
Proofs of sequential communication delays from physical assumptions and
their applications

Downloaded from: https://research.chalmers.se, 2025-11-24 16:58 UTC

Citation for the original published paper (version of record):
Baum, C., David, B., Pagnin, E. et al (2025). Proofs of sequential communication delays from
physical assumptions and their applications. Cryptography and Communications, 17(5): 1287-1321.
http://dx.doi.org/10.1007/s12095-025-00828-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Cryptography and Communications (2025) 17:1287–1321
https://doi.org/10.1007/s12095-025-00828-0

RESEARCH

Proofs of sequential communication delays from physical
assumptions and their applications

Carsten Baum1 · Bernardo Machado David2 · Elena Pagnin3 ·
Akira Takahashi4

Received: 10 January 2025 / Accepted: 9 July 2025 / Published online: 30 July 2025
© The Author(s) 2025

Abstract
Time-based cryptographic primitives unlock efficient realizations of several functionalities
including Randomness Beacons, Proof of Replicated Storage, Encryption to the Future, and
MultiParty Computationwith partial fairness. Existing constructions derive time-delays from
the average hardness of sequential computational problems, a measure that is susceptible to
algorithmic and hardware improvements. Therefore time-based systems secure at deployment
date are at constant risk to turn insecure. A way to combat this intrinsic drawback is to
ground time-delays on assumptions that are not affected by scientific advancement such
as trust (in a subset of parties) and physical communication delays. This paper builds on
Baum et al.’s (SCN 2024) work on “CaSCaDE: (Time-Based) Cryptography from Space
Communications DElay”, and provides concrete realizations and detailed security proofs of:
a Time Lock Puzzle, a stateless Verifiable RandomFunction, a Delay Encryption scheme, and
a Randomness Beacon from proofs of Sequential Communication Delays (SCD) and trust
assumptions on subsets of parties. Notably, our SCD-based Delay Encryption construction
constitutes the first alternative to existing supersingular isogenies Delay Encryption schemes.

Keywords Time-based cryptography · Physical assumptions · Time-lock puzzles ·
Verifiable delay functions

B Carsten Baum
cabau@dtu.dk

Bernardo Machado David
beda@itu.dk

Elena Pagnin
elenap@chalmers.se

Akira Takahashi
takahashi.akira.58s@gmail.com

1 Technical University of Denmark, Kgs. Lyngby, Denmark

2 IT University of Copenhagen, Copenhagen, Denmark

3 Chalmers University of Technology & University of Gothenburg, Gothenburg, Sweden

4 J.P.Morgan AI Research & AlgoCRYPT CoE, New York, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-025-00828-0&domain=pdf
http://orcid.org/0000-0001-7905-0198
http://orcid.org/0000-0002-1872-7799
http://orcid.org/0000-0002-7804-6696
http://orcid.org/0000-0001-8556-3053

1288 Cryptography and Communications (2025) 17:1287–1321

1 Introduction

Recently, Time-Lock Puzzles (TLPs) [1] and Verifiable Delay Functions (VDFs) [2] have
received a lot of attention as building blocks for efficient realizations of randomness beacons
[3] andmultiparty computation (MPC)with partial fairness. Theminimumdelay in evaluating
a VDF or solving a TLP is obtained by forcing parties to solve computational problems
that require a number of inherently sequential steps. Even if the hardness of sequential
computational problems is well understood in theory, lower bounds for the concrete time
spent computing a number of sequential steps heavily depend on the (evolving) algorithms
and hardware used for such computation.

In [4], Baum et al. take a different approach and investigate how to construct time-based
cryptographic primitives from physical assumptions and trust assumption common in MPC
settings. This enables proofs of sequential communication delay (SCD) based on Physics phe-
nomena that have strong experimental evidence and are absolute, rather than ever-decreasing
computational hardness. Time-delays are implemented via communication in Space, a setting
where special relativity posits that transfer of information (communication) cannot happen
faster than the speed of Light. The communication delay between two parties can be pre-
cisely lower bounded by their relative distance and is unaffected by algorithmic and hardware
improvements.

In this work, we build on the line of work that builds cryptographic schemes from special
relativity assumptions and provide the following contributions.

• Modelling dynamic delayed channels in UC:We introduce a UC model for communica-
tion channels that incorporate time-varying delays. We model both single-use channels
and multiple-use channels. To achieve this, we utilize a Global clock to establish syn-
chrony. Since our model accounts for messages being transmitted through a constellation
of satellites, it accurately captures the communication delay between parties whose posi-
tions change over time. This variability in position directly impacts the delay experienced
when transmitting messages between these parties.

• Proofs of Sequential Communication Delay: Building on our model, we introduce tech-
niques for proving that a certain message has been sequentially transmitted among a
number of parties. We analyze the delay bounds obtained by composing delayed chan-
nels and propose the notion of proofs of sequential communication delay (SCD). We
propose SCD protocols based on physical delays, digital signatures, and PKI and prove
them secure in the UC-hybrid model.

• VDF from SCD: We present the first construction of a UC-secure VDF based on phys-
ical communication delay. Specifically, we construct VDFs from proofs of sequential
communication delay and a bulletin board, in the random oracle model, by extracting
randomness from such proofs.

• TLP from SCD:We present the first construction of a UC-secure publicly verifiable (PV)
time-lock puzzle based on physical communication delay. As an application, we show
that our PV-TLPs can be used to efficiently instantiate the randomness beacon from [5]
(expensive resources are only used in case of cheating).

• DelayEncryption and Stateless VDF fromThreshold Identity BasedEncryption (IBE) and
SCD:We showhow to obtainDelay Encryption [6] by combining our proofs of sequential
communication delay and an IBE scheme endowed with a threshold identity secret key

123

Cryptography and Communications (2025) 17:1287–1321 1289

generation protocol. To the best of our knowledge, this is the first delay encryption
scheme not based on supersingular isogeny assumptions. We also use a similar technique
to obtain a more efficient construction of VDFs.

Improvements over the proceedings version [4] This paper builds on Baum et al.’s (SCN
2024) work and, compared to it, provides:

• Amore self-contained presentation, including an extensive auxiliary backgroundmaterial
(Sections 2.2 and 2.3).

• The Proof of Theorem 2.
• A concrete description of how to compute channel delays in Section 4.3.1, including

Proposition 5 with formal proof.
• Protocol 4.3.2 in Section 4.3.2 with accompanying security statement and proof.
• Section 4.4 on ways to realize short proofs of sequential communication delays from

simple primitives (digital signatures with properties).
• Section 6 on how to model and realize publicly verifiable time-lock puzzles from space

communication delay, including Theorem 8 with formal proof and the description of a
concrete application: constructing a randomness beacon.

• Section 7.1 on a UC treatment of Delay Encryption.
• Section 8 on realizing a stateless VDF from SCD proofs.
• Section 9 on efficiency and practical considerations on the proposed framework and

protocols.

2 Preliminaries

2.1 Related work

Time-Lock Puzzles (TLPs) [1] allow a sender to commit to a message in such a way that a
receiver can obtain it only after a delay is elapsed. Verifiable Delay Functions (VDFs) [2]
work as a pseudorandom function whose evaluation requires at least a certain delay, after
which it generates both an output and a proof that the output was obtained after this delay.
Similarly, a publicly verifiable TLP (PV-TLP) also produces a proof that a certain message
was contained in the puzzle. In both cases, verifying these proofs takes time essentially
independent of the delay for solving the PV-TLP or evaluating the VDF. A lot of theoretical
work has been done on constructing TLPs [1, 7–11] and VDFs [2, 5, 12–15]. Yet, all known
constructions are based on the average hardness of sequential computational problems, and
hence are orthogonal to this work.

The concept of deriving security guarantees based on physical assumptions is not new
in the field of cryptography, e.g., noisy communication channels [16, 16, 17], physically-
unclonable functions [18–20], tamper-proof tokens [21, 22], and more recently protein
polymers for secure vaults and one-time programs [23]. None of the aforementioned assump-
tions, however, enforces time delays. We proceed along the line of work – initiated by
Kent [24] in 1999 – that builds cryptographic schemes from special relativity. In detail [24, 25]
focus on commitments, more recent efforts target multi-prover Zero-Knowledge proofs [26]

123

1290 Cryptography and Communications (2025) 17:1287–1321

and have been experimentally demonstrated [27, 28]. However, these constructions require
verifiers to interact with provers via ideal secure channels, whereas the primitives we consider
require non-interactive public verifiability.

2.2 GUCmodel and standard functionalities

We denote the computational (resp. statistical) security parameter by τ (resp. λ), the
concatenation of two strings a and b by a|b, and compact multiple concatenations by
(ai)

n
i=1 = a1|a2| . . . |an .
In what follows we give an overview of the UC framework [29] and present standard

functionalities for global random oracles (GrpoRO), global clocks (GClock), Public Key Infras-
tructures (FReg), (unique) digital signatures (FSig), and bulletin boards (FBB), which we will
use in our constructions.

We use the (Global) Universal Composability or (G)UC model [29, 30] for analyzing
security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties. A protocol
π will have n parties which we denote as P = {P1, . . . ,Pn}. The adversaryA, which is also
an iTM, can corrupt a subset I ⊂ P as defined by the security model and gains control over
these parties. The parties can exchange messages via resources, called ideal functionalities
(which themselves are iTMs) and which are denoted by F.

As usual,we define securitywith respect to an iTMZ called environment. The environment
provides inputs to and receives outputs from the parties P. To define security, let πF1,... ◦A
be the distribution of the output of an arbitrary Z when interacting with A in a real protocol
instance π using resources F1, Furthermore, let S denote an ideal world adversary and
F ◦ S be the distribution of the output of Z when interacting with parties which run with F
instead of π and where S takes care of adversarial behavior.

Definition 1 We say that π UC-securely implements F in the (F1, . . .)-hybrid model if for
every iTM A there exists an iTM S (with black-box access to A) such that no environment
Z can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only one iTM
(including Z) is active at each point of time.

2.2.1 Global random oracle GrpoRO

In Functionality 2.2.1 we present the restricted observable and programmable global random
oracle ideal functionality proposed by Camenisch et al. [31]. It follows the standard notion
of a random oracle, when defined in the GUC framework

2.2.2 Global clock GClock
We need to assume that honest parties have synchronized clocks.1 This is necessary to argue
about evolving communication delays with respect to specific instants in time, which we
need to construct proofs of sequential communication delays. We capture this notion of

1 Our protocols in fact only require loosely synchronized clocks, as the minimum delay is guaranteed by
a physical effect rather than synchronization, and the use of synchronization only impacts liveness of the
protocol. We choose not to model that more explicitly as it would require more details in the formalization.

123

Cryptography and Communications (2025) 17:1287–1321 1291

Functionality 2.2.1: GrpoRO

GrpoRO is parameterized by an output size function � and a security parameter τ , and keeps initially empty
lists ListH,prog.
Query: On input (Hash- Query,m) from party (P, sid) or S, parse m as (s,m′) and proceed as follows:

1. Look up h such that (m, h) ∈ ListH. If no such h exists, sample h
$← {0, 1}�(τ) and set ListH =

ListH ∪ {(m, h)}.
2. If this query is made by S, or if s �= sid, then add (s,m′, h) to the (initially empty) list of illegitimate

queriesQs .
3. Send (Hash- Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅. Output
(List- Observe,Qsid) to S.
Program: On input (Program- RO,m, h) with h ∈ {0, 1}�(τ) from S, ignore the input if there exists
h′ ∈ {0, 1}�(τ) where (m, h′) ∈ ListH and h �= h′. Otherwise, set ListH = ListH ∪ {(m, h)}, prog =
prog ∪ {m} and send (Program- Confirm) to S.
IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input was given by (P, sid)

then parse m as (s,m′) and, if s �= sid, ignore this input. Set b = 1 if m ∈ prog and b = 0 otherwise.
Then send (IsProgrammed, b) to the caller.

synchronicity by using a global clock functionality GClock , following the ideas of [32–34].
GClock allows parties and functionalities to request the current value of a synchronized time
counter, which is only incremented if all honest parties agree to update the clock. This also
means that e.g. ticks cannot happen randomly in protocol steps, unless parties in the protocol
explicitly query GClock to continue.

Throughout the paper, the “global clock” refers to GClock presented in Functionality 2.2.2.
For completeness, we explain in Section 2.2.3 how an alternative version of GClock can be
realized in the framework of [11], with which our results hold.

Functionality 2.2.2: GClock

GClock is parameterized by a variable ν, sets P,F of parties and functionalities respectively. It keeps a
Boolean variable dJ for each J ∈ P∪F, a counter ν as well as an additional variable u. All dJ , ν and u
are initialized as 0.

Clock Update: Upon receiving a message (Update) from J ∈ P ∪ F: Set dJ = 1. If dF = 1 for all
F ∈ F and dp = 1 for all honest p ∈ P, set u ← 1 if it is 0.
Clock Read: Upon receiving a message (Read) from any entity:
If u = 1 then first send (Tick, sid) to S. Next set ν ← ν + 1, reset dJ to 0 for all J ∈ P ∪ F and reset u
to 0. Answer the entity with (Read, ν).

2.2.3 TARDIS model and alternative global clock

The TARDIS model [11] TARDIS expresses time within the Generalized Universal Com-
posability (GUC) framework in such a way that protocols can be made oblivious to clock
ticks. Specifically, TARDIS models the passage of time without implying synchronicity. Our
results can be stated in this model as well, which makes our results directly comparable and
compatible with previous work on UC PV-TLPs and VDFs [5, 11] that adopt the samemodel.

123

1292 Cryptography and Communications (2025) 17:1287–1321

Global Tickers In [5, 11], a global ticker functionality Gticker (see Functionality 2.2.3) keeps
track of “ticks" representing a discrete unit of time. When activated by another ideal func-
tionality, the global ticker answers whether or not a new “tick" has happened since the last
time it was activated by this ideal functionality but does not provide a synchronized clock
value. To ensure that all honest parties can observe all relevant timing-related events, Gticker
only progresses if all honest parties have signaled that they have been activated (in arbitrary
order). Parties do not get outputs from Gticker. Ticked functionalities can freely interpret ticks
and perform arbitrary internal state changes. Upon each activation, any ticked ideal function-
ality first checks with Gticker if a new tick has happened and if yes, executes code in a special
Tick interface. In a protocol realizing a ticked functionality, parties activate the global ticker
after executing their steps, so that a new tick is allowed to happen. We refer to [11] for more
details

Functionality 2.2.3: Gticker

Initialize a set of registered parties Pa = ∅, a set of registered functionalities Fu = ∅, a set of activated
parties LPa = ∅, and a set of functionalities LFu = ∅ that have been informed about the current tick.

Party registration: Upon receiving (register,pid) from honest party P with pid pid, add pid to Pa and
send (registered) to P.
Functionality registration: Upon receiving (register) from functionality F, add F to Fu and send
(registered) to F.

