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The electrification of road transport is a cornerstone in the global ef-
fort to reduce greenhouse gas emissions and fossil fuel dependence.
However, modern electric vehicles (EVs)—particularly plug-in hybrids
(PHEVs) and battery electric vehicles (BEVs) with modular and multi-
actuator powertrains—introduce new control challenges due to their
high degree of freedom in power delivery and drivetrain configuration.
Effectively managing the energy flow in such systems is essential to
maximize their efficiency and performance in real-world driving.

This thesis investigates the development of computationally efficient,
model-based supervisory energy management strategies for over-
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actuated EVs. These strategies coordinate both continuous and discrete control decisions—such
as power-split between propulsion sources, gear selection, and clutch engagement—while explic-
itly accounting for the transient and hybrid dynamics of powertrain components. The overarching
objective is to enhance energy efficiency without compromising key vehicle performance attributes.
To achieve this, customized control-oriented models of key powertrain components are developed
and integrated into mixed-integer model predictive control (MI-MPC) strategies, with specialized so-
lution algorithms proposed to enable online implementation within the computational constraints of
embedded automotive systems. The effectiveness of the proposed methods is demonstrated across
multiple EV architectures through high-fidelity simulations. Additionally, the thesis explores torque
vectoring mechanisms in dual-motor BEVs to improve handling and energy efficiency during dynamic
driving maneuvers.

Altogether, this work presents a unified, online-capable energy management framework for over-
actuated electric vehicles, laying the foundation for intelligent, energy-efficient, and performance-
aware vehicle control.
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Abstract

Modern electric vehicles, particularly plug-in hybrid electric vehicles (PHEVs)
and battery electric vehicles (BEVs), often feature over-actuated powertrains
with modular architectures that offer high degree of control freedom. Efficient
energy management is essential to maximize the operational efficiency (driving
range) of these EVs, without compromising performance.

This thesis presents an efficient model-based supervisory energy manage-
ment framework that co-optimizes torque allocation and discrete decisions
online, in over-actuated EVs. Control models capturing powertrain hybrid
dynamics are explicitly incorporated into the optimization problem to mini-
mize energy consumption and reduce frequent discrete transitions that degrade
performance. Time-scale separation in the supervisory control structure is
leveraged to ensure model tractability. To solve the resulting mixed-integer
nonlinear problems, customized solution strategies are proposed that exploit
their problem structures: relaxation-based methods for PHEVs and bilevel
programming approach for BEVs. The framework is implemented using model
predictive control and validated with high-fidelity simulations.

The results demonstrate that explicit inclusion of engine dynamics in power-
split optimization yields up to 10 % energy savings over a rule-based baseline
in PHEVs. At least an additional 3.6 % energy savings is achieved by co-
optimizing torque allocation and discrete decisions in both EVs with only a
marginal increase in discrete transitions.

Finally, this work also investigates the integration of torque vectoring mech-
anisms in dual-motor BEVs through a comprehensive torque distribution strat-
egy. This proposed approach enhances energy efficiency, steering performance
and dynamic handling, illustrating the potential in advancing the performance
envelope of multi-motor EVs.

Keywords: Numerical optimization, nonlinear programming, mixed-integer
programming, dynamic programming, model predictive control.
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CHAPTER 1

Introduction

1.1 Motivation and Background

Transportation has long been a catalyst for economic and social development,
facilitating global trade, mobility, and access to opportunities. However, its
heavy reliance on fossil fuels makes it a major contributor to greenhouse gas
(GHG) emissions, accounting for approximately 23 % of global COs emissions
[1], [2]. With transport demand expected to more than double by 2050, emis-
sions could increase by over 65 % unless significant mitigation strategies are
implemented [2], [3]. To address this challenge, there has been a strong so-
cietal push toward sustainable mobility solutions over the past two decades,
particularly through electrification of transportation systems [4], [5].

Electric vehicles (EVs) are at the forefront of this transition, offering con-
siderable reductions in GHG emissions throughout the energy production and
consumption cycle by employing highly efficient powertrains and enabling inte-
gration of renewable energy sources [2], [6], [7]. Advances in electric propulsion
technologies have bolstered the acceptance of EVs as a viable alternative to
conventional internal combustion engine (ICE) vehicles, leading to mass adap-
tation over the last decade [5], [7]. However, achieving "Net Zero by 2050"
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emission levels requires global EV penetration to nearly triple by 2030, reach-
ing 60 % of total car sales [7], [8]. To meet these targets, persistent barriers
to EV adoption must be addressed with greater urgency.

Among EVs, battery electric vehicles (BEVs) are recognized as a crucial
component of the transition due to their superior net energy efficiency, zero
tailpipe emissions, and lower carbon footprint [1], [7], [9]. However, compared
to fossil fuel vehicles, the lower energy density and high cost of current battery
technologies have led to limited driving ranges and longer charging (fueling)
times for BEVs [5], [7]. Consequently, range anxiety still remains a significant
barrier to widespread adoption of BEVs, along with concerns about high initial
cost and charging infrastructure maturity [5]. (Range anaziety refers to the
concern that a BEV may not have sufficient charge to complete a journey,
considering the available driving range per charge and the accessibility of
chargers along a route.) Addressing these challenges is essential to further
accelerate BEV adoption. To mitigate range anxiety, improving the driving
range per charge of a BEV through strategies that enhance its operational
efficiency is crucial. For example, integrating energy management into vehicle
motion control algorithms allows for maximizing operational efficiency without
compromising performance [10]-[12].

Until a decade ago, hybridization was touted as a transitional solution to-
wards full electrification [2], [8]. However, this perception is evolving, as hy-
brids are less affected by resource constraints—such as the availability of rare
and critical earth elements, silicon shortages, and technological challenges in
battery development—compared to BEVs [8], [9]. Additionally, shifts in polit-
ical stances and policies, including the withdrawal of electrification incentives
in major economies and pricing-related trade wars, have further contributed
to this change [3], [8], [9]. This is evident from global EV sales in the last
decade, where plug-in hybrid electric vehicles (PHEVs) have consistently gar-
nered 30 % market share against BEVs [9]. PHEVs offer the best of both
worlds, using gasoline for longer trips to mitigate concerns related to charg-
ing infrastructure and range anxiety, while using electricity for shorter trips
to reduce emissions. They also feature shorter charging times than BEVs
due to smaller battery capacities and boosts cost structures comparable to
conventional ICE vehicles. Hence, hybrids are here to stay and are expected
to maintain a significant market share of the EV landscape in the coming
decades, until a major breakthrough in alternative energy vehicles occur [8].



1.1 Motivation and Background

Beyond ecological benefits, the evolution of PHEVs and BEVs presents new
opportunities for innovation and optimization, to revolutionize vehicle perfor-
mance and efficiency. FElectrification is not merely about replacing an ICE
and fuel tank with an electric machine and battery. Instead, it necessitates a
comprehensive rethinking of vehicle architecture, from power generation and
storage to delivery. This transition requires a complete redesign of power-
train and energy management systems to effectively optimize energy storage,
distribution, and utilization. For instance, in addition to meeting complex
legislation and stringent emissions requirements, modern EV powertrains are
increasingly tailored to diverse customer segments to balance cost competi-
tiveness with performance and efficiency, resulting in many variants.

A crucial aspect of this evolution is the modularization of electric power-
trains, which increases inherent complexity and introduces significant control
challenges. These powertrains integrate various components such as advanced
batteries, actuators such as electric motors and ICEs, and sophisticated con-
trol units, each with unique operational characteristics and efficiency consid-
erations. For example, an electric machine (EM) and a battery are added to
enable regenerative braking and efficient operation of ICE in hybrids, while
modern BEVs employ multiple EMs to enhance performance and efficiency
[12]-[15]. Like BEVs, PHEVs also allow battery recharging from the grid,
expanding their operational flexibility. This modularization quite often leads
to over-actuated systems, where the driving demand can be met by a single
propulsive or braking actuator or through different combinations of actuators
[15]-[18]. It also allows for strategic placement of motors and their indepen-
dent control to improve vehicle dynamics and energy management. Further-
more, such configurations are particularly advantageous when the advanced
strategies employed can exploit these control freedoms to adapt to varying
driving conditions and energy usage requirements, thereby enhancing both
the drivability and environmental footprint of the vehicle.

Another advancement in modern electric powertrain architectures is the use
of decoupling devices like clutches to reduce drag and idle losses of actuators.
Typically, three-phase synchronous machines (e.g., permanent magnet syn-
chronous motors, synchronous reluctance motors, and brushless DC motors)
or asynchronous machines are used in such applications, and controlled via
three-phase inverters. These machines exhibit differences in their rotational
dynamics based on factors such as the relative difference in their inertia (elec-
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trical and mechanical) and the presence of clutches in the torque delivery path,
which can disconnect the electric machine(s) during free rolling scenarios to
reduce drag losses [11], [19], [20]. Furthermore, like conventional ICE vehicles,
multispeed transmissions are employed in PHEVs to operate ICE efficiently
across a wide speed range. An effective way to achieve higher energy efficiency
and extend the driving range of such powertrains is to optimize the torque
distribution between the actuators and the choice of gear selection and decou-
pling decisions, allowing the total energy demand and the system losses to be
minimized. Also, to fully realize the benefits of such modularized powertrains,
it is essential that their dynamic behaviors are adequately considered in the
respective control strategies used.

Furthermore, as vehicles become more connected and capable of processing
complex information, energy management and vehicle motion control strate-
gies at the route-level planning layer can increasingly leverage both real-time
and predictive data from cloud services and connected infrastructure (e.g.,
traffic conditions, route information, etc.). Meanwhile, modern EVs are often
equipped with advanced electronics, sensors, and software—largely driven by
advancements in autonomous driving—offering enhanced sensing, localization,
and traffic behavior prediction capabilities for trajectory planning and control
layers. These developments enable vehicles to interact more intelligently with
their environment, creating significant opportunities for better-informed de-
cisions that balance energy efficiency, performance, safety, and driving range.
Leveraging this information effectively in real time is essential for adapting to
varying driving conditions and user demands in practical scenarios. In addi-
tion, ensuring low computational demand is critical for online implementation
of these control strategies, as the balance between modeling complexity and
computational efficiency directly impacts the cost and feasibility of deploying
such advanced systems in mass-produced vehicles.

