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Abstract

This thesis focuses on two open problems in the literature related to im-
proving the management of on-chip memories of deep learning accelerators for
improved resource utilization.

The first part of this thesis focuses on deep learning accelerators that
suffer from poor on-chip memory utilization, affecting performance and energy
efficiency. Techniques such as loop reordering and blocking are used to improve
this, but existing frameworks can be inefficient due to either high algorithmic
computational complexity for searching or, due to suboptimal choices due to
compromised search space. This paper presents DNNOPT, a hardware/software
framework that optimally selects loop orders and blocking factors through two
proposed stratergies: Farly Erit and Strided Search, to prune the search space
and simple analytical models for data reuse. DNNOPT reduces the search space
by over two orders of magnitude and enhances performance, energy efficiency,
and time to solution by an average of 1.8, 50%, and 226X, respectively, for
CNN and Transformer workloads compared to current frameworks.

The second part of this thesis focuses on accelerators where multiple neural
network inferences can run simultaneously that allow the simultaneous execution
of multiple Deep Neural Network (DNN) workloads, improving performance
by overlapping computations and memory access. For effective operation,
sufficient on-chip memory is necessary to accommodate the total memory
footprint of all workloads. Batching enhances weight reuse and lowers off-
chip access costs by enabling DNN inferences of the same model to share
weights. However, traditional batching, which sets the batch size statically
across all layers, can cause stalls when on-chip memory is insufficient. This
paper introduces BATCH-DNN, a dynamic method that adjusts the batch
size of each layer based on available on-chip memory. It employs techniques
such as adaptive cascaded sub-batching and adaptive sub-batch merging. Offline
profiling determines the memory footprint, while runtime adjustments set the
maximum batch size per layer. BATCH-DNN can boost accelerator compute
fabric utilization by 40%, leading to throughput improvements of up to 27%,
with an average enhancement of 6% for batched multi-DNN workloads.

Keywords

Deep Learning Accelerator On-Chip Memory, Loop Optimizations, Loop Re-
ordering, Loop Blocking, Dynamic and Adaptive Batching
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Chapter 1

Introduction

1.1 Background

Deep Learning (DL) has become essential for many emerging applications
because of its effectiveness in tackling complex tasks across various fields [1]—
[4]. However, these applications are compute and data intensive, leading to
poor performance and high power consumption when executed on general-
purpose hardware. In addition, the end of Moore’s law [5]-[7] implies that
specialization is a promising avenue for future computer architecture where the
key idea is to offload such demanding workloads to domain-specific hardware
accelerators. Such accelerators eliminate performance and power overheads
in general-purpose processing by using specialized hardware optimized for a
specific class of applications. As a result, DL inference accelerators have become
an integral part of computing systems from edge to cloud. On-chip memory
in such accelerators is a key resource that improves performance and lowers
energy consumption by reducing off-chip memory accesses by reusing data.

First, focusing on systems in which resources are constrained and, in
particular, the amount of on-chip memory, such as in edge systems, the amount
of on-chip memory resources that could be allocated to an inference is limited.
As a result of having on-chip memory constrained, often, the entire footprint
of a layer could not be accommodated in the on-chip memory. Limited on-chip
memory results in frequent off-chip memory accesses that degrade performance
and increase power consumption. Loop optimizations such as loop reordering
and loop blocking have been extensively explored in prior art [8]-[29]. It is
used as a means to improve the reuse of data in the on-chip memory and to cut
down off-chip memory accesses. It does so by improving the locality of data
access while adhering to the on-chip memory budget.

Second, there are systems with less strict resource constraints, such as in
cloud systems, but achieving cost-effectiveness and higher throughput for the
given resource investment is essential. This requires efficiently utilizing the
compute fabric, off-chip memory bandwidth, and on-chip memory. Prior art
[30]-[51] has attempted to enhance the cost-effectiveness by executing multiple
DNN workloads simultaneously on a single accelerator. Some work uses double
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buffering to improve resource utilization by overlapping memory access with
computation [34], [41], [43]-[46]. However, only a few studies focus on techniques
to enhance resource utilization due to the mismatch between memory access
and computation [30], [31], [33], [40]. Furthermore, less attention has been paid
to constraints due to on-chip memory capacity. In cloud inference, batching
means loading a layer’s weights once to compute N consecutive inferences (a
batch) before progressing to the next layer. This reduces off-chip accesses for
weights by a factor of the batch size N but puts pressure on memory since the
footprint of feature maps increases by a factor of N, where feature map data
of N inferences must be accommodated in the on-chip memory simultaneously.
Having to accommodate multiple such workloads in on-chip memory further
exacerbates the pressure on the on-chip memory.