Tick: Upon receiving (tick) from the environment, do the following:

1. If Pa = LPa, reset LPa = ∅ and LFu = ∅, and send (ticked) to the adversary S.
2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ Fu: If F /∈ LFu, add F to LFu and
send (ticked) to F. Otherwise send (notticked) to F.

Record party activation: Upon receiving (activated) from party P with pid pid ∈ Pa, add pid to LPa
and send (recorded) to P.

Alternative global clock In order to integrate the clock functionality GClock into the abstract
composable time model, we modify it as outlined above. The modified version, denoted by
GClockT , captures the fact that it exposes towards the parties and other ideal functionalities
the number of ticks issues by Gticker since the beginning of the execution. However, it is not
a separate clock that is executed independently from Gticker. Since we wish GClockT to count
the ticks issued by Gticker, our modified version requires all honest parties to activate the
global ticker every time they would update the global clock (i.e. when they have executed all
their instructions for a given round). This modification can be seen in Functionality 2.2.3. It
is immediate how GClockT can be used in substitution for GClock throughout our protocols by
replacing Update messages to GClock by activated calls to Gticker.

2.2.4 Key registration ideal functionalityFReg

The key registration functionality FReg is presented in Functionality 2.2.4. This ideal func-
tionality captures a public key infrastructure, allowing parties to register their public keys in
such a way that other parties can retrieve public keys with the guarantee that they belong to

123

Cryptography and Communications (2025) 17:1287–1321 1293

Functionality 2.2.3: GClockT

GClockT interacts with a sets P,F of parties and functionalities, respectively, as well as with Gticker .
It keeps a counter ν initially set to 0.

Clock Read: Upon receiving (Read) from any entity, answer with (Read, ν).

Tick: Increment ν, i.e. set ν ← ν + 1.

the party who originally registered them. FReg is inspired by the functionality from [35], but
additionally supports timestamps on registered keys.

Functionality 2.2.4: FReg

FReg interacts with a set of partiesP and an ideal adversary S as well as a global clock GClock as follows:
Key Registration: Upon receiving a message (register) from a party Pi ∈ P:
1. Send (Read) to GClock , waiting for response (Read, ν).
2. Send (Registering, sid,pk,Pi , ν) to S. Upon receiving (sid, ok,Pi) from S, and if this is the first

message from Pi , then record the tuple (Pi ,pk, ν).

Key Retrieval: Upon receiving a message (Retrieve, sid,P j) from a party Pi ∈ P, send message
(Retrieve, sid,P j) to S and wait for it to return a message (Retrieve, sid, ok). Then, if there is a
recorded tuple (P j ,pk, ν) output (Retrieve, sid,P j ,pk, ν) to Pi . Otherwise, if there is no recorded
tuple, return (Retrieve, sid,P j , ⊥).

Functionality 2.2.4: FSig

Given an ideal adversary S, verifiers V and a signer Ps , FSig performs:
Key Generation: Upon receiving a message (keygen, sid) from Ps , verify that sid = (Ps , sid′) for
some sid ′. If not, ignore the request. Else, hand (keygen, sid) to the adversary S. Upon receiving
(verification key, sid,SIG.vk) from S, output (verification key, sid,SIG.vk) to Ps , and record
the pair (Ps ,SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps , verify that sid = (Ps , sid′)
for some sid ′ . If not, then ignore the request. Else, if an entry (m, σ, SIG.vk, 1) is recorded, output
(signature, sid,m, σ) toPs and ignore the next steps (this condition guarantees uniqueness). Else, send
(sign, sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that no entry (m, σ,SIG.vk, 0)
is recorded. If it is, then output an error message to Ps and halt. Else, output (signature, sid,m, σ) to
Ps , and record the entry (m, σ,SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′) from some party Vi ∈ V,
hand (verify, sid,m, σ, SIG.vk′) to S. Upon receiving (verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m, σ, SIG.vk, 1) is recorded, then set f = 1. (This condition
guarantees completeness: If the verification key SIG.vk′ is the registered one and σ is a legitimately
generated signature for m, then the verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry (m, σ ′, SIG.vk, 1) for any
σ ′ is recorded, then set f = 0 and record the entry (m, σ, SIG.vk, 0). (This condition guarantees
unforgeability: If SIG.vk′ is the registered one, the signer is not corrupted, and never signed m, then
the verification fails.)

3. Else, if there is an entry (m, σ,SIG.vk′, f ′) recorded, then let f = f ′. (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)

4. Else, let f = φ and record the entry (m, σ,SIG.vk′, φ).

Output (verified, sid,m, f) to Vi .

123

1294 Cryptography and Communications (2025) 17:1287–1321

2.2.5 Unique digital signatures ideal functionalityFSig

The standard digital signature functionality FSig from [36] captures a randomized signature
scheme where the signer may influence the generation of a signature by choosing the ran-
domness used by the signing algorithm. This particularity is captured by allowing the ideal
adversary S choose a new string σ to represent a signature on a message m every time the
signer Ps (a special party who has the right to generate signatures, i.e., who holds the signa-
ture key) makes a new request for a signature on m. This process allows for multiple valid
signatures to be produced for the same message. However, we require a unique signature
scheme for our applications to proofs of sequential communication. In a unique signature
scheme, only one signature may be produced for a given message m under a signing key.
In the UC formalization of signature schemes, an instance of the functionality FSig itself
represents each different signing key by allowing only a special party Ps (i.e. the holder of
a signing key) to produce signatures. Hence, we capture the notion of unique signatures by
only allowing one signature on a given message m to be produced by the same instance of
FSig. The remainder of this functionality still follows the same steps as the standard one
from [36]. Our modifiedFSig capturing unique signatures is presented in Functionality 2.2.4,
where modifications with respect to [36] are written in this font.

It is shown in [36] that anyEUF-CMAsignature schemeUC realizes the standard signature
functionality where multiple valid signatures may be produced for the same message under
the same signing key (i.e. the same instance of FSig may generate multiple signatures for
the same message, as long as they have not been flagged as invalid signatures by a previous
unsuccessful verification procedure). We observe that this fact trivially extends to the case
of unique signatures, i.e., any EUF-CMA signature scheme UC realizes our FSig capturing
unique signatures, since the only restriction in this case is that a single signature is produced
for each message by a single instance of FSig (which represents a signer’s signing key).

2.2.6 Bulletin board ideal functionalityFBB

In Functionality 2.2.6 we describe an authenticated bulletin board functionality which is used
throughout this work. Authenticated Bulletin Boards can be constructed from regular bulletin
boards using FSig,FReg and standard techniques.

Functionality 2.2.6: FBB

FBB interacts with a set of parties P and keeps a counter c initially set to 0, proceeding as follows:

Write: Upon receiving (Write, sid,m) from Pi ∈ P, store the message (c,m) and increment c.

Read: Upon receiving (Read, sid) from Pi ∈ P, return all messages (·,m) that are stored.

2.3 UC secure public-key encryption with plaintext verification

We consider public-key encryption schemes PKE that have public-key PK, secret key SK,
messageM, randomnessR and ciphertext C spaces that are functions of the security param-
eter τ , and consist of a PPT key generation algorithm KG, a PPT encryption algorithm Enc

and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1τ), any m ∈ M, and

123

Cryptography and Communications (2025) 17:1287–1321 1295

ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with overwhelming probability over

the used randomness.
Moreover, we extend the semantics of public-key encryption by adding a plaintext verifi-

cation algorithm {0, 1} ← V(ct,m, π) that outputs 1 ifm is the plaintext message contained
in ciphertext ct given a valid proof π that also contains the public-key pk used to generate
the ciphertext. Furthermore, we modify the encryption and decryption algorithms as follows:

(ct, π)
$← Enc(pk,m) and (m, π) ← Dec(sk, ct) now output a valid proof π that m is

contained in ct. The security guarantees provided by the verification algorithm are laid out
in Definition 2.

Definition 2 (Plaintext Verification) Let PKE = (KG, Enc,Dec,V) be a public-key encryption
scheme and τ be a security parameter. Then PKE has plaintext verification if for every PPT
adversary A, it holds that:

Pr

⎡
⎢⎣V(ct,m′, π ′) = 1

∣∣∣∣∣∣∣
pk

$← PK, (m, π,m′, π ′) $← A(pk),
π = (pk, r), π ′ = (pk, r ′) ∈ PK ∪ R,

m,m′ ∈ M, (ct, π) ← Enc(pk,m; r),m′ �= m

⎤
⎥⎦ ∈ negl(τ)

As observed in [37], it is possible to UC-realize public-key encryption with a plaintext
verification property using the random oracle-based IND-CCA secure public-key encryption
schemes of [38, 39]. This plaintext verification property allows a party who decrypts a
ciphertext to generate a non-interactive publicly verifiable proof that a certain plaintext was
obtained. We will apply the approach of [37] to obtain a threshold public-key encryption
scheme with the same plaintext verification property. In order to do so, we use the fact that
the encryption schemes of [38, 39] can be obtained from any partially trapdoor one-way
function, which allows us to depart from a simple threshold version of El Gamal to obtain a
UC-secure theshold encryption scheme with plaintext verification.

As a concrete example, let use describe an IND-CCA secure Cryptosystem with Plaintext
Verification based on [38] from [37]. This cryptosystem can be constructed from any Partially
Trapdoor One-Way Injective Function in the random oracle model. Moreover, as observed
in [37], it can be instantiated in the restricted observable and programmable global random
oracle model of [31]. First we recall the definition of Partially Trapdoor One-Way Functions.

Definition 3 (Partially Trapdoor One-Way Function [38]) The function f : X × Y → Z is
said to be partially trapdoor one-way if:

• For any given z = f (x, y), it is computationally impossible to get back a compatible
x . Such an x is called a partial preimage of z. More formally, for any polynomial time
adversary A, its success, defined by SuccA = Prx,y [∃y′, f (x ′, y′) = f (x, y)|x ′ =
A(f (x, y))], is negligible. It is one-way even for just finding partial-preimage, thus
partial one-wayness.

• Using some extra information (the trapdoor), for any given z ∈ f (X × Y), it is easily
possible to get back an x , such that there exists a y which satisfies f (x, y) = z. The
trapdoor does not allow a total inversion, but just a partial one and it is thus called a
partial trapdoor.

As observed in [38], the classical El Gamal cryptosystem is a partially trapdoor one-way
injective function under the Computational Diffie Hellman (CDH) assumption, implying an
instantiation of this cryptosystem under CDH. We will later exploit this fact to apply this
transformation to a simple threshold version of El Gamal where the encryption procedure and

123

1296 Cryptography and Communications (2025) 17:1287–1321

the public key are exactly the same as in the standard scheme, allowing for the construction
below to be instantiated. We now recall this generic construction.

Definition 4 (Pointcheval [38] IND-CCA Secure Cryptosystem with Plaintext Verification)
LetTDbe a family of partially trapdoor one-way injective functions and let H : {0, 1}|m|+τ →
Y and G : X → {0, 1}|m|+τ be random oracles, where |m| is message length. This cryptosys-
tem consists of the algorithms PKE = (KG, Enc,Dec V) that work as follows:

• KG(1τ): Sample a random partially trapdoor one-way injective function f : X×Y → Z
from TD and denote its inverse parameterized by the trapdoor by f −1 : Z → X. The
public-key is pk = f and the secret key is sk = (f , f −1).

• Enc(pk,m): Sample r
$← X and s

$← {0, 1}τ . Compute a ← f (r , H(m|s)) and b =
(m|s) ⊕ G(r), outputting ct = (a, b) as the ciphertext and π = (pk, r , s) as the proof.

• Dec(sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f −1, compute r ←
f −1(a) and M ← b ⊕ G(r). If a = f (r , H(M)), parse M = (m|s) and output m and
the proof π = (pk, r , s) . Otherwise, output ⊥.

• V(ct,m, π): Parse π = (pk, r , s), compute ct′ ← Enc(pk,m, (r , s)) and output 1 if and
only if ct = ct′.

3 Modeling communication delays

This section recalls the framework put forth in [4] to model physical communication between
two parties as authenticated message transmission ideal functionalities that ensure both min-
imal and maximal communication delays.

The section starts by modeling a single-use delayed channel with fixed minimum and
maximum delay parameters for simplicity. This channel captures the transmission of a single
message between two parties at a specific point in time, which determines the delay param-
eters. As parties’ relative positions evolve with time, so do the communication delay bounds
as their relative distances change. Then we explicitly show how to realize the multi-use func-
tionality from a single-use delayed channel. The result is a communication delay channel
whose delay bounds can evolve with the ticks of GClock . This multi-use channel allows other
parties to observe the delay bounds for a message transmitted at a given (past or future) point
in time, which will later be necessary for verifying the output of a time-based primitive con-
structed over the channels, as well as estimating the delay guaranteed by a future evaluation
of such a primitive.

We remark that communication in the UC framework always happens through channel
functionalities. Moreover, we allow any third party to observe the minimum and maximum
delay bounds for a message transmitted through the functionality. This implicitly assumes
that the parties know each others’ positions (in order to compute the delays) which is a
reasonable assumption for satellites and base stations as outlined in the introduction.

3.1 Single-use channel ideal functionalityF1lo,1hi

dmt

As a warm-up example, we present the functionality F	lo,	hi
dmt for delayed authenticated

message transmission in Functionality 3.1. The message delivery is at least 	lo ticks (i.e.
the physical bound for message transmission), and this delay holds also for an adversarial
receiver. The adversary cannot force transmission to be delayed by more than 	hi ticks if it
is the sender, and cannot force delivery before 	lo ticks.

123

Cryptography and Communications (2025) 17:1287–1321 1297

Functionality 3.1: F	lo,	hi
dmt

This functionality is parameterized by a minimal delay 	lo > 0 and a maximal delay 	hi > 	lo; it
interacts with a sender PS , a receiver PR , an adversary S, and the clock GClock . At initialization t is set
to 0, and the flags msg, released,done to ⊥. Send: Upon receiving an input (Send, sid,m) from party
PS , do:

• Ifmsg = ⊥, record m and set msg = �.
• Ifmsg = �, send (None, sid) to PS .

Receive: Upon receiving (Rec, sid) from PR , do:

• If released = ⊥ and done = ⊥, then send (None, sid) to PR .
• If released = � anddone = ⊥, thenmsg = � and there exists a recordedmessagem. Setdone = �

and send (Sent, sid,m) to PR .
• If done = �, then send (done, sid) to PR .

Release message: Upon receiving an input (ok, sid) from S, do:
• Ifmsg = ⊥ or t < 	lo, then send (None, sid) to S.
• Ifmsg = �, t ≥ 	lo and released = ⊥, then set released = �.
• If released = �, then send (None, sid) to S.

Tick: Sends (Read) to GClock , receiving (Read, t) as answer. If t has changed since the last activation:

• Ifmsg = ⊥, then send (None, sid) to S.
• Ifmsg = � and released = ⊥, then set t = t + 1:

– If t = 	lo then send (Sent, sid,m, t) to S.
– If t = 	hi, set released = � and send (Released, sid) to S.

