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The energy cost of erasing a bit of information was fundamentally lower bounded by Landauer, in terms of
the temperature of its environment, W > kg7 In 2. Energy consumption and heat generation in computers is now
a pressing issue, but real electronic devices operate out of equilibrium and are subject to other noise sources
besides temperature. Considering a quantum dot charge bit as a concrete model, we here derive a tighter bound,
rigorously quantifying the dissipative impact of lifetime broadening and potential difference, in terms of a few
experimentally measurable parameters. In practical contexts, these additional contributions may significantly
outweigh the cost due to temperature alone. The results shed light not only on theoretical limits of erasure but

also on constraints in realistic devices.

DOI: 10.1103/pc2t-ybtz

Introduction. The well-known fundamental limit on the
energy consumption of information processing devices is Lan-
dauer’s bound, which holds that the process of erasing a bit of
information must dissipate at least kg7 In 2 of heat, where T is
the temperature of the thermal environment [1]. As a keystone
of the connection between thermodynamics and information
theory, the foundational status of the bound has long been
discussed [2,3]. Now, basic limits on energy dissipation are
a pressing practical problem: Information technology con-
sumes around 5% of the global electricity supply [4], and
thermal management is a primary bottleneck for integrated
circuit performance [5]. Part of the solution must come from
optimizing the physical implementation of basic logic opera-
tions. As current complementary metal-oxide semiconductor
(CMOS) transistor switching- energies are in the hundreds
of kgT [6], improvement will require analysis and mitigation
of the factors which prevent the Landauer bound from being
approached in real-world conditions.

Progress towards this end has included proof-of-concept
experimental demonstrations of erasure at kg7 -scale energy
costs (more recently in solid state electronics) [7-13]. Mean-
while, theoretical advances have accounted for constraints
beyond temperature [14], including the effects of finite-speed
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driving, finite-sized reservoirs, strong coupling, quantum co-
herence, and limited control complexity [15-20], leading
to proposed optimizations using techniques from thermody-
namic geometry [21-26]. However, important considerations
have been overlooked: In particular, electronic components
almost never interact with a single homogeneous thermal
environment.

In this Letter, we analyze the thermodynamics of erasure
in a quantum dot charge bit, which exchanges electrons with
two electrodes with different temperatures and chemical po-
tentials. Quantum dots represent the limit of miniaturization
for devices with a source, gate, and drain electrode, and they
are regarded as a promising platform for low-energy infor-
mation processing [27-29]. By explicitly considering optimal
erasure protocols, we identify and bound the scale of three
inherent sources of energy dissipation. In addition to recov-
ering the Landauer bound, we find independent contributions
to the energy cost resulting from lifetime broadening of the
dot’s energy level, and source-drain potential difference. With
reference to existing experimental devices [30,31], we find
that these contributions can outweigh temperature-related dis-
sipation in realistic regimes of operation, sometimes to the
extent that Landauer’s bound is practically irrelevant. Finally,
we discuss the extent to which these energy costs might be
mitigated, the generalizability of the results to other device
types, and the theoretical significance of the role of lifetime
broadening as a quantum source of noise.

Model device. We consider the charge bit device depicted
in Fig. 1, consisting of a single-level quantum dot which
exchanges electrons via tunneling with a source and drain
electrode. The probability p that the dot contains an electron
varies as a function of its energy level u, which in turn is

Published by the American Physical Society


https://orcid.org/0000-0002-3708-352X
https://orcid.org/0000-0002-4965-6794
https://orcid.org/0000-0002-7135-4995
https://orcid.org/0000-0001-8706-6886
https://orcid.org/0009-0009-6231-4797
https://orcid.org/0000-0003-4466-5576
https://orcid.org/0000-0002-9791-0363
https://ror.org/03yghzc09
https://ror.org/040wg7k59
https://ror.org/03bnmw459
https://ror.org/03av75f26
https://ror.org/052gg0110
https://ror.org/052gg0110
https://crossmark.crossref.org/dialog/?doi=10.1103/pc2t-ybtz&domain=pdf&date_stamp=2025-07-10
https://doi.org/10.1103/pc2t-ybtz
https://creativecommons.org/licenses/by/4.0/

JOE DUNLORP et al.

