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Abstract—Attack detection plays a crucial role in managing the
security of communication networks. Thus, advanced methods
have been developed to tackle this problem. However, the need
for more flexible and adaptable detection systems remains, able
to generalize across various attack scenarios and retain model
performance over time. In this paper, we address these challenges
by proposing two versions of a continuously updating attack
detector in the form of binary classifier. Experimental evaluation
on diverse datasets and various base classifiers confirms the
effectiveness of our methodology.

Index Terms—attack detection, machine learning, data stream

I. INTRODUCTION

Attack detection is a critical component of communication
network security management [1]. As the number of connected
devices grows, so does the volume of malicious activity
targeting these networks. Attacks such as denial of service,
unauthorized access, or port scanning can disrupt network ope-
rations, leading to severe consequences. Therefore, rapid and
accurate identification of such attacks is essential for network
operators to ensure continuous and secure service delivery.

Network operators typically collect vast amounts of teleme-
try data through continuous monitoring of network elements.
Machine Learning (ML) algorithms can effectively analyze
these large datasets, identifying patterns that are crucial for
security management tasks [2], [3]. In particular, deep learning
methods have been proven to be powerful for intrusion detec-
tion, as they are capable of uncovering complex dependencies
in large-scale data [4], [5].

However, advanced deep learning models often come with
significant challenges. They tend to be computationally inten-
sive and require extensive training datasets to achieve satis-
factory performance. Moreover, pre-trained models may not
always be suitable, especially when malicious communication
behaviors are sporadic and lack stable patterns [6]. Conse-
quently, it is essential to dynamically evaluate and update
attack detection models to incorporate new knowledge gained
during their operation. Despite this, many existing studies
fail to assess the long-term performance of their models, and
dynamic methods are often not directly compared to static
approaches, leaving the theoretical benefits of dynamic models
unverified.
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Additionally, a common limitation in current research is the
focus on detecting specific attack types and training special-
ized detectors. In practice, the real-world network environment
is unpredictable, and new attack types can emerge at any
time. This highlights the need for more flexible and adaptable
detection systems that can generalize across various attack
scenarios. A popular solution to this problem is the use of
semi- and unsupervised ML models [7], [8], which help the
operators distinguish benign and attack samples. However,
those methods often lack any updating capabilities, thus, the
possibilities of including up-to-date knowledge about evolving
attack types is limited. Moreover, they cannot provide fine-
granular diagnostic information, e.g, details regarding the type
of an attack.

To address these challenges, we formulate two research
questions: Q1) Can a binary classifier trained on aggregated
data of various intrusions successfully recognize network
attacks? Q2) Can an attack detector retain its performance
during the network lifetime when new types of attacks emerge?

In response to these questions, we propose a framework for
continuously updating ML models for attack detection formu-
lated as a binary classification task. Treating the network traffic
telemetry data as an imbalanced data stream [9], where the
traffic samples are categorized as either benign or attack, we
conduct extensive simulation studies using public datasets to
demonstrate the necessity of dynamic model updates in attack
detection systems. Comparison of our proposed approaches
with classical, statically trained models, indicates how the
high prediction quality can be retained when new attack types
emerge during the network lifetime.

II. APPROACHES TO NETWORK ATTACK DETECTION

The existing approaches to network attack detection achieve
excellent performance within the environments they are eval-
uated. However, some shortcomings and limitations persist,
leaving the gap for new studies.

Modern network attack detection techniques are usually
based on deep learning models [4], [5]. The achieved accuracy
scores often approach 100%, demonstrating great robustness
of these methods. However, big models face two main lim-
itations: the reliance on specialized classifiers designed for
specific attack types and the potential degradation of detection
quality as new attack types emerge.



Models tailored to detect particular attacks often fail to ge-
neralize to new or diverse attack types, limiting their scalability
and effectiveness in real-world, dynamic environments. Con-
sequently, such systems may require frequent retraining or re-
configuration, which can be resource-intensive and impractical
for continuously evolving networks. To address the unknown
scope of attacks, methods based on semi- or unsupervised
learning and anomaly detection can be employed [8], [10].
Recent proposals also include practical implementations, es-
pecially related to the physical layer [11], [12]. However, those
methods often lack the dynamic update capabilities. Moreover,
they cannot provide fine-granular diagnostic information, e.g.,
details regarding the type of an attack.

