembles of decision trees and combines them with linear terms in
a sparse additive model. Another approach is Bayesian Rule Lists (Letham
et al., |2015)), which constructs a probabilistic model over possible rule sets
and selects a small list of rules guided by priors that favor sparsity. More
recent work improves inference efficiency while preserving interpretability by
constraining rule complexity, such as scalable Bayesian rule models (Margot
& Luta, 2021) and SIRUS (Stable and Interpretable RUle Set) (Bénard et al.,
2021bl), a classification algorithm based on random forests that produces a
concise and stable set of rules.

Despite their interpretability, rule-based models have notable limitations.
Learning a concise and accurate rule set is computationally hard, especially in
high-dimensional spaces (Letham et al.,|2015; Wang & Rudin, 2015)). There
is often a trade-off between rule simplicity and predictive coverage: simpler
rules may fail to capture important interactions, while more complex rules can
overwhelm users and reduce clarity (Bénard et al., |2021b)). Additionally, rule
mining algorithms may produce redundant or overlapping rules, which obscure
the decision logic and complicate validation (Mannhardt et al., |[2016). These
challenges highlight the need for methods that encourage sparsity, stability,
and semantic coherence in rule-based learning.

3.2 Evaluation towards interpretablity

As the previous section defined interpretability, highlighted its importance,
and outlined strategies to achieve it, this section focuses on how to evaluate
interpretability. While interpretable-by-design models, such as decision trees
or sparse linear models, are often assumed to improve understanding and
trust, empirical evidence suggests this is not always the case. In a series of
large-scale experiments, Poursabzi-Sangdeh et al. (2021) showed that although
transparent models with few features were easier for users to simulate, this
did not consistently help them follow the model’s predictions or recognize its
errors. In some cases, transparency even hinders user performance due to
cognitive overload. These findings underscore the importance of evaluating
interpretability through empirical testing, rather than relying solely on design
intuition. Although there is no universal metric, researchers can assess inter-
pretability based on task-specific requirements and decision-making contexts, or
design appropriate experiments (T. Miller, [2019). Doshi-Velez and Kim (2017)
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Application-Grounded
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and Functionally-Grounded No Real Proxy

Cost Evaluation humans Task

Figure 3.2: Taxonomy of evaluation approaches for interpretability. Figure
design is inspired by Doshi-Velez and Kim (2017)).

propose a taxonomy that classifies evaluation methods into three categories:
application-grounded, human-grounded, and functionality-grounded. These
complementary approaches differ in task specificity and the level of human
involvement they require. As shown in Figure the choice between human-
subject experiments and automated evaluations depends on the complexity
and nature of the task.

1. Application-grounded evaluation of interpretability involves human
experiments in real-world applications. For example, in a diagnostic
model detecting prostate tumors from medical images, doctors would
assess the correctness of predictions. The goal is to determine how well
human-generated explanations aid others in completing the task.

2. Human-grounded evaluation uses simplified human experiments
where the task resembles a real application but does not require do-
main experts. This approach is useful when the target community is
unavailable or abstract tasks are needed. For instance, laypeople might
compare hybrid images with highlighted regions generated by a model
to assess which best identifies distinguishing features. Other examples
include selecting the better explanation from a pair, predicting a model’s
output given input and explanation, or suggesting input changes that
would alter the model’s prediction, such as adjusting workplace parame-
ters to prevent employee attrition.

3. Functionally-grounded evaluation, in contrast, excludes human sub-
jects. It is preferred when human involvement is costly or unnecessary.
This method often measures improvements in model performance based
on prior human-validated interpretability.

To achieve a high impact in the real world, our community must acknowledge
the significant time and effort required for such evaluations and uphold rigorous
standards in experimental design (Doshi-Velez & Kim, . As recognized
in the human-computer-interaction (HCI) community (Antunes et al., 2008),
application-grounded evaluations are inherently challenging. However, they
provide direct evidence of a system’s success by measuring performance against
its intended objective.
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In Paper D, we adopt an application-grounded evaluation approach, ac-
knowledging both its high potential impact and the considerable effort it
requires. This framework guided the design of our expert survey with health-
care professionals. We evaluate interpretable machine learning methods for
handling missing values by engaging a network of clinicians in a real-world
task: predicting hemorrhagic shock.

In summary, interpretable machine learning encompasses a range of models
that prioritize transparency, trust, and domain understanding. This chapter
introduced core model types and outlined how recent advances improve their
usability in practice, particularly in high-stakes domains like healthcare. The
next chapters build on these foundations to present our proposed methods and
empirical evaluations.



Chapter 4

Central Challenges of
Test-Time Missingness in
Interpretable Machine
Learning

Chapters [2| and [3] established the foundation for supervised prediction with
test-time missingness using interpretable models, with the goal of supporting
autonomous, informed decision-making by domain experts. This chapter builds
on that foundation by explaining why current methods for handling missing
values are insufficient for delivering the level of interpretability needed for trust
and accountability in high-stakes settings.

In interpretable models such as linear models or decision tree classifiers
(examples in Section , imputation is typically necessary, as these models
require fully observed input vectors. Complex imputation techniques, such
as MICE (Van Buuren, [2007)), can obscure the relationship between input
features and model predictions, thereby reducing interpretability. Moreover,
even under perfect imputation, the Bayes-optimal predictor trained solely on
imputed values may still be suboptimal (Le Morvan, Prost et al., 2020)). Many
existing methods for handling missing values focus on recovering ground truth
values, often guided by statistical inference. However, in predictive settings, the
objective is not accurate reconstruction but improved downstream performance.

