THESIS FOR THE DEGREE OF LICENTIATE IN COMPUTER SCIENCE AND
ENGINEERING

Techniques to Improve Management of
On-Chip Memories of Deep Learning
Accelerators

PivyuMAL RANAWAKA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY | UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden, 2025

Techniques to Improve Management of On-Chip Memories of Deep
Learning Accelerators

PIYyUMAL RANAWAKA

(© Piyumal Ranawaka, 2025
except where otherwise stated.
All rights reserved.

ISSN 1652-876X

Department of Computer Science and Engineering

Division of Computer and Network Systems

Computer Architecture Research Group

Chalmers University of Technology | University of Gothenburg
SE-412 96 Goteborg,

Sweden

Phone: 4+46(0)31 772 1000

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2025.

“Imagination is more important than knowledge.”
- Albert Finstein

Abstract

This thesis focuses on two open problems in the literature related to im-
proving the management of on-chip memories of deep learning accelerators for
improved resource utilization.

The first part of this thesis focuses on deep learning accelerators that
suffer from poor on-chip memory utilization, affecting performance and energy
efficiency. Techniques such as loop reordering and blocking are used to improve
this, but existing frameworks can be inefficient due to either high algorithmic
computational complexity for searching or, due to suboptimal choices due to
compromised search space. This paper presents DNNOPT, a hardware/software
framework that optimally selects loop orders and blocking factors through two
proposed stratergies: Farly Erit and Strided Search, to prune the search space
and simple analytical models for data reuse. DNNOPT reduces the search space
by over two orders of magnitude and enhances performance, energy efficiency,
and time to solution by an average of 1.8, 50%, and 226X, respectively, for
CNN and Transformer workloads compared to current frameworks.

The second part of this thesis focuses on accelerators where multiple neural
network inferences can run simultaneously that allow the simultaneous execution
of multiple Deep Neural Network (DNN) workloads, improving performance
by overlapping computations and memory access. For effective operation,
sufficient on-chip memory is necessary to accommodate the total memory
footprint of all workloads. Batching enhances weight reuse and lowers off-
chip access costs by enabling DNN inferences of the same model to share
weights. However, traditional batching, which sets the batch size statically
across all layers, can cause stalls when on-chip memory is insufficient. This
paper introduces BATCH-DNN, a dynamic method that adjusts the batch
size of each layer based on available on-chip memory. It employs techniques
such as adaptive cascaded sub-batching and adaptive sub-batch merging. Offline
profiling determines the memory footprint, while runtime adjustments set the
maximum batch size per layer. BATCH-DNN can boost accelerator compute
fabric utilization by 40%, leading to throughput improvements of up to 27%,
with an average enhancement of 6% for batched multi-DNN workloads.

Keywords

Deep Learning Accelerator On-Chip Memory, Loop Optimizations, Loop Re-
ordering, Loop Blocking, Dynamic and Adaptive Batching

11

List of Publications

Appended publications

This thesis is based on the following publications. References to the papers are
made using Roman numerals associated with the papers:

I.

11

P. Ranawaka, M.W. Azhar, P. Stenstrom, DNNOPT: A Framework
for Efficiently Selecting On-chip Memory Loop Optimizations of DNN
Accelerators

In Proceedings of the 21st ACM International Conference on Computing

Frontiers (May 2024), 126-137.

P. Ranawaka, P. Stenstrom, BATCH-DNN: Adaptive and Dynamic
Batching for Multi-DNN Accelerators

To appear in 31st Furopean Conference on Parallel and Distributed
Computing, (August 25-29), 2025.

Other publications

The following publications were published during my PhD studies, However,
they are not appended to this thesis, due to contents not related to the thesis.

[a]

G. Baravdish, P. Ranawaka, Semantic Segmentation of Weed and Crop
with Partially Annotated Data for Automated Agriculture

Proceedings of 2023 IEEE International Conference on Agrosystem En-
gineering, Technology & Applications (AGRETA) (September 2023),
17-22.

Acknowledgment

First, I would like to express my sincere and profound gratitude to my super-
visors, Prof. Ulf Assarsson and Prof. Per Stenstrom. They have been the best
supervisors I could ever ask for—believing in me, motivating me, providing
outstanding research training, and offering unwavering support. Ulf offered his
excellent supervision and support during a brief period when I was in great
need, for which I am deeply grateful. Per, on the other hand, supervised me
for many years and without giving up on me. So I would like to say a few
more words about Per since I know quite a lot about him. He is not only a
patient listener filled with humility but also a mentor, an excellent teacher, an
innovator, a role model, and a true leader in the research world of computer
architecture. His expertise in the field is matched only by his personal qualities
and integrity, making him someone from whom young researchers can learn so
much. Professionally, I thank you for being a great leader, for trusting me and
delegating responsibilities, for helping me grow professionally, and for being
patient whether things went as expected or not. I aspire to be your faithful
assistant, as you have been a wonderful boss. As the father in the research
context, I will always remember you for teaching me to think in ways I had
never used to before—such as abstract thinking, which involves focusing on
concepts while ignoring details, and dialectical thinking, which entails holding
opposing viewpoints simultaneously to reach a more nuanced understanding
and many more approaches for complex reasoning. You are the wisest person
I have ever encountered, always driven by reasoning. Your anecdotes have
served as valuable life lessons. The lessons I learned from you about writing,
not only scientific writing, coming from an expert writer, will be the most
powerful weapon I possess. Your guidance in communication and presentation,
particularly on how to pitch complex ideas and to make the points, will be
invaluable skills to master. Finally, thank you for teaching this young kid, who
was not accustomed to thinking before acting, that if you sit and think deeply,
anything can be conquered. At first, I saw you as a philosopher, but now I
understand that you are truly a remarkable intellectual and a scientist.

