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Insulin resistance as a potential driving force 
of parental obesity‑induced adverse metabolic 
programming mechanisms in children 
with obesity
Lucía Jurado‑Sumariva1, Álvaro González‑Domínguez1,2*, Otto Savolainen3, Jesús Domínguez‑Riscart1,4, 
Rikard Landberg3 and Raúl González‑Domínguez1* 

Abstract 

Background  Parental obesity has been identified as one of the most important early risk factors for childhood obe-
sity, but molecular mechanisms driving this greater predisposition remain to be elucidated.

Methods  In this study, we recruited a cohort comprising children with obesity (body mass index over two z-scores 
above the age/sex-adjusted mean of the Spanish reference population, age range: 6–12 years), born to parents 
with obesity (N = 18) or without obesity (N = 41), as well as matched healthy controls (N = 26). Plasma and erythro-
cyte samples were collected for comprehensive biochemical and metabolomics analyses, this latter by applying 
high-throughput liquid chromatography–mass spectrometry. Then, a combination of multivariate and univariate 
statistical tools was applied to unravel the molecular pathogenic impairments that parental obesity may imprint 
in the offspring.

Results  Interestingly, we found parental obesity to be associated with exacerbated unhealthy metabolic out-
comes in the offspring with obesity, as mirrored in higher fasting insulin levels (p = 2.8 × 10−8) and HOMA-IR scores 
(p = 1.3 × 10−8). This was in turn accompanied by altered concentrations in 87 plasma and 51 erythroid metabolites 
(p < 0.05) involved in a variety of obesity-related pathways that are known to be tightly regulated by insulin action, 
namely energy-related metabolism, branched-chain amino acids, nitrogen homeostasis, redox systems, and steroid 
synthesis (i.e., steroid hormones, bile acids). Additional analyses demonstrated that most metabolomics associations 
were largely attenuated after adjusting for the HOMA-IR scores.

Conclusions  Therefore, we hypothesize that insulin resistance could be a major driving force in mediating deleteri-
ous programming mechanisms induced by parental obesity in the offspring.
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Background
The etiology of obesity has a multifaceted nature involv-
ing complex interactions between lifestyle, environmen-
tal, genetic, endocrine, gut microbial, socioeconomic, 
psychological, and many other factors [1]. The prenatal 
and perinatal periods are especially sensitive to certain 
obesogenic determinants, such as parental diseases (e.g., 
obesity, gestational diabetes), malnutrition, and exposure 
to endocrine and microbiota-disrupting chemicals (e.g., 
smoking, antibiotics), which may elicit long-lasting dele-
terious consequences on the offspring health [2]. Among 
them, parental obesity (PO) stands out as one of the most 
important early risk factors for childhood obesity [3, 4]. 
In this respect, maternal obesity has repeatedly been 
reported to have a stronger impact on newborn health 
than paternal obesity since, besides the transgenera-
tional inheritance transmitted by both progenitors dur-
ing conception, the infant could be exposed to additional 
maternal stimuli along fetal (e.g., placental environ-
ment) and neonatal (e.g., breastfeeding) development [5, 
6]. In contrast, other studies have not found differences 
between maternal and paternal obesity in their magni-
tude of association with childhood obesity at older ages 
[3, 7], as growing evidence suggests that paternal effects 
might appear later in life, possibly around 3–4  years 
of age [8, 9]. This greater predisposition to obesity and 
related cardiometabolic disorders has been allocated to 
the induction of altered developmental programming 
mechanisms affecting a variety of organs (e.g., adipose 
tissue, pancreas), ultimately leading to impairments in 
adipocyte remodeling, insulin secretion and function, 
appetite control via the hypothalamic–pituitary–adre-
nal axis, cytokine production, and epigenetic modifica-
tions [10, 11]. Nevertheless, the understanding of these 
PO-mediated metabolic adaptations mainly proceeds 
from animal models, which are not always translatable to 
humans [12], so there is an urgent need for further clini-
cal research to clarify the mechanisms contributing to 
this increased metabolic risk. To this end, metabolomics 
has been established as a powerful tool to get deeper 
insights into the pathophysiology and susceptibility fac-
tors underlying the onset and progression of complex 
diseases, since metabolites accurately reflect the inter-
twined crosstalk between genetics background, endog-
enous metabolism, and exogenous inputs [13]. A number 
of authors have explored the influence of maternal adi-
posity in the offspring metabolome, as assessed both dur-
ing the perinatal period [14–16] and, to a lesser extent, in 
mid-childhood [17, 18]. Conversely, scarce data are avail-
able on the impact of combined parental insults, being 
limited to a few studies performed in adult descend-
ants using low-coverage metabolomics methods [19, 
20]. Moreover, it should be stressed that most of these 

previous investigations were aimed at elucidating the 
involvement of family history of obesity in modulating 
adverse metabolic outcomes in general populations (i.e., 
non-obese offspring), which hinders establishing a direct 
pathophysiological link between parental and childhood 
obesity. Accordingly, further research in obesity cohorts 
is essential to better understand the role of PO in shaping 
obesity-related metabolic disturbances along childhood.

