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Gain-Type and Phase-Type Multipliers for
Feedback Robustness

Axel Ringh , Xin Mao , Wei Chen , Member, IEEE, Li Qiu , Fellow, IEEE,
and Sei Zhen Khong , Senior Member, IEEE

Abstract—It is known that the stability of a feedback in-
terconnection of two linear time-invariant systems implies
that the graphs of the open-loop systems are quadratically
separated. This separation is defined by an object known as
the multiplier. The theory of integral quadratic constraints
shows that the converse also holds under certain condi-
tions. This article establishes that if the feedback is robustly
stable against certain structured uncertainty, then there al-
ways exists a multiplier that takes a corresponding form.
In particular, if the feedback is robustly stable to certain
gain-type uncertainty, then there exists a corresponding
multiplier that is of phase-type, i.e., its diagonal blocks
are zeros. These results build on the notion of phases of
matrices and systems, which was recently introduced in
the field of control. Similarly, if the feedback is robustly
stable to certain phase-type uncertainty, then there exists
a gain-type multiplier, i.e., its off-diagonal blocks are zeros.
The results are meaningfully instructive in the search for a
valid multiplier for establishing robust closed-loop stability,
and cover the well-known small-gain and the recent small-
phase theorems.

Index Terms—Feedback robustness, multipliers, quad-
ratic graph separation, structured uncertainty.
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I. INTRODUCTION

ONE of the most fundamental problems in control theory is
feedback stability analysis. In this context, it is well known

that topological graph separation is both necessary and sufficient
for the stability of a well-posed feedback configuration [1], [2].
Such topological graph separation is required to hold in the hard
(a.k.a. unconditional [3]) manner, i.e., the integrals involved are
taken over [0, T ] for all T > 0. A specific type of separation,
called quadratic graph separation with linear multipliers, has
been studied extensively in the nonlinear [4], [5], [6], [7], [8],
[9], [10] and linear [11], [12], [13], [14] literatures. Quadratic
graph separation has often been employed in the soft (a.k.a.
conditional) manner, where the integrals are taken over [0,∞)
in conjunction with homotopies that are continuous in the graph
topology. In the linear time-invariant (LTI) setting, soft quadratic
graph separation is equivalent, via the Parseval–Plancherel theo-
rem, to two complementary frequency-domain inequalities [15].
Such inequalities are the main object of study in this article.

In robust stability analysis, the objective is to determine if
a feedback interconnection between a nominal system and a
set of uncertainties is stable or not for all uncertainties in the
set [16, ch. 9]. One way to guarantee stability is by finding a
certificate that the graph of the nominal system is separated
from the graph of each of the system in the uncertainty set.1

In the case of quadratic graph separation, the object of interest
is a function of an LTI object known as a multiplier, and the
search for a suitable multiplier for characterizing the uncertainty
is a common theme in the vast literature on robust control, see,
e.g., [5], [6], [20], [21], [22], [23], and [24]. While quadratic
graph separation with linear multipliers has, in general, been
used as a sufficient condition for robust stability, the chief focus
of this article is on the necessity of it. Some elegant results along
this direction have been obtained in [25], where it was shown
that the closed-loop stability of the interconnection between a
matrix and a set of matrices is equivalent to the existence of a
multiplier by which quadratic separation holds. In other words,
quadratic graph separation is both necessary and sufficient for
the closed-loop stability of matrices. Moreover, results along
this direction also generalize to LTI systems [25].

This article strengthens the existing results by revealing a
number of intricate relationships between the type of feedback
robustness and the structure of any multiplier needed to establish
such a robustness. Specifically, we define multipliers of the gain

1 Sometimes, the problem is better formulated in terms of a feedback inter-
connection between two sets of uncertain systems, see, e.g., [17], [18], and [19].
In this case, the problem becomes to verify that for each pair of systems from
the two uncertainty sets, the graphs are separated. The results in this article can
be interpreted as any of these two cases.
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type (a.k.a. magnitudinal multipliers) to be multipliers whose
off-diagonal blocks are 0, and show that the existence of a gain-
type multiplier is equivalent with that the closed-loop system is
robust against phasal uncertainties, i.e., multiplication by arbi-
trary stable unitary (i.e., all-pass) transfer functions. On the other
hand, multipliers of the phase type (a.k.a. phasal multipliers) are
defined as multipliers that are 0 on the diagonal blocks, and we
show that the existence of a phase-type multiplier is equivalent
with that the closed-loop system is robust against magnitudinal
uncertainties, i.e., arbitrary nonnegative scalings. The novelty in
these equivalences lies in the necessity-part: if a feedback system
is robust against phasal (respectively, magnitudinal) uncertain-
ties, then its robust stability can always be established using a
multiplier of the gain (respectively, phase) type. The results are
of both theoretical and practical interest: theoretical, since they
reveal a fundamental connection between the structure of the
uncertainties and the structure of the multiplier; and practical,
since they imply that if a feedback system is expected to be robust
against a certain form of uncertainties, then the search for a suit-
able multiplier to establish its robust stability can be restricted
to one that admits a prescribed structure, and vice versa.

There are also other methods to determine robust stability
in the case of structured uncertainty. One of the most promi-
nent ways is via the structural singular value, μ, in which one
considers block-diagonal type uncertainties [26], [27], [28].
While computing the value of μ exactly is, in general, a difficult
problem (NP-hard) [29], [30], the celebrated (D,G)-scaling is a
computable upper bound for the structured singular value [28],
[31], [32]. Moreover, for (among other cases) robust stability
with respect to scalar gain uncertainties [31], [32] and to scalar
phase uncertainties [33], the (D,G)-scaling bound is know to
be tight. It has also been shown that this upper bound being
less than one, which is a sufficient condition for robust stability
of the interconnection, is equivalent with the existence of a
multiplier for characterizing the loop (transfer) matrix [34] (see,
also [35], [36], and [37]). In this work, we, among other things,
also consider the case of scalar gain and phase uncertainties (see
Theorems III.1 and IV.1 for the matrix cases). While the structure
of the multipliers in the case of scalar phase uncertainties can be
obtained by carefully analyzing and using the results in [33] on
the loop (transfer) matrix, we use a different approach to prove
our main results, working directly with the multipliers and char-
acterizing both the potentially uncertain open-loop (transfer)
matrices as opposed to only the loop (transfer) matrix. Moreover,
although the (D,G)-scaling method is closely related to our
work, for the three other types of structured uncertainties consid-
ered (see, Theorems III.1, III.2, and IV.2, for the matrix cases),
existing results related to the structured singular value can, to
the best of the authors’ knowledge, not be used to establish the
necessity of the form of the multipliers for robust stability.

Finally, note that there exist relevant converse quadratic sep-
aration results that are different from those examined in this
article. Such results typically state that a feedback system is
robustly stable against an arbitrary uncertainty characterized
by a quadratic constraint if and only if the other open-loop
subsystem satisfies the reverse quadratic constraint [38], [39],
[40], [41]. However, in these references the multiplier defining
the quadratic constraint is explicitly specified, whereas in this
work certain forms of feedback stability are shown to imply the
existence of a multiplier by which quadratic graph separation of
the open-loop systems is defined.

The rest of this article is organized as follows. In Section II,
we introduce necessary background material related to quadratic

graph separation and its use in stability analysis of multiple-
input-multiple-output (MIMO) LTI systems, and to sectorial ma-
trices and phases of a matrix. In Section III, we analyze the form
of multipliers needed in order to guarantee robust stability with
respect to certain types of gain uncertainties. The conclusion
is that the existence of certain types of phasal multipliers is a
both necessary and sufficient condition. Similarly, Section IV is
devoted to stability against certain types of phase uncertainties,
and the existence of certain types of magnitudinal multipliers
turns out to be a both necessary and sufficient condition. In Sec-
tion V, we use a numerical example to illustrate how the results
of this article can be used. Finally, Section VI, concludes this
article. In order to improve the readability, some of the lengthier
proofs are deferred to appendices in the end of this article.

II. BACKGROUND AND NOTATION

In this section, we present some background material on
quadratic graph separation, transfer matrices and multipliers for
feedback stability of LTI systems, and sectorial matrices and
matrix phases. Moreover, the section is also used to set up the
notations; basic notations are introduced in the the following
paragraph, and further notations are introduced where needed.

Notations: Let j denote the imaginary unit, i.e., j2 = −1. For
two sets A and B, let A ∪ B denote the union, let A ∩ B denote
the intersection, and letA \ B denote the set-difference, i.e.,A \
B := {a ∈ A | a �∈ B}. LetR andC denote the real and complex
numbers, respectively, Rn and C

n the real and complex vectors
of length n, respectively, R+ := [0,∞), R− := (−∞, 0], and
R−− = R− \ {0} are the positive, negative, and strictly negative
real numbers, respectively,C+ := {z ∈ C | z = a+ jb, a > 0}
is the open right-half complex plane, T := {z ∈ C | |z| = 1}
is the unit circle, and D := {z ∈ C | |z| < 1} is the open unit
disc. Next, let Mn,m denote the set of complex matrices with
n rows and m columns; for square matrices, we simply write
Mn. Let GLn ⊂ Mn denote the set of invertible matrices, Hn ⊂
Mn denote the set of Hermitian matrices, Pn ⊂ Hn denote the
set of (Hermitian) positive definite matrices, and Un ⊂ GLn

denote the set of unitary matrices. For the corresponding sets of
matrices with real entries, we writeMn,m(R), etc. Moreover, on
the set of Hermitian matrices we use � to denote the Loewner
partial order, i.e., for H1, H2 ∈ Hn, H1 	 H2 and H1 � H2

mean thatH1 −H2 is positive definite and positive semidefinite,
respectively; see, e.g., [42, Sect. 7.7]. Furthermore, by ·T and
·∗, we denote the transpose and the conjugate transpose of a
matrix, respectively, and two matrices A,B ∈ Mn are said to
be congruent if there exists a C ∈ GLn such that A = C∗BC.
By In, we denote the identity matrix of size n× n; sometimes,
the subscript n is omitted when the dimension is clear from
the context. Finally, λ(·) denotes the set of eigenvalues, and
σ(·) denotes the set of singular values of a matrix, i.e., for a
matrix A ∈ Mn,m, σi(A) =

√
λi(A∗A), and hence, A has m

singular values. By convention, the singular values are sorted in a
nonincreasing order, and ifm > n, this means thatσn+�(A) = 0
for � = 1, . . . ,m− n.