3.2 Multiple-use channel ideal functionalityFf1
mdmt

Manually keeping track of what instance of F	lo,	hi
dmt to use (along with its parameters

	lo,	hi) every time a message needs to be sent between two parties, as well as the cur-
rent time, would make protocol descriptions very cumbersome. Hence, we present a higher
level abstraction of a multiple-use delayed authenticated channel that automatically assigns
minimum and maximum delays to each message according to the time it is sent. In Function-
ality 3.3 we present the functionality Ff	

mdmt for multiple-use delayed authenticated message
transmission. The main parameter of this functionality is a function f	 that takes as input
a time t and outputs the minimum delay 	lo and maximum delay 	hi for a message sent
at time t . When it is requested to transmit a message, Ff	

mdmt determines the current time
by contacting GClock and computes (lo,	hi) ← f	(t). Next, the functionality registers
the message in a list and ensures that it is not revealed to the adversary before a minimum
delay 	lo, while guaranteeing delivery to an honest receiver within a maximum delay 	hi.
Moreover, Ff	

mdmt allows for any third party to obtain the delay parameters for messages sent
at a given clock tick, as f	 is a public parameter of the functionality (similar to 	lo,	hi in
F	lo,	hi
dmt).
To model predictability of delay, we require that the variance between any two ticks in

delay - as modeled by f	 - cannot be toomuch: no adversary should be able to send amessage
faster by waiting until a later tick (i.e. time travel of messages is not possible). To capture
this, we give the following definition:

Definition 5 (Permissible Delay Function) A function f	 : {0, . . . , poly(τ)} → N × N

models permissible delay if

∀t ∈ N : (lo,	hi) ← f	(t), (lo
′,	′

hi) ← f	(t + 1) ⇒ 	lo
′ − 	lo > −1.

123

1298 Cryptography and Communications (2025) 17:1287–1321

3.3 RealizingFf1
mdmt fromF1lo,1hi

dmt

Intuitively, our realization uses one instance ofF·
dmt· for each possible timestamp. The sender

simply picks the correct instance for message transmission, while the verifier for every clock
tick tests 1. if any of the instances delivers a message to him; and 2. if the message’s time of
sending and delay are consistent.

In detail, the multiple-use ideal functionality Ff	
mdmt for authenticated delayed message

transmission can be realized in the GClock,F	lo,	hi
dmt -hybrid model. Assume access to many

instances of the single-use functionalityF	lo,	hi
dmt , one fresh instance ofF	lo

t ,	t
hi

dmt associated
to t for eachmessage to be sent at time t ∈ {0, . . . ,poly(τ)}with parameters (lo

t ,	t
hi) ←

f	(t). Upon receiving an input (Send, sid,m), a senderPS determines (lo
t ,	t

hi) ← f	(t)

and uses the instance ofF	lo
t ,	t

hi
dmt to send (m, t). Upon receiving input (Rec, sid), a receiver

PR queries all instances of F	lo
t ′ ,	t ′

hi
dmt associated to a time t ′ smaller than current time t in

order to retrieve messages that might have been sent. It then has to establish correctness of
the delay.

Protocol 3.3: πmdmt

For each t ∈ {0, . . . ,poly(τ)} let (lo
t , 	t

hi) ← f	(t). In the protocol two parties PS ,PR interact via

functionalities F	lo
t ,	t

hi
dmt . In addition, they use a global clock GClock . Upon any activation that is not

related to a message below, parties send (Update) to GClock .
Send: Upon input (Send, sid,m) PS acts as follows:

1. Send (Read) to GClock and obtain (Read, t).
2. Determine (lo, 	hi) ← f	(t).

3. Send (Send, sid, (m, t)) to F	lo,	hi
dmt and (Update) to GClock .

Receive: Upon input (Rec, sid) PR acts as follows:

1. Send (Read) to GClock and obtain (Read, t).
2. For each t ∈ {0, . . . , t} compute (lo

t , 	t
hi) ← f	(t).

3. Send (Rec, sid) to each F	lo
t ,	t

hi
dmt and wait for responses (Sent, sid, (m, t ′)) from F	lo

t ,	t
hi

dmt . If
t �= t ′ then PR ignores (m, t ′).

4. If 	lo + t ≤ t ≤ 	hi + t then PR outputs (Sent, sid,m, t).

Theorem 1 The protocol πmdmt in Protocol 3.3 GUC-securely implements Ff	
mdmt in the

GClock,F·
dmt-hybrid model against a static active adversary.

Proof We now construct a PPT simulator S for a corrupted sender or receiver. In both cases,
the simulatorwill simulate all hybrid instances ofF·

dmt, which can be done in time polynomial
in τ as there are only poly(τ) such instances.

IfPS is corrupted then we construct S as follows: S acts like an honestPR , but it addition-
ally observes all inputs (Send, sid,m) to any instance of F·

dmt that it simulates. Any input

of the form (m, t) to F	lo,	hi
dmt with (lo,	hi) = f	(t) is forwarded as (Send, sid,m) to

Ff	
mdmt during the same tick of GClock . When the adversary makes this F	lo,	hi

dmt output the

message (m, t ′), then S makes Ff	
mdmt output m in the same tick round of GClock by sending

(ok, sid, t ′). This simulation is perfect, as Ff	
mdmt will output any message in the same round

123

Cryptography and Communications (2025) 17:1287–1321 1299

where the respective instance ofF·
dmt would have released it to an honest receiver. Moreover,

only those messages are forwarded by S to Ff	
mdmt that wouldn’t be ignored by an honest

receiver.
If PR is corrupted then S sends (Rec, sid) to Ff	

mdmt in every tick round. Upon obtain-

ing (Sent, sid,m, t ′) from Ff	
mdmt in tick round t , S computes (lo,	hi) ← f	(t ′)

and programs the respective instance F	lo,	hi
dmt to contain the message (m, t ′) and have

msg = released = � so that the honest receiver can pick up the message. Again, the
simulation is perfect because the instance that is reprogrammed by S is the one an honest
sender would provide the respective input to. Moreover, given the construction of F·

dmt the
dishonest receiver would not be able to obtain the message any earlier than in this round in
the real protocol. ��

Functionality 3.3: Ff	
mdmt

This functionality is parameterized by a computational security parameter τ and a permissible delay
function f	 : {0, . . . ,poly(τ)} → N×N; it interacts with GClock , sender PS , receiver PR and adversary
S. At initialization the list L is empty.

In any call below, Ff	
mdmt first sends (Read) to GClock and obtains (Read, t).

Send: Upon first message (Send, sid,m) for t from party PS add (m, t,⊥) to L .
Receive: Upon receiving (Rec, sif) from PR , for every (m, t, released) ∈ L , if released = � (i.e. the
maximum delay has passed or the adversary released the message), remove (m, t, released) from L and
send (Sent, sid,m, t) to PR .
Release message: Upon receiving an input (ok, sid, t) from S compute (lo, ·) ← f	(t). If there is
(m, t, released) ∈ L such that t ≥ t + 	lo then set released = �.
Tick: For every (m, t, released) ∈ L compute (lo,	hi) ← f	(t) and do as follows:

• If t + 	lo = t , send (Sent, sid,m, t) to S.
• If t + 	hi = t , set released = �.

4 Proofs of sequential communication delays

This section introduces techniques for producing a publicly verifiable proof πlo that a mes-
sage m has incurred a certain minimum delay due to being transmitted from party PS to
party PR , and concludes with a sketch optimization that uses sequentially aggregate sig-
natures (SAS) [40] and ordered multi signatures (OMS) [41] to avoid proofs of sequential
communication delay of size linear in the number of network nodes.

Intuitively a proof of sequential communication delay produced by using the delay chan-
nel functionalities from Section 3, requires that at least one of the two parties involved in the
process was honest. The idea is to have both the senderPS and receiverPR of a delayed chan-
nel sign the input message and the initial timestamp when this message was sent (provided
that the message is received within reasonable time constraints such that the initial timestamp
is not too far in the future or past). Both signatures and the initial timestamp form the proof
πlo showing that the message was sent from PS to PR incurring a given minimum delay
as observed by an honest party. This is guaranteed by the delayed channel, whose minimum
delay is determined by the timestamp.

To obtain a larger provableminimumdelays than that provided by a single channel without
intermediaries, [4] leverages UC composition and uses a sequence of consecutive communi-

123

1300 Cryptography and Communications (2025) 17:1287–1321

cation channels between multiple parties. A message m is meant to travel from sender P1 to
receiver Pn , through hops Pi . Each intermediate party Pi sends to Pi+1 not only the original
message m, but also a proof showing that m travelled from P1 to Pi . If m and the proof
arrive at Pi at a certain time that is not consistent with the minimum and maximum delays
of the channels connecting P1 to Pi (i.e. it is too far in the future or in the past), Pi aborts.
This construction can be leveraged to obtain a final proof of sequential communication delay
consisting of (m, t, σ1, . . . , σi−1), where signature σi is generated by party Pi , and t is the
initial timestamp when m was sent.

4.1 Modelling proofs of sequential communication delay

In [4], a publicly verifiable proof of delay is modelled through an ideal functionality Ff	
SCD

depicted in Functionality 4.1. This functionality incorporates the delayed channel modelled
byFf	

mdmt, and proof generation/verificationmechanisms similar to those of the unique digital

signature functionality FSig (Functionalitiy 2.2.4). Departing from Ff	
mdmt, which allows for

a PS to send a message m to PR with minimum and maximum delays (lo,	hi) ← f	(t)
depending on time t , Ff	

SCD delivers to PR the proof πlo that m was sent at time t with a
minimum delay 	lo.

In Ff	
SCD, the adversary may only generate valid proofs of delay after the minimal delay of

πlo, but it learns m earlier than the honest receiver. This makes sense because the statement
that the message m has traveled for a certain delay does not mean that m was only learnt by
the adversary with that delay. For an example in practice, consider a chain of 4 parties with 3
intermediate delay channels. If e.g. P2 and P4 = PR are both corrupted, then the adversary
must of course learn m once it arrives at P2. The guarantee of the functionality is that the
proof of delay will only arrive at the adversary with the required minimal delay, and that an
honest receiver will have to potentially wait longer to receive it and m. This is because the
message still has to pass through channels that have honest parties as senders and receivers
before a proof is generated.

A second interesting property is that a corrupted sender is allowed to date back message
sending by a certain amount of ticks, i.e. at time t it is allowed to say that it sent the message
already at time t < t . It can do so as long as Ff	

SCD can still delay proof (and message)
delivery by 	lo ticks without exceeding time t + 	hi during delivery. The reason for this
“time traveling” of dishonest senders is the multiparty protocol. For example, consider a
chain of parties where P1 = PS and P2 are corrupted. In that case the simulator cannot
extract any information from the channel between P1 and P2 as the adversary is of course
not bound to use this channel. But it can still guarantee message delay as parties later on in
the chain are honest, so their delay channels must have been used.

A third important property is that a proof that m was sent through the channel with a
certain delay that is within [lo,	hi] is unique to the tuple (m, t), where t is the time when
m was supposed to be sent. Moreover, Ff	

SCD allows any verifier Vi to check that a proof πlo

of delay in [lo,	hi] for messagem sent at time t is indeed valid (i.e. it has been generated
honestly). Here, the adversary may define validity of a proof during verification even if Ff	

SCD
did not output the proof itself at that time. This is an artifact of our protocol, as a dishonest
receiver PR must not make his contributions public until when the proof gets verified. This
is standard behavior in other UC functionalities, such as the signature functionality FSig.

123

Cryptography and Communications (2025) 17:1287–1321 1301

Functionality 4.1: Ff	
SCD

Ff	
SCD keeps initially empty lists L, Lπ , and is parameterized by a computational security parameter τ

and a permissible delay function f	.Ff	
SCD interacts with GClock , sender PS , receiver PR , verifiers V and

adversary S.
In any call below, Ff	

SCD first sends (Read) to GClock and obtains (Read, t).
Send: Upon receiving an input (Send, sid,m) from an honest PS and if this is the first such message in
this tick-round:

1. Compute (lo, 	hi) ← f	(t) and add (t,m, ⊥,	lo) to L .
2. Output (message, sid, t,m) to S.

If PS is corrupted, then upon input (Send, sid,m, t) from S compute (lo, 	hi) ← f	(t). If 	hi +
t − t ≥ 	lo then add (t,m, ⊥,	lo) to L .
Receive: Upon receiving (Rec, sid) from PR , for every (t,m,�,cnt) ∈ L:

1. Remove (t,m, released,cnt) from L and recompute (lo, 	hi) ← f	(t).
2. If (m, t, 	lo,	hi, πlo, 1) ∈ Lπ send (Sent, sid,m, t, t − t, πlo) to PR .
3. Else, send (Proof, sid,m, t, t − t) to S. Upon receiving (Proof, sid,m, t, πlo) from S, check

that (m, t,	lo, 	hi, πlo, 0) /∈ Lπ . If yes, output ⊥ to PS /PR and halt. Else, add
(m, t, 	lo, 	hi, πlo, 1) to Lπ and send (Sent, sid,m, t, t − t, πlo) to PR . If S sends
(NoProof, sid) then output (NoProof, sid).

Release message: Upon receiving an input (ok, sid, t) from S compute (lo, ·) ← f	(t). If there is
(t,m, released,cnt) ∈ L such that t ≥ t + 	lo and cnt = 0 then set released = �.
Verify: Upon receiving (verify, sid,m, t,	, πlo) from Vi , send (verify, sid,m, t,	, πlo) to S. Upon
receiving (verified, sid,m, t,	, πlo, φ) from S do:

1. If (lo, 	hi) ← f	(t) and 	 /∈ [lo,	hi] or then set f = 0. Otherwise set f = 1. (is delay in
allowed interval?)

2. If t + 	lo > t then set f = 0 (no verification request can be positive, unless m has circulated for at
least 	lo ticks)

3. If φ = 1 and there is an entry (m, t,	lo, 	hi, πlo
′, 1) ∈ Lπ where πlo

′ �= πlo then set f = 0.
(any proof of delay must be unique)

4. If there is an entry (m, t, 	lo, 	hi, πlo, f ′) ∈ Lπ , let b = f ∧ f ′. (All verification requests with
identical parameters will result in the same answer.)

5. If no such entry is present, set b = f ∧ φ and add (m, t, 	lo,	hi, πlo, b) to Lπ . (Add for
consistency)

Output (verified, sid,m, t,	, b) to Vi .
Tick: For every (t,m, released,cnt) ∈ L compute (lo, 	hi) ← f	(t). If t+	hi = t , set released =
�. If cnt > 0 then reduce cnt by 1.