Challenge 1: Imputation hides which values were missing and the reasons
behind their absence, potentially obscuring informative missingness patterns
and limiting the model’s ability to handle missingness at test-time.

In many applications, the pattern of missingness itself can be predictive. This
is referred to as informative missingness (Rubin, [1976)) (see Section for
details). For example, a missing lab test might signal that the clinician found
it unnecessary, perhaps because a diagnosis was already clear or a substitute
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test was used. In such cases, the absence of data carries signal, suggesting that
some features may be redundant or context-dependent. To retain this signal, a
common strategy is to augment the input space with missingness indicators
M € {0,1}4, resulting in an extended input (X, M) € R?x {0, 1}? (Little & Ru-
bin, |2019). This enables the model to learn dependencies between missingness
patterns and the outcome Y, potentially boosting predictive performance (Van
Ness et al., [2023).

However, this expansion increases the dimensionality: from d features to
2d, and even further to d(d — 1) + 2d when first-order interactions are included.
This makes interpretable modeling more difficult. In linear models, it leads
to more coefficients; in rule-based models, it enlarges the rule search space,
increasing the risk of complexity and reduced clarity. In approaches that fit
separate submodels for each missingness pattern (Mercaldo & Blume, [2020)),
the number of models grows exponentially with the number of features, making
it infeasible in data-scarce or time-sensitive environments such as healthcare.

Challenge 2: Maintaining model simplicity is important, as expanding the
input space often comes at the expense of interpretability.

Beyond the complexity introduced by missingness indicators, a separate chal-
lenge arises in models that handle missing data natively.

Tree-based models, such as decision trees and gradient-boosted trees (e.g.,
XGBoost (T. Chen & Guestrin, 2016|), gradient boosting machines (Friedman,
2001))), are widely used for their predictive accuracy and, in the case of individual
trees, for their intuitive structure (Molnar & Freiesleben, 2024). These models
include native strategies to deal with missing data without requiring explicit
imputation.

For example, gradient boosting trees learn default split directions: if a
feature is missing at test time, the model assigns the instance to a default
branch that minimizes the training loss (T. Chen & Guestrin, [2016). Another
common strategy is the use of surrogate splits (Valdiviezo & Van Aelst, 2015),
where the tree selects alternative features that mimic the primary split decision
when the main feature is missing. While these mechanisms help the model
function with incomplete inputs, they often rely on fixed heuristics that may not
fully exploit the information embedded in missingness. Moreover, their internal
logic is not explicitly surfaced to the user, which reduces transparency (Molnar
& Freiesleben, [2024). In large ensembles, interpretability deteriorates further,
making it difficult to understand how missingness influences predictions, or
how a specific feature path led to a decision (Lundberg, Erion & Lee, [2020).

Challenge 3: Default path assignment and surrogate splits are inherently
limited to tree-based model classes, and restrict interpretability, especially in
complex ensembles.

Our goal is to address these challenges by designing interpretable models
with strong predictive performance that reduce reliance on complex impu-
tations and avoid unnecessarily inflating the input space, while effectively
accounting for test-time missingness. In the next chapter, we summarize the
five papers that constitute the core contributions of this thesis.



Chapter 5

Summary of Included
Papers

While the full manuscripts of the appended publications are included in Part
this chapter briefly summarizes their respective research contributions.

5.1 Paper A: Sharing Pattern Submodels for
Prediction with Missing Values

In this paper, we present a method for handling missing values during
deployment, especially when there are few examples for each missingness
pattern. A missingness pattern refers to a specific combination of observed
and missing features in the input data. For example, one group of patients
may have blood pressure and age recorded but not cholesterol, while another
has cholesterol and age but not blood pressure. Such patterns can arise due
to differences in equipment availability across hospital sites or due to medical
preconditions specific to certain patient groups.

Prior work has proposed fitting separate models for each missingness pattern
to avoid imputation and enhance interpretability (Mercaldo & Blume, [2020)).
However, this can lead to high variance with limited data per pattern and
overlooks potential relationships across patterns. Conversely, using a single
model across all missingness patterns often requires imputing missing values,
which can introduce bias into the prediction estimates.

We propose Sharing Pattern Submodels (SPSM), a method for accurate
prediction with incomplete inputs that also yields concise, interpretable model
output descriptions for domain experts. SPSM balances the bias—variance trade-
off by combining a shared main model with sparse, pattern-specific deviations.
For each missingness pattern, a submodel is trained using pattern-specific
coefficients A,,, which are combined additively with shared coefficients 6 from
a main model. The final prediction is given by § = (§+A,,,) "z, enabling shared
learning across all patterns while allowing flexibility to adapt to pattern-specific
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characteristics. This structure promotes information sharing across patterns by
balancing predictive accuracy and variance. Shared coefficients 6 are regularized
using ¢; or {3 norms, while A,, is encouraged to be sparse via an ¢; penalty.
The regularization strength A, controls the degree of sharing—larger values
lead to greater reliance on the shared model.

Figure illustrates this phenomenon with patients from three different
clinics, each following slightly different data collection practices. As introduced
earlier, this results in distinct missingness patterns; for example, one clinic
may routinely record blood pressure but omit certain lab tests, while another
does the reverse. In SPSM, each clinic’s data is modeled with a submodel that
captures its specific pattern of missingness via coefficients A,,, and at the same
time shares information through a global set of coefficients . This enables
the model to adapt to clinic-specific practices while benefiting from a shared
predictive structure across all clinics.