PHYSICAL REVIEW A 112, L010601 (2025)

source gate drain
(b) (c) -
O
Hs Hs
m KD 1295}
p=1 p=0

FIG. 1. (a) Schematic energy-level diagram of a quantum dot
charge bit device. The dot exchanges electrons with a source and
drain electrode via quantum tunneling, with characteristic rates I's
and I'p, respectively. Electrons in the source and drain are described
by the Fermi-Dirac distribution with chemical potentials wg, (p, and
temperatures T, Tp, respectively. A bit of information is encoded in
the electronic occupation p of a single level of the quantum dot at
energy w, which is subject to lifetime broadening with scale ~Al"y.
The occupation of the dot may be manipulated by externally varying
1 via the electrostatic field from a gate electrode. (b) By lowering u
below up, it can be ensured that the state is occupied, representing
the digit 1. (c) If u is raised above pg, electrons tunnel out of the dot
leaving an empty state, representing the digit 0.

externally controlled by the electrostatic field from a gate
electrode. The presence or absence of an electron in the dot
may be taken to represent a 0 or 1 digit, encoding a bit of
information. In this context, erasure means a transformation
from the state of maximum ignorance (p = %) to certainty
about the occupation of the dot, which can mean either p = 0
or p = 1 (reset to the logical zero or one state, respectively).
The work cost of erasure depends on the occupation dis-
tribution p(u), which we model using a rate equation [see
Supplemental Material (SM) [32]]. We assume that the dot ex-
changes electrons with the source and drain at fixed rates I's p,
and that the electron reservoirs are described by the Fermi-
Dirac distributions fs p(e) with respective temperatures T p
and chemical potentials pus > wp. If lifetime broadening is
neglected, the steady-state occupation of the dot is described
by a convex combination of the source and drain Fermi-
Dirac distributions, weighted by the tunneling ratios ysp =

o [32,33]:
po(w) = vs fs(u) + vp fo(w). (1

However, at higher tunneling rates, the stronger coupling to
the leads allows new transitions of electrons between the dot
and the reservoirs. This results in an effective broadening of
the available electronic states in the leads, which is commonly
taken to have Lorentzian or Gaussian form, centered on u
and with characteristic width Al'y, where ', = I's + I'p
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FIG. 2. Average occupation p plotted against energy level p for
a quantum dot in simultaneous contact with two electron reservoirs.
The occupation is described by a weighted sum of the reservoirs’
Fermi-Dirac distributions (dashed curve, both panels), which is
smoothed due to lifetime broadening with scale iI'y,. Starting at
p= %, the minimum work required to prepare the p = O state is rep-
resented by the blue shaded area W, and the cost of preparing p = 1
is represented by the red area W!. Both processes represent erasure
of a bit of information. In (a), the source-drain chemical potential
difference (us — up) is considerably larger than either the thermal
(kgT') or lifetime broadening (/il'y,) energy scales, and therefore
the average work cost of erasure W = %(WO—I—WI) is approximately
%)/5(//65 — Up), i.e., bias- dominated. In (b), lifetime broadening is
comparable to the bias, and contributes significantly to W. In both
panels, the temperatures T = Tp = T, the bias pug — up = 36ky,
and the tunneling ratios ys = 0.35, yp = 0.65. Lifetime broadening
is taken to have Gaussian form with standard deviation il'.