4.2 Proofs of sequential communication delay with 2 parties

Protocol 4.2 (from [4]) realizes Ff	
SCD between two parties by leveraging a delayed channel

Ff	
mdmt, a PublicKey InfrastructureFReg and a unique digital signatureFSig on a synchronized

network (with synchrony maintained by GClock). In it, both the sender PS and receiver PR

sign the message m being transmitted. However, we need to take steps to guarantee that an
honest PR does not inadvertently help a corrupted PS forge a proof for an invalid initial
timestamp t or minimum delay 	lo. In order to to avoid this issue, PR needs to verify that
m has been received through an instance of Ff	

mdmt where PS acts as sender at a timestamp
between t + 	lo and t + 	hi, where t is the initial timestamp when the message was sent
and (lo,	hi) ← f	(t). Since PR needs to know t in order to obtain (lo,	hi), we have
PS sign (m, t), allowing PR to perform its delay consistency checks. If PR is satisfied, it
then signs (m, t, σS), where σS is PS’s signature, and outputs both PS’s signature and its

123

1302 Cryptography and Communications (2025) 17:1287–1321

own as the proof of sequential communication delay. Verifying such a proof of sequential
communication delay can be done by any third party by verifying the signatures generated
PS and PR , as well as checking consistency of the timestamps.

Protocol 4.2: πSCD

Protocol πSCD is executed by a sender PS , a receiver PR and a set of verifiers V interacting with each

other and with GClock,F
f	
mdmt,F

S
Sig,FR

Sig,FReg.

In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, party Pi ∈ {PS ,PR} proceeds as follows:
1. Send (keygen, sid) to an instance of Fi

Sig where it acts as signer;

2. Upon receiving (verification key, sid,SIG.vki) from Fi
Sig, Pi sends (register, sid, SIG.vki) to

FReg.

Send: Upon receiving first input (Send, sid,m) for t , PS proceeds as follows:

1. Send (sign, sid, (m, t)) to FS
Sig, receiving (signature, sid, (m, t), σS).

2. Send (Send, sid, (m, t, σS)) to Ff	
mdmt.

Receive: Upon receiving (Rec, sid), PR sends (Rec, sid) to Ff	
mdmt and proceeds as follows for every

(Sent, sid, (m, t, σS), t ′) received from Ff	
mdmt:

1. Check that t = t ′ and verifySigs (PS, (m, t), σS, t) evaluates to true.
2. If the checks pass, send (sign, sid, (m, t, σS)) to FR

Sig, receiving (signature, sid, (m, t, σS), σR).

Output (Sent, sid,m, t, t − t, (σS , σR)).
3. If a check fails, then output (NoProof, sid).

Verify: Upon receiving (verify, sid,m, t,	, πlo), Vi ∈ V parses πlo = (σS , σR) and proceeds as
follows:

1. Compute (lo, 	hi) ← f	(t). Check that 	 ∈ [lo, 	hi] and t ≥ t + 	lo.
2. Check that verifySigs (PS, (m, t), σS, t) and verifySigs (PR, (m, t, σS), σR, t) both eval-

uate to true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,	, πlo, b).

Tick: Send (Update) to GClock .
Function verifySigs(Pi ,m, σ, t):

1. Send (Retrieve, sid,Pi) to FReg, receiving (Retrieve, sid,Pi , SIG.vk, tReg) as answer. Check
that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ,SIG.vk) toFi
Sig, receiving (verified, sid,m, σ, f) as response. Output true

if f = 1, otherwise false.

Theorem 2 πSCD (Protocol 4.2) UC-realizes Ff	
SCD in the GClock,Ff	

mdmt,FSig, FReg-hybrid
model against a static active adversary corrupting at most one of PS,PR.

Proof The proof is rather straightforward. For a corrupted sender, extract themessagem from
Ff	
mdmt but ensure that verification keys are registered and that it would later be accepted by

an honest receiver. For a corrupted receiver, program Ff	
mdmt to output the correctly signed

message at the right time. In this case, verification is more involved as upon querying Verify
the signature used by the dishonest receiver might be undefined.

In detail, we construct a PPT simulator S that emulates the protocol interaction for a
corrupted PS or PR . S will simulate the instances of FSig,FReg,Ff	

mdmt. During Setup, S

123

Cryptography and Communications (2025) 17:1287–1321 1303

will in either case of corruption act like an honest party, setting up both instances FS
Sig,F

R
Sig

and will simulate posting its key on FReg.

If PS is corrupted, then S during Send extracts the message m from Ff	
mdmt and checks

that PS has a key SIG.vkS registered with FReg before the current tick round. If the signature

verifies withFS
Sig, then forward it toF

f	
SCD as (Send, sid,m) in the same tick round.When the

adversary makes Ff	
mdmt output the message and if an honest verifier would have accepted

it, then S computes πlo as in the protocol using FR
Sig for its signature. Finally, it lets Ff	

SCD

deliver the message to the honest receiver and sends (Proof, sid,m, t, πlo) to Ff	
SCD. If the

timestamp in Ff	
mdmt does not coincide with when the message was sent, it instead lets Ff	

SCD
deliver the message and sends (NoProof, sid). For any message (verify, sid,m, t,	, πlo)
where S did generate πlo for this m, t and (lo,	hi) ← f	(t),	 ∈ [lo,	hi] send
(verify, sid,m, t,	, πlo, 1), otherwise send (verify, sid,m, t,	, πlo, 0) to Ff	

SCD.

If instead PR is corrupted, wait until Ff	
SCD outputs (Sent, sid,m, t), then create a

valid signature σS using FSig and make Ff	
mdmt output (Sent, sid, (m, t, σS), t) to PR

in the same tick round. In addition, send (NoProof, sid) to Ff	
SCD. Then, upon query

(Verify, sid,m, t,	, πlo) from Ff	
SCD and if πlo can be parsed as (σ ′

S, σR), check that

σS = σ ′
S . If not, then send (verified, sid,m, t,	, πlo, 0) to Ff	

SCD. Otherwise emulate the
call (verify, sid, (m, t, σS), σR,SIG.vkR) on FR

Sig with the adversary, which will ultimately

output (verified, sid, (m, t, σS), f) to S. Send (verified, sid,m, t,	, πlo, f) to Ff	
SCD.

Clearly, the simulation runs in polynomial time. For a corrupted PS , we only make Ff	
SCD

output a proof (and let it later verify a proof positively) if the message from PS via Ff	
mdmt

was well-formed. This is identical to the protocol, and also the proof πlo is identical. For
the corrupt PR we make the simulated protocol output the correctly signed message to it
in the same round as it would in the real protocol. Moreover, Ff	

SCD’s Verify responses are
consistent with the outputs from the protocol by letting S verify signatures with FSig first.
Hence both cases are perfectly indistinguishable. ��

4.3 Proofs of sequential communication delay for more than 2 parties

It is possible to realizeFf	
SCD using a longer chain of parties. In this case, the sender P1 = PS

is connected to P2 using a delayed channel Ff	
mdmt with delay function f	,1, P2 is connected

to P3 via Ff	
mdmt with f	,2 until Pn−1, which is connected via Ff	

mdmt to Pn = PR with delay

function f	,n . As before, P1 signs m, t before sending it through Ff	
mdmt, while P2 signs the

output of Ff	
mdmt if it is valid and then forwards it with the signature via Ff	

mdmt to P3 etc.

We will prove that such a chain again realizes an instance of Ff	
SCD, but with different delay

parameters.
We present the realization from [4] that considers malicious adversaries that can interrupt

signature generation by refusing to execute the protocol. We assume that each party in
the chain knows all the delay functions f	,i for each of the Ff	

mdmt instances in the chain,
which allows them to compute delay bounds for incomingmessages. In our protocol,Pi must
establish that the messagem that it obtained –which was supposedly initially sent at time t by
P1 – could be delivered to Pi−1 via instances of Ff	

mdmt with delay functions f	1, . . . , f	i−2

123

1304 Cryptography and Communications (2025) 17:1287–1321

and incurring the respective delay, such that Pi−1 sending it at time ti−1 via Ff	
mdmt with a

delay modeled by f	i−1 is plausible.
As an example, assume a chain of 3 parties where onlyP3 is honest. Let (1, 3) = f	,1(t) =

f	,2(t) for every t , and assume that P3 obtains m from P2, which was supposedly sent at
t = 0 by P1. P3 knows that m must travel a minimum time of 1 tick from P1 to P2 or at
most 3 ticks. If the channel from P2 to P3 incurs delay between 1 and 3 ticks, but P3 obtains
m at tick 7, then P2 has sent m the earliest at tick 4. This means that P2 is cheating as it
delayed delivery of m. Alternatively, if P3 had obtained m at tick 1 then P2 must have sent
the message at tick 0 (by the minimum delay f	,2), which is also impossible as the message
would have needed at least 1 tick fromP1 toP2. Hence, we carefully specifywhat each party
verifies before signing about timestamps and delivery times and how it impacts the proven
delay given the corruption thresholds.

To reason about time delays, Baum et al. [4] introduce a plausible delay predicate
isP(t1, f	,1, . . . , f	,�−1, t�) defined for � > 1 as follows:

� = 2: true if ∃	 ∈ f	,1(t1) : t1 + 	 = t2.
� > 2: true if ∃	 ∈ f	,1(t1): isP(t1 + 	, f	,2, . . . , f	,�−1, t�).

As the output of each f	,i is constrained to only be defined on polynomially many inputs,
isP can be computed in polynomial time as long as � = O(log(τ)). This can be improved if,
e.g. all f	 functions are constant in an obvious way.

We now show that we can combine two instances of isP into one:

Proposition 3 Let f	,1, . . . , f	,n−1 be permissible delay functions and let t1, ti , tn be such
that isP(t1, f	,1, . . . , f	,i−1, ti)and isP(ti , f	,i , . . . , f	,n−1,tn). Then isP(t1,f	,1, . . . ,f	,n−1,

tn) holds.

Conversely, we can also decompose every isP chain into its parts.

Proposition 4 Let f	,1, . . . , f	,n−1 be permissible delay functions and t1, tn be such that
isP(t1, f	,1, . . . , f	,n−1, tn) holds. For every i ∈ {2, . . . , n − 1} there exists a ti such that
isP(t1, f	,1, . . . , f	,i−1, ti) and isP(ti , f	,i , . . . , f	,n−1, tn) hold.

Proof (of Propositions 3 & 4) The definition of isP implies that isP(t1, f	,1, . . . , f	,n−1, tn)

returns true if and only if ∃	1, . . . , 	n−1 : t1+∑n−1
i=1 	i = tn∧	i ∈ f	,i

(
t1 + ∑i−1

j=1 	 j

)
.

Proposition 3 follows by combining both existential statements. Proposition 4 follows from
setting ti+1 = t1 + 	1 + · · · + 	i . ��

We stress that verifying that a message arrived at the receiver with plausible delay does
not imply that it indeed incurred the delay during delivery. The reason for this is that if a
sequence of parties are corrupted, then theymay not use delayed channels for communication
among each other. Going back to the aforementioned example, if m arrives at tick-round 2 at
P3 and is claimed to have been sent at tick round t = 0 byP1, then this is not what must have
happened as we first must consider the corruption threshold. If bothP1,P2 are corrupted then
an adversary could have only gottenm at tick round 1, signed (m, 0) using both signing keys
and make P2 send it to P3. Hence, if we consider a corruption model where 2 parties out of 3
can be corrupted, the overall channel built by P1,P2,P3 cannot guarantee a minimum delay
that is longer than 1, if by minimum delay we mean time spent for m to travel as observed
by honest parties. This is of course different if only 1 out of P1,P2 can be corrupted.

We now describe how the proven minimal delivery time can be computed. If both P1 &
Pn are honest, then Pn would only sign if isP is true when the message arrives at it. This

123

Cryptography and Communications (2025) 17:1287–1321 1305

means that the message must have incurred a delay from P1 to Pn that is at least the sum
of minimal delays on each intermediate channel: P1 is honest and must have sent it at the
right time. Therefore, the longest chain of delay observed by the honest parties in this case
spans the whole message delay from P1 to Pn and is the lower-bound on provable message
delay. This observation extends to any chain between the first Pi and last P j honest party
within P1, . . . ,Pn , if either of P1,Pn was not honest. Therefore, to determine the minimal
guaranteed delay in case of k corruptions, we only need to consider the cases where all of
P1, . . . ,Pi−1 are dishonest and send the message later than allowed, orwhereP j+1, . . . ,Pn

are all dishonest and sign the messages earlier than allowed, or both. Only these can reduce
proven delay time.

Next, consider the setting where honest parties appear in sequences of at least n − k > 1
consecutive parties in the network, i.e. there is no isolated honest party. LetPi , . . . ,Pi+n−k−1

be such an honest chain of parties. Then the minimal delay cannot be reduced by placing a
dishonest party within this chain. This follows because then either Pi−1 or Pi+n−k become
honest, and theminimal honest delay then consists of theminimal delay onPi , . . . ,Pi+n−k−1

plus the extra party (as the additional delay due to f	 will be non-negative. Therefore, to reduce
the minimal delay to a minimum, exactly n − k consecutive parties must be honest.

Moreover, it is not sufficient if onlyP1 or Pn is dishonest, followed or preceded by honest
parties. This is because an honestP2 by observingFf	

mdmt would ensure that the message was
sent early enough given the delay of the channel (similarly for an honest Pn−1 and corrupt
Pn). Thus, to minimize delay, an adversary will not only corrupt the first or last party in the
chain, but also the adjacent one.

4.3.1 Bounding the channel delays

Using Propositions 3, 4 and the aforementioned observations, we can compute the minimal
and maximal delay by decomposing an isP sequence into all possible partitions of up to 3
plausible subsequences, one of which is of length n − k and represents the honest parties.
There are at most poly(τ) many such decompositions. Next, we show how to find sequences
that realize the shortest observable minimal delay, or the maximal delay, in time polynomial
in the number of isP calls.

We now define the algorithm delays(t1, f	,1, . . . , f	,n−1, k) that works for any threshold
k < n of corrupted parties to determine theminimal andmaximal observable delay as follows:

1. For i ∈ [n − 1] let 	i
hi = max j∈poly(τ){	hi | (lo,	hi) ← f	,i (j)}. Then

	hi = max
j∈[1

hi+···+	n−1
hi]

{ j | isP(t1, f	,1, . . . , f	,n−1, t1 + j)}

2. First party honest:

a1 = min
t1≤t≤t1+	hi

{t − t1 | isP(t1, f	,1, . . . , f	,n−k, t1 + t)}

3. Last party honest:

a2 = min
t1≤t<tn≤t1+	hi

{
tn − t

∣∣ isP(t1, f	,1, . . . , f	,k, t)∧
isP(t, f	,k+1, . . . , f	,n−1, tn)

}

123

1306 Cryptography and Communications (2025) 17:1287–1321

4. First and last two corrupt:

a3 = min
i∈{2,...,k−2},t1≤t<t ′≤t1+	hi

⎧⎨
⎩t ′ − t

∣∣∣∣
isP(t1, f	,1, . . . , f	,i , t)∧

isP(t, f	,i+1, . . . , f	,i+n−k, t ′)∧
isP(t ′, f	,i+n−k+1, . . . , f	,n−1, tn)

⎫⎬
⎭

5. Set 	lo = min{a1, a2, a3} and output (lo,	hi).

Clearly, each step of delays makes only polynomially many calls to isP, so the algorithm
remains efficient for n = poly(log τ).