Missingness mask, M
Patient 1

Patient 2 A /\‘
i 1
Patient 3 0
Patent 4 — .

Patient 5 -
Patient 6 —PB A, \ ANeW patient
Mainmodel Y =(6+A)"X

B

4

]

D

Patient 7
saa/ans|  Datient 8
siiM]*%%| patient9 _BA3

Pattern specialization, A,

Figure 5.1: Coefficient sharing between a main model 6 and pattern submodels
for three clinics with different patterns in missing values. The white areas
in the missingness masks represent missing features, the filled areas indicate
observed ones. Without specialization A,,, a shared average prediction across
clinics may not yield optimal performance for any clinic. Conversely, fitting
separate models for each clinic leads to high variance and inefficient use of
data.

We evaluated the SPSM model on simulated and real-world data. The
experimental results indicate that SPSM performs comparably or slightly better
than baselines across all datasets without relying on imputation (Figure .
The results demonstrate that the proposed method never performs worse than
non-sharing pattern submodels, which do not make efficient use of the available
data. Our theoretical analysis shows that in a linear-Gaussian setting, our
method also recovers the sparsity of the true process. Although this may not
reduce variance in the large-sample limit, the sparsity enhances interpretability.
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Figure 5.2: Performance on simulated data for Setting A (higher is better).
Error bars represent the standard deviation over 5 random data splits. The
full dataset contains n = 2000 samples.

Why is SPSM Interpretable? SPSM improves interpretability by allowing
domain experts to compare pattern specializations and understand how similar
submodels behave and are affected by missing values (Table . We argue
that a set of submodels is easier to interpret if the specializations contain
fewer non-zero coefficients; that is, if A_,, is sparse. This is achieved through
regularization, resulting in a sparse model including only a subset of input
features affecting predictions, thus reducing the model’s effective complex-
ity (Cowan, G. A. Miller, . Note, SPSM learns linear models, but
it is not limited to linear systems and does not assume anything about the
missingness mechanism.

Table 5.1: Example of Ay for regression using SPSM ADNI data (Weiner et al.,
2010). SPSM uses v = 10 and A = 13 as parameters for a single seed. There are
10 missingness patterns in total, with 4 of them having non-zero coefficients for
A and a pattern-specific intercept. Coefficients are for standardized variables.

Missing features in pattern 4: ABETA, TAU, and PTAU at baseline (bl)

Feature ‘ Ay 0 ‘ 0+ Ay
Age -0.140 0.121 -0.019
FDG-PET -0.090 -0.039 -0.129
Whole Brain (bl) | 0.000 -0.045 -0.044
Fusiform 0.016  0.021 0.037
Icv 0.001  0.093 0.094

Intercept ‘ -0.10 0.18
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5.2 Paper B: MINTY: Rule-based models that
minimize the need for imputing features
with missing values

Paper A leverages patterns of missingness to improve prediction performance
and produce interpretable model outputs, while Papers B and C develop models
that minimize reliance on frequently missing variables. As before, we focus
on settings where the observed variables follow a fized, unknown distribution
p(X, M,Y), and handling missing values during both training and deployment
challenges the maintenance of model accuracy and interpretability.

Predicting 2-year change in cognitive function (ADAS13)

Model rules Coef. Score
MMSE < 26 OR Alzheimer’s disease (AD) +4 +4
TAU < 191 ORPTAU <17 -5.2 -5.2
Married = TRUE +3 +0

Predicted change:  -1.2

Anna’s features

MMSE TAU PTAU MAR. AD
24 170 NA  NA No

Anna

Figure 5.3: Hlustrative example of scoring system predicting cognitive decline,
measured by a change in the ADAS13 cognitive function score, using the ADNI
data, including incomplete data. The blue, underlined features indicate that
these variables are observed for the specific patient, Anna, and the red shows
that the observations for the variables are missing.

To address the limitations of imputation-based approaches, we propose
MINTY, a method for learning intterpretable generalized linear rule models
(GLRMs) that minimize reliance on imputed (missing) values. MINTY constructs
disjunctive rules by grouping literals of single variables, allowing the rule to
be evaluated as true when at least one literal is observed, regardless of others
being missing. This design exploits redundancy in the covariates and supports
interpretability by aligning model logic with observed inputs.

We start from GLRMSs, which are not inherently designed to handle missing
values. The MINTY approach extends the column-generation strategy by Wei
et al. (2019)), iteratively adding disjunctive rules that minimize empirical risk
and at the same time controlling reliance on missing values. The objective
function includes a parameter y € [0, 00) to regularize reliance on missing values
in the disjunctions, effectively balancing predictive power and interpretability
by penalizing rules that depend on missing data.
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To find the next rule, we solve an optimization problem, either exactly
using the Gurobi solver or approximately via a heuristic beam search, that
selects a sparse set of features, determines which samples activate the rule, and
identifies those that rely on missing values (through p). The objective balances
three things:

e How well the rule captures relevant samples.
e How much it relies on missing values (penalized by a parameter 7).

e How complex the rule is, measured by how many features it uses (penalized

The first constraint ensures that a sample activates the rule if it satisfies any
of the selected conditions (based on observed features). The second constraint
tracks when a sample relies on missing values to activate the rule: this happens
only if (i) no selected feature is observed and true, and (ii) at least one selected
feature is missing.

