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Gain and phase type multipliers
for feedback robustness

Axel Ringh, Xin Mao, Wei Chen, Li Qiu, and Sei Zhen Khong,

Abstract—It is known that the stability of a feedback inter-
connection of two linear time-invariant systems implies that the
graphs of the open-loop systems are quadratically separated. This
separation is defined by an object known as the multiplier. The
theory of integral quadratic constraints shows that the converse
also holds under certain conditions. This paper establishes that
if the feedback is robustly stable against certain structured
uncertainty, then there always exists a multiplier that takes a
corresponding form. In particular, if the feedback is robustly
stable to certain gain-type uncertainty, then there exists a
corresponding multiplier that is of phase-type, i.e., its diagonal
blocks are zeros. These results build on the notion of phases of
matrices and systems, which was recently introduced in the field
of control. Similarly, if the feedback is robustly stable to certain
phase-type uncertainty, then there exists a gain-type multiplier,
i.e., its off-diagonal blocks are zeros. The results are meaningfully
instructive in the search for a valid multiplier for establishing
robust closed-loop stability, and cover the well-known small-gain
and the recent small-phase theorems.

Index Terms—Feedback robustness, structured uncertainty,
multipliers, quadratic graph separation.

I. INTRODUCTION

One of the most fundamental problems in control theory is
feedback stability analysis. In this context, it is well known
that topological graph separation is both necessary and suf-
ficient for the stability of a well-posed feedback configura-
tion [1], [2]. Such topological graph separation is required
to hold in the hard (a.k.a. unconditional [3]) manner, i.c.,
the integrals involved are taken over [0,7] for all ' > 0. A
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specific type of separation, called quadratic graph separation
with linear multipliers, has been studied extensively in the
nonlinear [4], [5], [6], [7], [8], [9], [10] and linear [11],
[12], [13], [14] literatures. Quadratic graph separation has
often been employed in the soft (a.k.a. conditional) manner,
where the integrals are taken over [0, c0) in conjunction with
homotopies that are continuous in the graph topology. In
the linear time-invariant (LTI) setting, soft quadratic graph
separation is equivalent, via the Parseval-Plancherel theorem,
to two complementary frequency-domain inequalities [15].
Such inequalities are the main object of study in this paper.

In robust stability analysis, the objective is to determine
if a feedback interconnection between a nominal system and
a set of uncertainties is stable or not for all uncertainties in
the set [16, Chp. 9]. One way to guarantee stability is by
finding a certificate that the graph of the nominal system
is separated from the graph of each of the system in the
uncertainty set.! In the case of quadratic graph separation,
the object of interest is a function of an LTI object known
as a multiplier, and the search for a suitable multiplier for
characterizing the uncertainty is a common theme in the vast
literature on robust control, see, e.g., [5], [20], [6], [21],
[22], [23], [24]. While quadratic graph separation with linear
multipliers has in general been used as a sufficient condition
for robust stability, the chief focus of this paper is on the
necessity of it. Some elegant results along this direction have
been obtained in [25], where it was shown that the closed-loop
stability of the interconnection between a matrix and a set of
matrices is equivalent to the existence of a multiplier by which
quadratic separation holds. In other words, quadratic graph
separation is both necessary and sufficient for the closed-loop
stability of matrices. Moreover, results along this direction also
generalize to LTT systems [25].

This paper strengthens the existing results by revealing a
number of intricate relationships between the type of feedback
robustness and the structure of any multiplier needed to
establish such a robustness. Specifically, we define multipliers
of the gain type (a.k.a. magnitudinal multipliers) to be mul-
tipliers whose off-diagonal blocks are 0, and show that the
existence of a gain type multiplier is equivalent with that the
closed-loop system is robust against phasal uncertainties, i.e.,
multiplication by arbitrary stable unitary (i.e., all-pass) transfer
functions. On the other hand, multipliers of the phase type

ISometimes, the problem is better formulated in terms of a feedback
interconnection between two sets of uncertain systems, see, e.g., [17], [18],
[19]. In this case, the problem becomes to verify that for each pair of systems
from the two uncertainty sets, the graphs are separated. The results in this
paper can be interpreted as any of these two cases.
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(a.k.a. phasal multipliers) are defined as multipliers that are 0
on the diagonal blocks, and we show that the existence of a
phase type multiplier is equivalent with that the closed-loop
system is robust against magnitudinal uncertainties, i.e., arbi-
trary nonnegative scalings. The novelty in these equivalences
lies in the necessity-part: if a feedback system is robust against
phasal (resp. magnitudinal) uncertainties, then its robust sta-
bility can always be established using a multiplier of the gain
(resp. phase) type. The results are of both theoretical and
practical interest: theoretical, since they reveal a fundamental
connection between the structure of the uncertainties and the
structure of the multiplier; and practical, since they imply that
if a feedback system is expected to be robust against a certain
form of uncertainties, then the search for a suitable multiplier
to establish its robust stability can be restricted to one that
admits a prescribed structure, and vice versa.

There are also other methods to determine robust stability in
the case of structured uncertainty. One of the most prominent
ways is via the structural singular value, p, in which one
considers block-diagonal type uncertainties [26], [27], [28].
While computing the value of ¢ exactly is in general a difficult
problem (NP-hard) [29], [30], the celebrated (D, G)-scaling is
a computable upper-bound for the structured singular value
[31], [28], [32]. Moreover, for (among other cases) robust
stability with respect to scalar gain uncertainties [31], [32] and
to scalar phase uncertainties [33], the (D, G)-scaling bound
is know to be tight. It has also been shown that this upper-
bound being less than one, which is a sufficient condition for
robust stability of the interconnection, is equivalent with the
existence of a multiplier for characterizing the loop (transfer)
matrix [34] (see also [35], [36], [37]). In this work, we,
among other things, also consider the case of scalar gain
and phase uncertainties (see Theorems III.1, and IV.1 for the
matrix cases). While the structure of the multipliers in the
case of scalar phase uncertainties can be obtained by carefully
analyzing and using the results in [33] on the loop (transfer)
matrix, we use a different approach to prove our main results,
working directly with the multipliers and characterizing both
the potentially uncertain open-loop (transfer) matrices as op-
posed to only the loop (transfer) matrix. Moreover, although
the (D, G)-scaling method is closely related to our work, for
the three other types of structured uncertainties considered (see
Theorems III.1, II1.2, and IV.2, for the matrix cases), existing
results related to the structured singular value can, to the best
of our knowledge, not be used to establish the necessity of the
form of the multipliers for robust stability.

Finally, note that there exist relevant converse quadratic
separation results that are different from those examined in
this paper. Such results typically state that a feedback system
is robustly stable against an arbitrary uncertainty characterised
by a quadratic constraint if and only if the other open-loop
subsystem satisfies the reverse quadratic constraint [38], [39],
[40], [41]. However, in these references the multiplier defining
the quadratic constraint is explicitly specified, whereas in
this work certain forms of feedback stability are shown to
imply the existence of a multiplier by which quadratic graph
separation of the open-loop systems is defined.

The outline of the paper is as follows: in Section II we

introduce necessary background material related to quadratic
graph separation and its use in stability analysis of multiple-
input-multiple-output (MIMO) LTI systems, and to sectorial
matrices and phases of a matrix. In Section III we analyze
the form of multipliers needed in order to guarantee robust
stability with respect to certain types of gain uncertainties.
The conclusion is that the existence of certain types of phasal
multipliers is a both necessary and sufficient condition. Sim-
ilarly, Section IV is devoted to stability against certain types
of phase uncertainties, and the existence of certain types of
magnitudinal multipliers turns out to be a both necessary and
sufficient condition. In Section V, we use a numerical example
to illustrate how the results of the paper can be used. The main
part of the paper ends with Section VI, where we draw some
conclusions. Finally, in order to improve the readability, some
of the lengthier proofs are deferred to appendices in the end
of the paper.

II. BACKGROUND AND NOTATION

In this section we present some background material on
quadratic graph separation, transfer matrices and multipliers
for feedback stability of LTI systems, and sectorial matrices
and matrix phases. Moreover, the section is also used to set
up the notation; basic notation is introduced in the paragraph
below, and further notation is introduced where needed.

