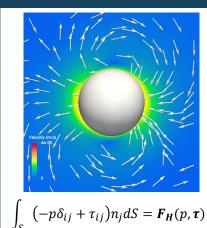
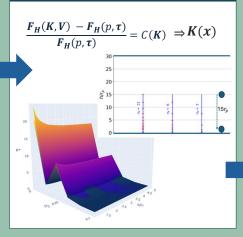
Exploring Brownian Motion using Hydrodynamic Memory Kernels

Anand Joseph Michael¹, Andreas Mark², Srdjan Sasic¹, Henrik Ström¹
¹Chalmers University of Technology, ²Fraunhofer-Chalmers Center

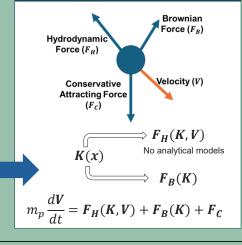
Introduction

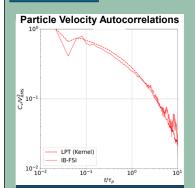

- At low particle to fluid density ratios $(^{\rho_p}/_{\rho_f} \approx 1)$ observed in many microfluidic systems, Brownian motion needs to account for Drag, Added Mass and History Effects
- Novel multiscale method presented capable of modelling Brownian motion while incorporating these effects

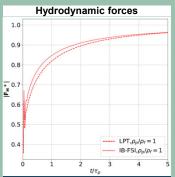
Generalised Langevin Equation (GLE)


$$m_p \frac{d\textbf{\textit{V}}}{dt} = \textbf{\textit{F}}_H + \textbf{\textit{F}}_B + \textbf{\textit{F}}_C \\ \textbf{\textit{F}}_H = -\int_0^t \textbf{\textit{K}}(\textbf{\textit{x}}, t - \tau). \textbf{\textit{V}}(\tau) d\tau \\ \textbf{\textit{D}}_{rag, \text{Added Mass \& History Effects included}} \\ \textbf{\textit{Velocity (V)}} \\ \textbf{\textit{Attracting Force}}_{(F_c)} \\ \textbf{\textit{Velocity (V)}} \\ \textbf{\textit{Attracting Force}}_{(F_c)} \\ \textbf{\textit{Hydrodynamic}}_{(F_c)} \\ \textbf{\textit{E}}_{B,i}(t - \tau) \cdot F_{B,j}(t) \\ \textbf{\textit{A}} = k_B T K_{ij}(\textbf{\textit{x}}, \tau) \\ \textbf{\textit{Memory kernel}}_{(K(t,\tau))} \\ \textbf{\textit{Force}}_{F_H} \\ \textbf{\textit{Force}}_{F_B} \\ \textbf{\textit{E}}_{B,i}(t,\tau) \\ \textbf{\textit{A}}_{B,i}(t,\tau) \\ \textbf{\textit{A}}_{B$$

Multiscale Simulation Method using GLE

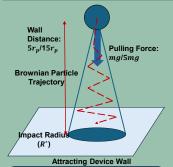

Short Direct Numerical Simulations to determine Hydrodynamic Force $(F_H(p,\tau))$


Generate memory kernel library by running short DNS at different locations in the domain


Lagrangian Particle Tracking (LPT) evolves particle trajectory: Generate Hydrodynamic and Brownian forces from Kernels

Validation

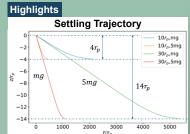
Brownian motion modelled incorporating added mass and history effects



Hydrodynamic force is accurately captured without analytical models

Conclusion

A novel multiscale method based on memory kernels is used to accurately model Brownian motion of a particle incorporating memory effects. Wall bounded settling simulations using the method captured increased hindrance from wall and changes in impact region.


Study of a Settling Brownian Particle

Simulation of Brownian particle pulled towards a wall using a constant force

Alternative Pure DNS method

Hydrodynamic hindrance increases close to the wall slowing the particles down

Impact radius increases with domain size and decreases with pulling force strength