I would also like to express my deep appreciation and gratitude to my
first two teachers, Dr. Mongkol Ekpanyapong and Prof. Adriano Tavares,
who have significantly shaped who I am today with their elite skills and
expertise. Their relentless support and guidance continue to benefit me. I
still remember the first time I met them, coming from a country with an

vii

viil

exam-oriented education system that offered free education but not freedom of
education, and limited access to quality higher education and opportunities
for growth, in my humble opinion. I was unfamiliar with managing complex
technical projects, often struggling with even a few hundred lines of code and
a few thousand transistors, and I didn’t know how to use the state-of-the-
art tools necessary to complete my work. I am incredibly grateful for their
help in helping me master the craft and build my confidence and self-esteem
through the best training imaginable. They fostered my problem-solving skills,
creativity, patience, persistence, endurance, agility, and resilience, enabling
me to manage a complex, intellectually challenging project. Having access
to a former senior computer architect at Intel and a ’GOAT’ in computer
engineering who are incredibly kind and caring towards young students has
been a significant turning point in my life.

In summary, meeting these outstanding teachers has profoundly fulfilled
my desire to ’deeply’ understand how computers work, a mystery that has
intrigued me since childhood. I consider myself fortunate to have them as my
mentors and pillars of strength. Finally, I want to thank them for offering me
opportunities when all I had to offer was my willingness to learn, along with
my limited knowledge and skills for the role. I would also like to thank Dr.
Wagqar for his friendly co-supervision and for putting up with my stubbornness.

I would like to express my heartfelt gratitude to my outstanding support
team at Chalmers for their unwavering belief in me, for helping me succeed
despite the numerous challenges and setbacks I faced, and for not giving up
on me. I appreciate the excellent workplace they provided, particularly my
understanding and caring manager, Arne, for his fatherly care and for picking
me up when I am psychologically drained due to countless reasons beyond my
control, along with my PhD team, including Ioannis, Agneta, Wolfgang, Nir,
Clara, and Sana. I also want to thank all the esteemed faculty members in
our department for their warm, inspiring, and welcoming presence, including
Roger, Pedro, Ioannis, Miquel, Risat, Lars S., Johan, Tomas, Romaric, Ahmed,
Niklas, and Richard. Furthermore, I am grateful to my colleagues in the
department—Ahsen, Prajith, Albin, Waqar, Monica, Lars N., Andreas, Pirah,
Fazeleh, Mehrzad, Qi, Konst, Mateo, Neethu, Bhavi, Madhavan, Sonia, Jing,
Stavroula, Panos, Magnus, Mo, Francesco, Roman, and many others—for their
warm companionship and for all the insightful and not so insightful discussions
we’ve had.

I would like to express my gratitude to the teachers who supported me
throughout my higher studies at SAITM Sri Lanka, AIT Thailand, University
of Minho in Portugal. This includes Professors Matt, Cabral, Sisuru and
Janaka; Doctors Tiago, Vitor, Krit, Thilini, Harsha, Chinthaka, and Tharanga,
as well as Mr. Chumnarn, Mr. Marcelo, and Mr.Rukshan. I cannot forget the
education I received from my home country, particularly from SAITM, where I
created cherished memories and gained foundational lessons in engineering.

I also want to acknowledge my alma mater, St. Joseph’s College in Colombo,
and Nalanda College in Colombo, where I had remarkable teachers, including
Mr.Christopher Gamage, Mrs.Shriya Perera, and Mr.Doric Jayakody. How
could I ever forget beloved and excellent peers like the late Nisal Kotinkaduwa

ix

for inspiring and pushing hard a grade ten student to do a PhD one day. My
schools instilled in me the values of 'In Scientia et Virtute’ and ’Apadana
Sobhini Panna.’

Further, a big acknowledgment to all the teachers, but hard to attribute to
one, who instilled an attitude and a virtue of do it with all your ability pouring
all your heart and soul into whatever you do or do nothing.

I would like to extend my gratitude to the University of Moratuwa. While it
is not my alma mater, it sparked my passion for engineering during a time when
my school education felt boring and uninspiring. I am thankful for the oppor-
tunity to serve as a junior faculty member there, and I appreciate the friendly
and supportive staff members, including Prof. K.K.C.K Perera, Mr.Sudantha,
Mr.Karunarathne, Dr.Lochandaka, Dr.Supunmali, Dr.Amalraj, Dr.Saminda,
Mrs.Indika, Mr.Withanage, Dr. Shalinda, Dr.Chaman, Dr.Upeksha, Dr.Sagara,
Dr.Ruvini, Dr.Sumudu, Prof.Karunananda, Dr.Leelanga, Dr.Subha, Prof.
Thushari, Prof. Thanuja, and Dr.Champika. Their support has played a con-
structive role in advancing my career.