To maintain high performance over extended periods, dy-
namic methods that continuously update models are necessary.
However, existing methods often lack efficient mechanisms
for incorporating new knowledge into the detection process
without significant computational overhead or loss of accu-
racy. Current approaches focus mainly on speeding up the
convergence to achieve fast re-training [13]. In such a scheme,
after a sufficient amount of new data is available, the model
is built from the ground-up. Another solution is the addition
of a windowing mechanism [10], [14]. However, some of
these models are still tested with the traditional train-test
split, leaving their real-world performance uncertain. Finally,
stream-based dynamically updated methods [15], [16] are
a solution allowing to inject up-to-date information into the
model to keep its good performance over time. However, they
are often not directly compared to static approaches, leaving
the theoretical benefits of their constant updating unverified.

III. THE PROPOSED APPROACH

The limitations of classical methods significantly hinder
the long-term effectiveness and adaptability of network attack
detection systems. To address this gap, we propose a solu-
tion based on dynamically updated binary classifiers. In this
approach, the attack detection model is continuously updated
with new knowledge derived from attacks encountered over
time. The overview of the system is illustrated in Fig. 1.
We explore two methods for updating the model. The first,
referred to as the dynamic single approach, leverages the
partial fitting capabilities of certain classifiers, usually those
with incremental training capabilities. This method allows the
model to be gradually trained and updated with new batches of
data. The second approach, referred to as dynamic ensemble,
utilizes the Streaming Ensemble Algorithm (SEA) [17], which
combines multiple classifiers into an ensemble to improve
overall detection performance. In this method, small member
classifiers are trained on newly acquired data, and predictions
are made by averaging the responses of the ensemble. Each
time a new data batch arrives, a new classifier is trained, and
the ensemble size is maintained through a pruning procedure
that removes the worst-performing classifier from the pool.

In a practical setting, both proposed approaches operate with
a pre-set data batch size. Specifically, incoming data samples
are classified as either atfack or benign as they come. Once
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Fig. 1. Proposed framework for dynamic model updates.

a predefined number of them has been processed (the chosen
batch size is reached), the classifier is updated using the known
labels obtained for batch. For the dynamic single approach, this
involves partial fitting, where the existing model is updated
with the new data portion. For the dynamic ensemble approach,
a new member classifier is trained on the new data batch, and
the ensemble is pruned based on a specified metric. A potential
tradeoff of these solutions is the introduced overhead, which
should guide the decisions on the frequency of training.
However, since batch sizes are typically small (around 250
samples), these updates can be performed quickly, without
introducing significant computations. Moreover, the savings
are still substantial when compared to a full model retraining.

IV. SIMULATION ENVIRONMENT AND ASSUMPTIONS

This section describes the main settings and assumptions for
the experimental evaluation we conducted. We further describe
the datasets and metrics.

A. Main assumptions

In our experiments, we try to mimic a realistic communica-
tion network environment where the scope of possible attacks
is unknown and evolving. For this reason, we consider attack
detection as a binary classification: for each sample, the model
decides whether it represents an attack or not. The particular
attack type is not specified, only an alarm is raised. Various
existing studies from the literature focus on using separate
detectors for predefined attack types. However, as our focus is
on detecting previously unseen attacks, we consider a general
scenario where only the normal network operating conditions
are known.

We consider three base classifiers: Multilayer Perceptron
(MLP) [19], Gaussian Naive Bayes (GNB) [20], and Logistic
Regression with Stochastic Gradient Descent training (SGD)
[21]. For the most direct comparison, we evaluate each of
them in three contexts: static, where the classifier is trained on
a large amount of data and then put into operation, dynamic
single, where the classifier is trained on a small amount of
data and dynamically updated, and dynamic ensemble, where
a number of classifiers trained on different data subsets create
a dynamically updating ensemble. For dynamically updated
approaches, we use the test-then-train experimental protocol
[22]. In a nutshell, for each batch of data, the model first makes
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Fig. 2. Dataset complexity assessment with problexity [18]. KDDCup dataset (left), RoEduNet dataset (middle), and IoT-23 dataset (right).

the predictions. These predictions are compared to the ground-
truth labels later disclosed to the models. The performance of
the model is then evaluated by calculating the different metrics,
and the model is updated.

B. Datasets

To rigorously evaluate the proposed methodology, we use
three publicly available datasets: KDDCup [23], RoEduNet
[24], and [oT-23 [15] (specifically, the CTU-IoT-Malware-
Capture-1-1_0 as in the paper). All of them contain various
types of network attacks. For the purpose of experiments, we
binarize them: all benign samples are labeled as 0 and all
attack samples are labeled as 1. Despite combining attack
samples into a joint class, all datasets remain imbalanced, with
the minority (attack) class accounting for 20-40% of samples.
Importantly, by considering a varied dataset spectrum, we aim
to ensure that our approach is not overfitted to a specific
network or scenario but instead demonstrates robustness and
applicability to a broad range of intrusion detection contexts.
To assess the complexity of the classification problems repre-
sented by the considered datasets, we use problexity [18],
which implements various measures collected in [25].