Notation: Let j denote the imaginary unit, i.e., j2 =
—1. For two sets A, B, let AU B denote the union, let
A N B denote the intersection, and let A \ B denote the set-
difference, i.e., A\ B :={a € A| a & B}. Let R and C
denote the real and complex numbers, respectively, R” and
C™ the real and complex vectors of length n, respectively,
R; := [0,00), R_ := (—00,0], and R__ = R_\ {0}
the positive, negative, and strictly negative real numbers,
Cy :={2 € C| 2z = a+ jba > 0} the open right-
half complex plane, T := {z € C | |z|] = 1} the unit
circle, and D := {z € C | |z| < 1} the open unit disc.
Next, let M, ,, denote the set of complex matrices with n
rows and m columns; for square matrices we simply write
M,,. Let GL,, € M,, denote the set of invertible matrices,
H, C M,, the set of Hermitian matrices, P,, C H,, the set
of (Hermitian) positive definite matrices, and U,, C GL,, the
set of unitary matrices. For the corresponding sets of matrices
with real entries, we write MW,L(R), etc. Moreover, on the set
of Hermitian matrices we use > to denote the Loewner partial
order, i.e., for Hy, Hy € H,,, H; = Hs and H; > H; means
that H; — Hs is positive definite and positive semi-definite,
respectively; see, e.g. [42, Sec. 7.7]. Furthermore, by T and
-* we denote the transpose and the conjugate transpose of a
matrix, respectively, and two matrices A, B € M, are said to
be congruent if there exists a C' € GL,, such that A = C*BC.
By I,, we denote the identity matrix of size n X n; sometimes
the subscript n is omitted when the dimension is clear from
the context. Finally, A(-) denotes the set of eigenvalues, and
o(-) denotes the set of singular values of a matrix, i.e., for
a matrix A € M, ., 0;(4) = /Ai(A*A) and hence A
has m singular values. By convention, the singular values are
sorted in a nonincreasing order, and if m > n this means that
onte(A)=0for£=1,...,m—n.
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Figure 1: Block diagram of feedback interconnection.

A. Graph separation and multipliers for feedback stability

Let A € M, , and B € M, ,,,, and consider the (negative)
feedback interconnection as shown in Figure 1. This intercon-
nection is said to be stable if for each (p,q) € C*"*™ there
exists a unique vector (r,w) € C"*™. From the representation
in Figure 1, it follows that » = p+ Bw and w = ¢ — Ar, or

equivalently that
I, —B||r| _|p
A I, | |lw|  |q|°

Thus, the interconnection is stable if and only if the matrix
[+ 77] is invertible, i.e, if and only if det([ "y 77]) # 0.
The latter is true if and only if det(1,, + AB) # 0.

Next, let the graph of a matrix C € M,,, be defined
as all ordered pairs (x1,z2) € C*™™ such that Cxqy = zo,
and the inverse graph be defined as all ordered pairs (z2, 7).
Then, det(I,, + AB) = 0 if and only if there exists a nonzero
(x1,x2) € C*™™ such that

0= In -B 1| $1—BCIL‘2
T A 1, X9 o Axq + x|’
where (21,2) is identified as being a nontrivial element in
both the graph of —A and the inverse graph of B. Therefore,

det(l,, + AB) # 0 if and only if the graph of —A and the
inverse graph of B only intersect in the origin, i.e., if and only

if
range (| ) nvanee (| 2] ) =00, @)

where range(-) denotes the column range of a matrix. A
similar condition holds for the stability of a well-defined
interconnection of dynamical systems, see, e.g., [43], [44].

In [25], it was shown that a necessary and sufficient con-
dition for (1) to hold is that there exists a multiplier which
achieves quadratic separation. More precisely, (1) holds if and
only if there exists a P € H,,,, such that

T —A*)P(IA> <0
(B* I)P (?) -0,

There are several equivalent forms of this condition. For
example, if there exists a P € H,,, such that (2) holds,

(2a)

(2b)

due to the strict inequality in (2a) this P also satisfies
(1 —a9p( 1)< -caa
—_A) =

(B )P (?) -0,

for some € > 0. Moreover, by rewriting the (2,2)-block of

. Py Py 5 .

the block-matrix P = | ,r P;j} as Pog = Pyy —l,,, in (3),
12

with a slight abuse of notation we see that there exists another

matrix P such that

(3a)

(3b)

(I —-A*)P (_IA> =<0 (4a)
(B* I)P (?) -0, (4b)
which in turn implies that
(I —49)P (_I A) <0 (52)
(B* I)P (?) - BB, (5b)

for some ¢ > 0. Finally, by rewriting the (1, 1)-block of P in
(5) as P = ]511 + e1,,, we have that the existence of a multi-
plier fulfilling (5) implies that there exists a multiplier fulfilling
(2). This shows that the conditions (2)-(5) are equivalent.
Nevertheless, in the step from (3) to (4), and from (5) to (2),
the actual multiplier (and hence also potentially the structure)
changes. Since the results in this paper are concerned with
necessary conditions for existence of multipliers of certain
structures, we state all these cases explicitly. For convenience
we summarize the results in the following lemmas.

Lemma II.1: Let A € M,,, and B € M, ,,. If there
exists a multiplier P € H,,,, such that any of the four
conditions (2)-(5) is satisfied, then there exists (potentially
different) multipliers such that all the other three conditions
are also satisfied.

Lemma I1.2 ([25]): For A € M, , and B € M, ,,, the
following statements are equivalent:

(i) det(I,, + AB) # 0;

(i1) condition (1) holds;

(iii) there exists a matrix P € H,,, such that (2) holds.

B. LTI systems and multipliers for feedback stability

Next, we consider extensions of the aforementioned results
to LTT systems. To this end, let us first introduce the function
spaces needed (see, e.g., [16] or [45] for more details). Let
I - |2 denote the matrix 2-norm, and let esssup denote the
essential supremum of a function. Define the Lebesgue space

Lgxn = {(j) : JR — Mm,n

6l = esssup 6z < oo}
we

and the Hardy space

¢ has analytic continuation
into C4 with esssup,cc, [[¢(s)]|2

= esssup,,eg ||¢(jw)[2 < o0

mxn ,__
H X" =

¢ e Ll



The latter is the space of all stable transfer functions. Denote
by R™*" the set of m xn real-rational proper transfer function
matrices, and let RHZ.*" := R™*" NHZ*", i.e., the subset
of R™*"™ with no poles in the closed right-half complex plane.
A G € RH*" is said to be passive if G(jw) + G(jw)* =0
for all w € R, and it is said to be output strictly passive if there
exists € > 0 such that G(jw) + G(jw)* = €G(jw)*G(jw) for
all w e R.

Next, consider G € RHZ.*" and K € RH™". Akin to
the matrix setting, the (negative) feedback interconnection of
G and K is said to be stable if (I + GK)™' € RHLZ*™.
The following sufficient conditions for feedback stability are
significantly important — the first part of the result is well
known whereas the second is less so.

Proposition II.1: Let G € RH*" and K € RH™.
Then (I+GK)~' € RHZ*"™ if there exists I = [} ;] €
L) > (4m) guch that for all w € [0, 00], T (jw)* = M(jw),
;1 (jw) 20, Mgz (jw) = 0,

(I —G(jw)*) (jw) (G(]w)) <0
(G Dt (K9 2o

or equivalently,

(1 G ) (_g(p,) <0
N

(6)

J
(o te) (K9 = extior i)

for some ¢ > 0. Furthermore, if m = n and G~1, K~ ! €
RHZ ™, then (I + GK)~! € RHZ.*™ if there exists II €
LZm™)* M) such that for all w € [0, 0c], T(jw)* = I(jw),
Hll(jw) - O, Hgg(jw) = 0, and (6) holds.

Proof: If 1111 (jw) < 0 and I3 (jw) = 0, then

() ) (U)o
is equivalent to

(aK () 1) TI(jw) <“K}J“>) -0
for all o € [0,1]. Feedback stability can then be established
using the Parseval-Plancherel theorem as in [15, Thm. 3.1]
and the theory of integral quadratic constraints [6, Thm. 1] or
[9, Cor. IV.3], where the proofs are written purely in the time
domain. An alternative, more direct frequency-domain proof
is provided below for completeness.

By applying Lemma II.2 frequency-wise, it holds that
det(I + aG(jw) K (jw)) # 0 for all w € [0, 0], @ € [0,1]. It
remains to show that det(I+aG(s)K (s)) # 0 for all s € C,,
from which (I + GK)~!' € RHZ*™ follows. To this end,
observe that since GK € RHZ. ™, det(I +aG(s)K(s)) # 0
for all s € C, for sufficiently small o > 0. Suppose to
the contrapositive that det(I + G(s)K(s)) = 0 for some
s € C4. Then, by the continuity of the locations of the zeros
of det(I + aG(s)K(s)) in «, there must exist an « € (0,1)
and an w € [0,00] such that det(I + aG(jw)K (jw)) = 0,

leading to a contradiction. Therefore, it must be true that
det(I + aG(s)K(s)) # 0 for all s € C; and « € [0, 1].
On the other hand, if IT;; (jw) = 0 and 53 (jw) =< 0, then

(s te) (FG)) 2o
is equivalent to
(ery nte) () 2o

for all a > 1. Since G=1, K—1 € RH.*"™, by the large gain
theorem [46, Thm. 4.1], (I + aGK)™! € RHZ*™ for suf-
ficiently large @ > 1. By repeating the preceding arguments,
one may then establish that det(I + aG(s)K (s)) # 0 for all
s € Cy and a > 1, from which (I + GK)~! € RH™
follows. [ ]

Remark I1.1: Proposition II.1 remains true when all the
inequality signs therein are flipped.

The following necessary condition for feedback stability,
complementing the sufficient condition in Proposition II.1, can
be proved by using a construction from [25].