[34,35]. The overall occupation p (plotted in Fig. 2) is then
given by the convolution! of the broadening distribution g
with the unbroadened occupation py from Eq. (1):

[e.0]

p(n) = (g* po)(n) = f

—00

gle — p)po(e)de. 2

Optimal erasure protocols. The quantum dot’s occupation
can be manipulated by externally varying its energy level u
via the gate electrode. The rate of work done on the dot is de-
fined by W = p i [36]. Let [ denote the value of u such that

p(u%) = % We here outline a thermodynamically reversible
protocol for erasure to logical zero. Starting at p = %, the
energy level u is quasistatically® raised from 1 towards 400
such that the dot’s occupation vanishes. The 16V261 is then reset
to fuy much faster than the dot’s equilibration timescale, such
that the final occupation remains at p = 0. The overall work

'Strictly speaking, this is a cross-correlation, which is equivalent

to a convolution when g is symmetric about ft.

%i.e., over a timescale much longer than I .
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done on the dot in this process is W% = f/ ix: p(n)dp. Era-

sure to “one” proceeds similarly. The energyzlevel is slowly
lowered from mi towards —oo, before being quickly raised

back to M, preserving the occupation p = 1. The work cost

in this case is W! = fi%o[l — p(w)]d . For more details, see
SM [32].

Aside from exceptionally symmetric cases®, W° and W'!
differ from one another (plotted as shaded areas in Fig. 2). In
the context of information processing, ones are required just
as frequently as zeros for efficient coding [37]. A fair measure
of the cost of state reset is the average, W= %(Wo + W),
which may be written as [32]

— 1 [ dp
W=—- — —— )du. 3
zﬁmlu M;I( du) w 3

W is a tight lower bound on the average work cost, since
the above protocols are reversible. Moreover, W is associated
solely with information erasure rather than any net change in
the dot’s internal energy pp: The change in pp is eliminated
by averaging, since both protocols reset the energy level to
Ml

If p(u) is interpreted as a complementary cumulative dis-
tribution function, then Eq. (3) is equivalent to half the mean
absolute deviation about the median i This provides the
basis to use properties of the mean absolute deviation to disen-
tangle contributions to W from different physical parameters,
as well as a heuristic that the work cost of erasure relates
directly to the spread of the occupation distribution.

Bounds on the work cost of erasure. While Eq. (3) is
straightforward to integrate numerically, it is not possible to
obtain a closed formula for W due to the difficulty of inverting
p(u) for i Short of an exact formula, it will be informative

to place analytic bounds on W. We here present an illustrative
overview of limiting cases to motivate such a bound; a formal
derivation is available in SM [32].

For a quantum dot in contact with a single electrode with
negligible lifetime broadening, p(u) is equal to the Fermi-
Dirac distribution, and its spread is characterized solely by
the reservoir temperature 7': In this case, the familiar Lan-
dauer bound is recovered from Eq. (3), with W =kgT In2. A
similar result extends to the two-reservoir case, provided that
source-drain potential bias is also negligible, such that p(u)
is described by Eq. (1) with u 1= s = [p. By linearity,
Eq. (3) reduces to W = kg(ysTs + ypTp)In2, a version of
the Landauer bound involving the average of the reservoir
temperatures, weighted by the tunneling ratios ysp. Let us
denote this thermal energy scale as Eerm:

Etherm = kB(VS TS + VDTD) In2. (4)

If, instead, source-drain potential bias is the dominant
energy scale, such that kg7 and Al are negligible in com-
parison to s — Up, then p(u) is effectively a sum of step
functions at ug and pp, with a plateau at p = yg in between.

3Such as at zero bias (g = up), or if the source and drain electrode
have equal temperatures and tunneling rates.

This is approximately the situation in Fig. 2(a). Supposing
that ys < yp (i.e., faster particle exchange with the drain
than source), then K1~ Wp, and erasure to the p = 1 state

is comparatively cheap (of the order kg7 or Al'). On the
other hand, erasure to p = 0 involves raising the energy level
from pp to us at near-constant occupation p = ys, so that
WO~ ys(its — up). By a mirroring argument, if instead yg >
¥p» then W' & yp(us — up) and W is negligible. Generally,
then, in bias-dominated regimes, the average cost of erasure is
approximated by a characteristic bias energy scale, W = Epiy,
given by

Epias = 3 min{ys, yp}(is — 1p). (5)