These opportunities necessitates sophisticated supervisory control frame-
works and strategies capable of leveraging the higher control freedom of mod-
ern EVs, integrating predictive data, and adapting to driving conditions, user
demands, dynamics of systems and components, and operational requirements
and limitations, while balancing energy utilization against other vehicle at-
tributes. In addition, the ability to handle powertrain and vehicle variants
through generic and flexible control structures is vital for real-world applica-
tions.
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1.2 Challenges and Prospects for Efficient Control
of Over-Actuated EVs

Research in EV control strategies has been intensive, driven by the urgent
need for sustainable transportation and the increasing complexity of EV ar-
chitectures. This work focuses on addressing a key question: How can the
high degree of control freedom offered by modularized EV propulsion sys-
tems, coupled with advances in sensing and computational capabilities, be
leveraged to enhance or balance energy efficiency and performance in modern
over-actuated EVs in a computationally efficient manner?

As discussed earlier, modern EV powertrain architectures are becoming in-
creasingly decentralized, incorporating multiple actuators—such as internal
combustion engines (ICEs), electric machines (EMs), decoupling devices, and
friction brakes—which offer a high degree of control flexibility and modular-
ity [12], [13]. Key control decisions to optimize the operational efficiency of
such over-actuated or multi-motor electric vehicles (MMEVs) are typically
grouped into control allocation (CA) [16], [21], [22], and discrete decisions
(18], [19], [23]. Among these, CA is a continuous decision that refers to the
strategic distribution of driving demand between the propulsive and braking
actuators such as ICEs, electric drives and friction brakes [22]. Depending on
the powertrain layout, CA is further categorized into front-rear [11], [24] and
left-right distributions [15], [19]. Based on the chosen control variable, it can
be described in terms of torque, power, or force allocation (or split) [21], [25],
[26]. Similarly, discrete decisions include gear selection that involves choosing
the optimal gear for efficient operation [23] and decoupling decisions that use
mechanisms such as clutches to disconnect drivetrain components and reduce
idle losses [18]—[20]. In addition to these decisions, vehicle speed can also be
optimized to improve energy efficiency, especially in scenarios like autonomous
driving and cruise control [14], [27].

Despite significant advancements, several key challenges remain in control-
ling these decisions, particularly in PHEVs and BEVs. From the perspective
of vehicle motion, most studies in the literature have focused primarily on lon-
gitudinal motion, optimizing the front-rear torque distribution and decoupling
in both PHEVs [28]-[31] and BEVs [11], [19], reporting notable energy savings
[19], [24] and braking improvements [32], [33]. Some studies have also investi-
gated torque vectoring (TV), which manages the left-right torque distribution,
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showing improvements in safety, cornering agility, and energy efficiency [15],
[34]-[36]. TV influences multiple degrees of vehicle motion including lateral,
yaw, pitch, and roll. In recent studies, combined control of front-rear and
left-right torque distributions has been shown to improve traction, stability,
maneuverability, and at-the-limit driving [37]-[40]. However, further research
is needed to understand the potential of this holistic strategy, referred to in
this work as the comprehensive torque distribution (CTD), in improving the
operation efficiency of over-actuated EVs.

CTD strategies have been predominantly studied in individual wheel drive
(IWD) architectures [38], [41], owing to their high control flexibility. However,
IWD systems are generally more expensive and complex than dual-motor ar-
chitectures, where each motor powers an axle [26], [42]. The latter architecture
is widely used in modern EVs as it provides a favorable balance between cost
and performance, but lacks TV capabilities inherent in the former. Therefore,
establishing the energy efficiency and performance enhancement potential of
integrating torque vectoring mechanisms in dual-motor EVs remains an active
area of research.

From the perspective of control decision type, most studies on EV energy
management have focused solely on CA, typically handling it using offline opti-
mization approaches [12], [24] or heuristic methods such as rule-based or fuzzy
logic controllers based on empirical insights [43], [44]. These approaches suffer
from suboptimal solutions, as discrete decisions are neglected. Moreover, even
advanced techniques like equivalent consumption minimization strategy and
Pontryagin minimum principle struggle to handle system dynamics and ignore
discrete decisions [16], while dynamic programming (DP), although effective,
is often impractical in real time due to computational burden [45].

Studies that jointly optimized CA and decoupling decisions have shown im-
proved operational efficiency and reduced consumption [11], [17], [19], [31].
However, frequent changes in discrete decisions, resulting from the static na-
ture of these purely heuristic or offline strategies, can degrade the drivability,
comfort, and useful life of components [17], [46], [47]. Hence, such frequent
changes should be addressed when handling discrete decisions in MMEVs.
Also, the effect of reducing these frequent changes on energy consumption
remains to be established. Furthermore, co-optimizing these continuous and
discrete decisions leads to mixed integer nonlinear programming (MINLP)
problems [17], [48], [49], which are computationally intensive and often NP-
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hard [50]. Algorithms such as DP, branch-and-bound, and cutting planes can
find global solutions to these problems [51]-[54], but exponential worst-case
time complexity and substantial run-time variations limit real-time use [55],
[56]. Therefore, developing computationally efficient algorithms that provide
near-optimal results is critical for the practical deployment of advanced control
strategies in EVs.

Furthermore, a common modeling simplification in these energy manage-
ment studies is the use of steady-state efficiency maps and static optimization
or control approaches. Although computationally efficient, these methods
can lead to mismatches between expected output and actual vehicle behav-
ior under dynamic conditions [57], [58]. This mismatch is particularly pro-
nounced during high transient loads on ICEs, and during engagement and
disengagement of mechanisms with discrete states. Specifically, compared to
conventional vehicles, PHEVs experience more frequent ICE transients due
to discrete operations such as start-stop and mode switching, and the use
of potentially downsized engines. Thus, incorporating dynamic models into
control strategies is essential to accurately capture the real-time behavior and
performance of actuators.

Based on the research gaps discussed above, key research questions (RQs)
that frame the scope of this work are as follows:

RQ1 Can the modeling of transient dynamics of powertrain components and
the co-optimization of torque allocation and discrete decisions in mod-
ular powertrains be effectively leveraged by model-based supervisory
energy management strategies to enhance the operational efficiency of
over-actuated electric vehicles without compromising performance at-
tributes?

RQ2 How can the unique properties of mixed-integer energy management
problems in over-actuated electric vehicle variants be effectively lever-
aged to customize advanced solution methods, reducing their computa-
tional demands and enabling online implementation?

RQ3 Are there benefits in employing torque vectoring systems along with
a comprehensive torque distribution strategy in axle-driven dual-motor
electric vehicles?
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1.3 Contributions

This work addresses the complex control challenges associated with leverag-
ing modular powertrain architecture and their component dynamics, as well
as efficiently solving mixed-integer problems, to establish a comprehensive
online-capable energy management framework for over-actuated EVs. Ac-
cordingly, it presents a model-based supervisory control framework that co-
optimizes torque allocation and discrete decisions (gear selection and clutch
on-off) online, enabling a balance among the competing control objectives: en-
ergy consumption against other key performance attributes. To realize this,
state-of-the-art control concepts, including model predictive control (MPC)
and mixed-integer programming, are used alongside conventional vehicle dy-
namics and control approaches. Furthermore, computationally efficient solu-
tion algorithms are developed to solve the resulting mixed-integer problems,
enabling online deployment feasibility of the proposed framework in real-world
over-actuated EVs.

To address RQ1 in PHEVs, control-oriented dynamic models of gasoline
ICEs have been developed that capture both slow and fast dynamics, en-
hancing the energy savings realized by power-split controllers. These models
account for air mass flow dynamics, fuel flow dynamics, and kinetic energy in
engine components, and have been directly integrated into the MPC frame-
work. This integration allows for more precise prediction of actuator behavior,
enhancing the controller’s ability to manage transient loads effectively.

Addressing RQ1 and RQ2, to minimize energy consumption in PHEVSs,
a centralized mixed-integer optimal control strategy has been implemented
to co-optimize power split and gear choice. This strategy, novel in its ex-
plicit consideration of the engine dynamics model stated above and a gear
dynamics model (which captures its discrete changes and associated energy
loss), provides considerable benefits to fuel economy without frequent gear
changes. This work uses relaxation and reformulation techniques that reduce
computational demands, enabling online solution of complex mixed-integer
optimal control problems (MIOCP). Furthermore, two new numerical strate-
gies, the Selective Relaxation Approach (SRA) and the Round-n-Search Ap-
proach (RSA), have been proposed to solve discretized MIOCP efficiently and
feasibly across various driving missions. Based on a virtual evaluation of the
proposed concept, detailed analysis of performance and computational effi-
ciency against conventional strategies like rule-based gear selection and DP
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has been provided.

Addressing RQ1 and RQ2 in the context of BEVs, a dynamic clutch model
(which captures clutch engagement changes and its losses) and a bi-level so-
lution approach have been developed. The proposed control strategy opti-
mizes CA and decoupling decisions to achieve higher energy savings without
frequent changes in clutch engagement, thus avoiding negative impacts on
vehicle comfort and component wear. The computationally efficient bi-level
solution strategy ensures global optimality for complex mixed-integer prob-
lems encountered online in energy management of over-actuated BEVs. These
strategies have been conceptually validated in high-fidelity closed-loop virtual
test environments to indicate robustness and real-world applicability.

Furthermore, addressing RQ3 in the context of BEVs, this work inves-
tigates the performance and energy efficiency of various powertrain layouts
with TV capabilities, particularly focusing on differential mechanisms suit-
able for different MMEV configurations. A systematic approach is adopted
to optimize vehicle path, trajectory, and control decisions—-including torque
distribution and steering angles—-to maximize potential benefits across var-
ious performance objectives and dynamic driving maneuvers. The relative
benefits of proposed MMEVs with TV capabilities are established against a
conventional open differential layout using high-fidelity vehicle models in a
virtual test environment.