Proposition 5 The algorithm delays computes the minimal and maximal observable delay
for k corruptions of n parties given delay functions f	,1, . . . , f	,n−1.

Proof Clearly,	hi cannot be larger than the sum of the largest individual delays that any f	,i

can contribute. Hence, 	hi as computed is the largest achievable delay in any observable
protocol.

a1 considers the case where the first n − k parties are honest. That the given statement
finds the smallest possible delay in this case follows directly.

Step a2 considers the case where the last n − k parties are honest. Here, since Pk+1 can
observe the behavior of Pk (which is dishonest), the minimal delay includes the delay from
Pk to Pk+1.

Finally, step a3 considers all cases where there are two parties in the beginning and the end
of the chain that are corrupted, and picks the best way of having i corrupted in the beginning
and k − i in the end so that the honest parties have minimal observable delay. Then, the
minimal of all these 3 mutually exclusive cases yields the minimal channel delay. ��

4.3.2 Realizing�Multi−SCD

Protocol 4.3.2 realizes πMulti−SCD for a given permissible delay function delays discussed in
Section 4.3.1.

Theorem 6 The protocol πMulti−SCD UC-securely implementsFf	
SCD in the GClock,FReg,FSig,

Ff	
mdmt-hybrid model with security against any adversary actively corrupting up to k = n−1

parties with permissible delay function given by delays.

Proof The proof follows a similar outline as the one for Theorem 2. The key difference is
that there might be a dishonest PS , followed by a chain of dishonest P2,P3, . . . that do not
necessarily have to communicate via their Ff	

mdmt instances. Hence, when the first honest

(simulated) party obtains an output from Ff	
mdmt, then the message that S enters into Ff	

SCD
has to have an earlier timestamp than the current one, based on the claim when the dishonest
P1 originally “sent” the message.

We construct a simulator S that works for every set of corrupted parties. Let Pi be the
first honest party and P j be the last honest party (where Pi = P j is possible). In general, S
will run a simulation of πMulti−SCD with the adversary where it lets every uncorrupted Pi act
honestly, subject to the modifications outlined below.

If P1 is honest then S already initially obtains m from Ff	
SCD and honestly generates

messages and signatures for Ff	,i
mdmt where an honest party is a sender. If P1 is corrupted

then wait until the first honest party Pi obtains the first valid message m, t from Ff	,i−1
mdmt . If

123

Cryptography and Communications (2025) 17:1287–1321 1307

Protocol 4.3.2: πMulti−SCD

This protocol is executed by a sender P1, a set of intermediate parties P2, . . . ,Pn−1 and a receiver Pn ,
as well as a set of verifiers V interacting with each other and with GClock,FReg,F1

Sig, . . . ,Fn
Sig. Each

pair Pi ,Pi+1 is connected by Ff	,i
mdmt.

In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, each Pi proceeds as follows:

1. Send (keygen, sid) to Fi
Sig where Pi acts as signer.

2. Upon receiving (verification key, sid,SIG.vki) from Fi
Sig, Pi sends (register, sid, SIG.vki) to

FReg.

Send: Upon receiving first input (Send, sid,m) for t , P1 proceeds as follows:

1. Send (sign, sid, (m, t)) to F1
Sig, receiving (signature, sid, (m, t), σ1).

2. Send (Send, sid, (m, t, σ1)) to Ff	,1
mdmt.

Receive: Upon receiving (Rec, sid), Pn sends (Rec, sid) to Ff	,n−1
mdmt and proceeds as follows for the first

(Sent, sid, (m, t, σ1, . . . , σn−1), t
′) received from Ff	,n−1

mdmt :

1. Check if isP(t, f	,1, . . . , f	,n−2, t
′).

2. For each i ∈ [n − 1] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi , t) is true.
3. If all checks pass, send (Sign, sid, (m, t, σ1, . . . , σn−1)) to Fn

Sig to obtain

(Signature, sid, (m, t, σ1, . . . , σn−1), σn). Output (Sent, sid,m, t, t − t, (σ1, . . . , σn)). If a
check fails, then output (NoProof, sid).

Verify: Upon receiving (verify, sid,m, t,	, πlo), Vi ∈ V parses πlo = (σ1, . . . , σn) and proceeds as
follows:

1. Check that t + 	 ≥ t and isP(t, f	,1, . . . , f	,n , t +) is true.
2. For each i ∈ [n] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi , t) is true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,	, πlo, b).

Tick: Proceed as follows and then send (Update) to GClock .

1. Each Pi ∈ {P2, . . . ,Pn−1} sends (Rec, sid) to Ff	,i−1
mdmt .

2. If Pi obtains (Rec, sid, (m, t, σ1, . . . , σi−1), ti−1) then check if isP(t, f	,1, . . . , f	,i−2, ti−1) is
true and if for each j ∈ [i − 1] it holds that verifySigs(j, (m, t, σ1, . . . , σ j−1), σ j , t) is true.

3. If the checks pass, send (Sign, sid, (m, t, σ1, . . . , σi−1)) to Fi
Sig to obtain

(Signature, sid, (m, t, σ1, . . . , σi−1), σi) if this is the first message for t .

4. Send (Send, sid, (m, t, σ1, . . . , σi)) to Ff	,i
mdmt.

Function verifySigs(�,m, σ, t):

1. Send (Retrieve, sid,P�) to FReg, receiving (Retrieve, sid,P�, SIG.vk, tReg) as answer. Check
that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ,SIG.vk) toF�
Sig, receiving (verified, sid,m, σ, f) as response. Output true

if f = 1, otherwise false.

an honest Pi would sign and forward the message, then send (Send, sid,m, t) to Ff	
SCD and

continue to simulate the protocol honestly.
Continue simulation for each honest intermediate party until the last honest party P j . If

P j = Pn then S makes message delivery of Ff	,n−1
mdmt coincide with output delivery in Ff	

SCD
by using Release message and chooses the proof string according to all signatures as in the
protocol. If some signatures are not valid or delivery appears too late at the simulated Pn or
any honest intermediate receiver then S makes Ff	

SCD output (NoProof, sid). Finally, reject

123

1308 Cryptography and Communications (2025) 17:1287–1321

allVerify queries in case (NoProof, sid) was sent and accept only those for the chosen proof
string otherwise. If P j �= Pn , let all honest parties act like in the protocol. For each query
of Verify, reject if the proof string disagrees with the honestly generated signatures for the
specific message and delay. For all signatures of adversarially controlled parties Pi , check
with Fi

Sig if they are valid for m, t and only set φ = 1 iff all are valid.
The messages that the adversary obtains in the protocol are perfectly indistinguishable

from those in the simulation. Moreover, the output of Verify both in the simulation and
in the protocol coincides. If the receiver is honest, then delivery of message and output is
simultaneous with what happens in the protocol by S using the Release message interface.
Moreover themessage and its timestamp are consistent with the simulation, and exactly those
get delivered to an honest receiver that don’t make the protocol abort. If a protocol instead
fails, then S uses (NoProof, sid) to let Ff	

SCD abort. All Verify responses of S are consistent
with what an honest verifier would output in the protocol. ��

4.4 Optimizing�Multi−SCD

WhileπMulti−SCD realizesFf	
SCD using only simple primitives, it incurs a large overhead for the

proof of sequential communication: one proof consists of n nested signatures, and each party
Pi forwards i signatures to party Pi+1. We want to obtain a proof size and communication
complexity independent from the number of parties, preferably close to the size of a single
signature. To do so, we face a main hurdle: it seems that we cannot eliminate a signature
by any intermediate party, since that would allow the adversary to forge proofs by making
the eliminated party be the honest party in πMulti−SCD. Hence, we focus on techniques that
allow us to aggregate signatures by each party Pi involved in πMulti−SCD in such a way
that we obtain a compact proof of size independent from n. A conceptually simple way to
achieve this is using a sequentially aggregate signature scheme (SAS) [40] or an ordered
multi-signatures scheme (OMS) [41], which allow for aggregating a number of signatures
generated in sequence into a single signature (i.e. with the same size as a single signature).
This directly fits our use of signatures in πMulti−SCD, where enforcing the order of signing is
solved by the SAS/OMS property of allowing verifiers to check the order with which each
party generated its signature on (m, t).

5 Verifiable delay functions

In this section, we construct a VDF from proofs of sequential communication delays as in [4].
Our construction can be obtained in a black-box manner from any proof of sequential delay,
yielding a VDF with a proof size equal to that of the underlying proof of communication
delay. The main idea is to sequentially send the input of the VDF among nodes in a network
while having them compute a proof of sequential communication delay for this message.
The output is computed by querying a global random oracle on the input concatenated with
the proof of sequential communication delay. Verification can be easily achieved by first
verifying the proof of sequential communication delay and then recomputing the output. We
realize a VDF functionality (dapted from [5]) presented in Functionality 5.

We present our VDF protocol in Protocol 5. The construction assumes access to a bulletin
board where we store attempts at jointly evaluating the VDF by sending a message viaFf	

SCD.
When evaluating the VDF we consider as valid only the first evaluation attempt registered in

123

Cryptography and Communications (2025) 17:1287–1321 1309

Functionality 5: FVDF

FVDF is parameterized by a computational security parameter τ , and input space ST, a proof space
PROOF, a slack parameter 0 < ε ≤ 1 and a delay parameter �. FVDF interacts with a set of parties
P = {P1, . . . ,Pn}, and an adversaryS.FVDF maintains a initially empty lists L (proofs being computed),
and OUT (outputs).

Solve: Upon receiving (Solve, sid, in) from Pi ∈ P where in ∈ ST and � ∈ N, add (Pi , sid, in, 0,�)

to L and send (Solve, sid, in) to S.
Tick: For each (Pi , sid, in, c, b) ∈ L , update (Pi , sid, in, c, b) ∈ L by setting c = c + 1 and proceed as
follows:

1. If c ≥ ε� sample out
$← ST, send (GetStsPf, sid, in, out) to S and wait for an answer. If S

answers with (Abort, sid), update (Pi , sid, in, c, b) ∈ L by setting b = ⊥. If S answers with
(GetStsPf, sid, π),FVDF halts if π /∈ PROOF or there exists (in′, out ′, π) ∈ OUT, else, it appends
(in, out, π) to OUT.

2. If c = �, remove (Pi , sid, in, �, b) ∈ L . If there was an abort (i.e. b = ⊥), send (NoProof, sid, in)

to Pi . Otherwise, send (Proof, sid, in, out, π) to Pi .

Verification: Upon receiving (Verify, sid, in, out, π) from Pi ∈ P, set b = 1 if (in, out, π) ∈ OUT,
otherwise set b = 0 and output (Verified, sid, in, out, π, b) to Pi .

the bulletin board with a valid proof of sequential delay generated byFf	
SCD. This significantly

simplifies our analysis since the adversary can no longer send the same input toFf	
SCD multiple

times and obtain multiple proofs of sequential delay and thus produce several valid VDF
outputs, which deviates from the standard behavior expected from this primitive. The same
effect could be obtained by assuming eitherPS orPR are honest and do not accept to interact
with Ff	

SCD to transmit the same message more than once, thus guaranteeing only one proof
of sequential delay is generated, which means a single valid VDF output exists.

Theorem 7 Protocol πVDF UC-realizes FVDF in the Ff	
SCD,GrpoRO,FBB-hybrid model against

an active static adversary corrupting a majority of parties in P. The delay parameter is
� = 	hi and the slack parameter is ε = 	lo

	hi
where (·,	hi) = maxt∈{0,...,poly(τ)}{f	(t)}

and (lo, ·) = mint∈{0,...,poly(τ)}{f	(t)}.
Proof It is simple to construct a simulatorS forπVDF by havingS interactwith an internal copy
of A towards which it simulates honest parties executing exactly as in πVDF and simulating
Ff	
SCD,GrpoRO,FBB exactly as they are described except when explicitly stated. S forwards

every message sent to simulatedFf	
SCD to be evaluated byFVDF and provides matching proofs

to Ff	
SCD and FVDF when requested. If A causes an evaluation to abort, S correspondingly

aborts the same evaluation at FVDF. Whenever FVDF leaks to S that an evaluation on a new
input has been requested,S simulates this evaluation in the simulation.Moreover,S programs
GrpoRO so that outputs of simulated VDF evaluations match the outputs provided by FVDF. ��

6 Publicly verifiable time-lock puzzles

In this section,we construct a publicly verifiable time-lock puzzle (PV-TLP) based on sequen-
tial communicationdelays.Themain idea is to use a threshold encryption schemeandgenerate
a puzzle by encrypting amessage under the public key. The secret key is in turn shared among
a set of nodes connected by delayed channels. The TLP is opened by having these nodes
perform threshold decryption via sequential communication. By having the nodes which hold

123

1310 Cryptography and Communications (2025) 17:1287–1321

Protocol 5: πVDF

Protocol πVDF is executed by a set of parties P = {P1, . . . ,Pn} interacting with a bulletin board func-

tionality FBB and with Ff	
SCD, where party PR ∈ P acts as receiver and party PS ∈ P as sender. They

additionally use a random oracle GrpoRO.
Solve: A party Pi interacts with PS ,PR as follows to evaluate the VDF on in:

1. On input (Solve, sid, in),Pi sends (Read, sid) toFBB and checkswhether a record (c, in, t,	, πlo)

is returned (if multiple (c, in, t,	, πlo) for different c and πlo are returned, consider the one with

the lowest c and a valid πlo w.r.t Ff	
SCD). If yes, skip to step 5.

2. Pi sends (Send, sid, in) to PS and PS forwards (Send, sid, in from Pi) to Ff	
SCD.

3. Upon receiving (Sent, sid, in, t,	, πlo) fromFf	
SCD,PR send (Write, sid, (in, t,	, πlo)) toFBB.

If instead PR receives (NoProof, sid), it forwards this message to all parties in P.
4. If it received (NoProof, sid) from PR , Pi outputs (NoProof, sid, in). Otherwise, it sends

(Read, sid) to FBB and retrieves (c, in, t,	, πlo).
5. Pi sends (Hash- Query, in|πlo) to GrpoRO, receiving (Hash- Confirm, out). Pi sends

(IsProgrammed, in|πlo) and aborts if the response is (IsProgrammed, 1). Pi outputs
(Proof, sid, in, out, π = πlo).

Verification: On input(Verify, sid, in, out, π), Pi proceeds as follows:

1. Send (Read, sid) to FBB and check that there is a record (c, in, t,	, π), if multiple (c, in, t,	, π)

for different c are returned, consider the one with the lowest c and a valid π w.r.t. to Ff	
SCD.

2. Send (Verify, sid, in, t,	, π) to Ff	
SCD expecting (Verified, sid, in, t, 	, 1).

3. Send (Hash- Query, in|π) to GrpoRO, receiving (Hash- Confirm, out ′). Check that out = out ′.
Send (IsProgrammed, in|π) expecting (IsProgrammed, 0).