Figure[5.3|illustrates a disjunctive linear rule model used to predict cognitive
decline, measured by the ADAS13 cognitive test score. A higher score indicates
lower cognitive ability, and a positive change from baseline to the 2-year follow-
up reflects deterioration. Each rule (left) contributes a score (right) if at least
one literal is observed and true, regardless of other missing values. For a patient,
Anna, the rule Tau < 191 OR PTAU > 27 is satisfied due to her observed TAU
level, even though PTAU is missing, contributing -5.2 to the score. The rule
MMSE = 24 OR AD Diagnosis=True is also true via her MMSE score, despite
no prior AD diagnosis. In contrast, a single-literal rule like Married = True
cannot be evaluated when missing and defaults to a zero contribution—standard
in clinical risk scoring (Afessa et al., 2005), though ideally avoided by favoring
rules that require only observed values.

We evaluate MINTY on three real-world datasets with natural and semi-
natural missingness. Baselines include standard models with imputation,
models with native support for missingness (e.g., XGB (T. Chen & Guestrin,
2016)), and models that leverage missingness patterns (e.g., NEUMISS) (Le
Morvan, Josse et al.,|2020). MINTY achieves competitive or superior predictive
performance while substantially reducing reliance on missing values (lower
p), all without requiring imputation. These results highlight MINTY’s balance
between interpretability and accuracy. Beyond the empirical study, we analyze
the effect of a regularization term, controlled by v > 0, that penalizes reliance on
missing values in disjunctive linear rule models. Setting v = 0 offers flexibility
but sacrifices interpretability, while v — oo enforces strict rules that avoid
imputation but may yield trivial solutions in settings with frequent missingness.
Instead, selecting a moderate ~ allows us to limit reliance on missing data
while maintaining both model accuracy and interpretability. In other words,
requiring perfect variable redundancy through rules by letting v — oo is too
strict for many settings. Instead, we can aim to limit or minimize the average
reliance on missing values p by selecting a moderate .
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Interpreting Learned Rules on ADNI Table shows MINTY models
learned on ADNI, formatted like medical or justice risk scores (Ustun & Rudin,
2019). In each table, on the left are rule definitions and on the right, their
coefficients. The tables on the left and right correspond to MINTYy = 0 and
MINTY~ = 0.01, respectively. In the ADNI task, the goal is to predict the cog-
nitive decline measured by a change in the cognitive test score ADAS13. The
learned coefficients match expectations as, for example, diagnoses of Alzheimer’s
disease (AD) or mild cognitive impairment (LMCI) are associated with higher
cognitive decline (positive coefficients). Similarly, MMSE > 29 (a score indicat-
ing normal cognitive ability) is associated with a smaller decline in ADAS13 (neg-
ative coefficient). The two models with v = 0 and v = 0.01 learn similar rules
with similar coefficients but with different reliance on features with missing val-
ues (p = 0.40 vs p = 0.27). The rules, TAU < 191.1 OR Hippocampus, where
hippocampus volume is denoted as Vj, > 7721.0 and FDG < 1.163 are
not included in the second model (y = 0.01), since they are missing for 0.33%
and 0.27% of all individuals in the data set. By using a higher v we achieve a
more robust solution with less dependence on imputed values.

Table 5.2: MINTY models learned on ADNI a) using v = 0 (left) and b) v = 0.01
(right). The R? for the two models were 0.64 and 0.63 respectively, the latter
with smaller reliance on features with missing values (p = 0.28 vs p = 0.40).
Two rules in the left model are not in the right model due to more frequent
missingness; the right model adds two rules with less missingness. MINTY models
on ADNI with different ~ values.

a) MINTY with v = 0 (R* = 0.64, p = b) MINTY with v = 0.01 (R* = 0.63,

0.40) p =0.28)
Rule ‘ Coeft. Rule ‘ Coeft.
AD OR LMCI diagnosis +0.35 AD OR LMCI diagnosis +0.36
MMSE < 26.0 OR LMCI +0.23 MMSE < 26.0 OR LMCI +0.22
LDELTOTAL < 3.0 +0.63 LDELTOTAL < 3.0 +0.67
AD diagnosis +0.65 AD diagnosis +0.68
Vi, < 6071.0 OR Male +0.18 Vi, < 6071.0 OR Male +0.19
MMSE > 29.0 —0.16 MMSE > 29.0 —0.17
Entorhinal < 3022.0 +0.18 Entorhinal < 3022.0 +0.17
LDELTOTAL 3-8 +0.27 LDELTOTAL 3-8 +0.28
TAU < 191.1 OR V, > 7721.0 | —0.19 Vy > 7721.0 —0.16
FDG < 1.163 +0.17 APOE4 =1 +0.08
Intercept ‘ —0.57 Intercept ‘ —0.61

While MINTY is promising, its application is limited to GLRMs. Paper C,
presented in the next section, explores extending this framework to non-linear
models such as ensemble methods and expanding its use to other areas of
interpretable machine learning.
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5.3 Paper C: Prediction models that learn to
avoid missing values

Paper C builds on the idea of avoiding missing values during prediction at
deployment, similar to the goal outlined in Paper B. A central question of
this work is: What if we could sidestep imputation, indicators, and special-
ized architectures by learning to avoid using features with missing values in
predictions? If a feature is missing but still needed for a prediction in a given
instance, a good model should not rely on it in the first place.