The main contributions of the thesis are summarized as follows:

o Customized control-oriented models that capture the dynamic torque re-
sponse and fuel consumption of gasoline ICEs, and the discrete dynamics
and associated energy losses of gear selection and clutch engagement-
disengagement are developed to leverage the capability of model-based
control frameworks in the mixed-integer energy management of over-

actuated EVs. (RQ1 addressed in Papers A, B, and C.)

¢ An MPC-based mixed-integer (MI) energy management framework, which
explicitly considers powertrain dynamics and employs a supervisory con-
trol structure, is proposed to enhance the operational efficiency of over-
actuated PHEVs and BEVs, while minimizing the negative consequences
of frequent changes of discrete decisions. (RQ1 addressed in Papers
B, and C.)

e To solve the centralized MI problem of power-split and gear selection in
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PHEVs to near-optimality, two computationally efficient numerical so-
lution strategies are presented, in which relaxation strategies were cus-
tomized by leveraging the iterative nature of the proposed MPC based
energy management strategy. (RQ2 addressed in Paper B.)

A bi-level decomposition approach is proposed to optimally and effi-
ciently solve the MI problem of torque allocation and clutch on-off deci-
sions in multi-motor BEVs, by leveraging the convexity of the allocation
subproblem and employing analytical solution and implicit-DP to solve
the decomposed subproblems. (RQ2 addressed in Paper C.)

The potential benefits of integrating TV systems and the CTD strategy
in an axle driven dual-motor BEV are established using high-fidelity
vehicle models and a combined path and trajectory planning problem
with steering angle, torque distribution, and clutch on-off as control
variables. (RQ3 addressed in Paper D.)

1.4 Thesis Outline

This compendium is structured as two parts. Part-I consists of five chapters

that provides an introduction and overview of the research articles appended in
Part-II. Within Part-I, Chapter 1 motivates and introduces the research topic,
Chapter 2 describes the modeling approaches considered for control and plant
models, Chapter 3 discusses the energy management problem in EVs, control
architecture and control synthesis approach adopted in the work, Chapter 4

summarizes the research articles, and Chapter 5 presents some concluding

remarks and directions for future research in the field.
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CHAPTER 2

Vehicle Modeling

This chapter outlines the modeling approaches adopted in this research. First,
the considered EV powertrain architectures and configurations are introduced.
Next, the control-oriented modeling approach is described, which leverages
time-scale separation in supervisory control to simplify actuator, clutch, trans-
mission, and driveline models, balancing accuracy and computational effi-
ciency. Finally, vehicle dynamics models of varying fidelity, tailored for both
control design and high-fidelity simulations, are briefly discussed.

2.1 Powertrain Architectures

Modern EV powertrains are characterized by a high degree of modularity
and diversity in design, offering varying levels of performance, efficiency, and
complexity. These architectures encompass a wide range of design aspects,
including the number, type and configuration of electric machines, coupling
and switching devices, transmission systems, and the topological arrangement
of components. This complexity is further compounded by the number of
operational modes supported by an architecture, enabled by the interaction
of coupling devices, actuators, and transmissions, as well as by the strategies
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used to control these components.

The powertrain architectures of these modern EVs, classified based on the
degree of electrification, range from mild-hybrid EVs to pure EVs [14], [59].
Depending on the number and rated capacity ratio of energy sources and
power delivery mechanisms in their propulsion systems, hybrid EVs are fur-
ther sub-classified as mild hybrids to plug-in hybrids (PHEVs) [14], [59]. For
example, PHEVs use two or more energy sources, like a battery in combi-
nation with gasoline, where one or more electric machines (EMs) contribute
partially or entirely to propulsion alongside an ICE. Correspondingly, these
vehicles exhibit increasing voltage levels, with most commercially available
PHEVs operating above 300V and typically offering electric ranges under
100km [60], sufficient enough to cover average daily-commute distance for
most drivers [61], [62]. Furthermore, based on operating modes and power
flow between the powertrain components, these vehicles are also categorized
as series, parallel, and power-split hybrid vehicles [14], [59].

Similarly, pure EVs are classified on the basis of the mechanism used to
store or convert electrical energy, including battery electric vehicles (BEVs)
and fuel cell electric vehicles. Compared to hybrids, pure EVs exhibit more
diversity in their configuration. powertrain configurations and architectures,
each designed to optimize chosen performance characteristics [12], [13], [63],
[64]. While hybrids use both electricity and gasoline, pure EVs use only elec-
trical energy from one or more sources such as fuel cells, ultra-capacitors, and
batteries, each with their own advantages and challenges [65], [66]. On the
actuator side, distributed architectures featuring multiple motors and drive-
trains have gained prominence due to their modularity, control flexibility, and
superior performance over centralized architectures limited to a single mo-
tor driving an axle [12], [13], [15]. These multi-drivetrain configurations range
from simple dual-motor setups [11] to more complex designs with independent
motors for each wheel [19], [37]. As discussed in Section 1.2, individual wheel
drive (IWD) configurations offer the highest degree of control freedom and
performance capabilities, but suffers from a relatively higher cost, weight, and
control complexity than simpler single-motor setups, where one EM drives a
single axle. Comparatively, dual motor setups (where each motor drives an
axle) offers the best of both worlds, providing higher control freedom than
single motor setups and lower cost, weight, and complexity than TWDs [26],
[42]. Consequently, IWDs are preferred in performance-oriented EVs, while
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Figure 2.1: Parallel PHEV powertrain configuration.

dual-motor configurations are common in modern EVs that aim to balance
cost and performance. Single-motor setups remain the predominant and eco-
nomical choice for entry-level models due to their simplicity and affordability.

Plug-in Hybrid Electric Vehicle Powertrain

In this work, the PHEV powertrain configuration shown in Fig. 2.1 is used in
Papers A and B. It consists of an ICE and an EM connected to the wheels
via a clutch, a multispeed transmission, and associated driveline, with gasoline
and a battery being the energy sources. From a power flow perspective, this
represents a parallel-hybrid, where both electric and gasoline based propulsion
systems can operate separately or combined to deliver the traction demand.
Although ICE and EM are mechanically connected to the same drive shaft
via a pre-transmission clutch, the system is designed and rated to support the
seven distinct operational modes of a typical parallel-hybrid [14], [59]:

(1) Pure electric mode in which EM propels the vehicle while ICE is off.
(2) Conventional ICE mode, where ICE drives the vehicle, with EM off.

(3) Hybrid drive (power assist) mode, where both ICE and EM share trac-
tion demand.

(4) Generation mode, where ICE recharges the battery in addition to deliv-
ering traction demand.
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(5) Regenerative braking mode in which the EM recuperates the kinetic
energy during braking into the battery, with the ICE off.

(6) Recharge mode, where both actuators are mechanically disconnected
from the driveline, but the ICE still charges the battery with the EM.

(7) Coasting mode, in which ICE and EM are disconnected (both mechan-
ically and electrically) from their sources and transmission.

Mode 1 is typically preferred in city driving with frequent start stops, as
ICE has poor efficiency in low-speed high-torque operations, while mode 2 is
preferred in high-speed and long-distance driving to address range anxiety.

Compared to traditional PHEVs, the powertrain layout considered in this
work has some unique features and limitations. Due to the absence of a
clutch between the actuators, the ICE remains connected to the driveline even
when off, incurring additional frictional losses in modes 1 and 5. Similarly,
EM remains connected and rotates passively in mode 2, introducing mag-
netic drag losses—particularly for permanent magnet synchronous machines
(PMSMs) widely used in EVs [11]-[15]. Also, notice that this system does
not support series hybrid operation, which requires two EMs to be connected
separately to the ICE and wheels. In contrast, a unique feature of this archi-
tecture is the ability to isolate both actuators with a single clutch in modes
6 and 7. This improves powertrain efficiency by reducing drag losses and al-
lowing free rolling (coasting) in flat-road or downhill driving, with or without
battery charging, respectively.

In addition to these modes, the multi-speed transmission used effectively
emulates the presence of multiple powertrains by scaling the speed-torque
characteristics of the actuators according to the selected gear ratio, thereby
increasing the control complexity.

Battery Electric Vehicle Powertrain

In this work, to investigate the potential benefits offered by the multi-motor
BEVs, different powertrain configurations are considered, wherein the strate-
gic distribution of driver demand among electric drives and friction brakes is
exploited by advanced control algorithms. For instance, the dual motor pow-
ertrain configuration shown in Fig. 2.2 is commonly used in production BEVs
and, therefore, it is considered a baseline configuration in Papers C and D.
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Figure 2.2: Baseline dual motor powertrain configuration.
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Figure 2.3: Dual motor powertrain with torque vectoring dual clutches in the rear.

This configuration allows only the front-rear distribution, affecting longitudi-
nal and pitch motions. The powertrains of such EVs widely use permanent
magnet machines whose magnetic drag losses are notably higher than induc-
tion machines. Consequently, a variant of this powertrain with decoupling
clutches, similar to that shown in Fig. 2.3, is used in Papers C and D to
understand the impact of minimizing idle losses by isolating an electric drive
(ED) under zero load, on the overall energy consumption. This drag loss re-
duction potential exists in scenarios such as coasting, where all EDs are idling,
and in two-wheel-drive mode, where only one ED delivers load demand. In
contrast, there is no drag reduction potential in an all-wheel drive scenario,
where both EDs are active.
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Figure 2.4: Dual motor powertrain with electric torque vectoring differential in the rear.
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Figure 2.5: BEV powertrain with individual wheel drive in the rear.

Furthermore, the baseline configuration lacks the left-right distribution ca-
pability, commonly referred to as torque vectoring (TV). TV allows control of
both the magnitude and direction of the wheel torques, creating a differential
torque between the left and right wheels. This torque differential generates a
yaw moment that turns the vehicle in the direction of the wheels with the lower
torque, enhancing cornering performance while reducing steering effort. To
impart this capability in dual motor EVs, different TV mechanisms have been
explored in Paper D. For instance, Fig. 2.4 shows a conceptual powertrain
configuration in which a TV mechanism, referred to as electric TV differential
(eTV), is integrated in the rear axle. Similarly, Fig. 2.3 presents a configu-
ration equipped with a TV dual clutch (TVDC) mechanism in the rear axle.
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Finally, Fig. 2.5 portrays a variant of the IWD configuration, often preferred
in high-performance MMEVs. This configuration supports both front-rear and
left-right distribution, offering enhanced vehicle control capabilities.