Herein, we recruited a population comprising children 
with obesity, born to parents with or without obesity, 
as well as matched healthy lean controls, to unravel the 
molecular pathogenic impairments that PO may imprint 
in the offspring (Fig. 1). To this end, paired plasma and 
erythrocyte samples were collected for high-throughput 
metabolomics analysis, thus enabling us to investigate 
obesity pathophysiology in a comprehensive manner, at 
both systemic and cellular levels. In this respect, it should 
be stressed that erythrocytes have been proven to be reli-
able and sensitive sensors of failures in energy homeosta-
sis, oxidative stress, and inflammation [21], which stand 
out as the most relevant pathogenic events behind obe-
sity and related comorbidities.

Methods
Study design
The study population consisted of 85 prepubertal chil-
dren, aged between 6 and 12  years, who were recruited 
at “Hospital Universitario Puerta del Mar” (Cádiz, Spain). 
For the group of children with obesity, the eligibility cri-
teria were presenting a body mass index (BMI) over two 
z-scores above the age/sex-adjusted mean of the Span-
ish reference population [22], being classified as stage 1 
according to the Tanner scale for pubertal development, 
and having retrospectively registered data about PO 
(assessed by an endocrinologist at time of birth) in medi-
cal records. The information of parental weight at birth 
(i.e., BMI > or < 30 kg/m2) was registered by endocrinolo-
gists in an internal database (Pediatric Endocrinology 
Unit, Hospital Universitario Puerta del Mar), which was 
surveyed at the time of enrollment to stratify our popu-
lation (permission to access this database was granted 
by clinicians in charge of the recruitment, Dr. Alfonso 
Lechuga and Jesús Domínguez). On this basis, the par-
ticipants were stratified as children with obesity and PO 
(PO + , N = 18), when at least one of the parents had obe-
sity (BMI > 30 kg/m2); or as children with obesity without 
PO (PO − , N = 41), when none of the parents had obe-
sity (BMI < 30  kg/m2). Within the PO + group, five chil-
dren were born to mothers with obesity, three children 
were born to fathers with obesity, and ten children were 
born to both parents with obesity. Furthermore, healthy 
controls (CNT, N = 26) matched on age and sex were 
recruited among children without obesity nor PO who 
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were subjected to a routine blood test under medical pre-
scription. Children suffering from other chronic diseases 
or acute infectious processes, or receiving any medical 
treatment, were not eligible for the study. The GRANMO 
7.12 webtool was employed for statistical power calcu-
lations. For this purpose, means between groups under 
study (PO + , N = 18; PO − , N = 41; CNT, N = 26) were 
compared using Cohen’s d as effect size (assuming d 0.80 
as large effect). Thus, using a sample size of 85 children 
and considering an alpha risk of 0.05, we found the sta-
tistical power of our comparisons to be above 80%. The 
Ethical Committee of “Hospital Universitario Puerta del 
Mar” (Cádiz, Spain) approved the study protocol (Ref. 
PI22/01899), and all participants and/or legal guardians 
provided written informed consent. The study was per-
formed in accordance with the principles contained in 
the Declaration of Helsinki.

Sampling and biochemical data collection
After an overnight fasting of at least 12  h, blood sam-
ples were collected by venipuncture using BD Vacutainer 
EDTA tubes. The blood tubes were centrifuged at 1500 g 
for 10 min at 4 °C to separate the plasma, and cell pellets 
were washed three times with cold saline solution (9 g/L 
NaCl, 4  °C) to obtain erythrocytes after centrifuging at 
1500 g for 5 min at 4  °C. A fresh aliquot of plasma was 
employed to determine the content of glucose, insulin, 
and lipids (i.e., total cholesterol; high-density lipoprotein 
cholesterol, HDL-C; low-density lipoprotein cholesterol, 

LDL-C; and triglycerides) using an Alinity automatic 
analyzer (Abbot, Madrid, Spain). The homeostatic 
model assessment for insulin resistance (HOMA-IR) 
score was calculated by applying the formula: HOMA-
IR = (glucose × insulin) × 0.055/22.5, where glucose and 
insulin concentrations are expressed as mg/dL and µU/
mL, respectively. The rest of the samples were stored 
at − 80 °C for metabolomics analysis.