4. If all checks pass set b = 1, else set b = 0, and output (Verified, sid, in, out, π, b)

the key shares communicate in a round-robin manner, the individual channel delays then add
up to the overall delay of the TLP.

In our construction, the sizes of both the proof and the messages exchanged among each
pair of parties involved in solving the puzzle are independent from the number of parties. In
order to do so, we relax our output guarantee by only detecting dishonest behavior after the
decryption protocol is finishedwithout identifying cheaters, which allows for the adversary to
cause aborts without revealing the corrupted parties. In case aborts happen, we can fall back
to a more expensive protocol using NIZKs of valid decryption share generation in order to
identify the corrupted parties and eliminate them. This yields low overhead in the optimistic
case (which is the most likely to happen in practice) while still attaining guaranteed output
delivery. See Section 9.2 for further discussion.

Functionality 6: FDKG

FDKG is parameterized by a cyclic group G of order q with generator g and interacts with a set of parties
P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P.
Key Generation The first time it is activated, FDKG samples ski

$← G for i ∈ W, computes sk =∑
i∈W ski and pk = gsk .

SK Request: Upon (SecKey, sid) from Pi ∈ W, return (SecKey, sid, ski).

PK Request Upon (PubKey, sid) from Pi ∈ P, return (PubKey, sid,pk).

123

Cryptography and Communications (2025) 17:1287–1321 1311

Functionality 6: Ftlp

Ftlp is parameterized by a computational security parameter τ , a message space {0, 1}τ , a tag space TAG,
a proof space PROOF, a slack parameter 0 < ε ≤ 1 and a delay parameter �. Ftlp interacts with a
set of parties P = {P1, . . . ,Pn} and an adversary S. Ftlp maintains initially empty lists omsg (output
messages and proofs) and L (puzzles being solved).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid,m) from Pi where m ∈ {0, 1}τ ,
proceed as follows:

1. If Pi is honest, sample puz
$← TAG and proof π

$← PROOF.
2. If Pi is corrupted, let S provide puz and π . If (puz, π) /∈ TAG × PROOF or there exists

(puz′,m′, π) ∈ omsg, then Ftlp halts.
3. Append (puz,m, π) to omsg, set and output (CreatedPuzzle, sid,puz, π) to Pi and

(CreatedPuzzle, sid,puz) to S.
Solve:Upon receiving (Solve, sid,puz) fromPi ∈ P, add (sid,puz, 0) to L and send (Solve, sid,puz)

to S.
Public Verification: Upon receiving (Verify, sid,puz,m, π) from a party Pi ∈ P, set b = 1 if
(puz,m, π) ∈ omsg, otherwise set b = 0 and output (Verified, sid,puz,m, π, b) to Pi .

Tick: For all (sid,puz, c) ∈ L , update (sid,puz, c) ∈ L by setting c = c + 1 and proceed as follows:

• If c ≥ ε� and (puz,m, π) ∈ omsg, output (Solved, sid,puz,m, π) to S.
• If c ≥ ε� and there does not exist (puz,m, π) ∈ omsg, let S provide π ∈ PROOF and add

(puz, ⊥, π) to omsg.
• If c = �, remove (sid,puz, c) ∈ L and send (Proceed?, sid,puz,m, π) to S, where m, π are such

that there is (puz,m, π) ∈ omsg and proceed as follows:

– If S sends (Abort,maths f sid, π ′), output (Solved, sid,puz,⊥, π ′) to all Pi .
– If S sends (Proceed, sid), output (Solved, sid,puz,m, π) to all Pi .

In order to achieve constant communication, we have each decryption node aggregate its
decryption share to the share received from the previous party alongwith a proof of sequential
communication showing that the ciphertext being decrypted has traversed a pre-defined path
through a certain sequence of decryption nodes. This step avoids attacks where the adversary
obtains several decryption shares from different honest nodes in parallel or out of order.

We use the generic Public Key Cryptosystem with Plaintext Verification construction
from Definition 4 together with a simple threshold version of El Gamal to verify that the final
decrypted message is indeed the message that was originally encrypted (i.e. the message
inside the PV-TLP). Hence, the verifier only has to perform a re-encryption check in order to
assert that a given PV-TLP has been correctly solved. This optimized construction realizes the
PV-TLP functionality defined in Functionality 6, which follows [5] but supports only a fixed
delay �. Our construction, πTLP−Light, is depicted in Protocol 6 and employs a Distributed
Key Generation functionality, FDKG, in the setup (Functionality 6). The FDKG functionality
can be UC-realized by a number of protocols that compute a public key gsk and secret key
shares ski such that sk = sk1 + · · · + skn .

We capture the security of Protocol πTLP−Light in Theorem 8. The proof obtains loose
bounds for the minimum and maximum delay guarantees provided by this protocol since
πTLP−Light only uses the decryption validity proof as a publicly verifiable proof of a TLP
solution, which allows for a unique and easily verifiable proof. If the TLP proof instead also
consisted of the proofs provided by the parties in the setW by using Ff	

SCD instead of Ff	
mdmt

and for correct decryption, we would be able to condition the minimum andmaximum delays
guaranteed by a TLP solution on the exact time when it is solved, which would give tighter
delay bounds. However, the latter approach requires an intricate reworking ofFtlp that would

123

1312 Cryptography and Communications (2025) 17:1287–1321

also require a more expensive protocol to realize as the communication per party becomes
linear in |W|. Hence, we present this simpler construction in order to highlight our main
techniques.

Theorem 8 Protocol πTLP−Light UC-realizes Ftlp in the GClock,GrpoRO, FDKG, Ff	
mdmt-

hybrid model against an active static adversary A corrupting a majority of parties in
W. The parameters of Ftlp are tag space TAG = G × G × {0, 1}2τ , proof space
G × {0, 1}τ , slack parameter ε = 	lo

	hi
and delay parameter � = 	hi where

(lo, ·) ← mint∈{0,...,poly(τ)}{delays(t, f	,1, . . . , f	,|W|−1, |W| − 1)}, (·,	hi) ←
maxt∈{0,...,poly(τ)}{delays(t, f	,1, . . . , f	,|W|−1, |W|−1)} and f	,1, . . . , f	,|W|−1 are the

delay functions of the instances of Ff	,1
mdmt, . . . ,F

f
	,|W|−1

mdmt where P j ∈ W acts as receiver.

Proof The proof proceeds by constructing a simulator S (presented in Simulator 6) whose
core tasks are making sure that: 1) every puzzle generated by A is created at Ftlp; and 2)
every puzzle that is solved by Ftlp in the ideal world is simulated towardsA. The first task is
accomplished by S by extracting the messagem and proof π from every puzzle generated by
A and sending it toFtlp. The second task is achieved by simulating an execution of πTLP−Light
for solving TLPs provided by Ftlp and later using the leakage of m, π from Ftlp to program
the restricted programmable random oracles such that the output of the protocol matches
m, π .

In detail, S executes an internal copy of A and interacts with Ftlp in an ideal world
execution that is indistinguishable for the environment Z from the real world execution of
πTLP−Light with A. The core tasks of S are making sure that every puzzle generated by A
in the simulation is created at Ftlp and that every puzzle that is solved by Ftlp in the ideal
world is simulated towardsA. The first task is accomplished by S by extracting the message
m and proof π from every puzzle generated by A and creating a TLP containing m by
contacting Ftlp. The second task is achieved by simulating an execution of πTLP−Light for
solving TLPs provided by Ftlp and later using the leakage of m, π from Ftlp to program the
restricted programmable random oracles such that the output of the protocol matches m, π .
Both simulation strategies are clearly possible and indistinguishable from a real execution
since S has the shared secret key sk provided by FDKG (which is simulated) and since it can
rely on the properties of the IND-CCA secure (and thus UC-secure) encryption scheme in
Definition 4, which is used to generate ciphertexts containing TLP messages in πTLP−Light. ��

6.1 Constructing a random beacon

Notice that our Ftlp can be used to instantiate the random beacon construction of [5]. In this
construction, parties generate randomness by broadcasting (or posting to a public ledger) a
PV-TLP containing a random input. After a majority of parties have provided their PV-TLPs,
these PV-TLPs are opened by their owners, who present their random input along with a
proof that it was contained in their PV-TLP. In case one of the owners does not follow the
protocol, the other parties can solve the unopened PV-TLP to obtain the remaining random
input. Finally all parties hash all random inputs to obtain a random output. In our setting, this
is particularly advantageous, since potentially sequential communication delay channels only
needs to be used in case a party misbehaves. When there is no misbehavior, randomness can
be obtained cheaply by locally verifying PV-TLP proofs without accessing delayed channels.
Otherwise, if sequential communication delay must be used, a party who failed to open their

123

Cryptography and Communications (2025) 17:1287–1321 1313

Simulator 6: S for πTLP−Light

S interacts with an internal copy ofA, towards which it simulates the honest parties inP = {P1, . . . ,Pn}
and functionalities Gticker,GClock , G1rpoRO, G

2
rpoRO, FDKG, F

f	,1
mdmt, . . . ,F

f
	,|W|−1
mdmt . Unless explicitly

stated, S simulates all functionalities exactly as they are described.

Setup: S simulates FDKG towardsA and honest parties in P interacting with FDKG, learning all sk j and
sk = ∑

P j∈W sk j .

Create puzzle: When A outputs puz = (c1, c2, c3), S proceeds as follows:

1. Extract the message m and proof π = (pk, r , s): (a) Extract message m by computing r = c̃2 =
c2 · csk1 , sending (Hash- Query, r) to G1rpoRO, receiving (Hash- Confirm,pad) and computing

m|s = c3 ⊕ pad. (b) Check that the puzzle is valid by sending (Hash- Query,m|s) to G1rpoRO,
receiving (Hash- Confirm, ρ) and checking thatpuz = (c1 = gρ, c2 = r ·pkρ, c3 = (m|s)⊕pad).
(c) Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) to G1rpoRO (resp. G2rpoRO) and abort if

either of the responses is (IsProgrammed, 1).
2. If all checks onm, π passed, send (CreatePuzzle, sid,m) toFtlp and providepuz, π when requested.

Solve: Simulate honest parties in P executing as in πTLP−Light. Upon receiving (Solve, sid,puz) from
Ftlp, S forwards (Solve, sid,puz) to the first Pi ∈ W.

Public Verification: Simulate honest parties in P executing as in πTLP−Light.

Tick: S simulates honest parties in W executing as in πTLP−Light, additionally performing the following
steps:

Starting Solution: When a corrupted party in P sends (Solve, sid,puz) to the first Pi ∈ W, S forwards
(Solve, sid,puz) to Ftlp.
Ongoing Solution: S answers requests from Ftlp as follows:

• Upon receiving (Solved, sid,puz,m, π) fromFtlp,SprogramsG1rpoRO andG2rpoRO such that solving
puz via the steps of πTLP−Light yields message m with proof π .

• Upon receiving a request from Ftlp for π for a puz = (c1, c2, c3), S answers with π = (pk, r , s)

obtained by computing r = c̃2 = c2 · csk1 , sending (Hash- Query, r) to G1rpoRO, receiving
(Hash- Confirm,pad) and computing m|s = c3 ⊕ pad.

PV-TLP is identified, so it can be excluded in future executions and/or made to pay for access
to delay channels.

7 Delay encryption

In this section, we extend our PV-TLP construction to obtain a related primitive called Delay
Encryption [6]. A Delay Encryption scheme allows for encrypting many messages under a
certain identity in such a way that a secret key allowing for decrypting all such messages can
be obtained after a certain delay, a notion akin to an “identity based TLP”. We construct this
primitive by combining an IBE scheme with a distributed (identity) key generation protocol
and our proofs of sequential communication delay.

Assume IBE = (Setup,KG,Enc,Dec) is an Identity-based encryption scheme where:
IBE.Setup on input the security parameter τ outputs the master secret key msk and the
public key pk; IBE.KG on input an identity string ID ∈ {0, 1}∗ and msk outputs the identity
decryption key skID;IBE.Enc on input the plaintextm, public key pk and identity ID outputs
the ciphertext c; IBE.Dec on input the identity decryption key skID and the ciphertext c
outputs either a message m or ⊥. First, observe that many IBE schemes (e.g. [42]) are

123

1314 Cryptography and Communications (2025) 17:1287–1321

Protocol 6: πTLP−Light

πTLP−Light is parameterized by a cyclic group G of order q with generator g. πTLP−Light is executed by

parties P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P, interacting with GClock , G1rpoRO
with output in Z�, G2rpoRO with output in {0, 1}2τ , FDKG and instances Ff	,i

mdmt where Pi is sender and
Pi+1 is receiver for all Pi ∈ W.

Setup: When first activated, all Pi ∈ P send (PubKey, sid) to FDKG, receiving pk, and all Pi ∈ W
additionally send (SecKey, sid) to FDKG, receiving ski .

Create puzzle:On input (CreatePuzzle, sid,m),Pi encryptsm usingpk following the steps ofDefinition 4:

1. Sample r
$← G, s

$← {0, 1}τ and send (Hash- Query, r) to G2rpoRO, receiving (Hash- Confirm,

pad). Then send (Hash- Query,m|s) to G1rpoRO, receiving (Hash- Confirm, ρ).

2. Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) toG1rpoRO (resp.G2rpoRO) and abort if either
of the responses is (IsProgrammed, 1).

3. Compute puz = (c1 = gρ, c2 = r · pkρ, c3 = (m|s) ⊕ pad).
4. Output (CreatedPuzzle, sid,puz, π = (pk, r , s)).

Solve:On input (Solve, sid,puz),Pi sends (Solve, sid,puz) to thefirstP j ∈ W (i.e. j = min{ j |P j ∈
W}). Upon receiving (Solved, sid,puz,m, π) from the last P� ∈ W (i.e. � = max{� | P� ∈
W}), perform Public Verification on puz,m, π and set m = ⊥ if it does not succeed. Output
(Solved, sid,puz,m, π).

Public Verification: On input (Verify, sid,puz = (c1, c2, c3),m, π = (pk, r , s)), Pi executes Steps 2
to 5 of Create Puzzle with pk,m, r , s to obtain puz′. If puz′ = puz, Pi sets b = 1, else, it sets b = 0,
outputting (Verified, sid,puz,m, π, b).

Tick: Parties inW proceed as follows and then send (Update) to GClock :
Starting Solution; For all (Solve, sid,puz = (c1, c2, c3)) received in this tick, the firstPi ∈ W proceeds

as follows: 1. Send (Read) to GClock , obtaining (Read, ν1); 2. Compute ĉ2 = c2 · c−ski
1 ; 3. Send

(Send, sid, (ν1,puz, ĉ2)) to F
f	,1
mdmt.vspace*3pt

Ongoing Solution: Every party P j ∈ W \Pi sends (Rec, sid) toF
f	
mdmt where they act as receivers and,

for every message (Sent, sid, (ν1,puz, ĉ2), ν) received as answer, proceed as follows:

1. Given the current time ν obtained from GClock , ν and all the delay functions f	,1, . . . , f	, j−1 asso-

ciated to the previous instances of Ff	
mdmt, check that isP(ν1, f	,1, . . . , f	, j−1, ν) is true, aborting

otherwise.