2.2 Propulsive Actuators (Prime Movers)

To improve the energy efficiency of EVs using advanced model-based control
techniques and to perform effective simulations, the dynamics of the power-
train actuators must be modeled, along with their efficiency or losses, total
energy consumption and limitations. Among the actuators used in EVs, ICE
is unique to hybrids, while EM is common to all EVs. Both actuators pose
different challenges in modeling their dynamic behaviors and consumption.

Challenges in Modeling Actuator Dynamics

Accurately modeling the dynamics of ICE is quite challenging because of the
highly complex nonlinear interactions of its subsystems. Among the main
factors that affect the dynamics of a gasoline ICE, the air-mass flow dynamics
in the intake and exhaust manifolds, the fuel flow dynamics in the intake,
and the kinetic energy in the crankshaft and flywheel of the engine generally
exhibit a slower response to control, while the combustion efficiency dynamics
exhibits a faster torque response [57], [67], [68]. Modeling approaches that
capture these dynamics with sufficiently high accuracy [67] have been used as
plant models in the dynamic simulation setups used in this work (Papers A
abd B). However, their computational demand is often prohibitive for online
energy management systems.

Similarly, in the case of an EM, it is important to capture the dynamics
in three domains—magnetic, electrical, and mechanical-by modeling the inter-
action and effects of quantities such as direct and quadrature axis currents,
voltages, stator and rotor flux linkages, inductance, frequencies, etc., and their
relationship to the speed and torque of the machine, to implement effective
motor controllers and plant models [69]-[71]. Subsequently, detailed mod-
els capturing multi-domain dynamics (including thermal, electrical, chemical,
and mechanical) of the actuators and its components have been used as plant
models for simulation, while their control-oriented models are used in the
proposed strategies in this study.
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A holistic description of these plant models is omitted for practical reasons.

Leveraging Time-Scale Separation in Hierarchical Control for
Modeling Actuator Dynamics

From the perspective of a supervisory controller that sets references or targets
for a lower-level actuator controller (such as engine or motor controllers),
simpler models—significantly less complex than those discussed above—have
been widely used [14], [68], [72]-[75]. Such a model simplification is adopted
in this work as follows.

In Papers A-C, hierarchical control architectures in which supervisory
controllers at higher levels (strategic layers) set references that reduce energy
consumption over a longer time horizon. The lower-level controllers use these
references to control their respective actuators along with the task of han-
dling rapid dynamic events. Compared to lower-level controllers, supervisory
controllers typically operate at a time scale several orders higher and preview
future conditions over a longer horizon, enabling energy-efficient operation
while adapting to system limitations. (This hierarchical structure aligns with
established approaches in EV energy management [17], [18], [49], [74], whose
details are further discussed in Section 3.2.) For such supervisory controllers
with preview capability, control-oriented models that capture both transient
and steady-state behaviors of an actuator-controller closed-loop system have
been used to reduce complexity and be computationally tractable [14], [57],
[68], [72]-[74]. Here, closed-loop dynamics refers to the overall dynamic be-
havior of the actuator under feedback control, encompassing both the intrinsic
response of the actuator and the ability of its internal controller to track a
reference signal.

In line with these principles, the dynamics of a supercharged gasoline ICE
with its integrated engine control module (ECM) is modeled as a closed-loop
actuator-controller system, and used as control models in Papers A and B.
This approach enables us to capture the closed-loop dynamics of the ICE cor-
responding to its fuel consumption rate (proportional to the fuel power, Pr)
and torque delivery (M), as a function of ICE speed and torque (or power)
request, at time scales relevant to the supervisory controllers. In contrast,
the torque response dynamics of an EM is significantly faster than gasoline
engines, reaching steady-state values within the time scales relevant to super-
visory control. This enables further simplified treatment and greater flexibility
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in control. Therefore, for the controllers in Papers A-D, the torque delivery
of an EM (Me) is modeled as a static relation to its torque request (Mem req),
ie. Mem = Mem req- Similarly, system losses, power and torque limits, effi-

ciency and energy consumption rate of the actuators are modeled as static
relationships including steady-state measurements.
Fig. 2.6 shows the steady-state efficiency map (measured) of ICE used in

Papers A and B, as a function of normalized power and speed.

It also
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presents the speed-dependent operational limits and maximum efficiency val-
ues. The negative power region indicated on the map corresponds to engine
braking due to retard function or speed-dependent internal friction. Fig. 2.7
shows a similar efficiency map of an EM used in those papers, which also
includes inverter losses in both the propulsive and regeneration regions.

2.3 Decoupling and Power Transfer Components

In EV powertrains, a clutch plays a critical role in enhancing energy efficiency
by disconnecting idling actuators from their power source or wheels, thus
minimizing drag losses during periods such as coasting or in two-wheel drive
operations in the case of an MMEV. As discussed in the previous chapter,
the magnitude of these losses varies with the type of actuator employed. For
instance, ICE and permanent magnet EMs typically exhibit higher drag losses
(friction losses in the former while magnetic drag in the latter) compared to an
induction machine. Moreover, the overall impact of a clutch operation on en-
ergy consumption depends not only on the duration of the idling periods and
the inherent drag losses of the EDs but also on the energy consumed during
each clutch transition. In addition, frequent clutch engagements can lead to
increased overall losses, negatively affecting operational efficiency, drivability,
comfort, and clutch durability of an EV [46]. Similarly, power transfer com-
ponents vital for EV energy management include transmissions, drive and
half shafts, power links—between energy sources, actuators, and inverters—and
other driveline parts. Among them, depending on the transmission type, fre-
quent changes in the gear chosen also negatively affect energy consumption
and vehicle characteristics, similar to clutches.

In this work, similar to actuators, detailed dynamic models of clutches and
power transfer components are used as plant models for simulation, while
their simplified representations based on time-scale separations are used as
control models. Specifically, the plant model used in Paper C captures both
the transitional and steady-state phases of clutch dynamics, the key aspects
affecting the operation and consumption of an EV powertrain. However, to
improve the computational tractability, only the discrete (steady-state) phases
of the clutches are captured in the control models. Here, the transitional
dynamics is simplified by approximating the losses incurred during each state
change as the clutch transition cost. This modeling approach is acceptable for
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the strategic scope of supervisory control, as it allows control of the frequency
of clutch operations.

Similarly, in Papers A-C, detailed plant models of power transfer compo-
nents are used that capture their dynamics due to inertia and shaft torsion,
and the discrete effects including the backlashes, shaft shuffle, and shunting
[14], [76]. However, similar to actuators and clutches, only the steady-state
behavior of these components is captured in the control models. Particularly,
in Paper B, a discrete dynamic model that captures the integer nature of
gear changes in multispeed transmission, along with a transition cost similar
to that of clutch models, is used as control model. In these models, inertia
of the rotational components is considered for equivalent mass estimations,
whereas steady-state maps of transmission losses approximate the total losses
in the driveline.

In contrast to the above approach, control models alone are used in Pa-
per D for the offline investigation of MMEV performance due to the strate-
gic nature of the decisions involved, ensuring computational tractability for
parametric simulations. In Paper D, the discrete states of the clutches are
uniquely modeled as continuous decisions, drastically reducing the compu-
tational demand compared to the model in Paper C. Importantly, this ap-
proach does not introduce relaxation in the optimal solution (i.e., it guarantees
a binary solution), while enabling the use of smooth nonlinear programming
solvers. However, a limitation of this model is that losses during the clutch
transition are not captured, unlike the clutch model in Paper C, which is
acceptable for the driving maneuvers investigated in Paper D.

Furthermore, in addition to powertrain components, auxiliary electrical
loads, such as heating, ventilation and air conditioning (HVAC) systems, light-
ing, fans, pumps, etc., also contribute to the overall energy consumption of
the vehicle. These auxiliary loads can be categorized into two types: those
directly related to the powertrain operation (like electric coolant pumps and
valves) and those operating at the vehicle level (like infotainment and climate
systems). Changes in energy consumption due to the dynamics of all these
loads are considered in the plant models to obtain an accurate estimate of
energy consumption. However, these auxiliary losses are approximated as a
constant to penalize inefficient driving in Paper D that focuses on speed
and trajectory optimization. In contrast, since the auxiliary loads are not
influenced by the control decisions in the EV energy management problems
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considered, they are neglected in Papers A—C.

2.4 Modeling Vehicle Dynamics and Kinematics

Accurately capturing nonlinear vehicle dynamics encompassing multiple de-
grees of motion, weight transfer, kinematics, resistive (drag) forces, and tire-
road interaction effects is essential for optimizing and analyzing vehicle perfor-
mance, especially under dynamic maneuvers including acceleration, braking,
and cornering [77]-[80]. Accordingly, in Paper D, a high-fidelity double-track
vehicle model with six-degree-of-freedom (DoF) is used to assess the perfor-
mance of MMEVs under such maneuvers. This model includes two transla-
tional motions (longitudinal and lateral), three rotational motions (roll, pitch,
and yaw), and load transfer dynamics.

Furthermore, tire forces and moments are modeled using a detailed dynamic
tire model based on weighted Magic formula [80], [81], which accounts for the
effects of both pure and combined slip on normal forces, accurately capturing
tire-road interactions. In addition, total drag forces are modeled to act at the
center of gravity of the vehicle. Such model fidelity is crucial for Paper D as
it focuses on optimal and limit-driving maneuvers, where changes in traction
force due to roll- and pitch-induced load transfer significantly impact per-
formance and consumption. However, such complex models poses significant
computational challenges for use in online-capable controllers.

In contrast, supervisory controllers in energy management applications of-
ten use simpler models, which predominantly focus on longitudinal motion
and may include steady-state approximation of pitch-induced load transfer ef-
fects [14], [30], [45], [49], [72]. These models typically ignores tire-slip, lateral
and rotational dynamics, and tire-road interactions to ensure computational
tractability. Subsequently, for the energy management controllers in Papers
A-C, the traction force demand is calculated using a point mass vehicle model
that excludes load transfer effects but incorporates gravitational forces, road
slope, air drag, and rolling resistance. This simplified model is deemed suffi-
cient, as the focus in these papers is on optimizing powertrain efficiency under
typical driving conditions.
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CHAPTER 3

Controller Design and Synthesis

This chapter introduces the broader scope of energy management in mod-
ern electric vehicles and outlines the specific problems addressed in this work.
The control architecture adopted in the research is then presented, followed by
generic formulations of the optimal control problems concerning motion plan-
ning and powertrain energy management. Finally, the solution approaches
employed—namely, model predictive control, dynamic programming, bi-level
programming, and interior-point methods—are briefly described with respect
to their suitability for the specific problem structures considered in this thesis.