Fig. 2 presents the problexity summary plots with the
overall score in the center and other metrics denoted with
different colors extending radially. The aggregated complexity
score is very similar across datasets, but its underlying reasons
differ. Let us briefly describe the six different groups of
considered data complexity measures and their meaning in
a counter-clockwise manner; for more details we refer to [18].

Feature-based measures, depicted with red color in Fig. 2
(f1-f4), describe the ability of features to separate classes.
They take values between O and 1, where a higher value
indicates a more complex problem. f1, flv and f2 gauge the
overlap between the values of the same feature among different
classes. For all considered datasets, there is some overlap
(values of f1 or fIv higher than 0.2), but the overall extent is
not high (low f2 value). f3 and f4 gauge the feature efficiency in
class separation. High f3 values indicate that there are features
with really close values in atfack and benign classes, and
their portion is quite high, especially in RoEduNet and 10T-23
(high f4).

Linearity measures, depicted with orange color (l/-13),
describe the level of linear class separation. Linear class
separability is measured by various parameters of a fitted
Support Vector Machine (SVM) classifier. The values obtained
for the considered datasets indicate that the classes in the
KDDCup dataset are quite well separable, the I0T-23 dataset
introduces some more challenges, whilst the RoEduNet is quite
difficult in that regard. The errors made by the linear classifier
are quite distant from one another (high I/ values), in large
portion (high /2 values), and not resolvable by interpolation
(high I3 values).

Neighborhood measures, depicted with yellow color in
Fig. 2 (nl-n4, t1, Isc), describe the neighborhood of samples
in the feature space. We can see that RoEduNet and IoT-23
contain a noticeable portion of borderline points (n/), causing
errors and nonlinearity of the nearest neighbors classifier (n3
and n4, respectively). All datasets are also characterized by
fairly high distance between the samples and their nearest
neighbors of the same class (high n2 value). In terms of /1,
which denotes the fraction of hypershperes needed to cover
the data, the [oT-23 dataset appears as the most difficult, and
the KDDCup as the easiest. All datasets are also characterized
by high local set average cardinality, counting sets of points
that lie closer to a given sample than their nearest neighbor
from the opposing class (high Isc value).

Network measures, depicted with bright green color (density,
clsCoef, hubs), describe an epsilon—Nearest Neighbors graph
generated from the data samples. This group of metrics is
another representation of class separability and instance dis-
tinctness. The most complex classification problem in terms of
both density and hubs is represented by the RoEduNet dataset,
followed by IoT-23. The remaining clustering coefficient met-
ric (clsCoeff) indicates that IoT-23 is the most complex of the
three datasets.

Dimensionality measures, depicted with darker green color
(12—t4), analyze the relation between the number of features
and the number of instances. The first two metrics do not
indicate high dimensionality of any dataset. However, 4
shows that for RoEduNet and I0T-23, the number of principal
component analysis (PCA) components needed to represent



95% of the data variance is noticeably higher than for the
KDDCup dataset.

Finally, the class imbalance measures, depicted with blue
color (cl—c2), describe the degree of class imbalance as the
entropy of class proportions and imbalance ratio. Although
each of the considered datasets contain more benign samples
than the attack ones, the imbalance effect is the most promi-
nent in the case of the KDDCup dataset, which contains 22
types of attacks accounting for 25% of samples.

In summary, each dataset poses different challenges to the
network attack detection task. They vary in terms of the por-
tion of attack samples, their general separability, the ability of
features to distinguish them, and general data variance. These
challenges impact the performance of various models and
classifiers, requiring a thorough analysis of their applicability
to security analysis in dynamic threat scenarios.

C. Metrics

The choice of a reliable performance metric is crucial for
understanding and evaluating the performance of different
models. In scenarios with high data imbalance, which are in
the focus of our study, the learning process guided by global
performance metrics such as prediction accuracy usually in-
duces a bias towards the majority class, while the rare minority
class samples might remain unknown even if the prediction
model has high overall precision [26]—-[28]. For that reason,
in this work, we focus on six measures reliably capturing the
model performance in imbalanced settings. These metrics are
calculated using the number of true positives (TP) — attacks
correctly identified as attacks, false positives (FP) — benign
samples incorrectly classified as attacks, true negatives (TN)
— benign samples correctly identified as benign, and false
negatives (FN) — attacks missed by the model. Below, we
provide the formulas and brief explanations for each of them.