1.2 Problem Statement

The loop order and blocking factors are determined by the compiler with a
computationally demanding process involving an iterative search also called
mapping [8]-[20], while some others [11], [21]-[24] rely on performance models
with high training cost or necessitate massive datasets and large-scale simula-
tions to train them. However, there is often a tradeoff between computational
complexity and optimality, where achieving optimality comes at the expense of
computational complexity of search or vice versa. There have been some strides
towards exploiting this tradeoff [9], [17]-[20]. However, the computational
complexity of mapping an entire workload that consists of a large number of
layers still remains high. Therefore, Paper I addresses the following question:

How to achieve optimality and low computational complexity simultaneously
in the iterative search for loop orders and blocking factors in DNN accelerators?

Due to the dynamic nature of the cloud multi-DNN accelerators, using a
fixed static batch size, across all layers of a workload, often leads to stalls
and under-utilization when on-chip memory space is exhausted. This hampers
performance measured as throughput. Conversely, smaller batch sizes reduce
such stalls but can lead to poor throughput due to poor weight reuse. Therefore,
Paper II addresses the following question:

How to mitigate the performance degradation caused by stalls due to ex-
haustion of on-chip memory when multiple statically determined batches share
on-chip memory?

1.3 Thesis Contributions

This thesis is based on two papers. The main contributions of Paper I, which
addresses the first question, are:

e We propose DNN-OPT, a hardware/software framework designed for
output stationary systolic array-based accelerators. DNN-OPT selects
the loop order and blocking factor on a layer-by-layer basis, either in
isolation or in combination.
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e Our results demonstrate that DNN-OPT can optimally minimize the num-
ber of off-chip memory accesses while significantly reducing computational
complexity. This is achieved through two proposed techniques— Farly
FExit and Strided Search as well as the use of simple, computationally
inexpensive analytical cost models tailored for systolic array-based accel-
erators.

The main contributions of Paper II, which addresses the second question,
are:

e We propose two intertwined techniques, adaptive cascaded sub-batching
and adaptive sub-batch merging, aimed at enhancing the utilization of
the compute fabric and on-chip memory in multi-DNN accelerators.

e We evaluate the two proposed techniques. BATCH-DNN can improve
the utilization of the accelerator compute fabric by 60%, increasing
throughput by up to 27% and an average of 6% for batched multi-DNN
workloads.

The remainder of the thesis is organized as follows: Chapter 2 provides a
summary of each paper, while Chapter 3 concludes the thesis and presents
potential future research directions.
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Chapter 2

Summary of Papers

2.1 Summary of Paper 1

Loop reordering and blocking are well-researched optimizations aimed at maxim-
izing data reuse in deep neural network (DNN) accelerators. However, existing
frameworks have limitations to efficiently select the optimal loop order and
blocking factors for these accelerators. Specifically, prior approaches face one or
more of the following limitations: (1) they require exhaustive searches through
an excessively large search space, (2) they do not guarantee the selection of
optimal optimizations if only a subset of the entire search space is evaluated
or (3) they involve computationally intensive evaluations for each point in the
search space for a given loop order and a set of blocking factors.

First, some studies, such as those referenced in [8]-[16], have attempted to
exhaustively identify the optimization that minimizes execution time, resulting
in a computational complexity of O(M x P)[17]. In this case, M represents
the number of operations needed to evaluate a single point, while P is the
total number of points in the search space. Although there have been efforts
to prune the search space (i.e, reduce P) [9], [17]-][20] it remains prohibitively
large, particularly since it must account for all valid sizes of blocking factors
and their combinations. Other work has employed feedback-driven approaches,
such as black-box auto-tuning, beam search, Monte Carlo methods, or iterative
sampling using machine learning algorithms [11], [21]-[24]. Unfortunately,
these methods often incur high training costs or require extensive datasets and
large-scale simulations to develop performance modelsas pointed out by [20].

Second, Timeloop [8], [25] utilizes random search methods, while some
studies [26], [27] have applied genetic algorithms. Sometimes, these approaches
lead to non-optimal results. For instance, Timeloop’s random search can select
points that result in performance five times worse than the optimal point
available in the search space as pointed out by [20].

Third, focusing on reducing M, evaluating a single point in the search space
within Timeloop involves examining delta in two contiguous tiles for data reuse.
Similarly, Rahaman et al. [13] analyze every location in the on-chip memory
using simulations. This leads to a high computational cost when assessing each
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individual point in the search space.