Last but not least, I would like to express my heartfelt gratitude to my
dearest parents, grandparents, and sister for believing in me when no one else
in the family did. Your encouragement has helped me become who I am today.
I will always remember my parents for their endless love, commitment, and
sacrifices. They instilled in me the importance of learning even before I could
ride a bicycle or tie my shoelaces!

I am profoundly grateful to the Wallenberg AI, Autonomous Systems, and
Software Program (WASP) for the opportunity to broaden my horizons, gain
valuable knowledge, and build lasting friendships with fellow researchers. This
work has been supported by WASP, which is funded by the Knut and Alice
Wallenberg Foundation, and the PRIDE project, supported by the Swedish
Foundation of Strategic Research under the CHI19- 0048 contract. The com-
putations were made possible through resources provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS), which is
partially funded by the Swedish Research Council under grant agreement no.
2022-06725.

Finally, I express my profound gratitude to my beloved division, department
and Chalmers, and to all taxpayers of Sweden and the EU for giving me
the privilege and access to cutting-edge, world-class education at its highest
academic quality.

Contents

Abstract iii
List of Publications v
Acknowledgement vii
1 Introduction 1
1.1 Background 1
1.2 Problem Statement L 2
1.3 Thesis Contributionso 2
2 Summary of Papers 5
2.1 Summary of Paper I 5)
2.2 Summary of Paper IT. 7
3 Discussion and Future Work 9
Bibliography 11

Paper I - DNNOPT: A Framework for Efficiently Selecting On-
chip Memory Loop Optimizations of DNN Accelerators

Paper 11 - BATCH-DNN: Adaptive and Dynamic Batching for
Multi-DNN Accelerators

X1

Chapter 1

Introduction

1.1 Background

Deep Learning (DL) has become essential for many emerging applications
because of its effectiveness in tackling complex tasks across various fields [1]—
[4]. However, these applications are compute and data intensive, leading to
poor performance and high power consumption when executed on general-
purpose hardware. In addition, the end of Moore’s law [5]-[7] implies that
specialization is a promising avenue for future computer architecture where the
key idea is to offload such demanding workloads to domain-specific hardware
accelerators. Such accelerators eliminate performance and power overheads
in general-purpose processing by using specialized hardware optimized for a
specific class of applications. As a result, DL inference accelerators have become
an integral part of computing systems from edge to cloud. On-chip memory
in such accelerators is a key resource that improves performance and lowers
energy consumption by reducing off-chip memory accesses by reusing data.

First, focusing on systems in which resources are constrained and, in
particular, the amount of on-chip memory, such as in edge systems, the amount
of on-chip memory resources that could be allocated to an inference is limited.
As a result of having on-chip memory constrained, often, the entire footprint
of a layer could not be accommodated in the on-chip memory. Limited on-chip
memory results in frequent off-chip memory accesses that degrade performance
and increase power consumption. Loop optimizations such as loop reordering
and loop blocking have been extensively explored in prior art [8]-[29]. It is
used as a means to improve the reuse of data in the on-chip memory and to cut
down off-chip memory accesses. It does so by improving the locality of data
access while adhering to the on-chip memory budget.

Second, there are systems with less strict resource constraints, such as in
cloud systems, but achieving cost-effectiveness and higher throughput for the
given resource investment is essential. This requires efficiently utilizing the
compute fabric, off-chip memory bandwidth, and on-chip memory. Prior art
[30]-[51] has attempted to enhance the cost-effectiveness by executing multiple
DNN workloads simultaneously on a single accelerator. Some work uses double

2 CHAPTER 1. INTRODUCTION

buffering to improve resource utilization by overlapping memory access with
computation [34], [41], [43]-[46]. However, only a few studies focus on techniques
to enhance resource utilization due to the mismatch between memory access
and computation [30], [31], [33], [40]. Furthermore, less attention has been paid
to constraints due to on-chip memory capacity. In cloud inference, batching
means loading a layer’s weights once to compute N consecutive inferences (a
batch) before progressing to the next layer. This reduces off-chip accesses for
weights by a factor of the batch size N but puts pressure on memory since the
footprint of feature maps increases by a factor of N, where feature map data
of N inferences must be accommodated in the on-chip memory simultaneously.
Having to accommodate multiple such workloads in on-chip memory further
exacerbates the pressure on the on-chip memory.

1.2 Problem Statement

The loop order and blocking factors are determined by the compiler with a
computationally demanding process involving an iterative search also called
mapping [8]-[20], while some others [11], [21]-[24] rely on performance models
with high training cost or necessitate massive datasets and large-scale simula-
tions to train them. However, there is often a tradeoff between computational
complexity and optimality, where achieving optimality comes at the expense of
computational complexity of search or vice versa. There have been some strides
towards exploiting this tradeoff [9], [17]-[20]. However, the computational
complexity of mapping an entire workload that consists of a large number of
layers still remains high. Therefore, Paper I addresses the following question:

How to achieve optimality and low computational complexity simultaneously
in the iterative search for loop orders and blocking factors in DNN accelerators?