The main contribution of Paper C is the missingness-avoiding (MA) machine
learning framework for training models to rarely require the values of missing
(or imputed) features at test time. We design tailored MA learning algorithms
for decision trees, tree ensembles, and sparse linear models by incorporating
classifier-specific regularization terms into their learning objectives.

We introduced missingness reliance with the definition that h relies on
missing values in an observation x if there is a feature j such that 1) z; = NA
and 2) computing h(x) requires evaluating x; or its imputed value L. We use
a binary indicator function p(h,x) € {0,1} to indicate that computing h(x)
relies on at least one missing feature in x,

p(h,x) =max1an(x,j) =1Axz; =NA] . (5.1)
jeld]

The expected missingness reliance p of a hypothesis h in a distribution
p(X,M,Y) is then defined as p(h) := E,[p(h, X)]. The goal of MA learning
is to find a suitable trade-off between expected predictive performance and
missingness reliance:

migier%ize E,[L(Y, h(X))] + ap(h) , (5.2)

controlled by a tradeoff parameter o > 0.

Our goal is to learn hypotheses h that are missingness avoiding, that is,
they are unlikely to require the value of a missing variable at test time. Let
ap(x,j) = 1 denote the event that computing h(x) requires access to the
value of z; (imputed or observed) and ax(x,j) = 0 otherwise. For example,
computing the prediction of a linear model with imputed inputs, hg(x?) =
07 x!, requires access to x§ whenever §; # 0. A decision tree requires access
to :rJI if feature j appears on the prediction path from root to leaf for the
input x. A rule model requires access to xf if the truth values of its rules
are contingent on ac]I . Figure illustrates how different models may avoid
relying on missing values. he approach is applied to sparse linear models
(MA-LASSO) for interpretability; decision trees (MA-DT) to capture nonlinear
interactions; and random forests (MA-RF) and gradient boosting (MA-GBT) to
enhance generalization and performance.

We investigated when it is possible to achieve both low prediction error
and zero reliance on missing features. The MA objective introduces a trade-off
between accuracy and missingness reliance. Under observed deterministic data
collection (ODDC), where features are collected in predictable ways, such
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Figure 5.4: Missing values can be avoided in several ways. Sparse models (left)
can be trained not to use features that are frequently missing. Disjunctive
rule models (middle) can be fit to include rules that exploit redundancy in the
variable set. Trees (right) can be fit so that missing values rarely occur on the
decision paths.

as age always being recorded or MRIs ordered after abnormal tests, models
like decision trees can exploit these patterns. If the target outcome depends
only on features that are always observed under ODDC, accurate predictions
can be made without relying on missing features. However, when missingness
occurs randomly or due to unobserved factors, avoiding reliance becomes harder
and may reduce accuracy. In such cases, especially when missingness itself is
informative (e.g., tests ordered only when serious conditions are suspected),
models that use missingness indicators can outperform those that ignore them.

FExperiments were conducted on six real-world datasets, comparing MA
models against relevant baselines. Our experiments show that MA models
effectively learn to generate accurate predictions while minimizing reliance (p)
on missing values at test time. In particular, MA-DT and MA-RF achieve AUROC
scores comparable to standard DT and RF but with drastically lower missing-
ness reliance. MA-LASSO provides a trade-off between sparsity and missingness
avoidance. Figures [5.5(a)| and |5.5(b)| show this trade-off on the Alzheimer’s
Disease Neuroimaging Initiative'( ADNI) dataset. All MA models reach near-
zero empirical missingness reliance p with a large «, but this can come at a
cost to AUROC. Conversely, setting a = 0 often boosts AUROC, yet substan-
tially increases missingness reliance, particularly for MA-LASSO and MA-RF. This
highlights how tuning « affects both performance and interpretability through
missingness dependence. illustrates the relationship between AUROC
and missingness reliance under varying proportions and mechanisms using
MA-LASS0. L'-regularized logistic regression models are included with circles
for reference. With MAR missingness in up to 40 % of features, MA-LASSO
maintains high performance even with 25 % missingness reliance. Similar pat-
terns appear in the more challenging MNAR setting, though with slightly lower
AUROC:s.

How does M A-learning improve interpretability? In Figure [5.6] we
include examples of trees with a = 0, a = a*, and a = 0o at their respective
optimal depths. The value a* is selected as the candidate model with the lowest

Thttps://adni.loni.usc.edu
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Figure 5.5: (a) and (b): Test-set AUROC and missingness reliance (p) for
MA estimators in ADNI when transitioning from o = 0o to @ = 0. Removing
missingness regularization improves predictive performance, but the increase in
missingness reliance is much more pronounced, especially for MA-LASSSO and
MA-RF. (c): Test-set AUROC versus p for MA-LASSSO in Breast Cancer, where
50 % synthetic missingness is added to an increasing proportion of input features.
Missingness not at random (MNAR) is more challenging than missingness at
random (MAR), but MA-LASSSO demonstrates robust performance for large
fractions of missingness.

p among those achieving at least 95 % of the maximum AUROC. When a = oo,
the algorithm is forced to split on the always-observed feature Region instead
of Adult mortality, which has approximately 10 % missingness and is used
when a = 0 and o = o*. In the latter case, Region appears in the first split in
the right branch of the tree, reducing missingness reliance without sacrificing
AUROC compared to the unregularized tree, which uses the incomplete feature
Under_five_deaths.