In response to these challenges, DNNOPT introduces a hardware/software
framework designed to optimally and efficiently select loop order and blocking
factors. One key challenge is how to reduce the search space (i.e., P) without
sacrificing global optimality. To address this, we employ two strategies: (1)
Farly Exit from the search process if increasing the blocking factor does not
result in fewer off-chip accesses. To elaborate, the cost models indicate that the
number of off-chip accesses varies with the blocking factor sizes as a monotonic
function. If increasing a blocking factor does not reduce off-chip accesses, it is
unproductive to keep increasing that blocking factor. Thus, searching along
this path can be terminated early. We show experimentally that the Early
Exit strategy can significantly reduce search time. (2) Strided Search involves
selectively traversing the search space to examine only valid block sizes relevant
to the systolic array-based architecture. To elaborate on each layer, we search
by iterating through block sizes and combinations. In an output stationary
systolic array architecture, block sizes must be integer multiples of PE array
size. To optimize the search, we propose striding, by which we mean that we
evaluate only such block sizes that are integer multiples of the PE array size.

The second challenge involves reducing the computational complexity asso-
ciated with evaluating a single point in the search space (i.e., M). To address
this DNNOPT leverages precise and computationally inexpensive analytical
cost models based on reuse distance and inter-block reuse, inspired by the work
of [28], [29].DNNOPT also allows a quantitative comparison of the benefits of
chosen optimizations for loop reordering and blocking, whether considered in
isolation or in combination. Additionally, it selects loop order and blocking
factors on a layer-by-layer basis.

We extend the SCALE-Sim simulator to model our optimizations. The
baseline system suitable for resource-constrained devices is assumed. We choose
a wide variety of DNN benchmarks selected from MLPerf [52], Deep Bench
benchmarks [53], and benchmarks used in previous work [54], [55].

We present an evaluation of the framework’s effectiveness, demonstrating
that our proposed methods can prune the search space by over 99%, or two
orders of magnitude, for both CNN and transformer workloads. Furthermore,
our framework achieves an average of 1.8x improvement in performance, 50%
improvement in energy efficiency, and 249x improvement in time to solution
compared to Timeloop’s random search [8], as well as a 226X estimated
reduction in time to solution compared to CoSA [20] for CNN and transformer
benchmarks.
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2.2 Summary of Paper 11

This paper addresses the problem of throughput degradation in cloud systems
that serve multiple statically batched DNNs due to the exhaustion of on-chip
memory. In this regard, we present dynamic techniques designed to adapt the
batch size to suit the available amount of on-chip memory on a layer-by-layer
basis. We propose two methods: adaptive cascaded sub-batch splitting and
adaptive sub-batch merging.

First, common to both techniques, we statically profile the workload for a
single batch to determine the memory footprint required for each inference.
Using this static information, the method can identify the maximum possible
batch size for each new layer at runtime.

In cases where the batch size used in the previous layer exceeds the available
amount of on-chip memory at any given layer, the batch is divided into two
sub-batches, thereby reducing memory consumption. We refer to this as Sub-
batch splitting. Furthermore, when the on-chip memory insufficiency is resolved,
sub-batch merging combines the currently executing sub-batch with the most
recently paused sub-batch, ensuring that layer dependencies are maintained.
The paused sub-batches are resumed in the order in which they were paused
to respect these dependencies. This is referred to as Sub-batch Merging

The two main challenges in deploying these techniques involve maintaining
execution order and managing on-chip memory. This is particularly import-
ant because sub-batch splitting and merging can occur dynamically based on
memory availability at runtime. First, all preceding dependent layers must com-
plete their computations to produce Output Feature Maps (OFMAPs), which
will be used as Input Feature Maps (IFMAPs) for the current layer. Second,
the weights for the current layer must be loaded into on-chip memory before
computations can begin. Once all dependent layers have finished processing,
the weights and IFMAPs can be freed up. However, managing on-chip memory
is challenging since batches may only complete partially due to sub-batching
taking place at arbitrary layers.

The proposed sub-batching techniques exhibit a form of recursion, where a
given sub-batch can be further divided into two sub-batches. This creates a
binary tree structure of sub-batches, complicating the tracking of their splitting
and merging. The last split sub-batch needs to be merged first. To address
this, we propose using a stack to keep track of the paused sub-batches. Thus,
sub-batches are resumed in Last-In-First-Out (LIFO) order. Each inference
workload has a stack.

The BATCH-DNN scheduling algorithm divides batches into sub-batches
when there is insufficient on-chip memory at runtime. It uses a stack to
document the paused work. Once the memory issue is resolved, the sub-batches
are resumed and combined with the current batch. This approach allows
BATCH-DNN to dynamically adjust its batch size to the availability of on-chip
memory during execution, thereby mitigating stalls.