Proposition I1.2: Let G € RH.*" and K € RH)™.
Then (I + GK)™! € RHZ*™ only if there exists II €
L{tm)x(nm) guch that for all w € [0, 00], TT(jw)* = I(jw),

(I —G(jw)*) M(jw) (—Gijw)) <0
(K(jw)* 1) H(jw) (K (}‘”) - 0,

Proof: That (I + GK)™' € RHZ*™ implies that
infuer |det(I + K(jw)G(jw))*> > 0 for all w € [0, 0.
Following the proof in [25, Cor. 1] frequency-wise, define

) = (“97) (6w 1) - e

The claim may then be verified to hold for sufficiently small
e> 0. |

C. Sectorial matrices and matrix phases

The numerical range, also called the field of values, of a
matrix A € M,, is defined as

W(A):={z€C|z=a"Az, x €C", ||z||* == 2"z =1}

By the Toeplitz-Hausdorff theorem, for any A € M, the
numerical range W (A) is a compact convex subset of C, see,
e.g,. [47, Property 1.2.1 and 1.2.2], [48, Thm. 4.1], or [49,
Thm. 1.1-2]. Moreover, the numerical range of a matrix always
contains its eigenvalues [47, Property 1.2.6]. Next, the conic
hull of W (A), i.e., the smallest convex cone that contains the
numerical range, is given by the set

W'(A):={z€C|z=a"Az, 2 € C", z # 0},

which is called the angular numerical range [47, Def. 1.1.2].
In particular, by the convexity of W(A) it follows that if
0 ¢ W(A), then W(A) is contained in an open half-plane
and hence the opening angle of W'(A) is strictly less than
m — such matrices are called sectorial. If 0 ¢ int W(A),



i.e., not in the interior, then W (A) is contained in a closed
half-plane and hence the opening angle of W'(A) is less than
or equal to m — such matrices are called semi-sectorial. If
0 € int W(A), then W/(A) = C, and the opening angle is
defined to be 27 (cf. [47, Def. 1.1.3]). Clearly, all sectorial
matrices are also semi-sectorial. However, there exist matrices
that are not sectorial but for which the opening angle of the
angular numerical range is strictly less than 7; see Remark I1.2
for details. In light of this, we define the set of quasi-sectorial
matrices as the set of all semi-sectorial matrix A with opening
angle of W’(A) strictly less than 7. This definition gives the
(strict) inclusions

sectorial C quasi-sectorial C semi-sectorial.

Finally, an important subset of sectorial matrices is the set of
strictly accretive matrices, which is defined as

Ap={A€M,|A+A" =0}

The closure of this set is the set of accretive matrices, i.e.,
the set of all matrices A € M,, such that A + A* = 0, which
is a subset of the semi-sectorial matrices. In relation to this,
we also define a matrix to be quasi-strictly accretive if it is
accretive and quasi-sectorial (cf. Remark 11.2).

All sectorial matrices can be diagonalized by congruence
[50], [51], [52], [53]. More specifically, any sectorial matrix
A can be written as A = T*DT, where T € GL,, and where
D € U, is diagonal. This is called the sectorial factorization
[53], and the matrix D is unique up to ordering of the diagonal
elements [52], [53]. Based on this factorization, following [54]
we define the phases of a sectorial matrix to be the phases of
the eigenvalues of D, and denote them by

$(A) = [61(A), da(A), ..., éa(A)]".

Each phase is only defined modulo 27, but by convention we
sort them nonincreasingly, i.e., as

P(A) = ¢1(A) = 92(A) = -+ = ¢n(A) = 9(A),

and define them so that ¢(A) — ¢(A) < m. With this conven-
tion, we can for example see that that the phases of a sectorial
matrix are invariant under congruence transformations, and
that strictly accretive matrices are sectorial matrices with
phases contained in (—7/2,7/2) modulo 27. The phases of a
sectorial matrix has many nice properties, and can for example
be used to guarantee that a matrix of the form I + AB is of
full rank; for an in-depth treatment of matrix phases we refer
the reader to [54]. Moreover, the definition of phases can be
extended to all semi-sectorial matrices; for the extension to
quasi-sectorial matrices see Remark II.2 below, and for the
extension in the general case see [55], [56], [57] for details.
In any case, we still use ¢(A) and ¢(A) to denote the larges
and smallest phase, respectively.

Remark I1.2: Since the eigenvalues of a matrix are con-
tained in its numerical range, any sectorial matrix must be full
rank. The set of quasi-sectorial matrices extends the sectorial
matrices to the set of matrices A for which the opening angle
of W'(A) is strictly less than 7, but that are not necessarily
of full rank. In particular, let A € M, be a quasi-sectorial but

not sectorial matrix. Then the origin must be a sharp point on
OW(A), i.e., the boundary of W (A). This implies that 0 is a
normal eigenvalue of A, and that there exists a U € U,, such

that 0 0
A:U[0 A]U

where A is sectorial and rank(A) = rank(A) [47, Thm. 1.6.6].
The phases of a quasi-sectorial matrix is hence defined as the
phases of A, and quasi-sectorial matrix thus have between 1
and n phases.

The use of phases in MIMO LTI systems: The concepts of
magnitude and phase are well-established in the context of
single-input-single-output LTT systems, and they both consti-
tute highly useful and complementary tools. However, while
the concept of system gain has a generally accepted and useful
generalization to MIMO LTI systems, including small-gain
theorems for robust stability, the concept of phase has attracted
much less attention. Early works trying to establish definitions
of phases with useful properties in the MIMO setting can be
found in, e.g., [58], [59], [60], [61], [62]. Recently, there has
been a renewed interest in the concept of phases for MIMO
systems, both for LTI systems [63], [56], [64] and for nonlinear
systems [65], with small-phase theorems for robust stability as
a result. This concept of phases for MIMO LTI systems builds
on the concept of matrix phases [54], as introduced above, and
can also be seen as a quantitive generalization of passive and
negative imaginary systems [56]. As will be seen below it
is also connected to quadratic graph separation. In fact, this
notion of phase turns out to be, in some sense, the correct
notion in order to guarantee robust stability against certain
types of magnitudinal uncertainties (see Section III).

IIT. MULTIPLIERS OF PHASE TYPE

In this section we investigate the necessity of certain
multipliers of phase type for robust stability of feedback
interconnections with respect to magnitudinal uncertainties.
In particular, we first show that I + AB is nonsingular for
magnitude scaling and certain congruence transformations,
respectively, only if there exists certain types of phasal multi-
pliers. The results are then extended to MIMO LTI systems.

A. Multipliers for stability under scaling uncertainty

One of the simplest forms of uncertainty is an uncertainty in
the scaling of one of the matrices. In order to guarantee that the
interconnection is stable for all scalings, it would therefore be
desirable to show that I +7AB is nonsingular for all 7 € R...
For A, B € GL,, that is equivalent to that A(AB) NR_ = 0,
i.e., that the intersection is empty, and necessary and sufficient
conditions for the latter is given in the following proposition.

Proposition Il1.1: Given A, B € GL,,, there exists an H €
GL,, such that HA and H* B are strictly accretive if and only
if \(AB)NR_ = .

Proof: The proof follows by using results in [66], [54].
More precisely, first assume A(AB) NR_ = (). Then, by [66,
Thm. 1] we have that the matrix AB can be factored as le,
where A,B € A,,. Let H* = BB!, then H*B = B € A,,.
Moreover, by congruence we have that H A is accretive if and



only if H=Y(HA)H* = AH* is accretive. For the latter,
we have that AH* = ABB~! = ABB ! = A ¢ A, and
hence there exists an H € GIL,, so that HA, H*B € A,,. This
proves the “if”-statement. To show the “only if”’-statement,
assume that there exists an H so that HA, H*B € A,,. Again,
by congruence HA € A, if and only if AH™* € A,. By
[54, Thm. 6.2] it follows that AB = AH *H*B have no
eigenvalues along R_. ]

The result in Proposition III.1 can be understood in terms
of the existence of a phasal multiplier P € Hs,, that fulfills
(2), i.e., a multiplier P where only the off-diagonal blocks are
nonzero and where in fact both inequalities in (2) are strict
(see [32, Cor. VI.2]). In particular, this formally confirms the
intuition that in order to show that the interconnection is stable
under an arbitrary positive scaling uncertainty, a certain type of
“phase information” is the only thing that is needed. Moreover,
these results can be strengthened to (certain) matrices which
are not of full rank as follows.

Theorem III.1: Given A, B € M,,, assume that if zero is an
eigenvalue of AB, then it is semi-simple.? Then the following
statements are equivalent:

(i) det(I +7AB) # 0 for all 7 > 0;
(ii) there exists a P € Hy, fulfilling (3), and P takes the

form
0 H
P= [H 0] ()

for some H € M,,;
(iii) for the eigenvalues of AB, it holds that

MAB)NR__ = 0. ®)

Proof: See Appendix A. ]
If the matrix A in Theorem III.1 is full rank, then the
statement in Theorem III.1(ii) can be strengthened and a
number of other equivalent conditions can also be derived. In
particular, the multiplier H can be chosen to be nonsingular
and strict accretiveness of H A can be guaranteed.
Corollary IIL1: Let A,B € M, be as in Theorem IIL1.
If A € GL,,, then the statements in Theorem III.1 are also
equivalent to

(iv) there exists an H € GL, such that HA is strictly
accretive and H* B is quasi-strictly accretive;

(v) there exists an H € GL, such that HA is strictly
accretive and H* B 1is accretive.