Third, we can consider the limit where lifetime broaden-
ing dominates. Using a general property of the convolution,
the mean absolute deviation D of the occupation distribution
p = g* po can be bounded in terms of that of the unbroad-
ened distribution py and broadening function g, as follows:
max{D(g), D(po)} < D(p) < D(g) + D(po) (see SM [32] for
the derivation). If the broadening is such that D(g) > D(py),
which is the case if Al'yy > max{Eperm, Ebias}» then the aver-
age work cost of erasure is effectively set by the mean absolute
deviation of the broadening function, W =~ %D(g). We will
label this the lifetime broadening energy scale,

[o¢]

Ebrond = %D(g) = %f le — mg|g(8)d87 (6)

—0Q

where m, is the median of g. The exact dependence of Eprad
on the tunneling rates depends on the form of the broadening
distribution: For example, if g is a Gaussian with standard

deviation A, then Epoad = % If g is Lorentzian with

scale hl'io¢, then the mean absolute deviation diverges, imply-
ing an unbounded energy cost for perfect erasure. However,
approximate erasure to an occupation within 1 of 0 or 1 is still
possible, with work cost E;! _, = % In{sec’[ (3 — )]}, as
shown in SM [32].

We have identified three independent energy scales, Einerm,
Evias, and Eyoaq, €ach of which emerges as the minimum
average work cost of erasure W in the case that the other two
vanish. This is the first main result of this Letter. It remains to
treat the more general scenario where temperature, bias, and
lifetime broadening all contribute nontrivially. As shown in
SM [32], W can be bounded as follows:

max {E[hermv EbiaSv Ebroad} g W g Etherm + Ebias + Ebroad-
(7

This is the second main result. By the left-hand inequality, the
average work cost of erasure cannot under any circumstances
be made smaller than any of the three contributing energy
scales as defined in Egs. (4)—-(6). The meaning of the right-
hand inequality is more subtle. Certainly there is no upper
limit to how much energy might be dissipated in an erasure
operation when performed inefficiently. However, W relates to
an ideal, thermodynamically reversible state reset. The bound
here implies that, in the absence of further constraints, there is
no principle preventing erasure at an average cost equal to or
less than Etherm + Ebias + Ebroad«

In general, neither inequality is tight. However, the upper
bound on W is never more than threefold greater than the

L010601-3
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FIG. 3. The optimal average work cost of erasure W for a quan-
tum dot in contact with two electrodes, plotted against source-drain
bias (us — up) and lifetime broadening (A", at fixed temperature
Ts =Tp = T. At zero bias and zero broadening, an ideal erasure
process can saturate the Landauer bound, W = kgT In2. However,
if either g — up or Al exceeds a few times kg7, then the work
cost is significantly larger. In general, W is bounded from below by
the largest out of the three characteristic energy scales Epem, Ebroads
and Ey;, as defined in Eqgs. (4)—(6), which are plotted here as dotted
lines. In this plot, the source and drain tunneling rates are taken to be

equal: ' =T'p = %

lower, ensuring a correct order-of-magnitude estimate in all
parameter regimes. The window becomes much narrower if
any one of the three characteristic energy scales dominates.
Figure 3 compares W against the bounds imposed by Eiperm,
Ebias, and Epoqq. If the erasure protocol is performed in finite
time, the work cost will be higher. For the particular case that
the energy level is ramped at a uniform rate i, it is shown in
SM [32] that there is an additional cost f1/2I" on top of the
quasistatic work.

In experimental contexts, direct measurement of energy
dissipation at microscopic scales is extremely difficult. The
present approach provides a way to assess thermodynamic
performance using more readily accessible measurements
(temperature, voltage, and tunneling rates). Given these
parameters, Eq. (7) reduces the estimation of W to a back-of-
the-envelope calculation, and a more precise value is possible
by integrating Eq. (3). Moreover, by separately quantifying
the scale of contributions to W, the approach may be used
identify thermodynamic bottlenecks, a crucial step towards
mitigating the cost.