Future work could explore alternative selection strategies for a* and alter-
native definitions of p. Instead of only trading off predictive performance for
minimal «, approaches could prioritize limiting missing features per individual,
since relying on dataset averages may mask important variability. Application-
specific thresholds and domain knowledge could guide these strategies, although
such thresholds are often difficult to quantify.
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MA-DT with v =0 (AUC = 0.90, p = 0.18) MA-DT with a = a* (AUC = 0.90, p = 0.12)

Adult mortality < 167.32
Samples: 100.0%
Pr(LE > median) = 0.53
5 =010

Adultmortality < 167.32
Samples: 100.0%
Pr(LE > median) = 0.53
5 =010

NN'

Region = European Union
Samples: 51.0%
Pr(LE > median) = 0.17
5 =0.20

Tx/ NN' True,

Tnfant_deaths < 28.79
Samples: 49.0%
Pr(LE > median) = 0.90
=009

Under five-deaths < 19.70
Samples: 51.0%
Pr(LE > median) = 0.17
p =028

Adult_mortality < 130.50
Samples: 49.0%
Pr(LE > median) = 0.90
= 0.00

) (b) a=a*
MA-DT with & = 00 (AUC = 0.67, p = 0.00)

Region # Africa
Samples: 100.0%
Pr(LE > median) = 0.53
p = 0.00

True

Samples: 73.4%
Pr(LE > median) = 0.67
5= 0.00

Samples: 26.6%
Pr(LE > median) = 0.12
5= 0.00

c) =00

Figure 5.6: Example decision tre(eg for a =0, a = a*, and a = oo fit to
LIFE. The nodes are colored based on the missingness reliance p. The goal
is to predict whether a country’s life expectancy (LE) is above or below the
median life expectancy. (a): MA-DT with a = 0 behaves as a regular decision
tree, splitting on highly predictive features such as Adult mortality and
Infant_deaths. (b): MA-DT with « selected to balance the trade-off between
predictive performance and AUROC. Similar to the standard decision tree,
MA-DT first splits on Adult_mortality, then by the European Union region,
reducing missingness reliance. (¢): With large a, the tree splits only by the
region “Africa”, achieving zero missingness reliance but with much worse
predictive accuracy.
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5.4 Paper D: Handling missing values in clinical
machine learning: Insights from a large-
scale expert study

Building on previous works that addressed prediction under missing values
and model interpretability through methodological advancements, Paper D
shifts focus to the human perspective. This work investigates how clinicians,
as potential users of interpretability-by-design models, perceive and prefer to
handle missing values in prediction models. The paper offers insights into the
human factors that influence the practical adoption of such models and informs
the design of future methods.

The main contribution includes a qualitative survey of 55 Traumabase
cliniciansﬂ a network of trauma specialists in France, analyzing their attitudes
toward artificial intelligence (AI) and machine learning (ML), as well as their
strategies for handling missing values in patient records. The study also provides
insights into current clinical decision-making workflows. We then evaluated the
use of three IML approaches by clinicians in a real-world scenario—predicting
hemorrhagic shock in trauma patients with missing values-examining their
reasoning, preferences, and challenges in decision making. Lastly, based on the
clinicians’ feedback, we proposed design guidelines for future IML models that
natively handle missing values to support clinical practice and real-world use.

. Blood Max. heart . Pelvic
Patient ID Intubation
pressure rate trauma
36 ‘ 42.0 | NaN | Yes ‘ Non
Blood 1 1
00C pressure Blood pressure >40.0
Max. heart rate 2 +? Blood pressure
i Intubati
Intubation ! 1 Max. heart rate M F T Max. hear
Pelvic trauma 1 +1 f— Pelvic trauma :
- [r— rate = NaN
Sum Points Score =..
-0.1 0 0.1
0 1 2 (3| 4] 5 Linear model
E g <5% | 129% | 32% | 66% | 88% |<99%] Decision tree
Risk score

Figure 5.7: During the survey, we presented the clinicians with a patient
sample (top), and descriptions of the three trained interpretable machine
learning models (from left: risk score, logistic regression, and decision tree)
applied to predict hemorrhagic shock for that sample (bottom). Clinicians
were asked to compute the predictions given a missing heart rate value and to
assess their understanding of and confidence in the models.

The first finding reveals that clinicians vary in their attitudes toward AT/ML

2https://www.traumabase.eu/en_US
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and missing values in patient records. The largest group (25% of participants)
used AT daily and favored interpretable methods, while another substantial
group (16%) preferred black-box models like MICE despite limited familiarity.
Across groups, a common current practice is that clinicians estimate clinically
plausible values using patient history and context to handle missingness in
clinical scores.