A. Graph Separation and Multipliers for Feedback
Stability

Let A ∈ Mm,n and B ∈ Mn,m, and consider the (negative)
feedback interconnection, as shown in Fig. 1. This interconnec-
tion is said to be stable if for each (p, q) ∈ C

n+m there exists a
unique vector (r, w) ∈ C

n+m. From the representation in Fig. 1,
it follows that r = p+Bw and w = q −Ar, or equivalently
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Fig. 1. Block diagram of feedback interconnection.

that: [
In −B

A Im

] [
r

w

]
=

[
p

q

]
.

Thus, the interconnection is stable if and only if the matrix[
In −B
A Im

]
is invertible, i.e., if and only if det

([
In −B
A Im

])
�= 0.

The latter is true if and only if det(Im +AB) �= 0.
Next, let the graph of a matrix C ∈ Mm,n be defined as

all ordered pairs (x1, x2) ∈ C
n+m such that Cx1 = x2, and

the inverse graph be defined as all ordered pairs (x2, x1).
Then, det(Im +AB) = 0 if and only if there exists a nonzero
(x1, x2) ∈ C

n+m such that

0 =

[
In −B

A Im

] [
x1

x2

]
=

[
x1 −Bx2

Ax1 + x2

]

where (x1, x2) is identified as being a nontrivial element in
both the graph of −A and the inverse graph of B. Therefore,
det(Im +AB) �= 0 if and only if the graph of −A and the
inverse graph of B only intersect in the origin, i.e., if and only
if

range

([
In
−A

])
∩ range

([
B

Im

])
= {0} (1)

where range(·) denotes the column range of a matrix. A similar
condition holds for the stability of a well-defined interconnection
of dynamical systems, see, e.g., [43] and [44].

In [25], it was shown that a necessary and sufficient condition
for (1) to hold is that there exists a multiplier that achieves
quadratic separation. More precisely, (1) holds if and only if
there exists a P ∈ Hn+m such that

(
I −A∗)P ( I

−A

)
≺ 0 (2a)

(
B∗ I

)
P

(
B

I

)
� 0. (2b)

There are several equivalent forms of this condition. For exam-
ple, if there exists a P ∈ Hn+m such that (2) holds, due to the
strict inequality in (2a), then this P also satisfies

(
I −A∗)P ( I

−A

)
� −εA∗A (3a)

(
B∗ I

)
P

(
B

I

)
� 0 (3b)

for some ε > 0. Moreover, by rewriting the (2,2)-block of the

block-matrix P =
[
P11 P12

PT
12 P22

]
as P22 = P̃22 − εIm in (3), with

a slight abuse of notation, we see that there exists another matrix
P such that (

I −A∗)P ( I

−A

)
� 0 (4a)

(
B∗ I

)
P

(
B

I

)
	 0 (4b)

which, in turn, implies that

(
I −A∗)P ( I

−A

)
� 0 (5a)

(
B∗ I

)
P

(
B

I

)
� εB∗B (5b)

for some ε > 0. Finally, by rewriting the (1,1)-block of P in (5)
as P11 = P̃11 + εIn, we have that the existence of a multiplier
fulfilling (5) implies that there exists a multiplier fulfilling (2).
This shows that the conditions (2)–(5) are equivalent. Neverthe-
less, in the step from (3) to (4), and from (5) to (2), the actual
multiplier (and hence also potentially the structure) changes.
Since the results in this article are concerned with necessary
conditions for existence of multipliers of certain structures, we
state all these cases explicitly. For convenience we summarize
the results in the following lemmas.

Lemma II.1: Let A ∈ Mm,n and B ∈ Mn,m. If there exists a
multiplier P ∈ Hn+m such that any of the four conditions (2)–
(5) is satisfied, then there exist (potentially different) multipliers
such that all the other three conditions are also satisfied.

Lemma II.2 (See [25]): For A ∈ Mm,n and B ∈ Mn,m, the
following statements are equivalent:

(i) det(Im +AB) �= 0;
(ii) condition (1) holds;

(iii) there exists a matrix P ∈ Hn+m such that (2) holds.

B. LTI Systems and Multipliers for Feedback Stability

Next, we consider extensions of the aforementioned results
to LTI systems. To this end, let us first introduce the function
spaces needed (see, e.g., [16] or [45] for more details). Let ‖ · ‖2
denote the matrix 2-norm, and let ess sup denote the essential
supremum of a function. Define the Lebesgue space

Lm×n
∞ :={φ : jR → Mm,n |‖φ‖∞ := ess supω∈R‖φ(jω)‖2<∞}

and the Hardy space

Hm×n
∞ :=

⎧⎨
⎩φ ∈ Lm×n

∞

∣∣∣∣∣∣
φ has analytic continuation
into C+ with ess sups∈C+

‖φ(s)‖2
= ess supω∈R‖φ(jω)‖2 < ∞

⎫⎬
⎭.

The latter is the space of all stable transfer functions. Denote
by Rm×n the set of m× n real-rational proper transfer function
matrices, and let RHm×n

∞ := Rm×n ∩Hm×n
∞ , i.e., the subset

of Rm×n with no poles in the closed right-half complex plane.
A G ∈ RHn×n

∞ is said to be passive if G(jω) +G(jω)∗ � 0
for all ω ∈ R, and it is said to be output strictly passive if there
exists ε > 0 such that G(jω) +G(jω)∗ � εG(jω)∗G(jω) for
all ω ∈ R.
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Next, consider G ∈ RHm×n
∞ and K ∈ RHn×m

∞ . Akin to the
matrix setting, the (negative) feedback interconnection of G and
K is said to be stable if (I +GK)−1 ∈ RHm×m

∞ . The follow-
ing sufficient conditions for feedback stability are significantly
important—the first part of the result is well-known whereas the
second is less so.

Proposition II.1: Let G ∈ RHm×n
∞ and K ∈ RHn×m

∞ .
Then, (I +GK)−1 ∈ RHm×m

∞ if there exists Π =[
Π11 Π12

Π21 Π22

]
∈ L(n+m)×(n+m)

∞ such that for all ω ∈ [0,∞],

Π(jω)∗ = Π(jω), Π11(jω) � 0, Π22(jω) � 0

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
≺ 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

(6)

or equivalently

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� εK(jω)∗K(jω)

for some ε > 0. Furthermore, if m = n and G−1,K−1 ∈
RHm×m

∞ , then (I +GK)−1 ∈ RHm×m
∞ if there exists Π ∈

L(2m)×(2m)
∞ such that for all ω ∈ [0,∞], Π(jω)∗ = Π(jω),

Π11(jω) � 0, Π22(jω) � 0, and (6) holds.
Proof: If Π11(jω) � 0 and Π22(jω) � 0, then

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

is equivalent to

(
αK(jω)∗ I

)
Π(jω)

(
αK(jω)

I

)
� 0

for all α ∈ [0, 1]. Feedback stability can then be established
using the Parseval–Plancherel theorem as in [15, Thm. 3.1] and
the theory of integral quadratic constraints [6, Thm. 1] or [9,
Corollary IV.3], where the proofs are written purely in the time
domain. An alternative, more direct frequency-domain proof is
provided below for completeness.

By applying Lemma II.2 frequencywise, it holds that det(I +
αG(jω)K(jω)) �= 0 for all ω ∈ [0,∞] and α ∈ [0, 1]. It re-
mains to show that det(I + αG(s)K(s)) �= 0 for all s ∈ C+,
from which (I +GK)−1 ∈ RHm×m

∞ follows. To this end,
observe that since GK ∈ RHm×m

∞ , det(I + αG(s)K(s)) �=
0 for all s ∈ C+ for sufficiently small α > 0. Suppose to
the contrapositive that det(I +G(s)K(s)) = 0 for some s ∈
C+. Then, by the continuity of the locations of the zeros of
det(I + αG(s)K(s)) in α, there must exist an α ∈ (0, 1) and
an ω ∈ [0,∞] such that det(I + αG(jω)K(jω)) = 0, leading
to a contradiction. Therefore, it must be true that det(I +
αG(s)K(s)) �= 0 for all s ∈ C+ and α ∈ [0, 1].

On the other hand, if Π11(jω) � 0 and Π22(jω) � 0, then

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

is equivalent to

(
αK(jω)∗ I

)
Π(jω)

(
αK(jω)

I

)
� 0

for all α ≥ 1. Since G−1,K−1 ∈ RHm×m
∞ , by the large gain

theorem [46, Thm. 4.1], (I + αGK)−1 ∈ RHm×m
∞ for suf-

ficiently large α ≥ 1. By repeating the preceding arguments,
one may then establish that det(I + αG(s)K(s)) �= 0 for all
s ∈ C+ and α ≥ 1, from which (I +GK)−1 ∈ RHm×m

∞ fol-
lows. �

Remark II.1: Proposition II.1 remains true when all the
inequality signs therein are flipped.

The following necessary condition for feedback stability,
complementing the sufficient condition in Proposition II.1, can
be proved by using a construction from [25].

Proposition II.2: Let G ∈ RHm×n
∞ and K ∈ RHn×m

∞ .
Then, (I +GK)−1 ∈ RHm×m

∞ only if there exists Π ∈
L(n+m)×(n+m)
∞ such that for all ω ∈ [0,∞], Π(jω)∗ = Π(jω)

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
≺ 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0.

Proof: That (I +GK)−1 ∈ RHm×m
∞ implies that

infω∈R | det(I +K(jω)G(jω))|2 > 0 for all ω ∈ [0,∞].
Following the proof in [25, Corollary 1] frequencywise, define

Π(jω) :=

(
G(jω)∗

I

)(
G(jω) I

)− εI.

The claim may now be verified to hold for sufficiently small
ε > 0. �

C. Sectorial Matrices and Matrix Phases

The numerical range, also called the field of values, of a matrix
A ∈ Mn is defined as

W (A) :=
{
z ∈ C | z = x∗Ax, x ∈ C

n, ‖x‖2 := x∗x = 1
}
.