Due to the dynamic nature of the cloud multi-DNN accelerators, using a
fixed static batch size, across all layers of a workload, often leads to stalls
and under-utilization when on-chip memory space is exhausted. This hampers
performance measured as throughput. Conversely, smaller batch sizes reduce
such stalls but can lead to poor throughput due to poor weight reuse. Therefore,
Paper II addresses the following question:

How to mitigate the performance degradation caused by stalls due to ex-
haustion of on-chip memory when multiple statically determined batches share
on-chip memory?

1.3 Thesis Contributions

This thesis is based on two papers. The main contributions of Paper I, which
addresses the first question, are:

e We propose DNN-OPT, a hardware/software framework designed for
output stationary systolic array-based accelerators. DNN-OPT selects
the loop order and blocking factor on a layer-by-layer basis, either in
isolation or in combination.

1.3. THESIS CONTRIBUTIONS 3

e Our results demonstrate that DNN-OPT can optimally minimize the num-
ber of off-chip memory accesses while significantly reducing computational
complexity. This is achieved through two proposed techniques— Farly
FExit and Strided Search as well as the use of simple, computationally
inexpensive analytical cost models tailored for systolic array-based accel-
erators.

The main contributions of Paper II, which addresses the second question,
are:

e We propose two intertwined techniques, adaptive cascaded sub-batching
and adaptive sub-batch merging, aimed at enhancing the utilization of
the compute fabric and on-chip memory in multi-DNN accelerators.

e We evaluate the two proposed techniques. BATCH-DNN can improve
the utilization of the accelerator compute fabric by 60%, increasing
throughput by up to 27% and an average of 6% for batched multi-DNN
workloads.

The remainder of the thesis is organized as follows: Chapter 2 provides a
summary of each paper, while Chapter 3 concludes the thesis and presents
potential future research directions.

CHAPTER 1. INTRODUCTION

Chapter 2

Summary of Papers

2.1 Summary of Paper 1

Loop reordering and blocking are well-researched optimizations aimed at maxim-
izing data reuse in deep neural network (DNN) accelerators. However, existing
frameworks have limitations to efficiently select the optimal loop order and
blocking factors for these accelerators. Specifically, prior approaches face one or
more of the following limitations: (1) they require exhaustive searches through
an excessively large search space, (2) they do not guarantee the selection of
optimal optimizations if only a subset of the entire search space is evaluated
or (3) they involve computationally intensive evaluations for each point in the
search space for a given loop order and a set of blocking factors.

First, some studies, such as those referenced in [8]-[16], have attempted to
exhaustively identify the optimization that minimizes execution time, resulting
in a computational complexity of O(M x P)[17]. In this case, M represents
the number of operations needed to evaluate a single point, while P is the
total number of points in the search space. Although there have been efforts
to prune the search space (i.e, reduce P) [9], [17]-][20] it remains prohibitively
large, particularly since it must account for all valid sizes of blocking factors
and their combinations. Other work has employed feedback-driven approaches,
such as black-box auto-tuning, beam search, Monte Carlo methods, or iterative
sampling using machine learning algorithms [11], [21]-[24]. Unfortunately,
these methods often incur high training costs or require extensive datasets and
large-scale simulations to develop performance modelsas pointed out by [20].

Second, Timeloop [8], [25] utilizes random search methods, while some
studies [26], [27] have applied genetic algorithms. Sometimes, these approaches
lead to non-optimal results. For instance, Timeloop’s random search can select
points that result in performance five times worse than the optimal point
available in the search space as pointed out by [20].

Third, focusing on reducing M, evaluating a single point in the search space
within Timeloop involves examining delta in two contiguous tiles for data reuse.
Similarly, Rahaman et al. [13] analyze every location in the on-chip memory
using simulations. This leads to a high computational cost when assessing each

6 CHAPTER 2. SUMMARY OF PAPERS

individual point in the search space.

In response to these challenges, DNNOPT introduces a hardware/software
framework designed to optimally and efficiently select loop order and blocking
factors. One key challenge is how to reduce the search space (i.e., P) without
sacrificing global optimality. To address this, we employ two strategies: (1)
Farly Exit from the search process if increasing the blocking factor does not
result in fewer off-chip accesses. To elaborate, the cost models indicate that the
number of off-chip accesses varies with the blocking factor sizes as a monotonic
function. If increasing a blocking factor does not reduce off-chip accesses, it is
unproductive to keep increasing that blocking factor. Thus, searching along
this path can be terminated early. We show experimentally that the Early
Exit strategy can significantly reduce search time. (2) Strided Search involves
selectively traversing the search space to examine only valid block sizes relevant
to the systolic array-based architecture. To elaborate on each layer, we search
by iterating through block sizes and combinations. In an output stationary
systolic array architecture, block sizes must be integer multiples of PE array
size. To optimize the search, we propose striding, by which we mean that we
evaluate only such block sizes that are integer multiples of the PE array size.