Moreover, the multiplier P in Theorem III.1(ii) can be selected
so that it fulfills (2).
Proof: See Appendix A. ]
In many applications, we would be interested in correspond-
ing results for real-valued matrices. By just slightly modifying
the proof of the theorem, we have the following corollary.
Corollary I11.2: Under the assumptions in Theorem III.1,
if A, B € M, (R), the same conclusion is true where we can
restrict H to also be real.
Proof: See Appendix A. [ |

2 An eigenvalue is called semi-simple if its algebraic and geometric multi-
plicities are the same [42, Def. 1.4.3]. This is equivalent with that all Jordan
blocks corresponding to the eigenvalue are of size 1 x 1 [42, Prob. 3.1.P5].

Observe that, in general, it is not possible to relax the
assumption in Theorem III.1 that if zero is an eigenvalue of
AB, then it is semi-simple. This can be seen by the following
counterexample for 3 x 3 matrices, where the zero-eigenvalue
of AB has a Jordan block of size 2 x 2.

Example II1.1: Let

1 00 hii hiz  his
A=1(0 0 1|, B=1I3, H=|hy ho hosl|,
0 00 hs1  hzz hs3

and note that det(I + 7AB) = 1+ 7 # 0 for all 7 > 0.
Moreover, A*A = diag(1,0, 1). Next, note that the existence
of a multiplier of the form (7) that fulfills any of the conditions
(2)-(5) would imply that both HA + A*H* > 0 and H*B +
B*H > 0. A direct calculation gives that

hii +hiy hio+h3 his
HA+ A*H* = |hg1 + hiy hsa+hiy hss|,
13 h3s 0

and for this to be positive semidefinite we must have hi3 =
hss = 0, see, e.g., [42, Obs. 7.1.10]. Therefore, HA + A*H*
has at most rank 2, and can hence only be positive semidef-
inite. This means that there is no multiplier of the form (7)
that fulfills (2). Moreover, it is easily seen that H A+ A*H* %
gA* A for all € > 0, and therefore there is no multiplier of the
form (7) that satisfies (3). Next, note that

hii+hiy hia+h3; h3;
H'B+B*H=H+H"=|ha1 + hiy ho2+hb, has+ hisy|,
hs1 hsa + his 0
which, similar to above, can only be positive semidefinite if
hs1 = 0 and hsy = —h3;. However, that means that H +

H* has rank 2, and hence can only be positive semidefinite.
Moreover, for all ¢ > 0 we therefore also have that H*B +
B*H % eB*B. Thus, there is no multiplier of the form (7)
that satisfies (4) or (5).

Nevertheless, while the above counterexample shows that
the condition on the semi-simple zero-eigenvalue can in gen-
eral not be relaxed, the case for matrices of size 2 x 2 is still
open. The following gives an example of where there exists a
multiplier of the form (7) that fulfills (3), despite the fact that
that zero is a not semi-simple eigenvalue of AB.

Example 111.2: Let

0 1 0 -1

A= [O 0}, B=I, H-= L 1},
and note that det(I + 7AB) = 1 # 0 for all 7 > 0.
direct calculation gives that A*A = diag(0,1), that HA
diag(0,1), and that H*B + HB* = H* + H = diag(0,2).

Therefore, for ¢ = 1 we have that P as in (7) fulfills (3).
Remark I11.1: Theorem III.1 appears to be intrinsically and
closely related to p-analysis when AB is invertible. In partic-
ular, it may be established using the p-analysis results in [31],
[34] that (i) in Theorem III.1 implies there exists H € GL,,
such that HAB + B*A*H* > 0 and H + H* > 0, which
may also be established via (iv) in Corollary IIl.1. Further
investigation into the delicate relation between Theorem III.1
and p-analysis does not appear to be straightforward and is a
worthwhile future research direction of significant importance.

A



B. Multipliers for stability under congruence

The results in Theorem III.1 show that stability under
magnitude scaling is equivalent to the existence of a phasal
multiplier. Interesting to note in this context is that for this
limited (and in some sense minimal) set of magnitudinal
perturbations, the set of possible multipliers of phase type to
which we could restrict our attention, and still have a necessary
and sufficient condition for robust stability, is large (and in
some sense maximal). Motivated by this, we next investigate
a type of perturbations against which a minimal set of phasal
multipliers can guarantee robust stability. In this case, we have
the following result.

Theorem II1.2: Given A, B € M,, \ {0}, the following
statements are equivalent:

(i) det(I +T*ATS*BS) #0 for all T, S € GL,,;

(i1) there exists a P € Hl, fulfilling (5) or (3), and which

takes the form 0 /
z
P= L*I 0]
for some z € T;
(iii) one matrix is quasi-sectorial, the other is semi-sectorial,
&(A) + ¢(B) <, and $(A) + ¢(B) > —.
Finally, if the quasi-sectorial matrix in (iii) is of full rank, then
the multiplier P in (ii) fulfills (4) or (2).
Proof: See Appendix B. ]
Remark I11.2: The result in Theorem II1.2 is a type of small-
phase theorem, akin to [57, Thm. 7.1]. The difference is that
Theorem III.2 considers robust stability against congruence
of two given matrices, while [57, Thm. 7.1] considers ro-
bust stability with respect to a matrix cone of semi-sectorial
matrices. Nevertheless, note that when B = I, the result in
Theorem III.2 specializes to robust stability against the matrix
cone P,,.
Similar to before, we get the following real-valued version
of the theorem as a corollary.
Corollary I11.3: Theorem II1.2 remains true when A, B, T,
S, and z are all real.
Proof: This can be established by noting that a real matrix
A is semi-sectorial if and only if either A + AT =0 or A+
AT <0. ]

C. Phasal multipliers for LTI systems

Next, we extend the above results to LTI systems. In particu-
lar, in Section II it was shown how quadratic graph-separation
results for matrices can be extended to LTI systems. Here,
we follow along the same line. In particular, for magnitudinal
perturbations we have the following necessary and sufficient
condition for stability.

Theorem 1I1.3: Given G € RHZ™ and K € RHZX" for
which any potential zero-eigenvalue of G(jw)K (jw), for w €
[0, 0], is semi-simple, then (I +7GK)~! € RHZ" for all
7 > 0 if and only if there exists an H € L*" such that for
all w € [0, oo},

(1 -G G (g, ) = ~eGlGlw)

() ) (F4) o

where o mga
)= e 9

Proof: Sufficiency follows from Proposition II.1, Re-
mark II.1, and the fact that the inequality

(K(w)* 1)T(jw) (K (j‘”) -0
implies that
(it 1y1iGie) (TP o

for all 7 > 0. Necessity can be established by applying
Theorem III.1 and Corollary III.2 frequency-wise in a similar
fashion to the proof of Proposition I1.2. In particular, since G
and K are continuous on the imaginary axis, II may also be
chosen to be continuous on the imaginary axis. [ ]

Remark II1.3: By examining a transfer function matrix
frequency-wise, analogous observations to those in Re-
mark III.1 are applicable in the context of Theorem III.3.

The result above shows that if the feedback interconnection
is robustly stable against arbitrary positive scaling, then only
phasal properties of the open-loop components are required to
establish its stability, i.e., any corresponding multiplier IT has
its diagonal blocks being 0.

Analogously, the following two results, which establish
sufficiency and necessity for stability under real congruence
transformations, may be readily derived.

Theorem 1I1.4: Given G € RH" and K € RH.*", then
(I+TTGTSTKS)™r € RHX" for all T, S € GL,(R) if
there exists z € L such that for all w € [0, oo},

1

(1 ~6Ge)) 1) (g, ) = el Gliw)

KEJ.“’ ©)
() ) (U)o
or
(1 -GGG (_g(,) 20
. (10)
() ) (FU) = o) Ko
where

Proof: Observe that (9) implies that for all 7,5 €
GL, (R), there exists ez such that

(I =TTG(jw)'T) I(jw) (—TTC;T(jw)T) :
—erT" G(jw) TT" G(jw)T

s7xGwrs ge) (5P 2o

and similarly for (10). The claim then follows from Proposi-
tion II.1 and Remark IL.1. [ ]



Theorem IIL.5: Given G € RHZY " and K € RH.", (I+
TTGTSTKS)™! € RHL™ for all T, S € GL,(R) only if
for w € {0, 00},

(1 ~cter)te) (g,

)
(o ) (K4 =0

)

)

or

where for each w € {0, 00},

: 0 I 0 I
M(jw) = L. 0] or — L 0}
Proof: This follows by applying Corollary III.3 to the
pairs of real matrices {G(50), K (50)} and {G(joo), K (joo)}.
|
The separation condition in the theorem above holds for
sufficiently small and large frequencies by the continuity of
the transfer functions G and K. Such properties are useful,
for instance, in the study of negative imaginary systems [67],
where an example of open-loop systems being passive on
sufficiently small and large frequencies and negative imaginary
elsewhere can be found.