3.1 Energy Management Problem

In electric vehicles (EVs), energy-efficient operation is crucial to optimize
battery usage, improve vehicle performance, reduce cost of ownership, and
address range anxiety by extending the driving range. In a broader sense,
this involves various strategies and systems that have been proposed to ef-
ficiently manage energy consumption while moving from one location to an-
other. Among these, energy management strategies can be categorized into
two groups, (1) strategies that address energy flow within the vehicle such as
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the management of powertrain operation [82], [83] and thermal demand [84],
[85], and (2) strategies that focus on minimizing energy losses or consumption
during vehicle-terrain interaction including route selection [86], [87], charging
point selection [88] and vehicle path-trajectory planning [27], [89]-[91]. Among
these strategies, the former enables the improvement of tank-to-wheel (TTW)
efficiency, defined as the relationship between the energy output at wheels
and the energy content of the fuel sources stored in the vehicle [92], [93],
while the latter focuses on improving the wheel-to-miles (WTM) efficiency,
which refers to how effectively the energy from the battery is converted into
driving distance. In addition, battery charging [94] and recent interest in
the industry to integrate EVs into the power grid and home energy systems
[95], [96] form the extension of EV operations under stationary conditions,
in which the management of the energy flow between the vehicle and the in-
frastructure is proposed to reduce the cost of ownership and incentivize EV
customers. Among these, strategies that address TTW efficiency (energy flow
within the vehicle) are of primary interest in this work. Specifically, in Pa-
pers A, B and C, the focus is on powertrain energy management strategies
that utilize the unique opportunity of high degree of control freedom offered
by EV powertrain architectures to energy efficiently realize the potential of
these systems, despite their inherent complexity. Additionally, to understand
the performance potential and operational efficiency of different powertrain
configurations, vehicle path and trajectory planning strategies (which focus
on improving WTM efficiency) are considered in Paper D.

From the perspective of problem definition, in the literature, EV energy
management commonly refers to the problem of distributing torque or power
demand between multiple propulsive and braking actuators and the energy
sources present in EVs [42], [97]-[99]. The key objectives of such energy man-
agement strategies is to meet power or energy demands efficiently, while re-
ducing emissions and minimizing the overall operational cost of the propulsion
system, as well as ensuring system limitations and satisfactory performance
in terms of acceleration, range, and handling. However, extensions have been
suggested to include additional discrete control decisions in EV powertrains
such as clutch on-off, gear choice and engine on-off, further improving the
powertrain efficiency [19], [28], [29], [31], [L00]. A notable update to the ob-
jective of this extended problem is the inclusion of losses that occur during
the transition and steady-state operation of the components or sub-systems
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Holistic Energy Management System
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Figure 3.1: Hierarchical control structure of an EV energy management system. As indi-
cated by the red dashed line, the tactical planner and the powertrain energy
management layers are the focus in this work.

corresponding to these additional decisions. These decisions and objectives
collectively improve the overall operational efficiency of the powertrain and,
therefore, are the scope of the powertrain energy management problem ad-
dressed in the Papers A, B and C. In addition, as discussed earlier, this
powertrain energy management strategy is one among the many strategies
adopted to reduce overall vehicle energy consumption. From the control ar-
chitecture perspective these strategies are interlinked and therefore, it is neces-
sary to understand the relationship between these strategies to get an overview
of a holistic energy management system for EVs, enabling effective design and
synthesis of controllers.

3.2 Control Architecture

The control architecture of a widely adopted holistic energy management sys-
tem is presented in Fig. 3.1. In particular, a hierarchically distributed control
structure is used, owing to its low computational burden while enabling close

27



Chapter 8 Controller Design and Synthesis

enough approximation of the solution of centralized approaches [17], [48], [74],
[101]. Tt consists of three main layers: the planning layer, the powertrain man-
agement layer, and an actuator control layer. Among these, the first stage
within the planning layer is the strategic motion planner, which includes both
route planning and route-level planning. Route planning is the process of
finding a feasible route between two points on a road network, while mini-
mizing travel time or distance, energy usage, and maximizing battery life [87],
[102]. Similarly, route-level planning involves determining energy-efficient tar-
gets for vehicle thermal needs (like cabin climatization, battery heating, and
propulsion system cooling), vehicle path and speeds, battery state of charge or
energy, charge-point selection, etc. [84], [88], [102]. These planners use road
network and route-level information such as traffic flow, road topography,
speed limits, signals, intersections, and energy consumption from cloud-based
navigation service providers. To balance computational efficiency and local
uncertainty handling, energy-efficient route-level trajectories are typically av-
eraged over road segments and passed as references to tactical planners.

In this second stage of motion planning, near-future vehicle paths and tra-
jectories—covering a subset of the complete mission—are determined to align
with strategic references. This process leverages both current and predicted
near-future road segment data, including static road conditions (e.g., slope
and speed limits) and real-time traffic information from cloud-based naviga-
tion services, following approaches similar to [27], [91], [103]. Among tactical
planners, path planning predicts an obstacle-free local path that executes the
global path without collision, while trajectory planning creates a set of pos-
sible vehicle trajectories targets such as vehicle speed, position, acceleration,
etc. that enables navigation of the planned path safely and efficiently. In ad-
dition to cloud and map data, these planners often use an array of on-board
sensors like Lidars, radars and cameras, etc. for localization and to enhance
perception of the local environment [104], while current vehicle status informa-
tion from other sensors and estimators allows closed-loop control [105]. These
information are used to detect roads, lanes, obstacles or objects, etc., enabling
the vehicle to perform local maneuvers such as lane changes, merges, forks,
and obstacle avoidance in real-time, while optimizing certain performance ob-
jectives. To realize such local maneuvers, the planned trajectories are set as
targets for the next layer.

After motion planners, next is the powertrain energy management layer,
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whose objective is to determine control allocation (CA) and discrete deci-
sions, while energy-efficiently meeting driver request, targets set by trajectory
planners, and system and component limitations. Here, CA refers to the dis-
tribution of power or torque demand between the actuators and the energy
sources, while discrete decisions refer to choices such as gear selection, and
engine and clutch on-off. Similarly, driver request and trajectory targets are
prioritized based on the level of autonomy chosen for a mission. The bottom
layer of the control structure is the actuator control layer, where the primary
objective is to control the actuators so that the energy-efficient operational
targets are met unless safety critical or other operational limitations necessi-
tate a local change. Refer to [17], [18], [49], [74], [106] for a more detailed yet
generic understanding of these two layers.

Furthermore, from the above discussions it is noticeable that the layers ex-
cept the actuator control layer are supervisory control layers. The controllers
in these supervisory layers can preview future conditions for a longer hori-
zon than the lower-layer controllers, enabling efficient energy management.
For example, the strategic planner addresses the complete mission, while the
actuator controller often works on an instantaneous problem [102], [106]. Con-
sequently, to balance computational efficiency and local uncertainty handling,
distinct time scales (discretization) and model abstractions are adopted at
each level. Specifically, the upper-level layers function at a time scale several
orders higher than the lower-level layers [18], [49], [74], [102]. Subsequently,
the targets sent from the upper layers are typically averaged over several time
samples of the lower layers, as discussed earlier in the case of planners. Due to
this, the upper layers commonly handle slow dynamics, while the lower layers
handle fast dynamics. For example, in planning layers slow dynamics such
as battery state of charge and temperature are addressed, while the actua-
tor control layer handles sudden variations in motor current and voltage, and
driving conditions like road friction that require fast adjustments, typically
within milliseconds, to maintain vehicle stability and performance. Similarly,
the bottom layer uses high-fidelity models of powertrain components whose
abstraction increases as we move up the hierarchy with planning layers even
approximating the energy consumption and travel time [17], [87], [102], [106].

In line with this framework, we have adopted a similar division of respon-
sibility in our work. However, the focus has been on tactical planning and
powertrain energy management layers in the control structure (highlighted
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in Fig. 3.1 with red-dashed line). As stated in previous section, Paper D
focuses on the tactical layers while Papers A, B and C address only the
latter layer. These papers describe the relevant controllers and their interac-
tions with other layers, without detailing the other layers. For example, it is
commonly assumed in the papers that a route is given, a decision of strategic
planner. However, since the papers have different focus on the rest of the
planning layers, the details of their descriptions vary accordingly. Similarly,
depending on the chosen mission or route, powertrain configuration, and sys-
tem dynamics in the control problem considered, different horizon sizes, time
scales, control decisions, and model abstractions are employed in the papers.
For example, the problem-specific choices of horizon, time scales, etc., are
different in Papers B and C as they employ different powertrain configura-
tions with unique actuator dynamics. In addition, localization and perceptive
sensors are ignored in these papers due to offline nature of the planning prob-
lem and the traffic-free scenario considered. Refer to the appended papers for
further details on these aspects.

3.3 Problem Formulation

In this section, we first formulate the segment-level problem addressed in
Paper D, focusing on path and trajectory planning. Then, we formulate a
generic mixed-integer powertrain energy management of EVs, addressed in
Papers B and C, which focuses on CA and discrete decisions.

Path-Trajectory Planning Problem

In Paper D, the path-trajectory planning problem aims to optimize the mo-
tion of an EV over a predefined route while satisfying physical and operational
constraints that includes powertrain components and dynamics. The objective
is to determine an optimal trajectory that minimizes a given cost function,
such as travel time, energy consumption, or steering effort, while ensuring
compliance with vehicle dynamics, control limitations, and road boundaries.