We utilize BATCH-DNN_Sim, a cycle-accurate simulator [56], to profile
Deep Neural Network (DNN) workloads. This simulator establishes their
memory footprints, memory access patterns, and computation cycle counts
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based on an Output Stationary (OS) systolic array model. BATCH-DNN_Sim
takes as inputs micro-architectural parameters, along with the DNN topology
and populates the scheduling table.

This simulator further models a multi-DNN accelerator [56] by extending
the AI-MT scheduler [33], generating cycle counts for computations, memory
accesses, and any stalls that occur. The AI-MT architecture model serves as
our baseline; however, we have increased the on-chip memory to an amount
equivalent to that used in STfusion [31] to make our baseline more realistic.
Additionally, we assume the use of High Bandwidth Memory (HBM) for off-chip
memory technology.

For our evaluation, conducting an exhaustive analysis of all combinations of
four benchmarks would require considering 10 x 10 x 10 x 10 = 10* workload
combinations, which is far too large to be tractable. Instead, we have chosen
to evaluate 450 mixes from this exhaustive set randomly. Actually, 370 mixes
achieve 95% statistical confidence with 5% error on a population of 10,000.

We evaluate the two proposed techniques. BATCH-DNN can improve the
utilization of the accelerator compute fabric by 60%, resulting in a throughput
increase of up to 27% and an average of 6% for batched multi-DNN workloads.



Chapter 3

Discussion and Future
Work

Paper I introduces DNNOPT, a hardware/software framework designed for
output stationary systolic array-based accelerators. DNNOPT optimizes the
loop order and blocking factors layer-by-layer to enhance the performance and
energy efficiency of deep neural network (DNN) accelerators by minimizing
the number of off-chip memory accesses. Unlike prior work, DNNOPT makes
optimal selections with significantly reduced computational complexity. It
achieves this through three strategies: Early Exit, Strided Search, and the use
of simple, computationally inexpensive analytical cost models based on global
reuse distance and inter-block reuse.

First, a major drawback of DNNOPT is that it is tailored to a specific
data flow, namely output stationary. Consequently, analytical models must
be manually derived for each new data flow. In contrast, other tools, such as
Timeloop and CoSA, are more versatile and applicable to all DNN acceler-
ators. This limitation illustrates the typical trade-off between efficiency and
generalization. Second, the DNNOPT architecture is restricted to two levels
of tiling. It also relies on hardware tags in the memory allocation table to
ensure that the memory blocking tiles remain transparent to the compute
tiles. However, the hardware investment required for DNNOPT may still be
justified for a memory space-constrained DNN accelerator that requires only a
few tags. Third, DNNOPT is limited to six dimensions, excluding the batch
dimension, which is less relevant in a memory-constrained context where it
cannot accommodate the full footprint of a batch of tiles. Fourth, DNN-OPT
mapping happens layer by layer, considering only a single layer at a time (i.e,
considering intra-layer reuse only).

Future work of DNN-OPT includes incorporating both inter and intra-layer
reuse in the mapping, given that layers are processed one after another with
an on-chip memory with persistent data across layers.

Paper II presents BATCH-DNN, a framework for adaptive and dynamic
batching in multi-DNN accelerators. BATCH-DNN helps reduce performance
losses due to memory exhaustion by employing adaptive cascaded sub-batching

9
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and sub-batch merging techniques.

The main drawbacks of BATCH-DNN are as follows. First, the system can
stall if it cannot accommodate at least one unit batch. Second, the baseline
scheduler occasionally encounters deadlocks because memory access occurs out
of order. This issue could be resolved by enforcing in-order memory access or
handling it as an exception. Third, batch sizes that exceed the total on-chip
memory capacity—meaning any given layer of a DNN exceeds the available
memory—are blocked from processing, limiting the maximum attainable batch
size.

The future work of BATCH-DNN could be extended to support arbitrarily
larger batches with an approach toward squeezing a larger number of inferences
in a given memory space with a layer dependency centric scheduler that is
more synergistic with BATCH-DNN, which can reach the theoretical upper
bound of batch size with fewer stall cycles. Further, an approach called batch
slicing allows breaking larger batches into smaller ones before feeding them to
the accelerator in a repetitive fashion; this lifts the constraint on the maximum
servable batch size.

Further, it would be interesting to explore if both DNNOPT and BATCH-
DNN could be combined to achieve a completely stall-free execution of batched
DNNs with real-time dynamic mapping, optimal for a given memory allocation
at runtime.
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