Example 1I1.3: Let G € RHZ" be output strictly passive
and K € RHZ" be passive. Then they satisfy the separation

conditions in all three of the theorems above with

a0 1]

This is a well-known passivity theorem.

I'V. MULTIPLIERS OF GAIN TYPE

In the previous section, we investigated the necessity of
phasal multipliers in order to guarantee robust stability with
respect to certain magnitudinal perturbations. In this section,
we turn to the necessity of magnitudinal multipliers in order
to guarantee robust stability with respect to certain phasal
perturbations.

A. Multiplier for stability under scalar rotation uncertainty

In analogy with Section III, we first consider scalar rota-

tional uncertainties. In this case, we have the following result.

Theorem IV.1: Given A € M,,, and B € M,, ,,, the

following statements are equivalent:

(i) det(I + el AB) # 0 for all 6 € [0, 27);

(ii) there exists a P € H,,, fulfilling (2), with both

inequalities strict, which takes the form

p_ [N O]

0 M an

for some N € H,, and M € H,,,;

(iii) for the eigenvalues of AB, it holds that

MAB)NT = (12)

(iv) there exists M € H,, and N € H,, such A*MA < N

and B*NB < M.

Proof: The equivalences “(i) < (iii)” and “(ii)) & (iv)”
are straightforward. We therefore restrict our attention to the
equivalence “(iii) < (iv)”. To this end, first note that the
statement is trivial if any of the two matrices A, B is the zero
matrix. Therefore, in the remaining we will, without loss of
generality, assume that both are nonzero.

To show “(iv) = (iii)”’: assume that there exist M € H,,, and
N € H,, such that A*MA < N and B*NB < M. Together
with [42, Obs. 7.1.8], the former inequality implies that

B*A*MAB < B*NB,

and hence
B*A*MAB < B*NB < M.

Let @ == M — B*A*MAB > 0. This means that M is a
solution to the Stein equation

M — B*A*MAB = Q,

where () € P,,,, and hence by [68, Thm. 13.2.2] we therefore
have that A(AB)N'T = 0.

To show the “(iii) = (iv)”: assume that (12) holds, and let
AB = XJX ™! be a Jordan decomposition of AB. By (12)
we can, without loss of generality, assume that

(0
7=(% 1)

where J; € M,,,, has all eigenvalues in D and .J; € M,,, has
all eigenvalues in (D), i.e., outside of the close unit disc, and
where m = mj + mo. Next, using [68, Sec. 13.2] and [69,
Exer. 4.9.30] we have that for any P, € P,,,, and P, € P,,,,,
there is at least one solution M to the Stein equation?

M —B*A*MAB = X (’;1 1-9 ) X 1= Q0. (13)
2

Let M be a so}ution to (13), in which case B*A*MAB < M.
Now, define N := A* M A and note that this implies that

A*MA=N=<N,
B*NB = B*A*MAB < M.

To prove that there exist M € H,, anq N € H,, with both
inequalities above strict, consider NV := N+l for some ¢ > 0.
In particular,

A*MA=N<N+el=N

3Solutions to the Stein equation can be obtained by using solutions to
the discrete-time Lyapunov equation: one for the stable part, and one for
the anti-stable part. In particular, in this case one solution is given by
M = X~ * diag(H1, H2) X %, where Hy = 302 o(JF)*P1J{ and Ha =
15 (SioUs ) P )) J5 = = () Py ) T
can be verified that both Hi and Ho are well-defined, since Jq; has all
eigenvalues in the open unit disc and J> has all eigenvalues outside of the
closed unit disc.



for all ¢ > 0. Moreover, since M — B*NB = M —

B*AMAB = @ = 0, we have that
M —B*NB=M —B*NB—¢B*B=Q —¢B*B >0,

for € small enough. This completes the proof. [ |

B. Multiplier for stability under unitary perturbation

In the previous section, we established that the existence
of a magnitudinal multiplier is necessary and sufficient for
stability in the case of a scalar rotational uncertainty. Similarly
to Section III, a minimal set of uncertainties gives rise to a
maximal set of multipliers. Motivated by this, we now consider
for which type of phasal uncertainties a much smaller (in some
sense minimal) set of magnitudinal multipliers can guarantee
robust stability. More specifically, the set of magnitudinal mul-
tipliers considered are diagonal and completely parametrized
by a nonnegative number and an element that is either 1 or
—1, i.e., a nonzero element whose useful information is only
its sign.
We start by establishing a lemma. To state the result, recall
the convention we use that a matrix A € M, ,, has n singular
values, which are given by o(A4) = /A(A*A), and hence if
n > m, then g,,11(A) =--- =0,(4) =0.
Lemma IV.1: Given A € M, , and B € M, 1,
(i) there exists a P € M,,, of the foom P =
diag(—~2I,1), v € R, fulfilling (2), with both inequali-
ties strict, if and only if o1 (A)o1(B) < 1;

(ii) there exists a P € H,4, of the form P =
diag(y21, —I), v € R, fulfilling (2), with both inequali-
ties strict, if and only if o, (A4)0,,(B) > 1.

Before we proceed, note that the conditions in
Lemma IV.1(ii) can only ever be fulfilled if n = m
and both matrices are full rank, since otherwise at least one
of the two singular values ¢,,(A), 0., (B) equals zero.

Proof: We start with proving (i). To this end, note that
a direct calculation in (2) (with both inequalities strict) gives
that a multiplier of the prescribed form exists if and only if

A*A < 2T and v?*B*B < I, (14)

which is the case if and only if there exists a v € R such
that all singular values of A are strictly smaller than |~y|, and
all singular values of B are strictly smaller than or 1/|y|.
Therefore, the existence of such a multiplier clearly implies
that o1 (A)o1(B) < 1. Conversely, if o1(A)o1(B) < 1, then a
direct calculation shows that 1/0%(A)—0%(B) > 0 and that for
any 0 < € < 1/0%(A)—0?(B), if we take v2 = 1/(c3(B)+e¢)
we have that v2 > 1/(c}(B) + 1/0%(A) — 0}(B)) = 0%(A)
and that 1/4% > 0?(B), and hence such ~? fulfills (14).
Next, to prove (ii) we follow along the same lines. However,
first note that o, (A)oy,(B) > 1 only if n = m and both A
and B are invertible, since otherwise at least one of the two
singular values equals zero. Now, a multiplier of the prescribed

form exists if and only if
A*A = 21 v?B*B > I, (15)

which, similarly, can only hold if n = m and both A
and B are invertible. Henceforth, we can therefore restrict

and

our attention to that case. Now, (15) holds if and only if
there exists a v € R such that all singular values of A
are strictly larger than |y|, and all singular values of B are
strictly larger than 1/|v|. Therefore, the existence of such
a multiplier implies that o,(A)o,(B) > 1. The converse
statement is proved analogously, but by instead considering
0<e<ol(B)—1/0%(A) and v* = 1/(02(B) — ¢), which
means that 72 < 1/(02(B) — 02(B) + 1/02(A)) = 02(A)
and that 1/92 < 02(B). This proves the lemma. ]

The preceding lemma considers two different domains in
which stability of I + AB can be guaranteed: when both A
and B have either small gain or large gain. In both cases,
we expect that stability should be preserved under a suitable
notion of rotation. We can now formalize this as follows.

Theorem IV.2: Given A € M,,, and B € M,, ,,, the
following statements are equivalent:

(i) det(I+UAVB) #0 forall U € U, and all V € Uy;
(ii) there exists a P € H,,, fulfilling (2), with both
inequalities strict, which takes the form

P = {_@21 0} (16)

0 &I
for some y € R and € € {—1,1};
(iii) either o1(A)o1(B) <1 or 0,(A)om(B) > 1.
Proof: See Appendix C. [ ]

Remark IV.1: When n = m, both A and B in Theorem IV.2
have polar decompositions A = UsQ4 and B = Ug@p,
where Us,Up € U, and Q4,Qp € P,. In this case, the
uncertainty can be interpreted as the principle phases of the
two matrices being unknown; the principle phases are defined
in [58]. Moreover, if B = I, the result in Theorem IV.2
establishes conditions for robust stability against all elements
in U,, and in this case the equivalence between (i) and (iii)
follows from [70].

Remark IV.2: Note that in a numerical implementation
searching for multipliers to guarantee stability, the conditions
in Theorem IV.2(ii) can be relaxed to searching for multipliers
of the form P = diag(—mI,neI), for n1,m2 € R. This
means that the search for multipliers fulfilling (2) can either
be formulated as two LMIs of the form (16), each of which
has one unknown 72 > 0, or it can be solved as one LMI in
the two unknowns 71,72 € R.

C. Magnitudinal multipliers for LTI systems

In order to extend the above results to LTI systems, we first
need the following definitions and results: a transfer function
U € RHZ" is said to be unitary if U(jw) € U, for all
w € [0,00]. Moreover, by the proof of [45, Lem. 1.14], it
holds that for every w > 0 and X € U,, there exists unitary
U € RHZ™ such that Q(jw) = X. Next, the following
expression will be used in the forthcoming theorems:

(I —G(jw)*) (jw) (—G{jw)) =<0

. a7
(K (je)* 1) T(jw) (K 9‘”’) - 0.