Metabolomics analysis
Metabolomics analysis of plasma and erythrocyte sam-
ples was performed by applying the method described by 
González-Domínguez et al. [23]. Briefly, biological sam-
ples were subjected to protein precipitation with organic 
solvents and then analyzed by reversed-phase ultra-high-
performance liquid chromatography coupled to high-
resolution mass spectrometry, using the operational 
conditions described elsewhere [23]. Quality control 
(QC) samples were prepared by mixing equal aliquots of 
each individual sample under study and injected at inter-
mittent points throughout the sequence run to monitor 
system stability and data quality, according to the QCom-
ics guidelines [24]. Then, raw data were preprocessed 
using the “notame” workflow for peak picking, peak 
alignment, and analytical drift correction [25]. Finally, 
molecular features of interest were identified following 
the Metabolomics Standards Initiative (MSI) recommen-
dations: (i) matching experimental data (i.e., accurate 
m/z and tandem spectra, maximum error mass: 10 ppm) 

Fig. 1  Schematic workflow of the study design
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against databases (i.e., Human Metabolome Database, 
METLIN); (ii) analysis of pure standards [26]. The anno-
tation of phospholipids and phase II metabolites was 
confirmed based on their characteristic fragmentation 
spectra [27, 28].

Statistical analysis
A combination of multivariate (orthogonal partial least 
squares discriminant analysis) and univariate (analysis 
of variance, linear modeling) approaches was applied 
to perform group comparisons, following the workflow 
described by Blaise et al. for metabolomics data analysis 
[29]. For handling missing values, we applied the strict 
20% rule (i.e., removal of variables containing more than 
20% missing values) to minimize as much as possible 
the presence of spurious signals in our datasets, thus 
strengthening the power of further statistical analyses 
(crucial if considering the relatively small size of the study 
population, as a consequence of our strict inclusion crite-
ria and further stratification according to the PO status). 
The major drawback of this strategy is the possible loss of 
metabolites that are not expected to be widely detected 
(e.g., truly absent data), such as dietary or exposure com-
pounds. However, we considered this risk assumable as 
the main aim of this work was investigating the molec-
ular impairments that PO may imprint in the offspring, 
not assessing the impact of other lifestyle factors (as we 
do not have lifestyle data of this population). Anyway, 
it should be stressed that only 3.1% of all the molecular 
features were removed after applying the 20% rule, guar-
anteeing that the impact of this preprocessing was negli-
gible. The remaining missing data were subjected to kNN 
imputation, as this method has been proven to provide 
better performance, robustness, and an overall marginal 
type 1 error rate [30, 31], especially when the proportion 
of missing data across samples for a molecular feature 
is relatively low (as in our datasets, with only 11.6% of 
imputable variables). Then, data was filtered based on the 
interquartile range to remove non-informative variables, 
log transformed to increase the symmetry of skewed dis-
tributions, and Pareto scaled to adjust for differences in 
concentration scales. As a first data exploration, orthog-
onal partial least squares discriminant analysis (OPLS-
DA) was employed to inspect the discriminant capacity 
of plasma and erythroid metabolites in a multivariate 
manner. On the basis of these models, metabolites of 
interest were selected among those showing a “Vari-
able Importance for the Projection” parameter greater 
than 1. Afterward, the significance of the associations 
observed in multivariate models was validated by analysis 
of variance (ANOVA) with Fisher LSD post hoc tests and 
false discovery rate (FDR) correction for multiple test-
ing. Linear models with covariate adjustment were also 

computed using the limma package to study the influ-
ence of insulin resistance (IR), as assessed through the 
HOMA-IR score, as a confounding factor. Finally, sec-
ondary ANOVA analyses were performed to look for 
metabolomics differences within the PO + group depend-
ing on which parent presents obesity (i.e., maternal vs. 
paternal vs. combined). On the other hand, descriptive 
analysis of demographic, anthropometric, and biochemi-
cal variables was performed by means of the median and 
interquartile range for quantitative variables, or by per-
centages in case of qualitative ones. Data normality was 
checked by conducting the Shapiro–Wilk test. Then, dif-
ferences between groups were assessed by applying the 
Kruskal–Wallis test. The significance of all comparisons 
was set at p < 0.05. All statistical analyses were conducted 
in the MetaboAnalyst 5.0 web tool (https://​www.​metab​
oanal​yst.​ca/).