By the Toeplitz–Hausdorff theorem, for any A ∈ Mn, the nu-
merical range W (A) is a compact convex subset of C, see,
e.g., [47, Properties 1.2.1 and 1.2.2], [48, Thm. 4.1], or [49,
Thm. 1.1–2]. Moreover, the numerical range of a matrix always
contains its eigenvalues [47, Property 1.2.6]. Next, the conic
hull of W (A), i.e., the smallest convex cone that contains the
numerical range, is given by the set

W ′(A) := {z ∈ C | z = x∗Ax, x ∈ C
n, x �= 0}

which is called the angular numerical range [47, Def. 1.1.2].
In particular, by the convexity of W (A), it follows that if
0 �∈ W (A), then W (A) is contained in an open half-plane, and
hence, the opening angle of W ′(A) is strictly less than π—such
matrices are called sectorial. If 0 �∈ intW (A), i.e., not in the
interior, then W (A) is contained in a closed half-plane, and
hence, the opening angle of W ′(A) is less than or equal to
π—such matrices are called semisectorial. If 0 ∈ intW (A), then
W ′(A) = C, and the opening angle is defined to be 2π (cf., [47,
Def. 1.1.3]). Clearly, all sectorial matrices are also semisectorial.
However, there exist matrices that are not sectorial but for which
the opening angle of the angular numerical range is strictly less
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than π; see Remark II.2 for details. In light of this, we define
the set of quasi-sectorial matrices as the set of all semisectorial
matrix A with opening angle of W ′(A) strictly less than π. This
definition gives the (strict) inclusions

sectorial ⊂ quasi-sectorial ⊂ semisectorial.

Finally, an important subset of sectorial matrices is the set of
strictly accretive matrices, which is defined as

An := {A ∈ Mn | A+A∗ 	 0}.
The closure of this set is the set of accretive matrices, i.e., the
set of all matrices A ∈ Mn such that A+A∗ � 0, which is a
subset of the semisectorial matrices. In relation to this, we also
define a matrix to be quasi-strictly accretive if it is accretive and
quasi-sectorial (cf., Remark II.2).

All sectorial matrices can be diagonalized by congruence [50],
[51], [52], [53]. More specifically, any sectorial matrix A can
be written as A = T ∗DT , where T ∈ GLn, and D ∈ Un is
diagonal. This is called the sectorial factorization [53], and the
matrix D is unique up to ordering of the diagonal elements [52],
[53]. Based on this factorization, following [54], we define the
phases of a sectorial matrix to be the phases of the eigenvalues
of D, and denote them by

φ(A) =
[
φ1(A), φ2(A), . . . , φn(A)

]T
.

Each phase is only defined modulo 2π, but by convention we
sort them nonincreasingly, i.e., as

φ(A) := φ1(A) ≥ φ2(A) ≥ · · · ≥ φn(A) =: φ(A)

and define them so thatφ(A)− φ(A) < π. With this convention,
we can, for example, see that the phases of a sectorial matrix
are invariant under congruence transformations, and that strictly
accretive matrices are sectorial matrices with phases contained
in (−π/2, π/2) modulo 2π. The phases of a sectorial matrix
have many nice properties, and can, for example, be used to
guarantee that a matrix of the form I +AB is of full rank;
for an in-depth treatment of matrix phases we refer the reader
to [54]. Moreover, the definition of phases can be extended to
all semisectorial matrices; for the extension to quasi-sectorial
matrices, see Remark II.2, and for the extension in the general
case, see, [55], [56], and [57] for details. In any case, we still
use φ(A) and φ(A) to denote the largest and smallest phases,
respectively.

Remark II.2: Since the eigenvalues of a matrix are contained
in its numerical range, any sectorial matrix must be full rank.
The set of quasi-sectorial matrices extends the sectorial matrices
to the set of matrices A for which the opening angle of W ′(A)
is strictly less than π, but that are not necessarily of full rank.
In particular, let A ∈ Mn be a quasi-sectorial but not sectorial
matrix. Then, the origin must be a sharp point on∂W (A), i.e., the
boundary of W (A). This implies that 0 is a normal eigenvalue
of A, and that there exists a U ∈ Un such that

A = U

[
0 0

0 Ã

]
U ∗

where Ã is sectorial and rank(Ã) = rank(A) [47, Thm. 1.6.6].
The phases of a quasi-sectorial matrix is hence defined as the
phases of Ã, and quasi-sectorial matrix, thus, have between 1
and n phases.

Use of phases in MIMO LTI systems: The concepts of mag-
nitude and phase are well-established in the context of single-
input-single-output LTI systems, and they both constitute highly
useful and complementary tools. However, while the concept of
system gain has a generally accepted and useful generalization
to MIMO LTI systems, including small-gain theorems for robust
stability, the concept of phase has attracted much less attention.
Early works trying to establish definitions of phases with useful
properties in the MIMO setting can be found in, e.g., [58],
[59], [60], [61], and [62]. Recently, there has been a renewed
interest in the concept of phases for MIMO systems, both for
LTI systems [56], [63], [64] and for nonlinear systems [65],
with small-phase theorems for robust stability as a result. This
concept of phases for MIMO LTI systems builds on the concept
of matrix phases [54], as introduced above, and can also be seen
as a quantitive generalization of passive and negative imaginary
systems [56]. As will be seen below it is also connected to
quadratic graph separation. In fact, this notion of phase turns
out to be, in some sense, the correct notion in order to guarantee
robust stability against certain types of magnitudinal uncertain-
ties (see Section III).

III. MULTIPLIERS OF PHASE TYPE

In this section, we investigate the necessity of certain multipli-
ers of phase type for robust stability of feedback interconnections
with respect to magnitudinal uncertainties. In particular, we first
show that I +AB is nonsingular for magnitude scaling and
certain congruence transformations, respectively, only if there
exists certain types of phasal multipliers. The results are then
extended to MIMO LTI systems.

A. Multipliers for Stability Under Scaling Uncertainty

One of the simplest forms of uncertainty is an uncertainty in
the scaling of one of the matrices. In order to guarantee that the
interconnection is stable for all scalings, it would, therefore, be
desirable to show that I + τAB is nonsingular for all τ ∈ R+.
For A,B ∈ GLn, that is equivalent to that λ(AB) ∩ R− = ∅,
i.e., that the intersection is empty, and necessary and sufficient
conditions for the latter is given in the following proposition.

Proposition III.1: Given A,B ∈ GLn, there exists an H ∈
GLn such that HA and H∗B are strictly accretive if and only if
λ(AB) ∩ R− = ∅.

Proof: The proof follows by using results in [54] and [66].
More precisely, first assume λ(AB) ∩ R− = ∅. Then, by [66,
Thm. 1] we have that the matrix AB can be factored as ÃB̃,
where Ã, B̃ ∈ An. Let H∗ = B̃B−1, then H∗B = B̃ ∈ An.
Moreover, by congruence we have that HA is accretive if and
only if H−1(HA)H−∗ = AH−∗ is accretive. For the latter, we
have that AH−∗ = ABB̃−1 = ÃB̃B̃−1 = Ã ∈ An, and hence,
there exists an H ∈ GLn so that HA,H∗B ∈ An. This proves
the “if” statement. To show the “only if” statement, assume that
there exists anH so thatHA,H∗B ∈ An. Again, by congruence
HA ∈ An if and only if AH−∗ ∈ An. By [54, Thm. 6.2], it
follows thatAB = AH−∗H∗B have no eigenvalues alongR−.�

The result in Proposition III.1 can be understood in terms
of the existence of a phasal multiplier P ∈ H2n that fulfills
(2), i.e., a multiplier P where only the off-diagonal blocks are
nonzero and where in fact both inequalities in (2) are strict
(see [32, Corollary VI.2]). In particular, this formally confirms
the intuition that in order to show that the interconnection is
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stable under an arbitrary positive scaling uncertainty, a certain
type of “phase information” is the only thing that is needed.
Moreover, these results can be strengthened to (certain) matrices,
which are not of full rank as follows.

Theorem III.1: Given A,B ∈ Mn, assume that if zero is an
eigenvalue of AB, then it is semisimple.2 Then, the following
statements are equivalent:

(i) det(I + τAB) �= 0 for all τ ≥ 0;
(ii) there exists a P ∈ H2n fulfilling (3), and P takes the

form

P =

[
0 H

H∗ 0

]
(7)

for some H ∈ Mn;
(iii) for the eigenvalues of AB, it holds that

λ(AB) ∩ R−− = ∅. (8)

Proof: See Appendix A. �
If the matrix A in Theorem III.1 is full rank, then the statement

in Theorem III.1(ii) can be strengthened and a number of other
equivalent conditions can also be derived. In particular, the mul-
tiplierH can be chosen to be nonsingular and strict accretiveness
of HA can be guaranteed.

Corollary III.1: Let A,B ∈ Mn be as in Theorem III.1.
If A ∈ GLn, then the statements in Theorem III.1 are also
equivalent to the following:

(iv) there exists an H ∈ GLn such that HA is strictly accre-
tive and H∗B is quasi-strictly accretive;

(v) there exists an H ∈ GLn such that HA is strictly accre-
tive and H∗B is accretive.

Moreover, the multiplier P in Theorem III.1(ii) can be se-
lected so that it fulfills (2).

Proof: See Appendix A. �
In many applications, we would be interested in correspond-

ing results for real-valued matrices. By just slightly modifying
the proof of the theorem, we have the following corollary.

Corollary III.2: Under the assumptions in Theorem III.1, if
A,B ∈ Mn(R), then the same conclusion is true where we can
restrict H to also be real.

Proof: See Appendix A. �
Observe that, in general, it is not possible to relax the assump-

tion in Theorem III.1 that if zero is an eigenvalue ofAB, then it is
semisimple. This can be seen by the following counterexample
for 3× 3matrices, where the zeroeigenvalue ofAB has a Jordan
block of size 2× 2.