o Precision is the proportion of predicted atfacks that are

actually attacks, given by:
TP

TP+ FP
e Recall is the proportion of actual attacks that are correctly
identified by the model, given by:
TP
TP+ FN
o Specificity is the proportion of benign samples that are
correctly identified as benign, given by:
TN
TN+ FP

e Balanced Accuracy Score (BAC) accounts for both recall
and specificity and is used with imbalanced data, given

by:
BAC = 1 rr + TN
2\TP+FN TN+FP
e FI Score (FI) is the harmonic mean of precision and
recall, providing a balance between the two metrics, given
F1=2x
2xTP+FP+FN

Precision =

Recall =

Specificity =

o Geometric Mean (G-Mean) is the geometric mean of
recall and specificity, providing a balance between the
model’s ability to detect attacks and avoid false alarms,
given by:

GM n_\/ TP y TN
=N TP FN TN+ FP

All of the considered metrics can take on values between O
and 1, and should be maximized.

V. EXPERIMENTAL EVALUATION

Let us evaluate the performance of the proposed stream-
based dynamic single and dynamic ensemble methods in
detecting evolving security threats against the baseline static
approach. In our evaluation, every experiment is repeated 100
times. In each run, we randomly draw a subset of 125.000
data samples from the corresponding dataset, divided into 500
batches of 250 samples. In the static approach, the classifier
is trained on the first 100 batches of data (25.000 samples)
and then predicts each subsequent batch without updating.
The dynamic methods only need the first 250-sample batch
of data for initial training and start working right away. For
SEA, the ensemble size is set to 3 classifiers, which is the
value determined through preliminary tuning experiments. In
the following part, we report the average metric values of 100
experiment replications in each dataset.

A. Evaluation of overall model performance

To assess the successful network attack recognition rates of
binary classifiers trained on aggregated data, tackling RQ1 of
this paper, we analyze the overall performance of the analyzed
methods across the whole datasets. The overall performance
is presented in Fig. 3, where each row corresponds to a base
classifier, and each column shows the classifier’s performance
for a particular dataset. In each plot, dashed lines depict
the metric values obtained by the baseline, static classifier,
solid lines denote the results obtained by the dynamic single
classifier, and dotted lines represent the results for the dynamic
ensemble version.

Before diving into details, a general noticeable trend is that
in almost all of the cases, the dynamic approaches outperform
the static one in all metrics (recall that the value of each
measure should be maximized). For each dataset, there is
at least one method that results in high attack detection
performance.

The KDDCup dataset, despite the highest imbalance, ap-
pears to be the simplest for all approaches and classifiers,
which is in line with the insights provided in the complexity
analysis in Sec. IV-B. All classifiers perform great across
the metrics when used dynamically, compared to the static
approach. Between the dynamic methods, the ensemble-based
version is noticeably better. In practice, when correct attack
recognition is a priority, either of the classifiers would be
a good choice, as they excel in recall. To additionally minimize
false alarms, MLP or SGD should be selected, as they achieve
high precision.
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Fig. 3. Average metric values over 100 experiment replications. MLP classifier (top row), GNB classifier (middle row), and SGD classifier (bottom row).
KDDCup dataset (left column), RoEduNet dataset (middle column), and I0T-23 dataset (right column).

The performance analysis on the RoEduNet dataset high-
lights the importance of considering individual metrics inclu-
ding precision and recall, as the aggregate measures provide
limited, sometimes ambiguous insights [29]. Despite quite
unsatisfactory values of BAC, F1 and G-Mean obtained by the
methods, a good performance in terms of recall (dynamic sin-
gle-GNB), specificity (dynamic ensemble-MLP and dynamic
ensemble—SGD), or precision (dynamic ensemble—-SGD) can
be achieved by the dynamic methods. This can be explained
with a suspected bias of GNB towards the minority class (the
model prioritizes rising an alarm when uncertain) and of MLP
and SGD towards the majority class (the model classifies the

sample as benign when uncertain) in this dataset. Nevertheless,
the previously conducted data complexity analysis is reflected
in these results. Thus, the choice of classifiers for data with
similar characteristics should be guided by the network op-
erator’s priority: detection of attacks, at potentially poorer
false alarm rate, or false alarm avoidance at a trade-off with
lower attack recognition. Finally, the IoT-23 dataset seems
quite challenging as well, but the MLP classifier copes with
it, especially as a single dynamically updating model. The
GNB and SGD classifiers perform well, especially in terms of
precision and specificity, when used in an ensemble.