Discussion. We have analyzed the thermodynamics of era-
sure in a model of a quantum dot charge bit, incorporating
a near-ubiquitous feature of current information processing
devices—that the information-bearing system is in contact
with two electrodes with a potential difference. This marks a
qualitative difference from the standard approach: The system
is inherently out of thermodynamic equilibrium, and can at
best occupy a dynamical steady state.

Landauer’s bound might give the impression that the work
cost of erasure can be arbitrarily low if carried out in a cold

enough environment. Our results show that other factors can
dominate dissipation at low temperatures. Since quantum dot
devices often operate in the sub-kelvin regime, it is of practical
importance to obtain a tighter bound. We find that kg7 no
longer represents a fixed information-energy exchange rate,
with the conversion instead determined by a non-linear com-
bination of temperatures, chemical potentials, and tunneling
rates. The additional costs are intrinsic to the source-gate-
drain architecture, and unavoidable even in the limit of perfect
quasistatic operation. The charge bit considered here encodes
information in a single electron, and a larger penalty can rea-
sonably be expected where information is stored redundantly
in multiple microscopic degrees of freedom. The quantitative
understanding of the relationship between erasure costs and
operating regimes in nanoscale devices is crucial for designing
novel physical learning machines [38], enabling autonomous
control at the nanoscale [39], and establishing the fundamental
efficiency limits of computing [40].

Far from a marginal correction, non-Landauer terms are
the dominant component of erasure cost in some real experi-
mental devices. For example, Ref. [30] details a device with
operating parameters Tsp = 40 mK, us — pup =200 peV,
and I's = 6.3 GHz, I'p = 250 GHz. Here, the characteris-
tic energy scales are Eperm = 2.4 ueV, Epias = 2.5 ueV, and
Evroad = 67 peV, and integrating (3) gives W =68 ueV (as-
suming Gaussian broadening). W is primarily determined by
lifetime broadening in this case, with temperature and bias
affecting only the second significant figure. By contrast, the
device in Ref. [31] is bias- dominated: Here, 7_350 mK,
us — up =500 ueV, I's = 1.75 kHz, and I'p = 1.45 kHz,
for which Eyerm = 21 ueV, Epis = 113 peV, and Epoaqd =
8.4 x 1077 ueV. Lifetime broadening is negligible here due to
the slow tunneling rates, and thermal broadening contributes
to W in the third significant figure, with W = 117 peV.

The present Letter only accounts for the work done by
the field controlling the quantum dot’s energy level, neglect-
ing the energy dissipated when electrons flow from source
electrode to drain (which in some cases may be partially
recovered as a source of useful work [41,42]). The cost
of maintaining the potential difference, in addition to the
distinct bias-related contribution in Eq. (5), might be miti-
gated by reducing the voltage across the device. Likewise,
the broadening-related cost [Eq. (6)] could be suppressed
by reducing the tunneling rates between the quantum dot
and electrodes. However, this leads to a compromise in the
maximum possible speed of erasure, since the timescale for
the dot to respond to changes in gate voltage is ~$. This
principle is related to Bremermann’s limit [43,44], and distinct
from the dissipation which occurs when driving is fast in
comparison to the equilibration rate [21]. This represents a
practical thermodynamic consequence of the effective energy-
time uncertainty relation [45,46]. A similar penalty due to
lifetime broadening would arise for a dot which exchanges
electrons with a single reservoir electrode.* The results indi-
cate a possible energetic advantage for metallic dots, where
the discrete energy level is replaced by a Coulomb gap in

“This can be seen by taking one of the tunneling rates to 0.
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the density of states, with the effect of suppressing lifetime
broadening [47].

While the present Letter has considered information en-
coded in the charge of the quantum dot, a device operating on
the same principles may be used as a single-electron transistor.
A key question for future work is whether lifetime broadening
and potential difference have a similar influence on energy
dissipation in that case, as well as how the effects scale to
logic gates.
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