2. Parse puz = (c1, c2, c3) and compute c̃2 = ĉ2 · c−sk j
1 .

3. If P j is not the last party P� ∈ W, send (Send, sid, (ν1,puz, c̃2)) to Ff	, j
mdmt.

DeliveringResult:The last partyP� ∈ W obtains r = c̃2 = c2 ·c
− ∑

j∈W sk j
1 , sends (Hash- Query, r) to

G1rpoRO, receiving (Hash- Confirm,pad), computesm|s = c3⊕pad and broadcasts (m, π = (pk, r , s))
to all Pi ∈ P.

essentially a version of El Gamal. This means that Setup,KG can easily be “thresholdized”
to allow for generating identity secret keys from shares of msk, and that skID is unique for
each ID. As an example, consider [42] which uses two source groups G, a target group GT

and a pairing e : G × G �→ GT . Setup creates pk = gmsk for master secret key msk using
a public generator g ∈ G. KG creates a random generator h = H(ID) ∈ G based on a hash
of the identity ID using a random oracle H to G, and lets skID = hmsk . Clearly, skID is
unique for ID. Enc generates a ciphertext c = (c1, c2) fromm and ID by computing c1 = gr

c2 = m · e(H(ID)r , pk), and Dec decrypts c by computing m = c2 · e(c1, skID)−1.

123

Cryptography and Communications (2025) 17:1287–1321 1315

It is easy to “thresholdize” such an IBE scheme with UC security. To implement Setup,
parties use standard semi-honest El Gamal distributed key generation to create a Shamir
sharing of a random secret msk and then raise g to msk using standard techniques. Addition-
ally, they commit to their shares of msk and use UC NIZKs to prove execution correctness.
Implementing KG as a distributed protocol is again straightforward as ID is public, since each
protocol participant can compute H(ID) locally, raise it to its committed share of msk and
prove correctness of this using a UC NIZK. Then, by reconstruction in the exponent, one
can obtain the unique H(ID)msk . By using a CCA secure version of Enc,Dec, e.g. [42] as
shown in [43], we obtain UC security for the full encryption scheme.

Our crucial observation is that we can run a distributed key generation (DKG) protocol
outputting the secret key for a given ID via delayed channels Ff	

SCD that generate proofs of
sequential communication. By letting intermediate parties check the key shares and proofs
of delay, we can provably lower-bound the delay for creating skID. Notice that this idea gives
us a natural construction of Delay Encryption. To encrypt, we let a party knowing pk first
choose an identity ID and let the ciphertext be ID,Enc(m, pk, ID). To decrypt one or more
ciphertexts for the same ID, parties obtain the secret key skID by running the DKG and then
decrypt using skID. The delay directly follows from the bound on the execution time of the
DKG.

Next, we state the security theorem, which is conservatively phrased in terms of the [42]
IBE, although it can be generalized to any IBE that supports distributed key generation. The
formal handling of Delay Encryption in UC is deferred to Section 7.1.

Theorem 9 If the IBE scheme of [42] is IND − ID − CCA2 secure, there exists a pro-
tocol that UC-realizes FDE in the Ff	

SCD,FNIZK,GrpoRO-hybrid model against an active
static adversary corrupting a majority of parties in P. The delay parameter is � = 	hi

and the slack parameter is ε = 	lo
	hi

where (·,	hi) = maxt∈{0,...,poly(τ)}{f	(t)} and
(lo, ·) = mint∈{0,...,poly(τ)}{f	(t)}.

7.1 UC treatment of delay encryption

The notion of Delay Encryption (DE) was introduced in [6], where a game based security
definition is presented. In order to use our proof of sequential communication delay machin-
ery, we first introduce a treatment of DE in the UC framework, upon which we have defined
and constructed our results. In Functionality 7.1, We provide an ideal functionality FDE for
DE that captures this notion.

Similarly to other timed functionalities in our work, this functionality is defined in the
abstract composable time model of TARDIS [11], previously discussed in Section 2.2.2. We
essentially adapt our PV-TLP functionalityFtlp to generate a DE ciphertext as if it was a time-
lock puzzle connected to a certain ID represented by a sub-session ID ssid. Analogously, we
modify the puzzle solving interface to instead implicitly extract the secret key corresponding
to a ssid, which in the functionality is reflected by allowing honest parties to obtain the
messages in ciphertexts corresponding to that ssid. As is the case in Ftlp and FVDF, we allow
the adversary to decrypt ciphertexts connected to a given ssid slightly before the same access
is given to honest parties (i.e. at time ε� < �).

123

1316 Cryptography and Communications (2025) 17:1287–1321

Functionality 7.1: FDE

FDE is parameterized by a computational security parameter τ , a message spaceMSG, a tag spaceTAG, a
slack parameter 0 < ε ≤ 1 and a delay parameter�.FDE interacts with a set of partiesP = {P1, . . . ,Pn}
and an adversary S. FDE maintains initially empty lists omsg (encrypted messages), L (keys being
extracted), EXT (extracted keys).
Encrypt Message: Upon receiving a message (CreatePuzzle, sid, ssid,m) from Pi where m ∈ MSG,
send (CreatePuzzle, sid, ssid) toS and letS providepuz. Ifpuz /∈ TAG or there exists (ssid,puz,m′) ∈
omsg, then FDE halts. Append (ssid,puz,m) to omsg, set and output (Encrypt, sid, ssid,puz) to Pi
and to S.
Extract Key: Upon receiving (Extract, sid, ssid) from Pi ∈ P, add (ssid, 0) to L and send
(Extract, sid, ssid) to S.
Decrypt Ciphertext: Upon receiving (Decrypt, sid, ssid,puz) from a party Pi ∈ P, ignore the message
if Pi is honest and there does not exist a record ssid ∈ EXT or if Pi is corrupted and there does not exist
a record (ssid, c) ∈ L for c ≥ ε�. Otherwise, proceed as follows:

• If (ssid,puz,m) ∈ omsg, output (Decrypt, sid, ssid,puz,m) to Pi .
• If there does not exist (ssid,puz,m) ∈ omsg, let S providem ∈ MSG, add (ssid,puz,m) to omsg

and output (Decrypt, sid, ssid,puz,m) to Pi .

Tick: For all (ssid, c) ∈ L , update (ssid, c) ∈ L by setting c = c + 1 and:

• If c ≥ ε�, send (Extracted, sid, ssid) to S.
• If c = �, remove (ssid, c) ∈ L , send (Proceed?, sid, ssid) to S and proceed as follows:

– If S sends (Abort, sid, ssid), output (Abort, sid, ssid) to all Pi .
– If S sends (Proceed, sid, ssid), add ssid to EXT and output (Extracted, sid, ssid) to all Pi .

8 Stateless VDF from IBE (and delayed encryption)

OurDelay Encryption construction fromSection 7 can also be converted into a stateless VDF.
Since we combine standard results in order to obtain this construction, we only informally
sketch it here. In Section 5 we have described a VDF construction that creates the random
value from a proof of sequential delay. Unfortunately, in order to achieve uniqueness we
have to use a bulletin board to keep track of previous VDF inputs. Departing from our Delay
Encryption construction, obtaining a stateless VDF is possible as follows: assume that a
threshold instance of IBE is set up such that Setup was run and pk is known. To evaluate
the VDF, consider the VDF input x as an ID and run the threshold version of KG to generate
skx . Then, hashing x, skx using a random oracle yields the VDF output, while skx serves
as the publicly verifiable proof2. Unpredictability follows due to the Naor transform [44],
since each skx can be considered as a signature of an EUF-CMA secure signature scheme
(which is therefore UC secure). Uniqueness of the signature follows from the El Gamal-type
of IBE, as each skx is unique. The VDF delay is then identical with the runtime of KG. We
formalize this result in the following theorem, which is conservatively phrased in terms of
the [42] IBE, although it can be generalized to any IBE that yields a unique signature via the
Naor Transform and supports distributed key generation.

Theorem 10 If the IBE scheme of [42] is IND − ID − CCA2 secure, there exists a protocol
that UC-realizes FVDF in the Ff	

SCD,FNIZK,GrpoRO-hybrid model against an active static
adversary corrupting a majority of parties in P. The delay parameter is � = 	hi and the
slack parameter is ε = 	lo

	hi
where (·,	hi) = maxt∈{0,...,poly(τ)}{f	(t)} and (lo, ·) =

mint∈{0,...,poly(τ)}{f	(t)}.
2 Which can be checked by encrypting a random value to identity x , decrypting using skx and checking for
consistency

123

Cryptography and Communications (2025) 17:1287–1321 1317

9 Discussion on practical and efficiency considerations

9.1 About efficient realizations of TLP and IBE

When computing the Time-Lock Puzzle (TLP) based on threshold encryption, each satellite
performs one extra scalar multiplication, adding 0.066ms for the Cortex-A15 processor and
2.28ms for the A9 processor mentioned above. When executing our VDF/TLP constructions
based on IBE, each satellite only needs to compute one extra scalar multiplication on the
elliptic curve as in the TLP based on threshold encryption. Expensive operations (e.g. re-
encryption and bilinear pairings) are only done on non-constrained devices verifying the
result of VDF/TLP evaluations.

9.2 Practical considerations

This section elaborates on our model choices and how realistic our constructions are in
generic terms. Unfortunately, we cannot back our estimates with concrete results as we could
not buy a few satellites, ship them to space and test our protocol in its realistic setting. We
leave this as interesting future work.

In Physics c denotes the speed of light (measured to c = 299.792.458 meters/second in
the space). Einstein’s Special Relativity sets c as the natural upper bound on communication
speed since matter, energy or signals that may carry information can travel at most as fast as
the speed of light. With this in mind it is straightforward to determine the exact lower bound
for communication delay between two satellites. Let d denote the distance in meters between
two satellites, then the minimal possible time-delay in their communication is 	 = d/c. The
distance d can be computed by first determining each satellite’s position and then computing
the Euclidean distance between such positions. Determining a satellite’s position at an instant
in time is done via classical mechanics, see [45, Chapter 4 & 5] or [46, Chapter 10 & 11] for
standard references. Even spy satellites can be tracked by amateur enthusiasts, e.g. https://
gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357.

9.3 On our trust assumption

Previous results on TLPs/VDFs consider that the evaluation of TLPs/VDFs is done locally
by each party, thus requiring security even when this single evaluator is dishonest. In our
setting, we outsource this evaluation to a group of parties and guarantee security if at least 1
of them is honest. In our concrete instantiation, we require at least one of the parties signing
the message be honest, when the message travels through the round-robin network of parties
when being signed in order by each party. While this is indeed an extra trust assumption, it
allows us to provide precise and absolute delay lower bounds. This is not unprecedented in
the time-based cryptography literature, as the same assumption of at least 1 out of n parties
being honest is also made in the context of distance bounding protocols. Moreover, since
satellites are in orbit, it is infeasible to corrupt their hardware and software (provided it is
not updatable) after the launch.

123

https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357
https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357

1318 Cryptography and Communications (2025) 17:1287–1321

9.4 Liveness of optimistic protocols

We take an optimistic approach of designing highly efficient protocols that might abort in
case ofmisbehavior by one of the parties, in which casewe resort tomore expensive protocols
that identify and eliminate the cheating party. This applies to our constructions of VDFs in
Section 5, TLPs in Section 6 and Delay Encryption in Section 7. All of the constructions rely
on our proof of communication delay, so they will abort if a satellite in the pre-established
signing path fails to provide a valid signature. Moreover, in the TLP (resp. Delay Encryption)
constructions, a satellite who misbehaves in the threshold encryption (resp. threshold iden-
tity key generation) will also cause an abort. Both abort cases can be handled by requiring
the satellites to repeat the protocol while providing non-interactive zero knowledge proofs
(NIZK) of correct execution. In this augmented protocol, we can easily identify a cheater by
checking the NIZKs (i.e. misbehavior will result in an invalid NIZK), subsequently elimi-
nating this cheater e re-executing the protocol once more. Naturally, eliminating a cheating
satellite will also require re-executing the sequential signing protocol, which might be costly.
However, notice that once a cheater is eliminated, it no longer participates in future exe-
cutions of the protocol. Hence, these re-executions will happen at most t times, where t is
the number of corrupted satellites. After all cheaters are eliminated, all executions will only
require the highly efficient optimistic protocol.

10 Conclusion

This paper investigates how to base the security of the most emblematic time-based cryp-
tographic primitives on physical assumptions. It provides a comprehensive framework for
implementing and guaranteeing precise lower bounds of sequential communication delays
in UC, and protocols that securely implement publicly verifiable TLP, statefull and stateless
VRF, and Delay Encryption from such SCD. Our SCD proofs can be instantiated over a con-
stellation of satellites, where time-delay bounds are precisely derivable from communication
delays due to the spacial distributions of the satellites.

Acknowledgements The work described in this paper has received funding from the Protocol Labs-CryptoSat
SpaceVDF program, a research grant VIL53029 from VILLUM FONDEN and Independent Research Fund
Denmark (IRFD) grant number 0165-00079B from Vetenskapsrådet (VR) starting grant 2022-04684.
This paper was prepared in part for information purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research Department of
JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This document is not intended as
investment research or investment advice, or a recommendation, offer or solicitation for the purchase or sale
of any security, financial instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would be unlawful.

Author Contributions C.B. and B.D. contributed largely to the technical parts of the paper. E.P. and A.T.
provided critical revision, improved presentations, and influenced design choices. All authors made substantial
contributions to the conception, design, and writing of the work.

Funding Open access funding provided by Technical University of Denmark.

Data Availability No datasets were generated or analysed during the current study.

123

Cryptography and Communications (2025) 17:1287–1321 1319

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. (1996)
2. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A.