The problem is formulated as an optimal control problem in the spatial do-
main, where the system dynamics and constraints are expressed as a differential-
algebraic system:

0 < h(2(s),u(s),((s)), (3.1)
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where:

e #(s) represents the state vector, including vehicle kinematics, powertrain
states, and control-related variables.

e u(s) is the control input vector, which includes powertrain decisions such
as steering angle, torque distributions and clutch on-off.

o ((s) represents exogenous inputs such as road curvature or environmen-
tal factors.

~

o h(-) defines inequality constraints, including control limits, state con-
straints, road boundaries, and travel time bounds.

o §(-) represents algebraic equality constraints, such as power balance con-
ditions specific to the EV powertrain configuration.

o fs() describes the spatial nonlinear dynamics of the EV.

The optimization problem seeks to minimize a performance metric, stated as:
min - Jy(2(s¢), ((s0)) + / Js(2(s), u(s),((s)) ds (3.4)
U S0

subject to:
o The system dynamics and constraints given above.
o Boundary conditions: #(sg) € Xy, Z(s:) € A}

o If applicable, constraints that ensure repeated motion for periodic ma-
neuvers.

Depending on the scenario under evaluation, different cost functions are
considered, such as minimum-time or energy-efficient trajectory planning. To
balance travel time and energy consumption, a travel time constraint ¢(s;) <
1(s;) is enforced within the inequality constraints h(-). For more details on
specific implementations, refer to the main paper.
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Mixed-Integer Powertrain Energy Management Problem

The objective of the powertrain energy management problem in Papers B and
C is to minimize the energy consumption of an EV, optimizing both continu-
ous and discrete control decisions. The optimization problem is formulated as
a Mixed-Integer Optimal Control Problem (MIOCP), where continuous deci-
sions include power or torque distribution, and discrete decisions involve gear
selection or clutch engagement states.

Defined over a specific time horizon t € [tg,t¢] with the dynamics and
constraints of powertrain components and systems, a generalized MIOCP is

given by:
tf
min/ D(x,u,0,t)dt (3.5)
zu Jy
st Zc(t) = fe(z,u,0,t), (Continuous state dynamics) (3.6)
rq(th) = fd(md, uq), (Discrete state transitions) (3.7
h(z,u,0) < (Path and feasibility constraints) (3.8)
u(t) e U(t) C ]R” x Z", (Admissible controls) (3.9)
z(t) € X(t) CR™ x 2. (Admissible states) (3.10)
where:

e The objective function ® in (3.5) may consists of:
— Pi(x,u,0,t) - Gasoline fuel power consumption.

— Py(z,u,0,t) - Battery power consumption.

A (t) - Costate decision used to weight battery consumption in
hybrids.

W (uq) - Penalty for frequent changes in discrete decisions like gear
shifts or clutch engagements.

For instance, a representative form may include:

v /tf [P () + A () Po () + W (ua)] di

s

I 21T are defined as:

o States z = [z, 3

— x(t) - Continuous states (e.g., actuator dynamics).
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— x4(t) - Discrete states (e.g., gear position, clutch status).

o Control inputs u = [ul' uX]T are given as:

— uc(t) - Continuous control inputs (e.g., requested engine power,
torque distribution).

— uq(t) - Discrete control inputs (e.g., gear selection, clutch engage-
ment).

e The term 6 represents a vector of time-varying system parameters. It
may include predicted or optimized quantities from higher-level strategic
layers—such as vehicle speed, road slope, driver demand, battery states,
costates (e.g.,\;) and penalty factors—as well as state estimates from
lower-level controllers.

o Constraints are defined as:

— h(z,u,0) < 0 - Includes demand-supply constraints, system and
component limitations.

— X(t),U(t) - Limits on states and control inputs, respectively.

— ()™, (-)™ - Superscripts representing the dimension of continuous
and discrete states, respectively.

The approach ensures efficient usage of stored energy in any EV configura-
tion, while maintaining smooth-enough transitions of discrete actuators. For
further details on implementation, readers are referred to Papers A and B.

3.4 Solution Approaches

The first step in solving the MIOCPs described in Section 3.3 is to discretize
them into finite-dimensional MINLPs—a process known as transcription [107].
Since the original OCPs are infinite-dimensional due to their continuous-time
formulation, they are generally intractable except for special cases. Transcrip-
tion makes these problems amenable to numerical optimization by applying
typical approximations such as time discretization. In this work, direct numer-
ical optimization methods are employed for this purpose [107]. Specifically,
direct multiple shooting is used for time discretization in all the papers ex-
cept Paper D, where direct collocation with the Radau scheme (an implicit
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Runge-Kutta variant) is adopted for spatial discretization to ensure numerical
stability during integration of stiff nonlinear dynamics. This transcription step
also facilitates the exploitation of the problem structure during the solution
process [107].

In the literature, several numerical approaches exist to solve non-linear
problems effectively and efficiently, including interior point methods and se-
quential quadratic programming [108], [109]. However, solving mixed-integer
(MI) problems is challenging due to their combinatorial nature. Algorithms
such as DP, branch-and-bound, cutting planes, etc. are proficient in finding
global solutions to MI problems [51]-[54]. But exponential worst-case time
complexity and runtime variations that are typically exhibited by such algo-
rithms [55], [56] are manageable only in offline scenarios, often rendering them
impractical for real-time usage. Therefore, the development of computation-
ally efficient solution strategies is also a focus in Papers B and C.

Furthermore, depending on the complexity and property of the problem be-
ing addressed, different solution approaches have been adopted in the papers.
Particularly, in Papers A and D, nonlinear programming (NLP) problems
are solved with the interior point method using IPOPT [109], while mixed-
integer NLP (MINLP) is solved using a combination of relaxation techniques
and IPOPT in Paper B. Similarly, in Paper C, DP is used to solve the inte-
ger decision, while continuous decisions are solved analytically after a bi-level
decomposition of a mixed integer quadratic problem (MIQP).

Model Predictive Control Framework

Model Predictive Control (MPC) is an advanced optimization-based control
strategy designed for real-time implementation in dynamic systems. Unlike
conventional control approaches, MPC predicts future system behavior and
optimizes control actions over a finite prediction horizon while enforcing sys-
tem constraints. By repeatedly solving a discretized optimal control prob-
lem (OCP) at each time step, the MPC ensures an adaptive and constraint-
satisfactory closed-loop control strategy. A key feature of MPC is its inherent
ability to handle multi-input multi-output (MIMO) systems by design, allow-
ing for the coordinated and simultaneous control of multiple actuators and
regulation of multiple system outputs. Another feature of MPC is its multi-
objective capability that allows simultaneously optimization of performance
criterias (e.g., energy efficiency, trajectory tracking). MPC is widely applied in

34



3.4 Solution Approaches

electric vehicles including energy management, path-following, obstacle avoid-
ance, and platooning [18], [110]-[114]. MPC operates in a receding horizon
framework which can be described using four steps:

1.

Prediction - A model of the system predicts the evolution of states over
a finite time horizon.

. Optimization - An objective function is minimized subject to system

dynamics and constraints.

Control Execution - Only the first optimal control input is applied.

. Repetition - The horizon shifts forward, and the optimization problem

is solved again at each step.

To implement MPC, an OCP must be discretized using direct methods, such
as multiple-shooting and orthogonal collocation [107], to transform the OCP

into

a finite-dimensional problem, as discussed earlier, making it computa-

tionally tractable for online implementation. At each update time step k and
prediction time step i, given the current state estimate 2y, the finite-horizon
MPC problem is formulated as:

N—-1

min @N(XN\k) + Z <I>D(xi|k,ui|k,zi‘k,0”k) (3.11a)

Up, Xk, Zk i—0
s.t. Xi+1\k: :fD(Xi\kaui\kaZﬂkvei\k)a i :OavN_l (311b)
h(xi‘k,ui‘k,z”k,ﬁiw) SO, i:O,...,N—l (311c)
Xo|k = i’k (311(?1)
XNk € Xf|k (3.116)
X SXp S Xy, Uy Sy S,z < Zjp < Zgy (3.11f)

where:

o The decision variable x; = {Xg|x,...,Xn|x} refers to the state trajec-
tory over the prediction horizon N, up = {ug,...,uy_qx} denotes
the control input sequence, and z; = {Zo\k, . ,ZN,WC} represents the

algebraic states (e.g., slack variables in soft constraints).

o The objective or cost terms in (3.11a):
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— Terminal cost ®n(xy;): Defines the cost of the terminal state,
often used to stabilize constraints or penalize the final deviation.

— Stage cost ®p (X, Wik, Zi|k, 03| ): Penalizes states and controls at
each stage, typically enforcing objectives such as energy efficiency,
tracking accuracy, and control effort minimization.

e The system dynamics in (3.11b), i.e., the discretized system evolution
equation X; 1), = [D(Xik, W[k, Zi|k), is obtained through methods such
as orthogonal collocation or Euler discretization.

« The path constraints in (3.11c), h(X;k, Wik, Zik, Oijx) < 0, Vi enforce
physical limits, such as road boundaries or actuator saturation.

o The terminal constraints in (3.11e), x|k € Xf|k, ensure stability and
constraint satisfaction at the end of the horizon.

o The state, control and algebraic bounds in (3.11f) enforce upper and
lower limits on states, controls, and algebraic states.

This problem is solved iteratively at each MPC instance k € {1,2, ..., (t¢/At)—
N}, where At denotes the fixed sampling time, and only the first control input
is applied to the system. The horizon then shifts forward and the process
repeats in the next control cycle.

For further details on the implementation and numerical techniques, the
reader is referred to [114]. However, to understand the adaptation of the
framework to the problems addressed in the work, refer to the Papers A, B
and C.

Dynamic Programming

Dynamic programming (DP) is a powerful optimization method solving op-
timal control problems, particularly in the non-linear, non-convex and mixed
integer cases. Developed by Richard Bellman in the 1950s, DP is based on
Bellman’s principle of optimality [115], which states that the optimal solution
to a problem can be found by recursively combining the optimal solutions to
its sub-problems.