Example III.1: Let

A =

⎡
⎣1 0 0

0 0 1

0 0 0

⎤
⎦ , B = I3, H =

⎡
⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦

and note that det(I + τAB) = 1 + τ �= 0 for all τ ≥ 0. More-
over,A∗A = diag(1, 0, 1). Next, note that the existence of a mul-
tiplier of the form (7) that fulfills any of the conditions (2)–(5)
would imply that bothHA+A∗H∗ � 0 andH∗B +B∗H � 0.

2 An eigenvalue is called semisimple if its algebraic and geometric multiplic-
ities are the same [42, Def. 1.4.3]. This is equivalent with that all Jordan blocks
corresponding to the eigenvalue are of size 1× 1 [42, Prob. 3.1.P5].

A direct calculation gives that

HA+A∗H∗ =

⎡
⎣h11 + h∗

11 h12 + h∗
31 h13

h31 + h∗
12 h32 + h∗

32 h33

h∗
13 h∗

33 0

⎤
⎦

and for this to be positive semidefinite, we must have h13 =
h33 = 0, see, e.g., [42, Observation 7.1.10]. Therefore, HA+
A∗H∗ has at most rank 2, and can hence only be positive semidef-
inite. This means that there is no multiplier of the form (7) that
fulfills (2). Moreover, it is easily seen thatHA+A∗H∗ �� εA∗A
for all ε > 0, and therefore, there is no multiplier of the form (7)
that satisfies (3). Next, note that

H∗B +B∗H=H +H∗=

⎡
⎣h11 + h∗

11 h12 + h∗
21 h∗

31

h21 + h∗
12 h22 + h∗

22 h23 + h∗
32

h31 h32 + h∗
23 0

⎤
⎦

which, similar to above, can only be positive semidefinite if
h31 = 0 and h32 = −h∗

23. However, that means that H +H∗
has rank 2, and hence can only be positive semidefinite. More-
over, for all ε > 0 we, therefore, also have that H∗B +B∗H ��
εB∗B. Thus, there is no multiplier of the form (7) that satisfies
(4) or (5).

Nevertheless, while the abovementioned counterexample
shows that the condition on the semisimple zero-eigenvalue can
in general not be relaxed, the case for matrices of size 2× 2 is
still open. The following gives an example of where there exists
a multiplier of the form (7) that fulfills (3), despite the fact that
that zero is an eigenvalue of AB which is not semisimple.

Example III.2: Let

A =

[
0 1

0 0

]
, B = I2, H =

[
0 −1

1 1

]
and note that det(I + τAB) = 1 �= 0 for all τ ≥ 0. A direct
calculation gives that A∗A = diag(0, 1), that HA = diag(0, 1),
and that H∗B +HB∗ = H∗ +H = diag(0, 2). Therefore, for
ε = 1 we have that P as in (7) fulfills (3).

Remark III.1: Theorem III.1 appears to be intrinsically and
closely related toμ-analysis whenAB is invertible. In particular,
it may be established using theμ-analysis results in [31] and [34]
that (i) in Theorem III.1 implies that there exists H ∈ GLn such
that HAB +B∗A∗H∗ > 0 and H +H∗ > 0, which may also
be established via (iv) in Corollary III.1. Further investigation
into the delicate relation between Theorem III.1 and μ-analysis
does not appear to be straightforward and is a worthwhile future
research direction of significant importance.

B. Multipliers for Stability Under Congruence

The results in Theorem III.1 show that stability under magni-
tude scaling is equivalent to the existence of a phasal multiplier.
Interesting to note in this context is that for this limited (and in
some sense minimal) set of magnitudinal perturbations, the set of
possible multipliers of phase type to which we could restrict our
attention, and still have a necessary and sufficient condition for
robust stability, is large (and in some sense maximal). Motivated
by this, we next investigate a type of perturbations against which
a minimal set of phasal multipliers can guarantee robust stability.
In this case, we have the following result.

Theorem III.2: GivenA,B ∈ Mn \ {0}, the following state-
ments are equivalent:
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(i) det(I + T ∗ATS∗BS) �= 0 for all T, S ∈ GLn;
(ii) there exists a P ∈ H2n fulfilling (5) or (3), and which

takes the form

P =

[
0 zI

z∗I 0

]

for some z ∈ T;
(iii) one matrix is quasi-sectorial, the other is semisectorial,

φ(A) + φ(B) < π, and φ(A) + φ(B) > −π.
Finally, if the quasi-sectorial matrix in (iii) is of full rank, then

the multiplier P in (ii) fulfills (2) and (4).
Proof: See Appendix B. �
Remark III.2: The result in Theorem III.2 is a type of

small-phase theorem, akin to [57, Thm. 7.1]. The difference is
that Theorem III.2 considers robust stability against congruence
of two given matrices, while [57, Thm. 7.1] considers robust
stability with respect to a matrix cone of semisectorial matrices.
Nevertheless, note that when B = I , the result in Theorem III.2
specializes to robust stability against the matrix cone Pn.

Similar to before, we get the following real-valued version of
the theorem as a corollary.

Corollary III.3: Theorem III.2 remains true when A, B, T ,
S, and z are all real.

Proof: This can be established by noting that a real
matrix A is semisectorial if and only if either A+AT � 0 or
A+AT � 0. �

C. Phasal Multipliers for LTI Systems

Next, we extend the above results to LTI systems. In particular,
in Section II, it was shown how quadratic graph-separation
results for matrices can be extended to LTI systems. Here,
we follow along the same line. In particular, for magnitudinal
perturbations, we have the following necessary and sufficient
conditions for stability.

Theorem III.3: Given G ∈ RHn×n
∞ and K ∈ RHn×n

∞ for
which any potential zero-eigenvalue of G(jω)K(jω), for ω ∈
[0,∞], is semisimple, then (I + τGK)−1 ∈ RHn×n

∞ for all τ >
0 if and only if there exists an H ∈ Ln×n

∞ such that for all ω ∈
[0,∞]

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� −εG(jω)∗G(jω)

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

where

Π(jω) :=

[
0 H(jω)

H(jω)∗ 0

]
.

Proof: Sufficiency follows from Proposition II.1, Re-
mark II.1, and the fact that the inequality

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

implies that

(
τK(jω)∗ I

)
Π(jω)

(
τK(jω)

I

)
� 0

for all τ > 0. Necessity can be established by applying
Theorem III.1 and Corollary III.2 frequencywise in a similar
fashion to the proof of Proposition II.2. In particular, since G
and K are continuous on the imaginary axis, Π may also be
chosen to be continuous on the imaginary axis. �

Remark III.3: By examining a transfer function matrix fre-
quencywise, analogous observations to those in Remark III.1 are
applicable in the context of Theorem III.3.

The abovementioned result shows that if the feedback inter-
connection is robustly stable against arbitrary positive scaling,
then only phasal properties of the open-loop components are re-
quired to establish its stability, i.e., any corresponding multiplier
Π has its diagonal blocks being 0.

Analogously, the following two results, which establish suf-
ficiency and necessity for stability under real congruence trans-
formations, may be readily derived.

Theorem III.4: Given G ∈ RHn×n
∞ and K ∈ RHn×n

∞ , then
(I + TTGTSTKS)−1 ∈ RHn×n

∞ for all T, S ∈ GLn(R), if
there exists z ∈ L∞ such that for all ω ∈ [0,∞], then

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� −εG(jω)∗G(jω)

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0

(9)

or

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� εK(jω)∗K(jω)

(10)

where

Π(jω) :=

[
0 z(jω)I

z(jω)∗I 0

]
.

Proof: Observe that (9) implies that for all T, S ∈ GLn(R),
there exists εT such that

(
I −TTG(jω)∗T

)
Π(jω)

(
I

−TTG(jω)T

)
� −εTT

TG(jω)∗TTTG(jω)T

(
STK(jω)∗S I

)
Π(jω)

(
STK(jω)S

I

)
� 0

and similarly for (10). The claim then follows from Proposi-
tion II.1 and Remark II.1. �

Theorem III.5: Given G ∈ RHn×n
∞ and K ∈ RHn×n

∞ , then
(I + TTGTSTKS)−1 ∈ RHn×n

∞ for all T, S ∈ GLn(R) only
if for ω ∈ {0,∞}
(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� −εG(jω)∗G(jω)

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0
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or (
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
� 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� εK(jω)∗K(jω)

where for each ω ∈ {0,∞}

Π(jω) =

[
0 I

I 0

]
or −

[
0 I

I 0

]
.

Proof: This follows by applying Corollary III.3 to the pairs
of real matrices {G(j0),K(j0)} and {G(j∞),K(j∞)}. �

The separation condition in the abovementioned theorem
holds for sufficiently small and large frequencies by the con-
tinuity of the transfer functions G and K. Such properties
are useful, for instance, in the study of negative imaginary
systems [67], where an example of open-loop systems being
passive on sufficiently small and large frequencies and negative
imaginary elsewhere can be found.

Example III.3: Let G ∈ RHn×n
∞ be output strictly passive

and K ∈ RHn×n
∞ be passive. Then, they satisfy the separation

conditions in all three of the theorems mentioned above with

Π :=

[
0 I

I 0

]
.

This is a well-known passivity theorem.

IV. MULTIPLIERS OF GAIN TYPE

In the previous section, we investigated the necessity of phasal
multipliers in order to guarantee robust stability with respect to
certain magnitudinal perturbations. In this section, we turn to
the necessity of magnitudinal multipliers in order to guarantee
robust stability with respect to certain phasal perturbations.

A. Multiplier for Stability Under Scalar Rotation
Uncertainty

In analogy with Section III, we first consider scalar rotational
uncertainties. In this case, we have the following result.

Theorem IV.1: GivenA ∈ Mm,n andB ∈ Mn,m, the follow-
ing statements are equivalent:

(i) det(I + ejθAB) �= 0 for all θ ∈ [0, 2π);
(ii) there exists a P ∈ Hn+m fulfilling (2), with both in-

equalities strict, which takes the form

P =

[
−N 0

0 M

]
(11)

for some N ∈ Hn and M ∈ Hm;
(iii) for the eigenvalues of AB, it holds that

λ(AB) ∩ T = ∅; (12)

(iv) there exists M ∈ Hm and N ∈ Hn such that A∗MA ≺
N and B∗NB ≺ M .