In summary, despite the differences among the datasets



and the classifiers, we can conclude that successful attack
recognition is possible for methods trained on data that jointly
represents various attack types. Furthermore, updating the
predictors dynamically, either by partial fitting or by using an
ensemble, improves the attack detection performance gauged
by various metrics. To answer RQI, we can conclude that
binary classifiers trained on aggregated data of various intru-
sions can successfully recognize network attacks, especially
when they are dynamically updated.

B. Evaluation of model performance over time

The aggregated performance measured over the whole
dataset does not, however, provide the necessary insights into
the ability of different classifiers to detect attacks. Even if the
averaged performance is high, we also need to examine how
it changes over time to evaluate the performance retention.

To answer RQ2 posed in this paper, let us analyze a series
of representative test cases presented below. First, we check
the average values of metrics over consecutive batches of data
for the statically trained detector. Fig. 4 presents an example
of the performance of the MLP classifier for the [oT-23 dataset
according to BAC and F1. The trends for the remaining
metrics, omitted here for space constraints, are equivalent.
As the first 100 data batches were used for model training,
no predictions were available for them and the metric value
was undefined. Later, we observe very high prediction quality
in the first data batches after the model is freshly trained.
However, the metric values quickly start to drop as the data
changes and new attack types emerge. This highlights a key
limitation of static models: they require a substantial amount
of initial training data before they can begin operating, and
they deliver high prediction accuracy only for a limited period.

—— average
standard deviation

0 100 200 300 400 500
batch of data

—— average
standard deviation

0 100 200 300 400 500
batch of data

Fig. 4. BAC (top) and F1 (bottom) over consecutive batches of data. Average
of 100 experiment replications with standard deviation. IoT-23 dataset, static
MLP classifier.

A very similar trend can be observed for the remaining
classifiers and datasets. Let us, however, investigate the ave-
rage metric plotted together with the individual runs of the

experiment replications in Fig. 5. As the data was randomly
sampled each time, there are cases where no new attack types
appear and the model retains its good quality over multiple
subsequent batches. On the other hand, in cases where unseen
attack types occur shortly after training, an almost immediate
performance degradation is observed. In the case of a more
challenging IoT-23 dataset, we can see that no model is able
to retain performance over time across 100 replications, as
presented in Fig. 5. This highlights the weaknesses in the level
of security defenses provided by statically trained approaches.

1.0

BAC

—— average
individual runs

batch of data

BAC

—— average

individual runs

0 100 200 300 400 500
batch of data

Fig. 5. BAC over consecutive batches of data. Average of 100 experiment
replications and individual runs. Static MLP classifier; KDDCup dataset (top)
and [oT-23 dataset (bottom).

Let us now focus on the dynamically updated models
(see representative examples plotted in Fig. 6-7). Contrary
to their static counterparts, the dynamic models are ready
for deployment from the beginning, without requiring pre-
training or initial collection of large amounts of data. This
increases their practical value in realistic network settings.
When a single classifier is used, a few data batches usually
need to be processed before achieving good performance
(Fig. 6), while using an ensemble allows for an even faster
convergence to excellent performance and higher stability
(Fig. 7). Throughout network operation, new attacks can
go undetected, which creates momentary performance drops
present in each experiment replication (see Fig. 8). However,
the model quickly learns thanks to the updating, and can
continue operating on a satisfactory level.

In summary, updating classifiers with new knowledge as
attackers evolve their intrusion techniques is essential for
maintaining secure network operations over time. This conti-
nual learning also improves the classifier’s ability to generalize
across diverse attack types, resulting in a more robust and
effective detection system. Therefore, to answer RQ2, attack
detectors can retain their performance throughout network
operation when new types of attacks emerge if they are
dynamically updated.
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Fig. 6. G-Mean over consecutive batches of data. Average of 100 experiment
replications with standard deviation. 10T-23 dataset, dynamic single SGD
classifier.
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Fig. 7. BAC over consecutive batches of data. Average of 100 experiment
replications with standard deviation. KDDCup dataset, dynamic ensemble
MLP classifier.

VI. CONCLUSIONS

In this paper, we tackled the problem of detecting evolving
network attacks. We focused on two practical challenges:
the ability of ML models to recognize various attack types,
unknown in advance, and model performance retention. To
solve them, we proposed two approaches based on dynamic
model updating. Our experimental evaluation on three public
datasets revealed the usefulness of the methodology. The
results demonstrated how the same ML classification algo-
rithm, when used differently, can yield significantly different
performance outcomes.

These results underscore the importance of continuous
model adaptation to handle the evolving nature of emerging
threats. The proposed methods offer a flexible and scalable
solution for real-time attack detection, making them suitable
for deployment in dynamic network environments.
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