DP has been widely used in automotive applications such as eco-driving,
hybrid energy management, gear shifting, and optimization of driving strategy
[51]-[53], [97], [116], [117]. A key advantage of DP is its ability to handle
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complex constraints on both states and control inputs, while ensuring a global
optimum. However, a major drawback is the curse of dimensionality, where
computational time increases exponentially with the number of state variables
and control inputs. DP solves an optimal control problem over a discrete
time horizon by recursively computing the cost-to-go function. The general
discrete-time system dynamics are given by:

Tpa1 = fre(Tr,ug,0k), k=0,1,...,N—1, (3.12)
where:
o 1z € X}, is the system state at time step k,
o uy € Uy is the control input at time step k,
o 0 € O is the parameter at time step k.
e f1. represents the system evolution function.

The objective is to find the control policy 7(x¢) that minimizes a given cost
function for an initial state xq:

N—
Tr(z0) = Gn(2n) Z (zk, ug (@), (3.13)
k=0
where:
e gi(xk,ur) represents the stage cost (running cost) at time step k,
e gn(zn) is the terminal cost at the final state zy.

The optimal cost function is obtained by minimizing over a set of all feasible
policies, II:

J*(xg) = ErneiIrIlJ,r(xo). (3.14)

Now, using Bellman’s optimality principle, the problem is solved using back-
ward recursion as:

J*(xNn) = gn(zN), (Terminal cost)  (3.15a)
T (@) = min [ge(zr, ur) + I (2e)], Vk=N—1,..,0. (3.15b)
Uk k
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where the optimal control policy is determined as,

up(zy) = argmin [gr (g, ug) + " (2r41)] - (3.16)
uk€EUR

For further theoretical background and implementation details, refer [14],
[115]. Furthermore, DP is used as a benchmark strategy to solve an MI prob-
lem in Paper B, enabling quantification of the optimality gap of the solution
of proposed strategies. Additionally, as stated earlier, DP is used to efficiently
solve the integer decision of a subproblem after the bilevel decomposition of

a mixed integer quadratic problem (MIQP) in Paper C.

Bi-Level Programming

Bi-Level Programming is a hierarchical optimization framework where one
optimization problem is embedded within another. The structure consists of
an upper-level (or outer) problem, which defines the main optimization task,
while a lower-level (or inner) problem acts as a constraint for the upper-level
optimization. Consequently, the decision variables are split into upper-level
decisions (z) and lower-level decisions (y), depending on the subproblem where
it is solved. A generic bi-level optimization problem is formulated as:

i F Upper-level objecti 3.17
Lcmin (z,v) (Upper-level objective) (3.17a)
st. Hi(r,y) <0, i=1,..,1I, (Upper-level constraints) (3.17b)
y €arg mi)I/I flz,2) (Lower-level problem)  (3.17¢)
zE

s.t. hj(z,2) <0, j=1,...J. (Lower-level constraints) (3.17d)

where F(x,y) is the upper-level objective function, f(z,y) is the lower-level
objective function, H;(z,y) and hj(x,y) define the inequality constraints at
the upper and lower levels, and X and Y denote the feasible regions for the
upper and lower variables, respectively.

This bi-level approach provides an efficient framework for solving hierarchi-
cal decision problems, particularly in automotive control applications where
computational efficiency is critical. By separating high-dimensional tasks into
upper and lower subproblems, it enables scalable and real-time implementable
solutions. An advantage of such a decomposition is that lower-level solutions
could be precomputed, enabling real-time feasibility. However, a challenge
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is that it also requires specialized solution techniques, such as reformulating
the lower-level problem as constraints for the upper level. These are the ex-
act aspects exploited in Paper C to reduce the computational complexity of
solving an MI problem while finding its optimal solution.

Interior Point Methods

Interior Point Methods (IPMs) are widely used to solve a broad spectrum of
large-scale optimization problems, ranging from linear to nonlinear program-
ming [118]-[120]. For convex problems, IPMs converge to a global optimum,
whereas for nonconvex problems, they typically find local optima. Unlike
the Simplex method, which optimizes linear problems by moving along the
boundary of the feasible region, IPM iteratively finds optimal solutions by
traversing the interior of the feasible region [109], [118]. Modern solvers often
use primal-dual IPM, which solves for both primal (decision variables) and
dual (Lagrange multipliers) simultaneously, offering enhanced numerical sta-
bility and convergence compared to explicit barrier function-based methods.

In this work, the IPOPT software [109], [118], which uses IPM, has been
commonly used to locally solve nonlinear programming problems that arise in
the energy management of EVs.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A

Anand Ganesan, Sebastien Gros, Nikolce Murgovski, Chih Feng Lee,
Martin Sivertsson

Effect of Engine Dynamics on Optimal Power-Split Control Strategies
in Hybrid Electric Vehicles

Published in 2020 IEEE Vehicle Power and Propulsion Conference,
Gijon, Spain, pp. 1-8, Nov. 2020.

© 2020 IEEE. Reprinted from [A. Ganesan, S. Gros, N. Murgovski, C. F.
Lee and M. Sivertsson, "Effect of Engine Dynamics on Optimal Power-
Split Control Strategies in Hybrid Electric Vehicles," 2020 IEEE Vehicle
Power and Propulsion Conference (VPPC), Gijon, Spain, 2020, pp. 1-8,
doi: 10.1109/VPPC49601.2020.9330841].

In this study, a model predictive control (MPC) based supervisory power-
split control strategy is proposed to optimize fuel and energy consumption
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in Hybrid Electric Vehicles (HEVs) by incorporating powertrain actuator dy-
namic models. Traditional methods often use steady-state maps to approx-
imate actuator energy conversion dynamics, which can lead to sub-optimal
control policies and increased fuel and energy consumption, especially under
high transient load demands. To address this issue, simpler dynamic models
that capture the torque response and fuel consumption of a gasoline inter-
nal combustion engine are proposed. Experimental validation of these models
shows a mean absolute percentage error of around 3 % in predictions, within
the specified operating speed range. These models are then integrated into
an MPC-based power-split controller, enhancing the ability of the controller
to predict the trajectory of dynamics accurately. A detailed analysis of the
sensitivity of HEV energy consumption concerning its actuator dynamics and
the transients in its load demands. The results show that including actua-
tor dynamic models in the power-split controller can enable the realization
of significant energy savings of atleast 4.25% compared to a baseline con-
troller without dynamic models, depending on the severity of transient load
demands in driving cycles. This validation underscores the effectiveness of dy-
namic models in capturing both transient and steady-state behaviors relevant
to fuel consumption and torque production.

Anand Ganesan contributed with ideas, planing, implementation, results,
analysis and writing of the paper. All other co-authors contributed to the
ideas, planning and review of the work.

4.2 Paper B

Anand Ganesan, Sebastien Gros, Nikolce Murgovski

Numerical Strategies for Mixed-Integer Optimization of Power-Split and
Gear Selection in Hybrid Electric Vehicles

Published in IEEFE Transactions on Intelligent Transportation Systems,
vol. 24, no. 3, pp. 3194-3210, Mar. 2023.

© 2023 IEEE. Reprinted from [A. Ganesan, S. Gros and N. Murgov-
ski, "Numerical Strategies for Mixed-Integer Optimization of Power-Split
and Gear Selection in Hybrid Electric Vehicles," in IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3194-3210,
March 2023, doi: 10.1109/TITS.2022.3229254].

In the study, a computational strategy for mixed-integer energy manage-
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ment in hybrid electric vehicles (HEVs) is proposed through the co-optimization
of power-split and gear selection. The methodology involves formulating a
mixed-integer optimal control problem (MIOCP), which is transcribed into a
mixed-integer nonlinear program (MINLP) and then tackled using nonlinear
model predictive control (MPC). Two primary numerical solution strategies
are proposed in the work: the Selective Relaxation Approach (SRA) and the
Round-n-Search Approach (RSA), both aimed at solving the MINLP effi-
ciently. These approaches are evaluated against typical rule-based strategies
and demonstrate a potential energy savings of approximately 3.6 %, which
constitutes a near-optimal solution as it remains within 1% of the global so-
lution found via DP. Furthermore, both SRA and RSA are approximately 99
times faster than DP, highlighting their computational efficiency and feasi-
bility for real-time implementation in HEVs. The strategies can be extended
to address similar mixed-integer problems in future intelligent transportation
systems, improving energy efficiency and reducing operational costs in HEVs.
Anand Ganesan contributed with ideas, planing, implementation, results,

analysis and writing of the paper. All other co-authors contributed to the
ideas, planning and review of the work.

4.3 Paper C

Anand Ganesan, Nikolce Murgovski, Derong Yang, Sebastien Gros
Mixed-Integer Energy Management for Multi-Motor Electric Vehicles
with Clutch On-Off: Finding Global Optimum Efficiently

Published in IEEE Transactions on Vehicular Technology, Jul. 2025.

© 2025 IEEE. Reprinted from [A. Ganesan, N. Murgovski, D. Yang and
S. Gros "Mixed-Integer Energy Management for Multi-Motor Electric
Vehicles with Clutch On-Off: Finding Global Optimum Efficiently," in
IEEE Transactions on Vehicular Technology, July 2025,

doi: 10.1109/TVT.2025.3589964].

This study introduces a novel energy management strategy for multi-motor
electric vehicles (MMEVs) using mixed-integer model predictive control (MI-
MPC). It aims to co-optimize torque allocation and clutch on-off decisions
to minimize energy consumption and the frequency of clutch engagement
changes. A bi-level programming approach is proposed to handle the com-
putational challenges inherent in solving mixed-integer (MI) problems. The
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inner level deals efficiently with the torque allocation subproblem using an
explicit closed-form analytical solution, while the outer level optimizes clutch
decisions through implicit dynamic programming (i-DP). An evaluation in a
high-fidelity virtual environment demonstrates energy savings exceeding 4 %
compared to heuristic controllers used in modern electric vehicles. This strat-
egy also exhibits real-time implementation capability with average solution
time of 1 ms on a standard laptop (Intel Core 19-9880H 2.3 GHz processor, 48
GB RAM, 0.294 trillion operations per second capacity), suggesting potential
for practical use in MMEVs.

Anand Ganesan contributed with ideas, planing, implementation, results,
analysis and writing of the paper. All other co-authors contributed to the
ideas, planning and review of the work.

4.4 Paper D

Anand Ganesan, Nikolce Murgovski, Derong Yang

Optimal Torque Vectoring for Performance Enhancement of Multi-Motor
Electric Vehicles

Submitted to a peer-reviewed scientific journal.