Proof: The equivalences “(i) ⇔ (iii)” and “(ii) ⇔ (iv)” are
straightforward. We, therefore, restrict our attention to the equiv-
alence “(iii) ⇔ (iv).” To this end, first note that the statement
is trivial if any of the two matrices A and B is the zero matrix.

Therefore, in the remaining we will, without loss of generality,
assume that both are nonzero.

To show “(iv) ⇒ (iii)”, assume that there exist M ∈ Hm

andN ∈ Hn such thatA∗MA ≺ N andB∗NB ≺ M . Together
with [42, Observation 7.1.8], the former inequality implies that

B∗A∗MAB � B∗NB

and hence

B∗A∗MAB � B∗NB ≺ M.

Let Q := M −B∗A∗MAB 	 0. This means that M is a solu-
tion to the Stein equation

M −B∗A∗MAB = Q

where Q ∈ Pm, and hence, by [68, Thm. 13.2.2] we, therefore,
have that λ(AB) ∩ T = ∅.

To show the “(iii) ⇒ (iv)”, assume that (12) holds, and let
AB = XJX−1 be a Jordan decomposition of AB. By (12) we
can, without loss of generality, assume that

J =

(
J1 0

0 J2

)
where J1 ∈ Mm1

has all eigenvalues in D and J2 ∈ Mm2
has

all eigenvalues in (D̄)C , i.e., outside of the close unit disc,
where m = m1 +m2. Next, using [68, Sect. 13.2] and [69,
Exercise 4.9.30], we have that for any P1 ∈ Pm1

and P2 ∈ Pm2
,

there is at least one solution M to the Stein equation3

M −B∗A∗MAB = X−∗
(
P1 0

0 P2

)
X−1 := Q 	 0. (13)

Let M be a solution to (13), in which case B∗A∗MAB ≺ M .
Now, define Ñ := A∗MA and note that this implies that

A∗MA = Ñ � Ñ

B∗ÑB = B∗A∗MAB ≺ M.

To prove that there exist M ∈ Hm and N ∈ Hn with both
inequalities above strict, considerN := Ñ + εI for some ε > 0.
In particular

A∗MA = Ñ ≺ Ñ + εI = N

for all ε > 0. Moreover, since M −B∗ÑB = M −
B∗AMAB = Q 	 0, we have that

M −B∗NB = M −B∗ÑB − εB∗B = Q− εB∗B 	 0

for ε small enough. This completes the proof. �

B. Multiplier for Stability Under Unitary Perturbation

In the previous section, we established that the existence of a
magnitudinal multiplier is necessary and sufficient for stability
in the case of a scalar rotational uncertainty. Similarly to Sec-
tion III, a minimal set of uncertainties gives rise to a maximal set

3 Solutions to the Stein equation can be obtained by using solutions
to the discrete-time Lyapunov equation: one for the stable part, and one
for the antistable part. In particular, in this case one solution is given by
M = X−∗diag(H1,H2)X

−1, where H1 =
∑∞

�=0
(J∗

1)
�P1J

�
1 and H2 =

−J−∗
2 (
∑∞

�=0
(J−∗

2 )�P2(J
−1
2 )�)J−1

2 = −
∑∞

�=1
(J−∗

2 )�P2(J
−1
2 )�. It can be

verified that both H1 and H2 are well-defined, since J1 has all eigenvalues in
the open unit disc and J2 has all eigenvalues outside of the closed unit disc.
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of multipliers. Motivated by this, we now consider for which type
of phasal uncertainties a much smaller (in some sense minimal)
set of magnitudinal multipliers can guarantee robust stability.
More specifically, the set of magnitudinal multipliers considered
is diagonal and completely parameterized by a nonnegative
number and an element that is either 1 or −1, i.e., a nonzero
element whose useful information is only its sign.

We start by establishing a lemma. To state the result, recall
the convention we use that a matrix A ∈ Mm,n has n singular
values, which are given by σ(A) =

√
λ(A∗A), and hence, if

n > m, then σm+1(A) = · · · = σn(A) = 0.
Lemma IV.1: Given A ∈ Mm,n and B ∈ Mn,m, then

(i) there exists a P ∈ Hn+m of the form P =
diag(−γ2I, I), γ ∈ R, fulfilling (2), with both
inequalities strict, if and only if σ1(A)σ1(B) < 1;

(ii) there exists a P ∈ Hn+m of the form P =
diag(γ2I,−I), γ ∈ R, fulfilling (2), with both
inequalities strict, if and only if σn(A)σm(B) > 1.

Before we proceed, note that the conditions in Lemma IV.1(ii)
can only ever be fulfilled if n = m and both matrices are full
rank, since otherwise at least one of the two singular values
σn(A) and σm(B) equals zero.

Proof: We start with proving (i). To this end, note that a
direct calculation in (2) (with both inequalities strict) gives that
a multiplier of the prescribed form exists if and only if

A∗A ≺ γ2I and γ2B∗B ≺ I (14)

which is the case if and only if there exists a γ ∈ R such
that all singular values of A are strictly smaller than |γ|, and
all singular values of B are strictly smaller than or 1/|γ|.
Therefore, the existence of such a multiplier clearly implies that
σ1(A)σ1(B) < 1. Conversely, ifσ1(A)σ1(B) < 1, then a direct
calculation shows that 1/σ2

1(A)− σ2
1(B) > 0 and that for any

0 < ε < 1/σ2
1(A)− σ2

1(B), if we take γ2 = 1/(σ2
1(B) + ε)we

have that γ2 > 1/(σ2
1(B) + 1/σ2

1(A)− σ2
1(B)) = σ2

1(A) and
that 1/γ2 > σ2

1(B), and hence such γ2 fulfills (14).
Next, to prove (ii), we follow along the same lines. However,

first note that σn(A)σm(B) > 1 only if n = m and both A and
B are invertible, since otherwise at least one of the two singular
values equals zero. Now, a multiplier of the prescribed form
exists if and only if

A∗A 	 γ2I and γ2B∗B 	 I (15)

which, similarly, can only hold if n = m and both A and B are
invertible. Henceforth, we can, therefore, restrict our attention to
that case. Now, (15) holds if and only if there exists a γ ∈ R such
that all singular values of A are strictly larger than |γ|, and all
singular values of B are strictly larger than 1/|γ|. Therefore, the
existence of such a multiplier implies that σn(A)σn(B) > 1.
The converse statement is proved analogously, but by instead
considering 0 < ε < σ2

n(B)− 1/σ2
n(A) and γ2 = 1/(σ2

n(B)−
ε), which means that γ2 < 1/(σ2

n(B)− σ2
n(B) + 1/σ2

n(A)) =
σ2
n(A) and that 1/γ2 < σ2

n(B). This proves the lemma. �
The preceding lemma considers two different domains in

which stability of I +AB can be guaranteed: when both A
and B have either small gain or large gain. In both cases, we
expect that stability should be preserved under a suitable notion
of rotation. We can now formalize this as follows.

Theorem IV.2: GivenA ∈ Mm,n andB ∈ Mn,m, the follow-
ing statements are equivalent:

(i) det(I + UAV B) �= 0 for all U ∈ Um and all V ∈ Un;

(ii) there exists a P ∈ Hn+m fulfilling (2), with both in-
equalities strict, which takes the form

P =

[
−ξγ2I 0

0 ξI

]
(16)

for some γ ∈ R and ξ ∈ {−1, 1};
(iii) either σ1(A)σ1(B) < 1 or σn(A)σm(B) > 1.

Proof: See Appendix C. �
Remark IV.1: When n = m, both A and B in Theorem IV.2

have polar decompositionsA = UAQA andB = UBQB , where
UA, UB ∈ Un and QA, QB ∈ Pn. In this case, the uncertainty
can be interpreted as the principle phases of the two matrices
being unknown; the principle phases are defined in [58]. More-
over, if B = I , the result in Theorem IV.2 establishes conditions
for robust stability against all elements in Un, and in this case
the equivalence between (i) and (iii) follows from [70].

Remark IV.2: Note that in a numerical implementation
searching for multipliers to guarantee stability, the conditions in
Theorem IV.2(ii) can be relaxed to searching for multipliers of
the form P = diag(−η1I, η2I), for η1, η2 ∈ R. This means that
the search for multipliers fulfilling (2) can either be formulated
as two linear matrix inequalities (LMIs) of the form (16), each
of which has one unknown γ2 ≥ 0, or it can be solved as one
LMI in the two unknowns η1, η2 ∈ R.

C. Magnitudinal Multipliers for LTI Systems

In order to extend the above results to LTI systems, we first
need the following definitions and results: a transfer function
U ∈ RHn×n

∞ is said to be unitary if U(jω) ∈ Un for all ω ∈
[0,∞]. Moreover, by the proof of [45, Lemma 1.14], it holds that
for every ω > 0 and X ∈ Un, there exists unitary U ∈ RHn×n

∞
such that Q(jω) = X . Next, the following expression will be
used in the forthcoming theorems:

(
I −G(jω)∗

)
Π(jω)

(
I

−G(jω)

)
≺ 0

(
K(jω)∗ I

)
Π(jω)

(
K(jω)

I

)
� 0.

(17)

First, a sufficiency condition for robust stability against phasal
uncertainties is stated.

Theorem IV.3: Given G ∈ RHm×n
∞ and K ∈ RHn×m

∞ , then
(I + uGK)−1 ∈ RHm×m

∞ for all unitary u ∈ RH1×1
∞ if there

exist N ∈ Ln×n
∞ and M ∈ Lm×m

∞ such that for all ω ∈ [0,∞],
N(jω) = N(jω)∗ � 0,M(jω) = M(jω)∗ � 0, and (17) holds
with

Π :=

[
N 0

0 M

]
.

Proof: By noting that u(jω)∗u(jω) = 1 for all ω ∈ [0,∞],
the claim holds by Proposition II.1. �

Next, a necessary condition for robust stability to phasal
uncertainties is provided.

Theorem IV.4: Given G ∈ RHm×n
∞ and K ∈ RHn×m

∞ , then
(I + uGK)−1 ∈ RHm×m

∞ for all unitary u ∈ RH1×1
∞ only if

there exist N ∈ Ln×n
∞ and M ∈ Lm×m

∞ such that for all ω ∈
[0,∞], N(jω) = N(jω)∗, M(jω) = M(jω)∗, and (17) holds
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with

Π :=

[
N 0

0 M

]
.