The second part of the survey presented an individual patient case with a
missing value and predictions from three IML models, including risk scores (Us-
tun & Rudin, , linear models (Hastie, Tibshirani & Friedman, , and
decision trees (Breiman, 7 which were selected for their interpretability
and likely familiarity among clinicians (e.g., risk scores) or intuitive structure
(e.g., decision trees). See Figure for an illustration of the survey interface.
Clinicians were asked to estimate the risk of hemorrhagic shock and describe
how they would handle the missing value. To control for performance, all
models were calibrated to similar accuracy (Molnar, Stiglic et al., .
This setup assessed how clinicians interpret model outputs with missing val-
ues, including their preferred imputation strategies (e.g., zero, or population
averages) or domain knowledge for each model. The results showed clinicians
favored models that either natively handle missingness or incorporate transpar-
ent, clinically intuitive imputation. Black-box methods like MICE (Van Buuren
& Groothuis-Oudshoorn, were generally disfavored for their lack of in-
terpretability. Implicit imputation, where clinicians estimated missing values
based on available features and their judgment, aligned more closely with clini-
cal reasoning in their current workflow and was preferred over explicit methods
like zero or mean imputation. Under missing value conditions, decision trees
and risk scores were most trusted, and at the same time, linear models drew
skepticism due to perceived limitations in handling missing values (Figure .
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Figure 5.8: Clinician preferences for imputation methods across different IML
models. We normalize by dividing the number who chose a combination by
the total, as the total votes for a model can vary.
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Finally, some findings identify key requirements for the design of IML
systems with test-time missingness, reflecting clinicians’ preferences. Clinicians
were generally open to using IML with missing values but emphasized the
need for clear guidelines, transparency in imputation, and communication of
uncertainty. Trust depended on reliability, and intuitive explanations. These
findings are consistent with prior work showing AI’s potential to support clinical
decision-making. For example, van der Meijden et al. (2023)) reports that 97%
of clinicians were familiar with AI, and 86% believed it could aid their work. As
emphasized by Tonekaboni et al. (2019) and Wiens et al. (2019), IML models
must undergo rigorous validation for performance, interpretability, and legal
compliance. Trust in IML grows when clinicians understand model behavior
and see outputs align with their expertise (Kelly et al., |2019)).

Future work should focus on developing IML methods that handle missing
values transparently without relying heavily on imputation, instead emphasizing
frequently observed features available at deployment time to better reflect
clinical workflows. Promising directions include reinforcement learning to model
the sequential nature of decision making, incorporating clinician intuition, and
validating these methods across diverse healthcare systems to support broader
adoption.
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5.5 Paper E: How should we present history in
interpretable models of clinical policies?

While Papers A-D focus on handling missingness in interpretable machine
learning models, Paper E shifts the focus to learning clinical policies from
patient time-series data using interpretable models. Modeling policies for
sequential clinical decision making from observational data can help describe
treatment patterns, standardize common practices, and evaluate alternative
strategies. Across these tasks, interpretability of the policy model is essential.
Building accurate models depends on how well the patient’s state is captured,
whether through sequence-based representations or carefully crafted summaries
of their medical history. Although recent work (Deuschel et al., [2024; Pace,
Chan & van der Schaar, 2022) has favored learned representations, the question
of how best to represent patient histories for interpretable policy modeling, and
how much detail should such summaries retain remains open. This work focuses
on model fit and presents a systematic comparison of diverse approaches to
summarizing patient history for interpretable modeling of clinical policies across
four sequential decision-making tasks.

Prm—— P p——— -
- Age I 67 68 69 Max Age 69
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Figure 5.9: History truncation and history aggregation using the max operator
applied to the history of a patient with rheumatoid arthritis. A rolling window
of size three is used for the history truncation. The context X; is a vector with
three components, X}, X?, and X}, representing the patient’s age, clinical
disease activity index (CDAI), and co-existence of cancer. The simplified action
space consists of three therapies and their combinations: methotrexate (MTX),
tumor necrosis factor (TNF) inhibitor, and Janus kinase (JAK) inhibitor.

The literature describes two common approaches to representing patient
history for interpretable modeling of clinical policies: (1) learned sequence
representations and (2) hand-crafted summary features, typically formed
through history truncation or history aggregation. Sequence models such as
recurrent neural networks (RNNs) can be used to learn compact summaries
of patient histories, which serve as the state S;. Alternatively, hand-crafted
features derived from truncated or aggregated histories can be used to fit
simpler, interpretable models such as linear or rule-based classifiers.

We specifically study how history summaries can be constructed and used in
policy modeling. History truncation involves selecting a fixed-size window of the
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Table 5.3: An overview of the models used in our experiments. Medical
decisions (actions) A; € A ={1,..., K}, recorded at each stage t =1,...,T
of treatment.Truncated history, H;

Model Interpretable policy  Accepts |A| > 2  Accepts Hy
Risk scores (RS) v

Logistic regression (LR) v v

Decision tree (DT) v v

Multilayer perceptron (MLP) v

Contextualized policy recovery (CPR)
Prototypical sequence network (PSN)
Recurrent decision tree (RDT)
Recurrent neural network (RNN)

AN NRN
AN NN

v
v
v

most recent events, under the assumption that distant history has less impact
on current decisions. History aggregation, in contrast, compresses historical
information—such as diagnoses or treatments—into coarse summary features,
disregarding temporal order. Figure[5.9]illustrates these representation settings.

To evaluate these strategies, we compare eight history representations across
four clinical decision-making tasks: therapy selection for rheumatoid arthritis,
MRI ordering for suspected Alzheimer’s disease, and ICU management of
sepsis and COPD exacerbations. We assess interpretable models trained on
both learned and hand-crafted history representations, including risk scores
(RS)(Ustun & Rudin, [2019)), logistic regression(Feng et al.,|2012; Spreeuwenberg
et al., [2010), and decision trees (Banerjee et al., 2019; Chrimes et al., [2023)),
with multi-layer perceptrons (MLPs) serving as black-box baselines. For
sequential decision-making tasks, we further include models designed to capture
temporal dependencies: contextualized policy recovery (CPR)(Deuschel et al.,
2024)), prototypical sequence networks(Ming et al., 2019)), recurrent decision
trees (Pace, Chan & van der Schaar, 2022), and RNNs as non-interpretable
benchmarks. An overview of all models is provided in Figure [5.3

The study shows that interpretable models can achieve strong performance
in clinical policy modeling—nearly matching black-box models—when patient
history is represented with care. Specifically, combining current observations,
the most recent treatment, and aggregated historical data provides sufficient
context for accurate decision modeling across diverse tasks. However, simple
representations using only the previous action (A;—1) can be misleading: while
they perform well on average, they fail in critical subgroups or early treatment
stages where decisions are more variable. Figure [5.10(a)|illustrates this clearly
in the Sepsis task: patients with unstable conditions (based on NEWS2 score
changes) require richer history representations for reliable predictions, as A;_1
alone underperforms significantly.