This study explores the advantages of employing torque vectoring systems,
specifically comparing two torque vectoring mechanisms—an electric torque
vectoring differential (eTV) and a torque vectoring dual clutch (TVDC)-
against an open differential-based conventional and an individual wheel drive-
based performance powertrain setup in multi-motor electric vehicles. The
objective is to analyze the potential to improve vehicle performance through
optimized dynamic maneuvers using steering angle and torque distribution
controls. The findings indicate that the proposed torque vectoring variants
and control strategies significantly improve performance and energy efficiency,
especially at higher speeds, compared to traditional setups. For example, com-
pared to open differentials, the torque vectoring systems studied demonstrate
greater lateral force capabilities with reduced steering effort. The eTV variant
shows superior performance and handling at high speeds, while the TVDC
variant excels at lower speeds. The study concludes that a comprehensive
torque distribution in multi-motor electric vehicles can considerably advance
vehicle dynamics, realizing up to 11 % energy savings when employing these
advanced torque vectoring systems.
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Anand Ganesan contributed with ideas, planing, implementation, results,
analysis and writing of the paper. Nikolce Murgovski contributed to the ideas,
planning, implementation and review of the work. Derong Yang contributed
to the ideas, planning, and review of the work.
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CHAPTER D

Concluding Remarks and Future Work

Incorporating the insights from extensive research in the appended Papers,
this chapter presents conclusive remarks regarding the progress and innova-
tions in energy management strategies for over-actuated EVs, with a focus on
optimizing their modular powertrain efficiency across various configurations
and driving scenarios.

5.1 Conclusion

This thesis addressed several key challenges in the energy management of
over-actuated electric vehicles (EVs), particularly in the context of modu-
lar powertrain architectures. A unified energy management framework capa-
ble of handling both continuous and discrete decisions online was proposed
to improve the operational efficiency of EVs without compromising vehicle
performance. This framework leveraged powertrain component dynamics,
customized mixed-integer (MI) solution approaches, and advanced control
strategies. Addressing the research questions (RQ1-RQ3) through four in-
terconnected studies, the results show that explicit inclusion of engine dy-
namics in power-split optimization yields up to 10 % energy savings compared
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to a rule-based baseline in PHEVs. An additional energy saving of at least
3.6 % 1is achieved by co-optimizing torque allocation and discrete decisions
in both EVs with only a marginal increase in the number of discrete transi-
tions. Similarly, the proposed torque vectoring solution in dual-motor BEVs
enhances energy efficiency, steering performance and dynamic handling, il-
lustrating their potential to expand the performance envelope of multi-motor
EVs. More specifically, the research questions are addressed as follows:

RQ1 Can the modeling of transient dynamics of powertrain components and
the co-optimization of torque allocation and discrete decisions in mod-
ular powertrains be effectively leveraged by model-based supervisory
energy management strategies to enhance the operational efficiency of
over-actuated electric vehicles without compromising performance at-
tributes?

To answer RQ1, this work established the importance of modeling and in-
tegrating transient dynamics of powertrain components—namely, ICEs, multi-
speed transmissions, and clutch mechanisms—in enhancing the effective per-
formance of energy management strategies. These models leveraged the time-
scale separation in the hierarchical control architecture to ensure low compu-
tational complexity. For instance, in Paper A, control-oriented models of a
gasoline ICE were developed to capture both fuel and torque dynamics, which
were explicitly integrated into an MPC-based supervisory energy management
controller. Simulations on a PHEV platform showed that actuator dynamics
inclusion significantly improves energy savings, up to 10 %, depending on the
severity of transient load demands.

Similarly, in Paper B, the discrete dynamics and associated energy losses of
a multi-gear transmission were modeled and explicitly integrated into a PHEV
energy management controller, while in Paper C, a similar approach was ap-
plied to capture clutch dynamics in multi-motor BEVs. An MPC-based MI
energy management framework proposed in both studies effectively utilized
these dynamic models within a supervisory control structure, co-optimizing
torque allocation and discrete decisions online to enhance the operational
efficiency of the EVs. Consequently, the proposed energy management con-
trollers achieved at least 3.5 % additional energy savings compared to the
instantaneous baseline controllers, where these discrete decisions were based
on heuristic rules while torque allocation was optimized. Another common
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outcome in these studies is that the potential energy savings in a driving mis-
sion is influenced by the intensity of its traction demand, with urban driving
being a key benefactor.

Furthermore, by incorporating dynamic models, the proposed controllers
also minimized the frequency of discrete decision changes—a common draw-
back in instantaneous controllers, particularly those using offline-optimized
MI policies, as demonstrated in Paper C. However, it is essential to note
that the energy savings against suboptimal rule-based controllers are accom-
panied by at least a 5 times increase in the changes of discrete decisions.
These frequent changes adversely affect vehicle attributes such as comfort,
drivability, and warranty, which the automobile manufacturers prefer to ad-
dress further. Consequently, the ability of the proposed framework to balance
the energy savings and frequency of discrete decision changes (using a cali-
bratable discrete transition cost) was also demonstrated in Paper C using
Pareto analysis.

These findings answer RQ1 by underscoring the importance of both online
co-optimization of MI decisions and the explicit inclusion of powertrain com-
ponent dynamics in supervisory energy management strategies, to improve
the energy efficiency of over-actuated EVs without sacrificing performance.

RQ2 How can the unique properties of mixed-integer energy management
problems in over-actuated electric vehicle variants be effectively lever-
aged to customize advanced solution methods, reducing their computa-
tional demands and enabling online implementation?

To answer RQ2—i.e., to ensure online implementation feasibility of the pro-
posed strategies—the unique properties of MI energy management problems in
the over-actuated EV variants were leveraged to customize advanced solution
methods, reducing their computational demands. Specifically, the iterative
nature of the MPC framework was exploited and two customized relaxation
strategies, the Selective Relaxation Approach and the Round-n-Search Ap-
proach, were used to numerically solve the mixed integer nonlinear problem
(MINLP) resulting in PHEVSs to near-optimality in Paper B. Whereas, in
Paper C, a bilevel decomposition-based approach is used to optimally solve
the resulting mixed-integer quadratic problem (MIQP) in BEVs, where the
convexity of the torque allocation subproblem is leveraged to solve it ana-
lytically, while discrete clutch decisions are handled separately using implicit
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DP. In addition, reformulation and constraint relaxations were performed in
these studies to reduce the computational demand of the MI problems. With
mean solution times of less than 140ms' for relaxation strategies in PHEVs
and 6 ms! for i-DP based bi-level approach in BEVs, these proposed strategies
demonstrate favorable computational demand, suggesting their conceptual po-
tential for real-time application in over-actuated EVs.

RQ3 Are there benefits in employing torque vectoring systems along with
a comprehensive torque distribution strategy in axle-driven dual-motor
electric vehicles?

To answer RQ3, the use of torque vectoring (TV) systems along with a com-
prehensive torque distribution (CTD) strategy was demonstrated to enhance
the performance of axle-driven dual-motor EVs. Specifically, among the pro-
posed TV mechanisms in Paper D, the electric torque vectoring differential
(eTV) achieved up to 2 % reduction in travel time and at least 20 % reductions
in steering effort, while the torque vectoring dual clutch (TVDC) improved
energy efficiency up to 10%. An open differential configuration preferred in
entry-level MMEVs and an individual wheel drive configuration deployed in
performance MMEVs were utilized to establish the relative benefits. An unbi-
ased comparison of the configurations was ensured by employing a combined
path and trajectory planning framework that incorporates steering angle and
CTD decisions as control variables to optimize performance of MMEVs for
specific objectives and dynamic driving maneuvers.

5.2 Future Work

Building upon the foundation laid in this work for computationally efficient
advanced energy management strategies for over-actuated electric vehicles
(EVs), several promising directions to enhance their theoretical robustness
and practical applicability under real-world conditions are as follows.

IThe reported solution times were achieved on a laptop-based platform (powered by an
Intel Core i9-9880H 2.3 GHz octa-core processor with atleast 32 GB RAM, providing
a peak computational capacity of 0.294 trillion operations per second (TOPS) [121]),
using a standalone prototype implementation of the proposed MI strategies within a
high-fidelity simulation environment.
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First, while the impact of design choices such as unique shift penalties,
prediction horizon length, and prediction inaccuracies on net energy savings
has been partially evaluated, their influence on the optimality and compu-
tational demand of the proposed strategies remains to be systematically in-
vestigated. Furthermore, it is essential to analyze the effect of real-world
parameter variations—such as road slope, wind speed, and road friction—on
both energy consumption and computational complexity. In addition, ensur-
ing the adaptability of dynamic variations in actuator capabilities due to their
thermal dynamics and tire-road interaction, including wheel slip, is critical to
robustness. These analyses would help quantify robustness more realistically
and support the development of strategies that are resistant to a wide range
of operating conditions.

To address these challenges more comprehensively, a natural extension is
the development of robust or stochastic energy management frameworks. A
stochastic model predictive control (MPC) framework could incorporate un-
certainty by ensuring that constraints are satisfied on average or with a speci-
fied probability, while robust MPC would guarantee constraint satisfaction un-
der worst-case (bounded) uncertainty. Comparing these two approaches, par-
ticularly in terms of their conservatism, optimality, and real-time feasibility,
would provide valuable insights into the balance of robustness and efficiency.
This also motivates further study of advanced mathematical techniques to
solve these problems more efficiently. In addition, investigating their implica-
tions on robustness, optimality, and real-time tractability will help establish
clearer design trade-offs.

Finally, an important step toward real-world adoption is validation of the
proposed strategies through implementation in concept or prototype vehicles.
Given the increasing computational power onboard and advancements in real-
time optimization solvers, deploying these algorithms in embedded automo-
tive systems is becoming increasingly feasible. Tailored software packages for
real-time MPC and production-grade code, such as real-time iteration (RTT)
schemes, could be employed to further accelerate execution, enhancing the
practical viability of the strategies. A successful real-time implementation
would pave the way for evaluating these algorithms under realistic driving
conditions, and ultimately enabling their deployment into production-level
systems for intelligent and energy-efficient transportation.
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