Proof: The claim can be established by applying Theo-
rem IV.1 frequencywise as in the proof for Proposition II.2. �

The abovementioned theorem shows that if a feedback sys-
tem is robust against all scalar phasal uncertainties (with unity
gain), then there necessarily exists a multiplier of the gain type
with which to establish its robust stability via quadratic graph
separation. When the phasic perturbations are allowed to span
all present dimensions, the following necessary and sufficient
condition for robust closed-loop stability may be acquired.

Theorem IV.5: Given G,G−1,K,K−1 ∈ RHm×m
∞ , then

(I + UGVK)−1 ∈ RHm×m
∞ for all unitary U, V ∈ RHm×m

∞
if and only if there exists γ ∈ L1×1

∞ such that for all ω ∈ [0,∞],
|γ(jω)| > 0 and (17) holds with

Π(jω) :=

[−ξ|γ(jω)|2I 0

0 ξI

]
where ξ ∈ {−1, 1}.

Proof: Necessity can be established by applying
Theorem IV.2 frequencywise as in the proof for Proposition II.2.
In particular, continuity of G and K on the imaginary axis
guarantees the uniqueness of ξ for all ω ∈ [0,∞]. Sufficiency
follows from Proposition II.1 and the fact that (17) implies

(
I −G(jω)∗U(jω)∗

)
Π(jω)

(
I

−U(jω)G(jω)

)
≺ 0

(
K(jω)∗V (jω)∗ I

)
Π(jω)

(
V (jω)K(jω)

I

)
� 0

for all unitary U ∈ RHm×m
∞ and V ∈ RHm×m

∞ . �
Example IV.1: ConsiderG ∈ RHm×n

∞ andK ∈ RHn×m
∞ for

which ‖G‖∞ < γ and ‖K‖∞ ≤ 1
γ . Then, G and K satisfy the

quadratic separation condition in the abovementioned theorems,
i.e., (17), with

Π :=

[−γ2I 0

0 I

]
.

This is the celebrated small-gain theorem.

V. NUMERICAL EXAMPLE

In this section, we illustrate that how the results in this article
can be used in practice. In particular, we here consider an
example of verifying robust stability against positive scaling un-
certainty, i.e., we focus on using Theorem III.3. It is noteworthy
that the other results in this article can be used analogously in
appropriate settings.

To this end, consider the two transfer functions G,K ∈
RH2×2

∞ given in (18) shown at the bottom of this page. The
goal is to verify that the negative feedback interconnection
between the two systems is stable against any positive scaling

uncertainty, i.e., that (I + τGK)−1 ∈ RH2×2
∞ for all τ > 0. It

can be easily seen that neither system is passive, e.g., by not-
ing that G(j1) +G(j1)∗ �� 0 and that K(j0) +K(j0)∗ �� 0,
and hence, results based on passivity cannot be used to guar-
antee robust stability of the interconnection. However, from
Theorem III.3, we know that finding a phase-type multiplier
is a both necessary and sufficient condition for the sought
robust stability. To numerically obtain a stability certificate,
we discretize the frequency interval into 1000 points {ω�}1000�=1 ;
frequency ω1 = 0, and 999 grid points logarithmically equally
spaced betweenω2 = 10−40 andω1000 = 1040 (note thatω501 =
1). Then, for each ω�, we search for an H� ∈ M2 so that
with

Π� :=

[
0 H�

H∗
� 0

]
the two LMIs(
I −G(jω�)

∗)Π�

(
I

−G(jω�)

)
� −10−10G(jω�)

∗G(jω�)

(
K(jω�)

∗ I
)
Π�

(
K(jω�)

I

)
� 0

are satisfied. Here, we set ε = 10−10, since a small value of ε
makes the LMIs easier to satisfy. If there exists one solution H�

to the two LMIs, then there in general exist multiple solutions.
In order to obtain similar matrices for the different frequencies,
for each � we minimize ‖I2 −H�‖2 subject to the two LMIs as
constraint. For each �, the resulting semidefinite programming
problem is a convex optimization problem, and the numerical
implementation is performed in MATLAB using CVX [71],
[72] on a standard desktop computer with a 64-bit operating
system (Windows 10), a 2.90 GHz Intel i7-10700 CPU, and
32 GB of RAM. The optimization problem is feasible for all
� = 1, . . . , 1000, which by continuity is a numerical certificate
that the feedback interconnection of G and K is stable against
any positive scaling uncertainty. Moreover, the total time to solve
all the semidefinite programming problems was less than 5 min.
Finally, for illustration purposes, a few of the obtained H�s are
as follows:

H1 ≈ 10−7

[
7.82 −7.72

8.26 −8.12

]

H501 ≈
[
6.52 + 37.7j 4.60 + 52.9j

1.53 + 53.1j 8.80 + 77.1j

]
H1000 ≈ I2.

VI. CONCLUSION

We have shown that the robustness of feedback intercon-
nections against certain structured uncertainty corresponds to
specific forms of quadratic separation of the open-loop systems.
Specifically, gain-type multipliers define quadratic separation
needed in a feedback, which is robust against all phase-type

G(s)=

[
7s2+57s+90 10s2+82s+132

10s2+73s+78 14s2+104s+120

]
(s+ 1)(s+ 6)2

, K(s)=

−
[

−7s3−91s2−413s−609 2s2+20s+58

5.5s3+71.5s2+324.5s+478.5 0.5s3+6s2+24.5s+29

]
(s+ 5− 2j)2(s+ 5 + 2j)2

(18)
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uncertainty. Analogously, a robustly stable feedback against all
gain-type uncertainty can always be established via the existence
of phase-type multipliers. These results are importantly informa-
tive when using multiplier-based methods for establishing robust
feedback stability. Future research directions of interest include
the consideration of block-diagonal structured uncertainty as in
the μ-analysis and the investigation of its intricate relation with
the main results in this article. The exploration of a possibly uni-
fying description of the structures of uncertainties and the corre-
sponding multipliers beyond those examined in this article is also
desirable.

APPENDIX

A. Proof of Theorem III.1, Corollary III.1, and
Corollary III.2

Proof of Theorem III.1: The equivalence between (i) and (iii)
is clear: the determinant is nonzero for all nonnegative scaling
if and only if AB have no eigenvalue along the strictly negative
real axis.

Next, we prove that “(ii) ⇒ (i).” To this end, assume that (ii)
holds. By Lemma II.2, the existence of the multiplier P that
fulfills (3) means that det(I +AB) �= 0. Now, for any τ ≥ 0
consider the matrices Ã = A and B̃ = τB. For these matrices,
it is easily verified that this P also fulfills (3). Therefore, by
Lemma II.2 we have that 0 �= det(I + ÃB̃) = det(I + τAB).

We complete the proof by showing that “(iii) ⇒ (ii).” To this
end, assume that (8) holds. This means that the principle part
of the matrix square root (AB)1/2 is well-defined and that all
the eigenvalues of (AB)1/2 lie in the open right half-plane or
at the origin [73, Prob. 1.27]. Moreover, (AB)1/2 has as many
zero-eigenvalues as AB, and since a potential zero-eigenvalue
of AB is assumed to be semisimple, so will the potential zero-
eigenvalue of (AB)1/2. Next, let ⊕ denote the direct sum of
two matrices, i.e., the block-diagonal with the two matrices on
the diagonal [42, Sect. 0.9.2], and let (AB)1/2 = XJX−1 be
a Jordan normal form. More specifically, let J = J1 ⊕ · · · ⊕
J�1 ⊕ 0, where each block Jk is of size nk and have the nonzero
eigenvalue λk on the diagonal, as per usual, but let the Jordan
normal form be such that the elements on the sup-diagonal of
each Jk take the value

ε = min
k∈{1,...,�1}

real
(
λk

(
(AB)1/2

))
/2 > 0

which is always possible [42, Corollary 3.1.21].
Now, set D = J1 ⊕ · · · ⊕ J�1 ⊕ I and note that D is

of full rank, that D−1 = J−1
1 ⊕ · · · ⊕ J−1

�1
⊕ I , and that

D−1J = I ⊕ · · · ⊕ I ⊕ 0. Moreover, D is strictly accretive.
To see the latter, first note that by [47, 1.2.10, p. 12],
we have that W (D) = W (J1 ⊕ · · · ⊕ J� ⊕ I) = Co(W (J1) ∪
· · · ∪W (J�) ∪ {1}), where Co denotes the convex hull.
Moreover, Jk = λk((AB)1/2)Ink×nk

+ εS, where S is the
nilepotent matrix with zeros everywhere except the first sup-
diagonal which is ones. By [47, 1.2.10, p. 12] W (Jk) ⊂ λk +
εW (S), and by [47, Prob. 29, pp. 45–46] the set W (S) is
contained in the unit disc. Since by construction ε ≤ real(λk)/2,
we, therefore, have that W (Jk) ⊂ C+ for all k, and hence

W (D) ⊂ C+, i.e., D is strictly accretive. In particular, this
means that D +D∗ 	 0.

Finally, take H = A∗X−∗D−∗X−1 and note that

HA+A∗H∗ = A∗X−∗(D−∗ +D−1)X−1A � εA∗A

for some ε > 0 small enough, since X−∗(D−∗ +D−1)X−1 	
0. By multiplying the above inequality with −1, (3a) follows.
Moreover

H∗B = X−∗D−1X−1AB = X−∗D−1X−1XJX−1XJX−1

= X−∗ (I ⊕ · · · ⊕ I ⊕ 0) JX−1 = X−∗JX−1

which is congruent to J and hence quasi-strictly accretive. A
direct calculation in (3b), therefore, verifies that last claim, and
hence proves that “(iii) ⇒ (ii).” �

Proof of Corollary III.1: To prove the corollary, assume that
A ∈ GLn. A direct calculation shows that if (iv) is fulfilled, then
so is (ii). Moreover, observe that the fact that A is of full rank
implies that H = A∗X−∗D−∗X−1 constructed in the proof of
Theorem III.1, above, is of full rank. Furthermore, it also means
that HA+A∗H∗ = A∗X−∗(D−∗ +D−1)X−1A is congruent
toD−∗ +D−1 and therefore positive definite, i.e.,HA is strictly
accretive. In particular, that means that the corresponding mul-
tiplier P fulfills (2), and also that (iii) implies (iv) in this case.