The second challenge involves reducing the computational complexity asso-
ciated with evaluating a single point in the search space (i.e., M). To address
this DNNOPT leverages precise and computationally inexpensive analytical
cost models based on reuse distance and inter-block reuse, inspired by the work
of [28], [29].DNNOPT also allows a quantitative comparison of the benefits of
chosen optimizations for loop reordering and blocking, whether considered in
isolation or in combination. Additionally, it selects loop order and blocking
factors on a layer-by-layer basis.

We extend the SCALE-Sim simulator to model our optimizations. The
baseline system suitable for resource-constrained devices is assumed. We choose
a wide variety of DNN benchmarks selected from MLPerf [52], Deep Bench
benchmarks [53], and benchmarks used in previous work [54], [55].

We present an evaluation of the framework’s effectiveness, demonstrating
that our proposed methods can prune the search space by over 99%, or two
orders of magnitude, for both CNN and transformer workloads. Furthermore,
our framework achieves an average of 1.8x improvement in performance, 50%
improvement in energy efficiency, and 249x improvement in time to solution
compared to Timeloop’s random search [8], as well as a 226X estimated
reduction in time to solution compared to CoSA [20] for CNN and transformer
benchmarks.

2.2. SUMMARY OF PAPER II 7

2.2 Summary of Paper 11

This paper addresses the problem of throughput degradation in cloud systems
that serve multiple statically batched DNNs due to the exhaustion of on-chip
memory. In this regard, we present dynamic techniques designed to adapt the
batch size to suit the available amount of on-chip memory on a layer-by-layer
basis. We propose two methods: adaptive cascaded sub-batch splitting and
adaptive sub-batch merging.

First, common to both techniques, we statically profile the workload for a
single batch to determine the memory footprint required for each inference.
Using this static information, the method can identify the maximum possible
batch size for each new layer at runtime.

In cases where the batch size used in the previous layer exceeds the available
amount of on-chip memory at any given layer, the batch is divided into two
sub-batches, thereby reducing memory consumption. We refer to this as Sub-
batch splitting. Furthermore, when the on-chip memory insufficiency is resolved,
sub-batch merging combines the currently executing sub-batch with the most
recently paused sub-batch, ensuring that layer dependencies are maintained.
The paused sub-batches are resumed in the order in which they were paused
to respect these dependencies. This is referred to as Sub-batch Merging

The two main challenges in deploying these techniques involve maintaining
execution order and managing on-chip memory. This is particularly import-
ant because sub-batch splitting and merging can occur dynamically based on
memory availability at runtime. First, all preceding dependent layers must com-
plete their computations to produce Output Feature Maps (OFMAPs), which
will be used as Input Feature Maps (IFMAPs) for the current layer. Second,
the weights for the current layer must be loaded into on-chip memory before
computations can begin. Once all dependent layers have finished processing,
the weights and IFMAPs can be freed up. However, managing on-chip memory
is challenging since batches may only complete partially due to sub-batching
taking place at arbitrary layers.

The proposed sub-batching techniques exhibit a form of recursion, where a
given sub-batch can be further divided into two sub-batches. This creates a
binary tree structure of sub-batches, complicating the tracking of their splitting
and merging. The last split sub-batch needs to be merged first. To address
this, we propose using a stack to keep track of the paused sub-batches. Thus,
sub-batches are resumed in Last-In-First-Out (LIFO) order. Each inference
workload has a stack.

The BATCH-DNN scheduling algorithm divides batches into sub-batches
when there is insufficient on-chip memory at runtime. It uses a stack to
document the paused work. Once the memory issue is resolved, the sub-batches
are resumed and combined with the current batch. This approach allows
BATCH-DNN to dynamically adjust its batch size to the availability of on-chip
memory during execution, thereby mitigating stalls.

We utilize BATCH-DNN_Sim, a cycle-accurate simulator [56], to profile
Deep Neural Network (DNN) workloads. This simulator establishes their
memory footprints, memory access patterns, and computation cycle counts

8 CHAPTER 2. SUMMARY OF PAPERS

based on an Output Stationary (OS) systolic array model. BATCH-DNN_Sim
takes as inputs micro-architectural parameters, along with the DNN topology
and populates the scheduling table.

This simulator further models a multi-DNN accelerator [56] by extending
the AI-MT scheduler [33], generating cycle counts for computations, memory
accesses, and any stalls that occur. The AI-MT architecture model serves as
our baseline; however, we have increased the on-chip memory to an amount
equivalent to that used in STfusion [31] to make our baseline more realistic.
Additionally, we assume the use of High Bandwidth Memory (HBM) for off-chip
memory technology.

For our evaluation, conducting an exhaustive analysis of all combinations of
four benchmarks would require considering 10 x 10 x 10 x 10 = 10* workload
combinations, which is far too large to be tractable. Instead, we have chosen
to evaluate 450 mixes from this exhaustive set randomly. Actually, 370 mixes
achieve 95% statistical confidence with 5% error on a population of 10,000.

We evaluate the two proposed techniques. BATCH-DNN can improve the
utilization of the accelerator compute fabric by 60%, resulting in a throughput
increase of up to 27% and an average of 6% for batched multi-DNN workloads.