Figure shows how the performance of decision trees varies with their
complexity, measured by the number of leaves, for different state representations
in RA. Since we could not control the number of leaves directly, we trained
500 different models for each state representation, using randomly selected
hyperparameters. We then binned the models based on their complexity and
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Figure 5.10: Experimental results based on RA and Sepsis data sets.

selected the best-performing model in each “complexity bucket” (e.g., 10-20
leaves) to present in the figure. We only performed this experiment for a single
split of the data.

This work shows that simple summary features, especially recent treatments
and aggregates, can match the performance of black-box models. While
interpretable models generally performed well, limitations include potential
unmeasured confounding, and a narrow set of history summaries. Future work
could explore richer historical features and stage-aware policy models to reduce
bias in use cases like policy evaluation.
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Concluding Remarks and
Future Work

In this thesis, we study making predictions when missing values are present
during both training and test time, and present several methods that main-
tain high predictive performance while ensuring interpretable model outputs.
Established approaches often introduce bias through imputation or add com-
plexity via missingness indicators. Moreover, current methods fall short of
providing the interpretability needed for trust and accountability in high-stakes
decision-making. As discussed in Chapter [4 these limitations motivate the
need for alternative approaches. Our methods address this need by either lever-
aging missingness patterns directly or minimizing reliance on imputed values.
In doing so, they enable more transparent and high-performing predictions.
These contributions bridge theoretical foundations with practical deployment,
supporting decision-making and advancing the field toward human-centered Al
in real-world applications.

A key implication of our approaches, primarily described in Papers B and
C, is that imputed values are not treated as equivalent to observed ones. Unlike
most existing methods that optimize purely for predictive accuracy, e.g., by
imputing missing values and proceeding as if they were real observations (Josse
et al., 2024} van Buuren, 2018), our models are designed to express a preference
for observed over imputed values. This distinction enables more efficient and
informed use of available data, encouraging reliance on routinely collected,
high-confidence features. Practically, this can help avoid the need for costly or
invasive procedures, such as MRIs or biopsies, solely to fill in missing values.
For instance, rather than imputing a missing MRI scan, the model may rely
on routinely collected and lower-cost features, such as blood tests, vital signs,
or patient history, that still contribute meaningful predictive information, even
if they capture different aspects of the clinical picture. By prioritizing features
typically available at test time, our methods align more closely with clinical
workflows and deployment constraints. Unlike traditional approaches that rely
on imputation or missingness indicators during feature selection, we support
flexible variable selection tailored to real-world conditions.

45
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6.1 Future Directions

As a future direction for the tree-based MA models described in Paper C,
one approach to eliminate dependence on missing values at test time is to
enforce missingness reliance, p = 0, by adopting a fallback strategy: halt
the decision process and return the label of the current node whenever a
missing value is encountered. For Paper D, which focused on a network of
trauma clinicians in France, extending the study to other healthcare systems
in different countries would add significant value. It would allow us to assess
the generalizability of our findings and compare how clinicians across systems
handle missing values. Additionally, it would help us understand how models
like MINTY or MA perform under varying clinical documentation practices.
Such external validation also enables us to study how clinicians interact with
interpretable machine learning systems in different settings. It offers insights
into trust, usability, and workflow integration, and fosters communication and
reasoning about missing values. These findings can inform the design of models
that support—rather than disrupt—clinical decision-making, advancing robust,
interpretable systems for real-world human—AI collaboration in healthcare.

An important challenge for models that reason over missing features is their
vulnerability to distribution shifts, particularly in the medical domain (Sperrin
et al., |2020). The interpretability offered by methods such as SPSM, MINTY, and
MA learning is essential for detecting and adapting to such shifts. Future work
could further investigate how changes in missingness patterns contribute to
distribution shift and affect model reliability.

While Paper E investigates time-series data of patient histories using inter-
pretable models, a promising direction is to extend MA-learning to temporal
settings. As motivated in that paper, many health care problems are inher-
ently sequential, where the timing and order of events, such as medication
administration, lab tests, or symptoms onset, are critical for accurate predic-
tions (Chakraborty & Moodie, 2013} Gottesman et al., 2019). The reasons for
missingness are similar to those in non-sequential data, often due to missed ap-
pointments, delayed diagnostics, mislabeled samples, or sensor failures (Madden
et al.,|2016]). These gaps are not only common but often informative (Groenwold,
2020)), e.g., deteriorating patients may skip follow-ups or require emergency vis-
its, making it crucial to design methods that leverage and remain robust to such
patterns. An open question is whether MA learning principles can also benefit
black-box models, such as recurrent neural networks or transformers. Although
these models excel at capturing temporal dependencies, they typically rely
on masking or imputation without modeling missingness mechanisms explic-
itly (Che et al., [2018). Incorporating MA-inspired objectives, such as auxiliary
losses that penalize prediction variability across imputed or partially observed
inputs or encourage shared representations across missingness patterns, could
improve flexibility and interpretability.
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