Finally, clearly (iv) implies (v), since a quasi-strictly accretive
matrix is accretive. What is left to show is, thus, that under the
assumption that A ∈ GLn, (v) implies any of the statements
(i)–(iv). To this end, note that if H ∈ GLn and HA is strictly
accretive, then by congruence HA and AH−∗ have the same
phases. Therefore, using [56, Lemma 2.4] we have that

−π < φ(HA) + φ(H∗B) = φ(AH−∗) + φ(H∗B)

≤ ∠ λi(AH
−∗H∗B) = ∠ λi(AB) = ∠ λi(AH

−∗H∗B)

≤ φ(HA) + φ(H∗B) < π

for i = 1, . . . n, which shows that (v) implies (iii). �
Proof of Corollary III.2: Reexamining the proof of

Theorem III.1, the proof of “(i) ⇔ (iii),” and the proof of “(ii) ⇒
(i)” hold directly also in the case of real matrices A,B, and H .
Moreover, the remaining parts of the proof, showing that “(iii)
⇒ (ii),” would also hold if the constructed H is real. The latter is
true if X and D are real, which is true if (AB)1/2 is real. Thus,
the conclusion follows if AB has a real primary square root.
Since a potential zero-eigenvalue is assumed to be semisimple,
by [73, Thm. 1.23] the matrix AB has a real primary square
root. �

B. Proof of Theorem III.2

The proof proceeds by showing that (i) and (iii) are equivalent,
and that (ii) is equivalent to (iii). The former equivalence is the
lengthier part, and for improved readability we, hence, separate
the equivalence of (i) and (iii) into a separate proposition.

Proposition A.1: Let n ≥ 2, and let A,B ∈ Mn \ {0}. Then

det(I + T ∗ATS∗BS) �= 0 for all T, S ∈ GLn (19a)
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if and only if

one matrix is quasi-sectorial, the other semisectorial, and

φ(A) + φ(B) < π, φ(A) + φ(B) > −π. (19b)

Proof: To show ⇐, assume that (19b) holds. For any T, S ∈
GLn, by congruence invariance of phases of matrices we have
that φ(T ∗AT ) = φ(A) and that φ(S∗BS) = φ(B). Therefore,
by [56, Lemma 2.4], we have that

−π < φ(A) + φ(B) = φ(T ∗AT ) + φ(S∗BS)

≤ ∠ λi(T
∗ATS∗BS) ≤ φ(T ∗AT ) + φ(S∗BS)

= φ(A) + φ(B) < π

for i = 1, . . . n. In particular, this means that there exists an ε >
0 so that λ(T ∗ATS∗BS) ∩ {z ∈ C | z = −rejθ, r > 0, θ ∈
[−ε, ε]} = ∅ for all T, S ∈ GLn. The latter implies that (19a)
holds.

Next, to show ⇒ we will show that the contraposition
is true, namely, that if (19b) is not true, then there exists
T, S ∈ GLn such thatdet(I + T ∗ATS∗BS) = 0, i.e., such that
T ∗ATS∗BS has an eigenvalue in −1. The latter is shown by
explicitly considering all possible cases using the results in [51]
and [55], and is also making heavy use of [74, Thm. 1] (see
also [47, Thm. 1.7.9] and [51, Thm. 3]).

To this end, first assume that B is arbitrary and with at least
one nonzero eigenvalue, and A has only the zero-eigenvalue.
Since A �= 0, the eigenvalue cannot be semisimple, and hence,
A must have a Jordan block of size at least 2× 2. The latter has
a numerical range that is a circle centered around the origin [47,
Prob. 9, p. 25], and hence the angular numerical range of the
2× 2 block, and hence of the matrix A, is the entire complex
plane. Now, let B = V ∗

BΓBVB be a Schur decomposition of B,
i.e., where VB is untiary and ΓB is upper triangular. Any such
ΓB is called a Schur form of B. Moreover, note that at least
one of the diagonal elements of ΓB is nonzero; without loss
of generality assume that it is (ΓB)11. Next, by [74, Thm. 1]
there exists a C ∈ Mn such that one of the eigenvalues of C
is −1/(ΓB)11 and such that T̃ ∗AT̃ = C for some T̃ ∈ GLn.
Moreover, let C = V ∗

CΓCVC be a Schur decomposition of C
such that (ΓC)11 = −1/(ΓB)11. By taking S = V ∗

B and T =
T̃ V ∗

C , we have that

(T ∗AT )(S∗BS) = (VC T̃
∗AT̃V ∗

C)(VBV
∗
BΓBVBV

∗
B)

= (VCCV ∗
C)ΓB = ΓCΓB

which is upper triangular and with −1 in the upper left corner,
i.e., for these T and S we have that T ∗ATS∗BS has an eigen-
value in −1.

Note that the above procedure can also be carried out, mutatis
mutandis, if B only has the zero-eigenvalue. In particular, if
B only has the zero-eigenvalue, then it must also have a Jordan
block of size at least 2× 2. Using [74, Thm. 1], by an appropriate
selection of S = S1S2, we can, thus, make sure that S∗

1BS1 has
a nonzero eigenvalue, after which the above procedure can be
repeated to selectT andS2 so that (T ∗AT )(S∗BS) has an eigen-
value in −1. This means that in the following, we can always

assume that both A and B have at least one nonzero eigenvalue.
In fact, for any matrixA that is nonzero and which is not sectorial
and any arbitrary nonzero matrix B, a similar argument to the
preceding one shows that det(I + T ∗ATS∗BS) = 0 for some
S, T ∈ GLn, since the angular numerical range ofA is the entire
complex plane (see [74, Thm. 1]).

The above argument shows that a necessary condition for
(19a) to hold is that bothA,B are semisectorial. By [55, Thm. 5]
this means that, without loss of generality, we can restrict our-
selves to consider matrices of the form

A =

⎡
⎢⎢⎢⎢⎣
ejθAIkA

2
⊗
[
1 2
0 1

]
0 0

0 diag

(
ejφ̃1(A), . . . , e

jφ̃
kA
1
(A)
)

0

0 0 0

⎤
⎥⎥⎥⎥⎦

(20)
where θA + π/2 ≥ φ̃1(A) ≥ . . . ≥ φ̃kA

1
(A) ≥ θA − π/2,

kA1 ≥ 0, kA2 ≥ 0, and n = 2kA2 + kA1 , and analogously for B.
Note also that φ(A) = θA + π/2 if kA2 > 0 and φ(A) = φ̃1(A)
if kA2 = 0; an analogous observation holds for φ(A). Moreover
a matrix A of the form (20) is quasi-sectorial if and only if
kA2 = 0 and φ(A)− φ(A) < π. Finally, note that by potentially
applying an appropriate permutation that rearranges the
block-diagonal elements we can, without loss of generality,
restrict our attention to matrices of size 2× 2.

Now, we first show that we cannot have kA2 > 0 and kB2 > 0.
To this end, let S = I and consider the unitary matrix

T =

[
cos

(
π
2 + θA+θB

2

) − sin
(
π
2 + θA+θB

2

)
sin

(
π
2 + θA+θB

2

)
cos

(
π
2 + θA+θB

2

)
]

=

[
− sin

(
θA+θB

2

) − cos
(
θA+θB

2

)
cos

(
θA+θB

2

) − sin
(
θA+θB

2

)
]
.

Let SAB := sin((θA + θB)/2) and CAB := cos((θA +
θB)/2). A direct (albeit somewhat cumbersome) calculation
gives that

T ∗
[
1 2

0 1

]
T

[
1 2

0 1

]
=

[
(SAB − CAB)

2 4S2
AB − 4SABCAB + 2C2

AB

−2C2
AB S2

AB + 2SABCAB − 3C2
AB

]

which has eigenvalues − cos(θA + θB)± i sin(θA + θB) =
−e∓i(θA+θB). Therefore, taking T as above and S = I , the
matrix T ∗ATS∗BS has an eigenvalue in −1.

Next, we, therefore, assume that kA2 > 0 and kB2 = 0. In this
case, first assume that B only has one nonzero phase, in which
case it suffices to consider

A = ejθA

[
1 2

0 1

]
and B = diag(ejφ1(B), 0).

If θA + π/2 + φ1(B) ≥ π or θA − π/2 + φ1(B) ≤ −π, then
we can write

T ∗ATB = T ∗ÃTdiag(1, 0)
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where Ã = ejφ1(B)A. However, since θA + π/2 + φ1(B) ≥ π
or θA − π/2 + φ1(B) ≤ −π,−1 is in the numerical range of Ã.
Therefore, using [74, Thm. 1] we can make a construction similar
to before, and select an appropriate T such that T ∗ATB has an
eigenvalue in −1. On the other hand, if θA + π/2 + φ1(B) < π
and θA − π/2 + φ1(B) > −π, then (19b) is fulfilled [and thus
(19a) holds, see the proof of the implication “⇐”].

The next case we consider is when the diagonal unitary part
of B is of size at least 2× 2. To this end, it suffices to consider

A = ejθA

[
1 2

0 1

]
and B = diag(ejφ(B), ejφ(B)).

We split this into two different subcases. In the first case, we
assume that B is quasi-sectorial, which means that φ(B)−
φ(B) < π. If θA + π/2 + φ(B) ≥ π or θA − π/2 + φ(B) ≤
−π, then we can make constructions analogous to the above
one, and if θA + π/2 + φ(B) < π and θA − π/2 + φ(B) >
−π, then (19b) is fulfilled and thus (19a) holds. Therefore,
we next assume that φ(B)− φ(B) = π, in which case B

is rotation-Hermitian, i.e., B = ejφ(B)diag(1,−1). Moreover,
that means that either θA + π/2 + φ(B) ≥ π or θA − π/2 +
φ(B) = θA − π/2 + φ(B)− π ≤ −π. In any case, let S = I
and let

T =

⎡
⎣ cos

(
θA+φ(B)

2

)
j sin

(
θA+φ(B)

2

)
j sin

(
θA+φ(B)

2

)
cos

(
θA+φ(B)

2

)
⎤
⎦ .