(eds.) Advances in cryptology – CRYPTO 2018, Part I. Lecture notes in computer science, vol. 10991,
pp. 757–788. Springer, Santa Barbara, CA, USA (2018). https://doi.org/10.1007/978-3-319-96884-1_25

3. Cascudo, I., David, B., Shlomovits, O., Varlakov, D.: Mt. random: Multi-tiered randomness beacons.
In: Tibouchi, M., Wang, X. (eds.) ACNS 23: 21st International conference on applied cryptography and
network security, Part II. Lecture notes in computer science, vol. 13906, pp. 645–674. Springer, Kyoto,
Japan (2023). https://doi.org/10.1007/978-3-031-33491-7_24

4. Baum, C., David, B.M., Pagnin, E., Takahashi, A.: Cascade: (time-based) cryptography from space com-
munications delay. In: Galdi, C., Phan, D.H. (eds.) Security and cryptography for networks, pp. 252–274.
Springer, Cham (2024). https://doi.org/10.1007/978-3-031-71070-4_12

5. Baum, C., David, B., Dowsley, R., Kishore, R., Nielsen, J.B., Oechsner, S.: CRAFT: Composable ran-
domness beacons and output-independent abort MPC from time. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023: 26th international conference on theory and practice of public key cryptography, Part I. Lec-
ture notes in computer science, vol. 13940, pp. 439–470. Springer, Atlanta, GA, USA (2023). https://doi.
org/10.1007/978-3-031-31368-4_16

6. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X. (eds.) Advances in cryptology
– EUROCRYPT 2021, Part I. Lecture notes in computer science, vol. 12696, pp. 302–326. Springer,
Zagreb, Croatia (2021). https://doi.org/10.1007/978-3-030-77870-5_11

7. Boneh, D., Naor,M.: Timed commitments. In: Bellare,M. (ed.) Advances in cryptology – CRYPTO 2000.
Lecture notes in computer science, vol. 1880, pp. 236–254. Springer, Santa Barbara, CA, USA (2000).
https://doi.org/10.1007/3-540-44598-6_15

8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles
from randomized encodings. In: Sudan, M. (ed.) ITCS 2016: 7th conference on innovations in theoretical
computer science, pp. 345–356. Association for computing machinery, Cambridge, MA, USA (2016).
https://doi.org/10.1145/2840728.2840745

9. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commitments. In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020: 18th Theory of cryptography conference, Part III. Lecture notes in computer
science, vol. 12552, pp. 390–413. Springer, Durham, NC, USA (2020). https://doi.org/10.1007/978-3-
030-64381-2_14

10. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles and applications. In:
Nissim, K., Waters, B. (eds.) TCC 2021: 19th theory of cryptography conference, Part III. Lecture notes
in computer science, vol. 13044, pp. 447–479. Springer, Raleigh, NC, USA (2021). https://doi.org/10.
1007/978-3-030-90456-2_15

11. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A foundation of time-lock
puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) Advances in cryptology – EUROCRYPT 2021,
Part III. Lecture notes in computer science, vol. 12698, pp. 429–459. Springer, Zagreb, Croatia (2021).
https://doi.org/10.1007/978-3-030-77883-5_15

12. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019: 10th Innovations in theoret-
ical computer science conference, vol. 124, pp. 60–16015. LIPIcs, San Diego, CA, USA (2019). https://
doi.org/10.4230/LIPIcs.ITCS.2019.60

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-031-33491-7_24
https://doi.org/10.1007/978-3-031-71070-4_12
https://doi.org/10.1007/978-3-031-31368-4_16
https://doi.org/10.1007/978-3-031-31368-4_16
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

1320 Cryptography and Communications (2025) 17:1287–1321

13. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,V. (eds.)Advances in cryptology
– EUROCRYPT 2019, Part III. Lecture notes in computer science, vol. 11478, pp. 379–407. Springer,
Darmstadt, Germany (2019). https://doi.org/10.1007/978-3-030-17659-4_13

14. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from supersingular isogenies
and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances in cryptology – ASIACRYPT 2019, Part I.
Lecture notes in computer science, vol. 11921, pp. 248–277. Springer, Kobe, Japan (2019). https://doi.
org/10.1007/978-3-030-34578-5_10

15. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: Canteaut,
A., Ishai, Y. (eds.) Advances in cryptology – EUROCRYPT 2020, Part III. Lecture notes in computer
science, vol. 12107, pp. 125–154. Springer, Zagreb, Croatia (2020). https://doi.org/10.1007/978-3-030-
45727-3_5

16. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended
abstract). In: 29th annual symposium on foundations of computer science, pp. 42–52. IEEE Computer
Society Press, White Plains, NY, USA (1988). https://doi.org/10.1109/SFCS.1988.21920

17. Maurer, U.M.: Protocols for secret key agreement by public discussion based on common information.
In: Brickell, E.F. (ed.) Advances in cryptology – CRYPTO’92. Lecture notes in computer science, vol.
740, pp. 461–470. Springer, Santa Barbara, CA, USA (1993). https://doi.org/10.1007/3-540-48071-4_32

18. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Sci. 297(5589), 2026–2030
(2002). https://doi.org/10.1126/science.1074376

19. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions in the uni-
versal composition framework. In: Rogaway, P. (ed.) Advances in cryptology – CRYPTO 2011. Lecture
notes in computer science, vol. 6841, pp. 51–70. Springer, Santa Barbara, CA, USA (2011). https://doi.
org/10.1007/978-3-642-22792-9_4

20. Rührmair, U., van Dijk, M.: On the practical use of physical unclonable functions in oblivious transfer
and bit commitment protocols. J. Cryptogr. Eng. 3(1), 17–28 (2013). https://doi.org/10.1007/s13389-
013-0052-8

21. Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M.
(ed.) Advances in cryptology – EUROCRYPT 2007. Lecture notes in computer science, vol. 4515, pp.
115–128. Springer, Barcelona, Spain (2007). https://doi.org/10.1007/978-3-540-72540-4_7

22. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hard-
ware tokens. In: Micciancio, D. (ed.) TCC 2010: 7th theory of cryptography conference. Lecture notes
in computer science, vol. 5978, pp. 308–326. Springer, Zurich, Switzerland (2010). https://doi.org/10.
1007/978-3-642-11799-2_19

23. Almashaqbeh, G., Canetti, R., Erlich, Y., Gershoni, J., Malkin, T., Pe’er, I., Roitburd-Berman, A., Tromer,
E.: Unclonable polymers and their cryptographic applications. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in cryptology – EUROCRYPT 2022, Part I. Lecture notes in computer science, vol. 13275, pp.
759–789. Springer, Trondheim, Norway (2022). https://doi.org/10.1007/978-3-031-06944-4_26

24. Kent, A.: Unconditionally secure bit commitment. Phys. Rev. Lett. 83, 1447–1450 (1999). https://doi.
org/10.1103/PhysRevLett.83.1447

25. Lunghi, T.,Kaniewski, J.,Bussières, F.,Houlmann,R., Tomamichel,M.,Wehner, S., Zbinden,H.: Practical
relativistic bit commitment. Phys. Rev. Lett. 115, 030502 (2015). https://doi.org/10.1103/PhysRevLett.
115.030502

26. Crépeau, C., Massenet, A., Salvail, L., Stinchcombe, L.S., Yang, N.: Practical relativistic zero-knowledge
for NP. In: Kalai, Y.T., Smith, A.D., Wichs, D. (eds.) ITC 2020: 1st conference on information-theoretic
cryptography, pp. 4–1418. SchlossDagstuhl -Leibniz-Zentrum fuer Informatik,Boston,MA,USA(2020).
https://doi.org/10.4230/LIPIcs.ITC.2020.4

27. Verbanis, E., Martin, A., Houlmann, R., Boso, G., Bussières, F., Zbinden, H.: 24-hour relativistic bit
commitment. Phys. Rev. Lett. 117, 140506 (2016). https://doi.org/10.1103/PhysRevLett.117.140506

28. Alikhani, P., Brunner, N., Crépeau, C., Designolle, S., Houlmann, R., Shi, W., Yang, N., Zbinden, H.:
Experimental relativistic zero-knowledge proofs. Nat. 599(7883), 47–50 (2021). https://doi.org/10.1038/
s41586-021-03998-y

29. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd
annual symposium on foundations of computer science, pp. 136–145. IEEE Computer Society Press, Las
Vegas, NV, USA (2001). https://doi.org/10.1109/SFCS.2001.959888

30. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In:
Vadhan, S.P. (ed.) TCC 2007: 4th theory of cryptography conference. Lecture notes in computer science,
vol. 4392, pp. 61–85. Springer, Amsterdam, The Netherlands (2007). https://doi.org/10.1007/978-3-540-
70936-7_4

31. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global
random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in cryptology – EUROCRYPT 2018, Part I.

123

https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1109/SFCS.1988.21920
https://doi.org/10.1007/3-540-48071-4_32
https://doi.org/10.1126/science.1074376
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/s13389-013-0052-8
https://doi.org/10.1007/s13389-013-0052-8
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-031-06944-4_26
https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1103/PhysRevLett.115.030502
https://doi.org/10.1103/PhysRevLett.115.030502
https://doi.org/10.4230/LIPIcs.ITC.2020.4
https://doi.org/10.1103/PhysRevLett.117.140506
https://doi.org/10.1038/s41586-021-03998-y
https://doi.org/10.1038/s41586-021-03998-y
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4

Cryptography and Communications (2025) 17:1287–1321 1321

Lecture notes in computer science, vol. 10820, pp. 280–312. Springer, Tel Aviv, Israel (2018). https://
doi.org/10.1007/978-3-319-78381-9_11

32. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: A composable treat-
ment. J. Cryptol. 37(2), 18 (2024). https://doi.org/10.1007/S00145-024-09493-7

33. Kiayias, A., Zhou, H., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger.
In: Fischlin, M., Coron, J. (eds.) Advances in cryptology - EUROCRYPT 2016 - 35th annual international
conference on the theory and applications of cryptographic techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9666, pp. 705–734. Springer, Vienna,
Austria (2016). https://doi.org/10.1007/978-3-662-49896-5_25

34. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In:
Sahai, A. (ed.) Theory of cryptography - 10th theory of cryptography conference, TCC 2013, Tokyo,
Japan,March 3-6, 2013. Proceedings. Lecture notes in computer science, vol. 7785, pp. 477–498. Springer,
Tokyo, Japan (2013). https://doi.org/10.1007/978-3-642-36594-2_27

35. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication and key-
exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006: 3rd theory of cryptography Conference.
Lecture notes in computer science, vol. 3876, pp. 380–403. Springer, NewYork, NY, USA (2006). https://
doi.org/10.1007/11681878_20

36. Canetti, R.: Universally composable signature, certification, and authentication. In: Proceedings. 17th
IEEE computer security foundations workshop, 2004., pp. 219–233 (2004). https://doi.org/10.1109/
CSFW.2004.1310743

37. Baum, C., David, B., Dowsley, R.: (Public) verifiability for composable protocols without adaptivity
or zero-knowledge. In: Ge, C., Guo, F. (eds.) ProvSec 2022: 16th international conference on provable
security. Lecture notes in computer science, vol. 13600, pp. 249–272. Springer, Nanjing, China (2022).
https://doi.org/10.1007/978-3-031-20917-8_17

38. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: Imai, H., Zheng, Y. (eds.)
PKC 2000: 3rd international workshop on theory and practice in public key cryptography. Lecture notes
in computer science, vol. 1751, pp. 129–146. Springer, Melbourne, Victoria, Australia (2000). https://
doi.org/10.1007/978-3-540-46588-1_10

39. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost.
In: Imai, H., Zheng, Y. (eds.) PKC’99: 2nd international workshop on theory and practice in public key
cryptography. Lecture notes in computer science, vol. 1560, pp. 53–68. Springer, Kamakura, Japan (1999).
https://doi.org/10.1007/3-540-49162-7_5

40. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor
permutations. In: Cachin, C., Camenisch, J. (eds.) Advances in cryptology – EUROCRYPT 2004. Lecture
notes in computer science, vol. 3027, pp. 74–90. Springer, Interlaken, Switzerland (2004). https://doi.
org/10.1007/978-3-540-24676-3_5

41. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential
aggregate signatures, with applications to secure routing. In: Ning, P., De Capitani di Vimercati, S.,
Syverson, P.F. (eds.) ACM CCS 2007: 14th conference on computer and communications security, pp.
276–285. ACM Press, Alexandria, Virginia, USA (2007). https://doi.org/10.1145/1315245.1315280

42. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) Advances
in cryptology – CRYPTO 2001. Lecture notes in computer science, vol. 2139, pp. 213–229. Springer,
Santa Barbara, CA, USA (2001). https://doi.org/10.1007/3-540-44647-8_13

43. Nishimaki, R., Manabe, Y., Okamoto, T.: Universally composable identity-based encryption. In: Nguyen,
P.Q. (ed.) Progress in cryptology -VIETCRYPT06: 1st international conference on cryptology inVietnam.
Lecture notes in computer science, vol. 4341, pp. 337–353. Springer, Hanoi, Vietnam (2006). https://doi.
org/10.1007/11958239_23

44. Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treatments for signatures from
identity-based encryption. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) Provable security, 1st international
conference, ProvSec 2007, Wollongong, Australia, November 1-2, 2007, Proceedings. Lecture notes in
computer science, vol. 4784, pp. 218–227. Springer, – (2007). https://doi.org/10.1007/978-3-540-75670-
5_16

45. Bate, R.R., Mueller, D.D., White, J.E., Saylor, W.W.: Fundamentals of Astrodynamics. Courier Dover
Publications, – (2020)

46. Vallado, D.A.: Fundamentals of Astrodynamics and Applications vol. 12. Springer, - (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/S00145-024-09493-7
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/11681878_20
https://doi.org/10.1007/11681878_20
https://doi.org/10.1109/CSFW.2004.1310743
https://doi.org/10.1109/CSFW.2004.1310743
https://doi.org/10.1007/978-3-031-20917-8_17
https://doi.org/10.1007/978-3-540-46588-1_10
https://doi.org/10.1007/978-3-540-46588-1_10
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1145/1315245.1315280
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/11958239_23
https://doi.org/10.1007/11958239_23
https://doi.org/10.1007/978-3-540-75670-5_16
https://doi.org/10.1007/978-3-540-75670-5_16

	Proofs of sequential communication delays from physical assumptions and their applications
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Related work
	2.2 GUC model and standard functionalities
	2.2.1 Global random oracle mathcalGrpoRO
	2.2.2 Global clock mathcalGClock
	2.2.3 TARDIS model and alternative global clock
	2.2.4 Key registration ideal functionality mathcalFReg
	2.2.5 Unique digital signatures ideal functionality mathcalFSig
	2.2.6 Bulletin board ideal functionality mathcalFBB

	2.3 UC secure public-key encryption with plaintext verification

	3 Modeling communication delays
	3.1 Single-use channel ideal functionality mathcalFdmtΔlo,Δhi
	3.2 Multiple-use channel ideal functionality mathcalFmdmtfΔ
	3.3 Realizing mathcalFmdmtfΔ from mathcalFdmtΔlo,Δhi

	4 Proofs of sequential communication delays
	4.1 Modelling proofs of sequential communication delay
	4.2 Proofs of sequential communication delay with 2 parties
	4.3 Proofs of sequential communication delay for more than 2 parties
	4.3.1 Bounding the channel delays
	4.3.2 Realizing πMulti-SCD

	4.4 Optimizing πMulti-SCD

	5 Verifiable delay functions
	6 Publicly verifiable time-lock puzzles
	6.1 Constructing a random beacon

	7 Delay encryption
	7.1 UC treatment of delay encryption

	8 Stateless VDF from IBE (and delayed encryption)
	9 Discussion on practical and efficiency considerations
	9.1 About efficient realizations of TLP and IBE
	9.2 Practical considerations
	9.3 On our trust assumption
	9.4 Liveness of optimistic protocols

	10 Conclusion
	Acknowledgements
	References