Chapter 3

Discussion and Future
Work

Paper I introduces DNNOPT, a hardware/software framework designed for
output stationary systolic array-based accelerators. DNNOPT optimizes the
loop order and blocking factors layer-by-layer to enhance the performance and
energy efficiency of deep neural network (DNN) accelerators by minimizing
the number of off-chip memory accesses. Unlike prior work, DNNOPT makes
optimal selections with significantly reduced computational complexity. It
achieves this through three strategies: Early Exit, Strided Search, and the use
of simple, computationally inexpensive analytical cost models based on global
reuse distance and inter-block reuse.

First, a major drawback of DNNOPT is that it is tailored to a specific
data flow, namely output stationary. Consequently, analytical models must
be manually derived for each new data flow. In contrast, other tools, such as
Timeloop and CoSA, are more versatile and applicable to all DNN acceler-
ators. This limitation illustrates the typical trade-off between efficiency and
generalization. Second, the DNNOPT architecture is restricted to two levels
of tiling. It also relies on hardware tags in the memory allocation table to
ensure that the memory blocking tiles remain transparent to the compute
tiles. However, the hardware investment required for DNNOPT may still be
justified for a memory space-constrained DNN accelerator that requires only a
few tags. Third, DNNOPT is limited to six dimensions, excluding the batch
dimension, which is less relevant in a memory-constrained context where it
cannot accommodate the full footprint of a batch of tiles. Fourth, DNN-OPT
mapping happens layer by layer, considering only a single layer at a time (i.e,
considering intra-layer reuse only).

Future work of DNN-OPT includes incorporating both inter and intra-layer
reuse in the mapping, given that layers are processed one after another with
an on-chip memory with persistent data across layers.

Paper II presents BATCH-DNN, a framework for adaptive and dynamic
batching in multi-DNN accelerators. BATCH-DNN helps reduce performance
losses due to memory exhaustion by employing adaptive cascaded sub-batching

9

10 CHAPTER 3. DISCUSSION AND FUTURE WORK

and sub-batch merging techniques.

The main drawbacks of BATCH-DNN are as follows. First, the system can
stall if it cannot accommodate at least one unit batch. Second, the baseline
scheduler occasionally encounters deadlocks because memory access occurs out
of order. This issue could be resolved by enforcing in-order memory access or
handling it as an exception. Third, batch sizes that exceed the total on-chip
memory capacity—meaning any given layer of a DNN exceeds the available
memory—are blocked from processing, limiting the maximum attainable batch
size.

The future work of BATCH-DNN could be extended to support arbitrarily
larger batches with an approach toward squeezing a larger number of inferences
in a given memory space with a layer dependency centric scheduler that is
more synergistic with BATCH-DNN, which can reach the theoretical upper
bound of batch size with fewer stall cycles. Further, an approach called batch
slicing allows breaking larger batches into smaller ones before feeding them to
the accelerator in a repetitive fashion; this lifts the constraint on the maximum
servable batch size.

Further, it would be interesting to explore if both DNNOPT and BATCH-
DNN could be combined to achieve a completely stall-free execution of batched
DNNs with real-time dynamic mapping, optimal for a given memory allocation
at runtime.

Bibliography

Y. Tian, K. Pei, S. Jana and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 303-314
(cit. on p. 1).

S. Lee, S. W. Oh, D. Won and S. J. Kim, “Copy-and-paste networks for
deep video inpainting,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4413-4421 (cit. on p. 1).

V. Ramanishka, Y.-T. Chen, T. Misu and K. Saenko, “Toward driving
scene understanding: A dataset for learning driver behavior and causal
reasoning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7699-7707 (cit. on p. 1).

C.-J. Wu, D. Brooks, K. Chen et al., “Machine learning at facebook:
Understanding inference at the edge,” in 2019 IFEFE International Sym-
posium on High Performance Computer Architecture (HPCA), IEEE,
2019, pp. 331-344 (cit. on p. 1).

N. Hardavellas, M. Ferdman, B. Falsafi and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6-15, 2011 (cit. on

p. 1).
G. Venkatesh, J. Sampson, N. Goulding et al., “Conservation cores:

Reducing the energy of mature computations,” ACM Sigplan Notices,
vol. 45, no. 3, pp. 205-218, 2010 (cit. on p. 1).

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D. Burger,
“Dark silicon and the end of multicore scaling,” in 2011 38th Annual
International Symposium On Computer Architecture (ISCA), IEEE, 2011,
pp. 365-376 (cit. on p. 1).

A. Parashar, P. Raina, Y. S. Shao et al., “Timeloop: A systematic
approach to dnn accelerator evaluation,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
IEEE, 2019, pp. 304-315 (cit. on pp. 1, 2, 5, 6).

L. Mei, P. Houshmand, V. Jain, S. Giraldo and M. Verhelst, “Zigzag:
Enlarging joint architecture-mapping design space exploration for dnn
accelerators,” IEFEE Transactions on Computers, vol. 70, no. 8, pp. 1160—
1174, 2021 (cit. on pp. 1, 2, 5).