This T is unitary, and a direct (albeit somewhat cumbersome)
calculation verify that T ∗ATB has an eigenvalue in −1. This
means that we cannot have kA2 > 0 and kB2 = 0, unless (19b) is
satisfied.

Now, consider the case where both A and B have a rotation-
Hermitian 2× 2 block, i.e., when

A = ejφ(A)

[
1 0

0 −1

]
, B = ejφ(B)

[
1 0

0 −1

]
.

Similarly to the last case just above, this means that ei-
ther φ(A) + φ(B) ≥ π or φ(A)− π + φ(B)− π ≤ −π. In any
case, let S = I and let

T =

⎡
⎣cos

(
π
2 − φ(A)+φ(B)

2

)
− sin

(
π
2 − φ(A)+φ(B)

2

)
sin

(
π
2 − φ(A)+φ(B)

2

)
cos

(
π
2 − φ(A)+φ(B)

2

)
⎤
⎦ .

A calculation similar to before shows that T ∗ATB has an
eigenvalue in −1.

The two final cases to consider are when either 1) A has a
rotation-Hermitian 2× 2 block and B is quasi-sectorial, or 2)
when both A and B are quasi-sectorial, but when the phase
condition is not satisfied in either case. The two cases can
be handled together, and we can, without loss of generality,
assume that φ(A) + φ(B) ≥ π. In this case, by [74, Thm. 1],
there is a T such that C = T ∗AT has an eigenvalue in ejφ(A).
Let C = V ∗

CΓCVC be a Schur decomposition, with ejφ(A) as
top-left element. Let S = S1S2, and note that since φ(B) ≥
π − φ(A) and B is quasi-sectorial, we can in a similar way
select S1 so that D = S∗

1BS1 has an eigenvalue in ej(π−φ(A)).

Let D = V ∗
DΓDVD be a Schur decomposition with ej(π−φ(A))

as top-left element. By taking S2 = V ∗
DVC , we get

(T ∗AT )(SBS∗) = C(S∗
2DS2)

= V ∗
CΓCVCV

∗
CVDV ∗

DΓDVDV ∗
DVC = V ∗

CΓCΓDVC

which by construction has an eigenvalue in −1.
In summary, this means that unless (19b) holds, then there

exist T, S ∈ GLn such that det(I + T ∗ATS∗BS) = 0. This
shows the implication ⇒, and hence, the result follows. �

Proof of Theorem III.2: For n = 1 the matrices are
scalar and hence commute. Therefore, in this case det(I +
T ∗ATS∗BS) = det(1 + τab) for τ > 0, and the conclusions
follow almost trivially.

Forn ≥ 2, Proposition 1 shows that (i) and (iii) are equivalent.
Next, we prove that “(iii) ⇒ (ii).” To this end, without loss
of generality, assume that A is quasi-sectorial of rank n− k,
and that B is semisectorial. The fact that the sum of the largest
and smallest phases is bounded away from ±π, respectively, it
implies that there exists a z ∈ T such that zA is quasi-strictly
accretive and z∗B is accretive, and hence, in particular, that
−zA− z∗A∗ � 0 and z∗B + zB∗ � 0. The latter means that for
thisP , (3b) holds. It remains to show that (3a) holds, i.e., that the
former inequality above can be strengthened to −zA− z∗A∗ �
−εA∗A for some ε > 0. To do so, let zA = T ∗DT be a sectorial
decomposition of the quasi-strictly accretive zA. In particular,
this means that

D = diag(ejφ1 , . . . , ejφn−k , 0, . . . , 0︸ ︷︷ ︸
k of them

)

and zA+ z∗A∗ = T ∗(D +D∗)T , which is positive semidef-
inite with the top-left block of D +D∗ containing the n− k
strictly positive eigenvalues. A direct calculation gives that

A∗A = A∗z∗zA = T ∗D∗TT ∗DT = T ∗
[
� 0

0 0

]
T =: T ∗ΔT

where the block � is of dimension n− k × n− k and is positive
definite. In particular, this means that for ε > 0 small enough,
we have that D +D∗ 	 εΔ, and hence that

zA+ z∗A∗ = T ∗(D +D∗)T 	 εT ∗ΔT = εA∗A.

Multiplying the above inequality by−1 gives the inequality (3a).
This completes the proof of the implication “(iii) ⇒ (ii).”

To show that “(ii) ⇒ (iii),” without loss of generality, assume
that P fulfills (3). The proof for the case where P fulfills (5)
is analogous. Now, note that (3) implies that both zA and z∗B
are accretive. What remains to be shown is thus that zA is in
fact quasi-strictly accretive. To this end, let zA = T ∗DT be
the sectorial decomposition, with D of the form (20). By an
argument similar to the one above, we have that (3a) implies
that

−
[
∗ 0

0 0

]
= −D −D∗ � −εD∗TT ∗D = −ε

[
� 0

0 0

]

where ∗ is a block-diagonal matrix that is positive semidefinite,
and � is a matrix that is positive definite. However, the inequality
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means that ∗ � ε� for some ε > 0, and since � is the positive
definite, this can only be true if ∗ is also positive definite. Now,
if D has a block [

1 2

0 1

]

then a direct calculation gives that ∗ contains a block[
2 2

2 2

]
.

This would mean that ∗ is not of full rank, and hence, it is
only positive semidefinite. Therefore, D cannot contain any
such blocks. Analogously, we can also exclude that D contains
the element j and −j, which implies that zA is quasi-strictly
accretive.

Finally, the last part of the theorem follows by simply reex-
amining the proofs for the equivalence of (ii) and (iii) under the
additional assumption that A is of full rank. It is, then, easily
seen that the same conclusion holds, but with (3) replaced by
(2). �

C. Proof of Theorem IV.2

Proof of Theorem IV.2: The equivalence between (ii) and (iii)
follows directly from Lemma IV.1.

To show that “(ii) ⇒ (i),” first assume that there exists a
multiplier P of the form (16), with ξ = 1, that satisfies (2). A
direct calculation, as in the proof of Lemma IV.1, gives that (14)
holds. Now, letU ∈ Um andV ∈ Un, and note that for Ã = UA
and B̃ = V B, we have

Ã∗Ã = A∗U ∗UA = A∗A ≺ γ2I

γ2B̃∗B̃ = γ2B∗V ∗V B = γ2B∗B ≺ I.

Thus, for this P , (2) holds for Ã and B̃, and hence 0 �= det(I +
ÃB̃) = det(I + UAV B) by Lemma II.2. Since U ∈ Um and
V ∈ Un were arbitrary, the implication follows in the case of
ξ = 1. The proof for the case ξ = −1 follows analogously.

We now show that “(i) ⇒ (iii).” To this end, assume
that det(I + UAV B) �= 0 for all U ∈ Um and all V ∈ Un.
First note that the statement is trivial if any of the two
matrices A and B is the zero matrix, and hence, we can,
without loss of generality, assume that neither of them is.
Now, let A = WAΣAV

∗
A and B = WBΣBV

∗
B be the singu-

lar value decompositions of A and B, respectively, where
WA, VB ∈ Um, VA,WB ∈ Un, ΣA ∈ Mm,n, and ΣB ∈ Mn,m.
Next, note that for any k ≥ 1, Uk is closed under ma-
trix multiplication, i.e., that for all U, V ∈ Un, UV ∈ Un,
and that all permutation matrices are unitary. Therefore, for
any Ṽ , W̃ ∈ Um and any permutation matrix P ∈ Un, let
U = VBṼ

∗W̃W ∗
A ∈ Um and V = VAPW ∗

B ∈ Un. This means
that

0 �= det(I + UAV B) = det(I + VBṼ
∗W̃ΣAPΣBV

∗
B)

= det(I + W̃ΣAPΣBṼ
∗)

for all Ṽ , W̃ ∈ Un and all permutation matrices P .

Next, assume that n ≥ m. In this case, note that
ΣAP ∈ Mm,n with the n columns of ΣA permuted according
to the permutation matrix P . Therefore, W̃ΣAPΣBṼ

∗

can be identified as a singular value decomposition of the
matrix whose singular values are given by σΦ(i)(A)σi(B),
i = 1, . . . ,m, where Φ : {1, . . . ,m} �→ {1, . . . , n} is the
injective map corresponding to the permutation matrix
P . Moreover, by appropriately selecting the permutation
matrix P , we can get any injective map that maps from
{1, . . . ,m} to {1, . . . , n}. Now, if there exists a Φ such that
maxk σΦ(k)(A)σk(B) ≥ 1 and mink σΦ(k)(A)σk(B) ≤ 1,
then by [70] (see also [75, Thm. 9.E.5]) there exist
matrices W̃ , Ṽ ∈ Un such that the corresponding matrix
W̃ΣAPΣBṼ

∗ has an eigenvalue in −1. However, that would
mean that the corresponding determinant is zero, which is a
contradiction. Therefore, for all Φ we must either have that
maxk σΦ(k)(A)σk(B) < 1 or that mink σΦ(k)(A)σk(B) > 1.
In particular, this must hold for all Φ such that Φ(1) = 1 and
Φ(m) = n, in which case either 1 > maxk σΦ(k)(A)σk(B) =
σ1(A)σ1(B) or 1 < mink σΦ(k)(A)σk(B) = σn(A)σm(B).
This shows that the (i) implies (iii) in the case
where n ≥ m.

To complete the proof of the theorem, assume that m > n.
In this case, W̃ΣAPΣBṼ

∗ can still be identified as a singu-
lar value decomposition of the matrix, but now the singular
values are given by m− n zeros as well as σΦ(i)(A)σi(B),
i = 1, . . . , n, where Φ : {1, . . . , n} �→ {1, . . . , n} is a permu-
tation. This means that 0 will always be a singular value of
W̃ΣAPΣBṼ

∗, and by arguments similar to those in the previous
paragraph, we must therefore have that for all permutations Φ, it
holds that maxk σΦ(k)(A)σk(B) < 1, and hence, in particular,
that σ1(A)σ1(B) < 1. �
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