First, a sufficiency condition for robust stability against phasal
uncertainties is stated.

Theorem 1V.3: Given G € RHL.*" and K € RHL™,
then (I +uGK)~' € RH”*™ for all unitary v € RH.!
if there exist N € L™ and M € LZ2*™ such that for all
w € [0,00), N(jw) = N(jw)* % 0, M(jw) = M(jw)* = 0,
and (17) holds with

II:= [N 0} .

0 M

Proof: By noting that u(jw)*u(jw) = 1 for all w €
[0, 00], the claim holds by Proposition II.1. [ |

Next, a necessary condition for robust stability to phasal
uncertainties is provided.

Theorem IV4: Given G € RHL.*" and K € RHL™,
then (I +uGK)~' € RH”*™ for all unitary v € RH.!
only if there exist N € L™ and M € LIJ*™ such that for
all w € [0,00], N(jw) = N(jw)*, M(jw) = M(jw)*, and
(17) holds with

II := [N 0} .

0 M

Proof: The claim can be established by applying Theo-
rem IV.1 frequency-wise as in the proof for Proposition II.2.
|

The theorem above shows that if a feedback system is robust
against all scalar phasal uncertainties (with unity gain), then
there necessarily exists a multiplier of the gain type with which
to establish its robust stability via quadratic graph separation.
When the phasic perturbations are allowed to span all present
dimensions, the following necessary and sufficient condition
for robust closed-loop stability may be acquired.

Theorem IV.5: Given G,G~' K, K~! € RHZ*™, then
(I+UGVK)™t € RHZ*™ for all unitary U,V € RH*™
if and only if there exists v € L.*' such that for all
w € [0,00], |y(jw)| > 0 and (17) holds with

(jw)PI 0

MGw) = | NG B

where £ € {—1,1}.

Proof: Necessity can be established by applying Theo-
rem IV.2 frequency-wise as in the proof for Proposition II.2.
In particular, continuity of G and K on the imaginary axis
guarantees the uniqueness of ¢ for all w € [0, oo]. Sufficiency
follows from Proposition II.1 and the fact that (17) implies

v I
(I —G(jw) U (jw) )H(Jw) (—U(jw)G(jw)) =<0
o (V0K
(v NG (V) o
for all unitary U € RH..*™ and V € RH..*™. ]
Example IV.1: Consider G € RH.*" and K € RH.™

for which [|Gl|o <7 and || K| < % Then G and K satisfy
the quadratic separation condition in the theorems above, i.e.,

(17), with ,
=T 0
)

This is the celebrated small-gain theorem.

V. A NUMERICAL EXAMPLE

In this section, we illustrate how the results in the paper
can be used in practice. In particular, we here consider an
example of verifying robust stability against positive scaling
uncertainty, i.e., we focus on using Theorem IIL.3. It is
noteworthy that the other results in this paper can be used
analogously in appropriate settings.

To this end, consider the two transfer functions G, K €
RHiOX2 given in (18). The goal is to verify that the neg-
ative feedback interconnection between the two systems is
stable against any positive scaling uncertainty, i.e., that (I +
TGK)™' € RHZX? for all 7 > 0. It can be easily seen
that neither of the systems are passive, e.g., by noting that
G(j1)+G(y1)* # 0 and that K (j0)+ K (50)* # 0, and hence
results based on passivity cannot be used to guarantee robust
stability of the interconnection. However, from Theorem III.3
we know that finding a phase type multiplier is a both neces-
sary and sufficient condition for the sought robust stability.
To numerically obtain a stability certificate, we discretize
the frequency interval into 1000 points {w,};%9’; frequency
w1 = 0, and 999 grid points logarithmically equally spaced
between wy = 10740 and wiggy = 10° (note that wsgy = 1).
Then, for each w, we search for an H, € My so that with

(o H
el o)

the two LMIs

(I —G(jwe)*) I, (G(ij)> =< —1071°G (jwe)* G (jwe)

ey Dy (G0 o

are satisfied. Here, we set e = 10710, since a small value of ¢
makes the LMIs easier to satisfy. If there exists one solution
Hy to the two LMIs, there in general exist multiple solutions.
In order to obtain similar matrices for the different frequencies,
for each ¢ we minimize ||I; — Hy|| subject to the two LMIs as
constraint. For each ¢, the resulting semidefinite programming
problem is a convex optimization problem, and the numerical
implementation is performed in Matlab using CVX [71], [72]
on a standard desktop computer with a 64-bit operating system
(Windows 10), a 2.90GHz Intel i7-10700 CPU, and 32GB
of RAM. The optimization problem is feasible for all £ =
1,...,1000, which by continuity is a numerical certificate that
the feedback interconnection of G and K is stable against
any positive scaling uncertainty. Moreover, the total time to
solve all the semi-definite programming problems was less
than 5 minutes. Finally, for illustration purposes, a few of the
obtained Hys are given below.

o 10-7 [7.82 —7.72]
1~ )

8.26 —8.12

6.52 +37.7j 4.60 + 52.9j
1.53+53.15 8.80 4+ 77.15]

Hipoo = I>.

Hso1 = [



7s2 +57s4+90  10s? + 82s + 132
10s2 4+ 73s + 78 14s% + 104s + 120

R

G(s) =

K (s)

—7s% — 91s% — 4135 — 609 25% +20s + 58
5.58% + 71.55% + 324.55 + 478.5  0.55> 4 652 + 24.55 + 29

)

(s+1)(s+6)2

(s+5—2)2(s + 5+ 25)2 (18)

VI. CONCLUSIONS

We have shown that robustness of feedback interconnections
against certain structured uncertainty corresponds to specific
forms of quadratic separation of the open-loop systems.
Specifically, gain-type multipliers define quadratic separation
needed in a feedback that is robust against all phase-type
uncertainty. Analogously, a robustly stable feedback against
all gain-type uncertainty can always be established via the
existence of phase-type multipliers. These results are impor-
tantly informative when using multiplier-based methods for
establishing robust feedback stability. Future research direc-
tions of interest include the consideration of block-diagonal
structured uncertainty as in the p-analysis and the investigation
of its intricate relation with the main results in this paper.
The exploration of a possibly unifying description of the
structures of uncertainties and the corresponding multipliers
beyond those examined in this paper is also desirable.
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APPENDIX

A. Proof of Theorem Il1.1, Corollary II1.1, and Corollary I1I.2

Proof of Theorem II1.1: The equivalence between (i) and
(iii) is clear: the determinant is nonzero for all nonnegative
scaling if and only if AB have no eigenvalue along the strictly
negative real axis.

Next, we prove that “(ii) = (i)”. To this end, assume that (ii)
holds. By Lemma II.2, the existence of the multiplier P that
fulfills (3) means that det(I + AB) # 0. Now, for any 7 > 0
consider the matrices A = A and B = 7B. For these matrices,
it is easily verified that this P also fulfills (3). Therefore, by
Lemma I1.2 we have that 0 # det(] + AB) = det(I +7AB).

We complete the proof by showing that “(iii) = (ii)”. To this
end, assume that (8) holds. This means that the principle part
of the matrix square root (AB)'/? is well-defined and that all
the eigenvalues of (AB)'/? lie in the open right half-plane or
at the origin [73, Prob. 1.27]. Moreover, (AB)l/ 2 has as many
zero-eigenvalues as AB, and since a potential zero-eigenvalue
of AB is assumed to be semi-simple, so will the potential zero-
eigenvalue of (AB)'/2. Next, let @ denote the direct sum of
two matrices, i.e., the block-diagonal with the two matrices
on the diagonal [42, Sec. 0.9.2], and let (AB)l/2 =XJX !
be a Jordan normal form. More specifically, let J = J; &
-+ @ Jg, ® 0 where each block Jj, is of size nj and have
the nonzero eigenvalue \j on the diagonal, as per usual, but

let the Jordan normal form be such that the elements on the
sup-diagonal of each Jj, take the value

real ()\k((AB)l/2)>/2 >0,

€= min
ke{l,...,01}
which is always possible [42, Cor. 3.1.21].

Now, set D = J; @ --- & Jp, @ I and note that D is
of full rank, that D~ = J;7' @ --- ® J,;' @ I, and that
D'J=I® ---®I®0. Moreover, D is strictly accretive.
To see the latter, first note that by [47, 1.2.10, p. 12] we have
that W(D) =W & ---dJpdI) = CoW(J)U---U
W (J¢) U{1}), where Co denotes the convex hull. Moreover,
Jp = )\k((AB)l/Z)Inank + €S, where S is the nilepotent
matrix with zeros everywhere except the first sup-diagonal
which is ones. By [47, 1.2.10, p. 12] W (Jy) C A + eW(S),
and by [47, Prob. 29, pp. 45-46] the set W (S) is contained
in the unit disc. Since by construction ¢ < real(\;)/2,
we therefore have that W(J;) C C. for all k, and hence
W(D) c C4, ie., D is strictly accretive. In particular, this
means that D 4+ D* > 0.