11

12

BIBLIOGRAPHY

[10]

[14]

[16]

18]

S. Zhang et al., “Pame: Precision-aware multi-exit dnn serving for re-
ducing latencies of batched inferences,” in ICS, 2022, pp. 1-12 (cit. on
pp. 1, 2, 5).

X. Yang, M. Gao, Q. Liu et al., “Interstellar: Using halide’s scheduling
language to analyze dnn accelerators,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 369-383 (cit. on pp. 1, 2, 5).

R. V. W. Putra, M. A. Hanif and M. Shafique, “Romanet: Fine-grained
reuse-driven off-chip memory access management and data organization
for deep neural network accelerators,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 4, pp. 702-715, 2021 (cit. on
pp. 1, 2, 5).

A. Rahman, S. Oh, J. Lee and K. Choi, “Design space exploration of fpga
accelerators for convolutional neural networks,” in Design, Automation
€ Test in Europe Conference € Exhibition (DATE), 2017, IEEE, 2017,
pp. 1147-1152 (cit. on pp. 1, 2, 5).

K. Yang, S. Wang, J. Zhou and T. Yoshimura, “Energy-efficient schedul-
ing method with cross-loop model for resource-limited cnn accelerator

designs,” in 2017 IEEFE International Symposium on Clircuits and Systems
(ISCAS), IEEE, 2017, pp. 1-4 (cit. on pp. 1, 2, 5).

Y. Ma, Y. Cao, S. Vrudhula and J.-s. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural networks,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2017, pp. 45-54 (cit. on pp. 1, 2, 5).

R. Venkatesan, Y. S. Shao, M. Wang et al., “Magnet: A modular acceler-
ator generator for neural networks,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), IEEE, 2019, pp. 1-8
(cit. on pp. 1, 2, 5).

P. Chatarasi, H. Kwon, A. Parashar, M. Pellauer, T. Krishna and V.
Sarkar, “Marvel: A data-centric approach for mapping deep learning

operators on spatial accelerators,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 19, no. 1, pp. 1-26, 2021 (cit. on

pp. 1, 2, 5).
A. Symons, L. Mei and M. Verhelst, “Loma: Fast auto-scheduling on
dnn accelerators through loop-order-based memory allocation,” in 2021

IEEFE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), IEEE, 2021, pp. 1-4 (cit. on pp. 1, 2, 5).

S. Dave, Y. Kim, S. Avancha, K. Lee and A. Shrivastava, “Dmazerun-
ner: Executing perfectly nested loops on dataflow accelerators,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s,
pp. 1-27, 2019 (cit. on pp. 1, 2, 5).

BIBLIOGRAPHY 13

[20]

[21]

22]

Q. Huang, M. Kang, G. Dinh et al., “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), IEEE, 2021,
pp. 554-566 (cit. on pp. 1, 2, 5, 6).

J. Ragan-Kelley, A. Adams, D. Sharlet et al., “Halide: Decoupling al-
gorithms from schedules for high-performance image processing,” Com-
munications of the ACM, vol. 61, no. 1, pp. 106-115, 2017 (cit. on pp. 1,
2, 5).

T. Chen, T. Moreau, Z. Jiang et al., “{Tvm}: An automated {end-to-end}
optimizing compiler for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp. 578
594 (cit. on pp. 1, 2, 5).

H. Kwon et al., “Heterogeneous dataflow accelerators for multi-dnn
workloads,” in HPCA, IEEE, 2021 (cit. on pp. 1, 2, 5).

S. Kang et al., “Ganpu: An energy-efficient multi-dnn training processor
for gans with speculative dual-sparsity exploitation,” IEEE Journal of
Solid-State Circuits, 2021 (cit. on pp. 1, 2, 5).

M. Horeni, P. Taheri, P.-A. Tsai, A. Parashar, J. Emer and S. Joshi,
“Ruby: Improving hardware efficiency for tensor algebra accelerators
through imperfect factorization,” in 2022 IEEFE International Symposium
on Performance Analysis of Systems and Software (ISPASS), IEEE, 2022,
pp. 254-266 (cit. on pp. 1, 5).

Y. Yu, Y. Li, S. Che, N. K. Jha and W. Zhang, “Software-defined design
space exploration for an efficient dnn accelerator architecture,” IFEE
Transactions on Computers, vol. 70, no. 1, pp. 45-56, 2020 (cit. on pp. 1,
5).

S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), IEEE,
2020, pp. 1-9 (cit. on pp. 1, 5).

A. Stoutchinin, F. Conti and L. Benini, “Optimally scheduling cnn con-
volutions for efficient memory access,” arXiv preprint arXiv:1902.01492,
2019 (cit. on pp. 1, 6).

M. Peemen, B. Mesman and H. Corporaal, “Inter-tile reuse optimization
applied to bandwidth constrained embedded accelerators,” in 2015 Design,
Automation & Test in Furope Conference € Exhibition (DATE), IEEE,
2015, pp. 169-174 (cit. on pp. 1, 6).

Y. H. Oh et al., “Layerweaver: Maximizing resource utilization of neural
processing units via layer-wise scheduling,” in HPCA, IEEE, 2021 (cit. on

pp. 1, 2).
E. Baek et al., “Stfusion:fast and flexible multi-nn execution using spatio-

temporal block fusion and memory management,” IEEE Trans. Comput.,
2022 (cit. on pp. 1, 2, 8).