Finally, take H = A*X~*D~*X ! and note that

HA+A*H* = A* X *(D™* 4+ D HX 1A= cA*A

for some ¢ > 0 small enough, since X ~*(D~*+D~1) X! >
0. By multiplying the above inequality with —1, (3a) follows.
Moreover,

H'B=X"*D'X "AB=X"*D'X'XJXx'XxJXx!
=X -@la0)JX '=XT"JX!,

which is congruent to J and hence quasi-strictly accretive. A
direct calculation in (3b) therefore verifies that last claim, and
hence proves that “(iii) = (ii)”. [ |

Proof of Corollary III.1: To prove the corollary, assume
that A € GL,,. A direct calculation shows that if (iv) is ful-
filled, then so is (ii). Moreover, observe that the fact that A is
of full rank implies that H = A*X ~*D~*X ~! constructed in
the proof of Theorem III.1, above, is of full rank. Furthermore,
it also means that HA+A*H* = A*X*(D~*+D 1) X~1A
is congruent to D~* + D~! and therefore positive definite,
i.e., HA is strictly accretive. In particular, that means that
the corresponding multiplier P fulfills (2), and also that (iii)
implies (iv) in this case.

Finally, clearly (iv) implies (v), since a quasi-strictly ac-
cretive matrix is accretive. What is left to show is thus that
under the assumption that A € GIL,, (v) implies any of the
statements (i)-(iv). To this end, note that if H € GIL,, and HA
is strictly accreitve, then by congruence HA and AH ~* have
the same phases. Therefore, using [56, Lem. 2.4] we have that

—1 < $(HA) + ¢(H*B) = $(AH ™) + (H* B)
< /MN(AH*H*B) = Z\(AB) = Z \i(AH *H*B)
< ¢(HA) + ¢(H*B) <



for i = 1,...n, which shows that (v) implies (iii). [ |

Proof of Corollary II1.2: Reexamining the proof of
Theorem III.1, the proof of “(i) < (iii)”, and the proof of “(ii)
= (i)” hold directly also in the case of real matrices A, B and
H. Moreover, the remaining parts of the proof, showing that
that “(iii) = (ii)”, would also hold if the constructed H is
real. The latter is true if X and D are real, which is true if
(AB)'/? is real. Thus, the conclusion follows if AB has a
real primary square root. Since a potential zero-eiganvalue is
assumed to be semi-simple, by [73, Thm. 1.23] the matrix AB
has a real primary square root. ]

B. Proof of Theorem III.2

The proof proceeds by showing that (i) and (iii) are
equivalent, and that (ii) is equivalent to (iii). The former
equivalence is the lengthier part, and for improved readability
we hence separate the equivalence of (i) and (iii) into a
separate proposition.

Proposition A.1: Letn > 2, and let A, B € M,,\ {0}. Then

det(I + T*ATS*BS) # 0 for all T, S € GL,,  (19a)

if and only if

one matrix is quasi-sectorial, the other semi-sectorial, and
O(A) +6(B) <, p(A) + ¢(B) > —. (19b)

Proof: To show <, assume that (19b) holds. For any
T,S € GL,, by congruence invariance of phases of matrices
we have that ¢(T*AT) = ¢(A) and that ¢p(S*BS) = ¢(B).
Therefore, by [56, Lem. 2.4] we have that

—7 <¢(A) + ¢(B) = ¢(T*AT) + ¢(S*BS)
< ZN(T*ATS*BS) < ¢(T*AT) + $(S*BS)
= ¢(A) +¢(B) <7

for ¢+ = 1,...n. In particular, this means that there exists an
€ > 0 so that \(T*ATS*BS)N{z € C| z = —red?, r >
0, 0 € [—€,¢]} =0 for all T, S € GL,,. The latter implies
that (19a) holds.

Next, to show = we will show that the contraposition
is true, namely that if (19b) is not true, then there exists
T,S € GL,, such that det(I + T*ATS*BS) = 0, i.e., such
that 7 AT'S* B.S has an eigenvalue in —1. The latter is shown
by explicitly considering all possible cases using the results
in [51], [55], and is also making heavy use of [74, Thm. 1]
(see also [47, Thm. 1.7.9], [51, Thm. 3]) .

To this end, first assume that B is arbitrary and with at least
one nonzero eigenvalue, and A has only the zero-eigenvalue.
Since A # 0, the eigenvalue cannot be semisimple, and hence
A must have a Jordan block of size at least 2 x 2. The latter has
a numerical range that is a circle centered around the origin
[47, Prob. 9, pp. 25], and hence the angular numerical range
2 x 2 block, and hence of the matrix A, is the entire complex
plane. Now, let B = VZI'gVg be a Schur decomposition of
B, i.e., where Vg is untiary and I'p is upper triangular. Any
such I'g is called a Schur form of B. Moreover, note that at
least on element of I'p is nonzero; without loss of generality
assume it is (I'g)11. Next, by [74, Thm. 1] there exists a

C € M, such that one of the eigenvalues of C is —(I'p)11
and such that T*AT = C for some T € GL,,. Moreover,
let C' = VAI'cVe be a Schur decomposition of C' such that
(T¢)11 = —(Tp)11. By taking S = V5 and T = TV we
have that

(T*AT)(S*BS) = (Vo T* ATVE) (VBVET 5VEVE)
= (VeCVE)Tg =TT,

which is upper triangular and with —1 in the upper left corner,
i.e., for these T and S we have that T*ATS*BS has an
eigenvalue in —1.

Note that the above procedure can also be carried out,
mutatis mutandis, if B only has the zero-eigenvalue. In par-
ticular, if B only has the zero-eigenvalue it must also have
a Jordan block of size at least 2 x 2. Using [74, Thm. 1],
by an appropriate selection of S = 5152, we can thus make
sure that S;BS; has a nonzero eigenvalue, after which the
above procedure can be repeated to select 7' and So so that
(T*AT)(S*BS) has an eigenvalue in —1. This means that
in the following, we can always assume that both A and B
have at least one nonzero eigenvalue. In fact, for any matrix
A that is nonzero and which is not sectorial and any arbitrary
nonzero matrix B, a similar argument to the preceding one
shows that det(I + T*ATS*BS) = 0 for some S,T € GL,,,
since the angular numerical range of A is the entire complex
plane (see [74, Thm. 1]).

The above argument shows that a necessary condition for
(19a) to hold is that both A, B are semi-sectorial. By [55,
Thm. 5] this means that, without loss of generality, we can
restrict ourselves to consider matrices of the form

A= 0 diag(ej‘lgl(“‘)7 ey ejd)’“lA(A)) 0
0 0 0

(20
where 04 + 7/2 > le(A) > > szf\(A) > 04 —7/2,
k{t >0, k3 >0, and n = 2k3' + k{*, and analogously for B.
Note also that ¢(A) = 04 +7/2if k&' > 0 and p(A) = H1(A)
if k4 = 0; an analogous observation holds for ¢(A). Moreover
a matrix A of the form (20) is quasi-sectorial if and only if
kst = 0 and ¢(A)—¢(A) < 7. Finally, note that by potentially
applying an appropriate permutation that rearranges the block-
diagonal elements we can, without loss of generality, restrict
our attention to matrices of size 2 x 2.

Now, we first show that we cannot have k3' > 0 and k¥ >
0. To this end, let S = I and consider the unitary matrix

_|cos (g + 79“'593) sin (g + 9“%93)
= Lon (5 + 21020 con (5 2

—sin LJQFGB) cos 0“‘505)
e AU

Let Sap :=sin((fa+0p)/2) and Cyp := cos((04+605)/2).



A direct (albeit somewhat cumbersome) calculation gives that

el 1

(Sap — Cap)? 45%5 —45S45Cap +2C%,
_201248 S1243+25ABCAB—301243 ’

which has eigenvalues — cos(04 + 05) + isin(64 + 0p) =
—eFi0at0s)  Therefore, taking T as above and S = I, the
matrix 7% AT S*BS has an eigenvalue in —1.

Next, we therefore assume that k3 > 0 and k¥ = 0. In
this case, first assume that B only has one non-zero phase, in
which case it suffices to consider

A = it [1 2}

and B = diag(e’*+(B) ).

0 1
If o4+ 7/24 ¢1(B) >7or 4 —7/2+ ¢1(B) < —m, then
we can write

T*ATB = T* AT diag(1,0)

where A = e71(B) A, However, since 64 +7/2+ ¢1(B) > =
or 0y —w/2+ ¢1(B) < —m, —1 is in the numerical range of
A. Therefore, using [74, Thm. 1] we can make a construction
similar to before, and select an appropriate 7' such that
T*ATB has an eigenvalue in —1. On the other hand, if
Oa+7/2+4 ¢1(B) < mand 04 — /2 + ¢1(B) > —m, then
(19b) is fulfilled (and thus (19a) holds, see the proof of the
implication “<=").