14 BIBLIOGRAPHY

[32] S. Ghodrati et al., “Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,” in MICRO, IEEE,
2020 (cit. on p. 1).

[33] E. Baek et al., “A multi-neural network acceleration architecture,” in
ISCA, IEEE, 2020, pp. 940-953 (cit. on pp. 1, 2, 8).

[34] Y. Choi et al., “Prema: A predictive multi-task scheduling algorithm for
preemptible neural processing units,” in HPCA, IEEE, 2020, pp. 220-233
(cit. on pp. 1, 2).

[35] J. Lee et al., “Dataflow mirroring: Architectural support for highly efficient
fine-grained spatial multitasking on systolic-array npus,” in DAC, IEEE,
2021, pp. 247-252 (cit. on p. 1).

[36] M. Reshadi et al., “Dynamic resource partitioning for multi-tenant systolic
array based dnn accelerator,” 2023 (cit. on p. 1).

[37] G. Shomron et al., “Smt-sa: Simultaneous multithreading in systolic
arrays,” IEEE CAL, 2019 (cit. on p. 1).

[38] G. Shomron et al., “Non-blocking simultaneous multithreading: Embra-
cing the resiliency of deep neural networks,” in MICRO, IEEE, 2020,
pp. 256-269 (cit. on p. 1).

[39] C. Wang et al., “Cd-msa: Cooperative and deadline-aware scheduling for
efficient multi-tenancy on dnn accelerators,” IEEE TPDS, 2023 (cit. on
p. 1).

[40] Y. H. Oh et al., “Layerweaver+: A qos-aware layer-wise dnn scheduler for
multi-tenant neural processing units,” IEICE TRANS. on Information
and Systems, 2022 (cit. on pp. 1, 2).

[41] J. Choi et al., “Enabling fine-grained spatial multitasking on systolic-
array npus using dataflow mirroring,” IEFEE Transactions on Computers,
2023 (cit. on pp. 1, 2).

[42] Y. Choi et al., “Lazy batching: An sla-aware batching system for cloud
machine learning inference,” in HPCA, IEEE, 2021 (cit. on p. 1).

[43] C. Li et al., “Memory-computing decoupling: A dnn multitasking accel-
erator with adaptive data arrangement,” IEEE TCADs, 2022 (cit. on
pp. 1, 2).

[44] J. Yang et al., “Versa-dnn: A versatile architecture enabling high-performance
and energy-efficient multi-dnn acceleration,” IEEE TPDS, 2023 (cit. on
pp. 1, 2).

[45] L. Yin et al., “Polyform: A versatile architecture for multi-dnn execution
via spatial and temporal acceleration,” in ICCD, IEEE, 2023 (cit. on

pp. 1, 2).
[46] J. Yang et al., “Venus: A versatile deep neural network accel-erator
architecture design for multiple applications,” in DAC, 2023 (cit. on

pp. 1, 2).
[47] Y. Li et al., “A silicon photonic multi-dnn accelerator,” in PACT, IEEE,
2023, pp. 238-249 (cit. on p. 1).

BIBLIOGRAPHY 15

48]
[49]

[50]

[51]

[52]

[55]

Y. Li et al., “A high-performance and energy-efficient photonic architec-
ture for multi-dnn acceleration,” IEEE TPDS, 2023 (cit. on p. 1).

M. Drumond et al., “Equinox: Training (for free) on a custom inference
accelerator,” in MICRO-54, 2021, pp. 421-433 (cit. on p. 1).

S. Kim et al., “Moca: Memory-centric, adaptive execution for multi-tenant
deep neural networks,” in (HPCA), IEEE, 2023, pp. 828841 (cit. on

p. 1).
J. Shin et al., “Algorithm/architecture co-design for energy-efficient

acceleration of multi-task dnn,” in ACM/IEEE DAC, 2022, pp. 253-258
(cit. on p. 1).

V. J. Reddi, C. Cheng, D. Kanter et al., “Mlperf inference benchmark,”
in 2020 ACM/IEEE }7th Annual International Symposium on Computer
Architecture (ISCA), IEEE, 2020, pp. 446-459 (cit. on p. 6).

Deepbench, GitHub, Jan. 2023. [Online]. Available: https://github.
com/baidu-research/DeepBench#inference-benchmark (visited on
05/01/2023) (cit. on p. 6).

Y.-H. Chen, J. Emer and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” ACM SIG-
ARCH Computer Architecture News, vol. 44, no. 3, pp. 367-379, 2016
(cit. on p. 6).

Y.-H. Chen, T.-J. Yang, J. Emer and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IFEFE

Journal on Emerging and Selected Topics in Clircuits and Systems, vol. 9,
no. 2, pp. 292-308, 2019 (cit. on p. 6).

“Batchdnn_sim,” 2025. [Online]. Available: drive.google.com/drive/
folders/11EDgM6dKx1Zpl1\ _g31EapBzpHs - sLbzj ?7usp=sharing (cit.
on pp. 7, 8).