The next case we consider is when the diagonal unitary part
of B is of size at least 2 x 2. To this end, it suffices the consider

A=l [1 2}

01 B= diag(ejE(B),ejf(B)).

and
We split this into two different subcases. In the first case,
assume that B is quasi-sectorial, which means that ¢(B) —
#(B) < T I Oa+7/24+¢(B) > Tor0o—7/2+¢(B) < -,
then we can make constructions analogous to the above one,
and if 04 +7/2+ ¢(B) < w and 04 — 7/2 + ¢(B) > —m,
then (19b) is fulfilled and thus (19a) holds. Therefore, we next
assume that ¢(B) — ¢(B) = , in which case B is rotation-
Hermitian, i.e., B = ¢/¢(P) diag(1, —1). Moreover, that means
that either 64 + 7/2 + ¢(B) > 7 or 04 — 7/2 + ¢(B) =
04 —m/2+ ¢(B) — 7 < —7. In any case, let S = I and let

S 9A+§J(B)

co! ( 70“25(3)

jsin(
. . (0a+¢(B 0a+¢(B
]sm(if‘ 5 )> cos <7A 2( ))

This T is unitary, and a direct (albeit somewhat cumbersome)
calculation verify that T* AT B has an eigenvalue in —1. This
means that we cannot have k4 > 0 and k£ = 0.

Now, consider the case where both A and B have a rotation-
Hermitian 2 x 2 block, i.e., when

_ sy |10 _ e |10
= {0 —1}’ B=e [o —1|"

T =

§imilarl}L to the last case just abovg, that means that either
d(A) + ¢(B) > mor ¢p(A) — 7+ $(B) — 7 < —7. In any

case, let S = I and let

m _ $(A)+e(B)
2

cos (5 _ HAGEE)

us
2

—sin (
sin (% _ ¢(A>+¢(B)) oS (g _ ¢<A>+¢<B>>

T =
2 2 2

A calculation similar to before shows that T*AT B has an
eigenvalue in —1.

The two final cases to consider is when either i) A has a
rotation-Hermitian 2 x 2 block and B is quasi-sectorial, or ii)
when both A and B are quasi-sectorial, but when the phase
condition is not satisfied in either case. The two cases can
be handled together, and we can, without loss of generality,
assume that ¢(A) + ¢(B) > . In this case, by [74, Thm. 1]
there is a 7' such that C' = T* AT has an eigenvalue in ¢7#(4),
Let C = V3T'cVe be a Schur decomposition, with e7(4) as
top-left element. Let S = S5, and note that since ¢(B) >
7 — ¢(A) and B is quasi-sectorial we can in a similar way
select S1 so that D = S} BS; has an eigenvalue in ej(“’({(A)).
Let D = V3T'pVp be a Schur decomposition with e/ (7=¢(4))
as top-left element. By taking Sy = V5V, we get

(T*AT)(SBS*) = C(S;DS,)
= VET Ve VEV VT pVoViVe = VET T pVe,

which by construction has an eigenvalue in —1.

In summary, this means that unless (19b) holds, then there
exist T, S € GL,, such that det(I + T*ATS*BS) = 0. This
shows the implication =, and hence the result follows. ]

Proof of Theorem II.2: For n = 1 the matrices are
scalar and hence commute. Therefore, in this case det(/ +
T*ATS*BS) = det(1 + Tab) for 7 > 0, and the conclusions
follow almost trivially.

For n > 2, Proposition A.1 shows that (i) and (iii) are
equivalent. Next, we prove that “(iii) = (ii)”. To this end,
without loss of generality, assume that A is quasi-sectorial of
rank n — k, and that B is semi-sectorial. The fact that the sum
of the largest and smallest phases are bounded away from =+,
respectively, implies that there exists a z € T such that zA
is quasi-strictly accretive and z* B is accretive, and hence in
particular that —zA — 2z*A* < 0 and 2*B + zB* = 0. The
latter means that for this P, (3b) holds. It remains to show
that (3a) holds, i.e., that the former inequality above can be
strengthened to —zA — z*A* < —eA* A for some ¢ > 0. To
do so, let zA = T*DT be a sectorial decomposition of the
quasi-strictly accretive zA. In particular, this means that

D = diag(e?®, ..., %= 0,...,0),
——
k of them
and zA + z*A* = T*(D + D*)T, which is positive semi-
definite with the top-left block of D+ D* containing the n—k
strictly positive eigenvalues. A direct calculation gives that

* 0

AA=A"2"2A=T"D*TT*DT =T* {O 0

]T =: T*AT,

where the block « is of dimension n—k X n—k and is positive
definite. In particular, this means that for e > 0 small enough
we have that D + D* = ¢\, and hence that

zA+2"A* =T"(D + D")T = eT*AT = eA* A.



Multiplying the above inequality by —1 gives the inequality
(3a). This completes the proof of the implication “(iii) = (ii)”.

To show that “(ii)) = (iii)”, without loss of generality,
assume that P fulfills (3). The proof for the case where P
fulfills (5) is analogous. Now, note that (3) implies that both
zA and z* B are accretive. What remains to be shown is thus
that zA is in fact quasi-strictly accretive. To this end, let
zA = T*DT be the sectorial decomposition, with D of the
form (20). By an argument similar to the one above, we have
that (3a) implies that

* 0 * 0
_ — _ o * g * * — _

{0 O] D-D' < —eD'TT'D 5{0 0},
where x is block-diagonal and positive semi-definite, and « is
positive definite. However, the inequality means that x > ex
for some € > 0, and since « is positive definite this can only
be true if * is also positive definite. Now, if D has a block

b

a direct calculation gives that * contains a block

>3

This would mean that * is not of full rank, and hence it is
only positive semi-definite. Therefore, D cannot contain any
such blocks, which implies that zA is quasi-strictly accretive.

Finally, the last part of the theorem follows by simply
reexamining the proofs for the equivalence of (ii) and (iii)
under the additional assumption that A is of full rank. It is
then easily seen that the same conclusion holds, but with (3)
replaced by (2). ]

C. Proof of Theorem IV.2

Proof of Theorem IV.2: The equivalence between (ii) and
(iii) follows directly from Lemma IV.1.

To show that “(ii)) = (i)”, first assume that there exists a
multiplier P of the form (16), with & = 1, that satisfies (2). A
direct calculation, as in the proof of Lemma IV.1, gives that
(14) holds. Now, let U € U,,, and V € U,,, and note that for
A=UA and B = VB we have

A*A = A'U'UA = A*A < ~%I,
v?’B*B =~’B*V*VB =~’B*B < I.

Thus, for this P, (2) holds for A and B and hence 0 # det(I+
AB) = det(I + UAV B) by Lemma I1.2. Since U € U,, and
V € U,, were arbitrary, the implication follows in the case of
& = 1. The proof for the case £ = —1 follows analogously.
We now show that “(i) = (iii)”. To this end, assume that
det(I + UAVB) # 0 for all U € U,,, and all V € U,,. First
note that the statement is trivial if any of the two matrices
A and B is the zero matrix and hence we can, without
loss of generality, assume that neither of them is. Now, let
A=WyX,V3and B = WXV} be the singular value de-
compositions of A and B, respectively, where W4, Vg € U,,,
Va,Wp €U,, ¥4 € M, p, and Xp € M, ,,,. Next, note that
for any k > 1, Uy is closed under matrix multiplication, i.e.,

that for all U,V € U,, UV € U,, and that all permutation
matrices are unitary. Therefore, for any V,W €U, and any
permutation matrix P € U,,, let U = Vp V*WW;; € U,, and
V =VaPWg; € U,. This means that

0 # det(I + UAV B) = det(I + VaV*WE4PE5V})
= det(I + WE,PEV*)

for all V,W € U,, and all permutation matrices P.

Next, assume that n > m. In this case, note that X 4P €
M, ,, with the n columns of ¥4 permuted according to the
permutation matrix P. Therefore, Wy APYp V* can be iden-
tified as a singular value decomposition of the matrix whose
singular values are given by og(;)(A)oy(B), i = 1,...,m,
where @ : {1,...,m} — {1,...,n} is the injective map
corresponding to the permutation matrix P. Moreover, by
appropriately selecting the permutation matrix P we can get
any injective map that maps from {1,...,m} to {1,...,n}.
Now, if there exists a ® such that maxy o k) (A)ox(B) > 1
and ming og k) (A)or(B) < 1, then by [70] (see also [75,
Thm. 9.E.5]) there exist matrices W,f/ € U, such that
the corresponding matrix WX APYV* has an eigenvalue
in —1. However, that would mean that the corresponding
determinant is zero, which is a contradiction. Therefore, for
all & we must either have that maxy og ) (A)or(B) < 1 or
that ming og () (A)or(B) > 1. In particular, this must hold
for all ® such that ®(1) = 1 and ®(m) = n, in which
case either 1 > maxy ogk)(A)or(B) = o01(A)or(B) or
1 < ming ogk)(A)or(B) = 0n(A)0,(B). This shows that
the (i) implies (iii) in the case where n > m.

To complete the proof of the theorem, assume that m > n.
In this case WY APYB V* can still be identified as a singular
value decomposition of the matrix, but now the singular
values are given by m — n zeros as well as og(;)(A)oi(B),
i = 1,...,n, where ® : {1,...,n} — {1,...,n} is a
permutation. This means that 0 will always be a singular
value of WX 4P zV*, and by arguments similar to those
in the previous paragraph we must therefore have that for all
permutations @ it holds that max, o) (A)or(B) < 1, and
hence in particular that o1 (A)o1(B) < 1. [ |
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