Results
The characterization of the study population in terms of 
demographic, anthropometric, and biochemical data is 
summarized in Table  1. The participants were on aver-
age 9.0  years old and 54% were male, characteristics 
that were matched across the three groups under inves-
tigation. As defined by inclusion criteria, children with 
obesity presented higher weight (p = 2.8 × 10−11), BMI 
(p = 7.7 × 10−11), and waist circumference (p = 2.1 × 10−7) 
than healthy controls, with Z-scores above 2. However, 
these anthropometric measures were similar between 
PO + and PO − children, which enables us to hypoth-
esize that differences found in other variables are not 
related to obesity degree, but driven by PO. Interestingly, 
gradual disturbances were observed in insulin homeo-
stasis within the study population, with higher fast-
ing insulin levels (p = 2.8 × 10−8) and HOMA-IR scores 
(p = 1.3 × 10−8) being detected among PO + and, to a 
lesser extent, PO− subjects when compared with the con-
trol group. In contrast, no differences were found in glu-
cose levels, whereas obesity-related changes in the lipid 
profile (i.e., higher triglyceride levels, lower HDL-C lev-
els) were comparable regardless of PO status.

Metabolomics analysis evidenced that childhood 
obesity may trigger numerous changes in the circulat-
ing metabolome (FDR-p values < 0.05), with differential 
levels being observed in 87 plasmatic and 51 erythroid 
metabolites (from a total of 680,708 and 547,904 molecu-
lar features that were detected in each study matrix), as 
depicted in Additional file  1: Tables S1–S2. Compared 
to controls, children with obesity presented higher con-
centrations in a variety of metabolites involved in energy 
homeostasis, branched-chain and aromatic amino acids, 
markers of oxidative stress, and nucleotide catabo-
lites in both biological matrices, while other metabolic 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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increments were exclusive for plasma (e.g., steroid hor-
mones, bile acids) or erythrocytes (e.g., carnitine deriva-
tives, methionine, N-acetylspermine, sphingolipids). 
Moreover, lower plasma levels were found for ketone 
bodies, hydroxylated fatty acids, xanthosine 5-triphos-
phate, and other amino acids (e.g., arginine, histidine, 
glutamine, N-acetylglycine). Considering the phospho-
lipid profile, we observed a profound remodeling in fatty 
acid composition (i.e., raised content of saturated spe-
cies, reduced content of polyunsaturated species), which 
was in turn accompanied by an overall decrease in lyso-
phospholipids. Besides these differences in endogenous 
metabolism, we also found childhood obesity to be asso-
ciated negatively with dietary metabolites (in both matri-
ces) and positively with endocrine disrupting chemicals 
(in plasma). However, the most interesting results were 
obtained when studying the influence of PO in these obe-
sity-related metabolic impairments. Children from the 
PO+ group showed more pronounced changes in many 
differential metabolites, affecting all the metabolic classes 
aforementioned (with the exception of phospholipids and 
sphingolipids). More interestingly, a few metabolites (e.g., 
plasma histidine, erythroid carnitine derivatives) were 
reported to exclusively differ in PO+ children, whereas 
similar levels were detected in control and PO− subjects, 
thus suggesting that PO might play an important role in 
modulating these metabolic programming mechanisms. 
In this respect, it should also be noted that the influence 

of PO was generally stronger in erythrocytes, with analog 
plasmatic metabolites showing similar levels regard-
less of PO status (e.g., carbohydrate-related metabolites, 
branched-chain amino acids, oxidative stress byproducts, 
nucleotide catabolites).

The significance of most of these associations between 
childhood obesity, PO, and circulating metabolites was 
lost, or at least attenuated, after additionally adjusting for 
HOMA-IR as a covariate (Additional file  1: Tables S1–
S2). Furthermore, secondary statistical analyses in the 
PO+ group demonstrated that none of the above-men-
tioned differential metabolites remained significant when 
considering maternal, paternal, or combined parental 
obesity as separate study groups (Additional file 1: Tables 
S1–S2), thus suggesting that the influence PO could be 
independent of which progenitor presents obesity.

Discussion
Family history of obesity is well-recognized as one of 
the most important risk factors for childhood obesity [3, 
4], but mechanisms driving this greater predisposition 
remain to be elucidated. Herein, we found that children 
born to parents with obesity had increased fasting insulin 
levels and HOMA-IR scores, in agreement with previous 
clinical [32, 33] and experimental [10] studies describing 
that PO may disrupt β cell development in the offspring, 
thus impairing insulin production and function. Inter-
estingly, this was in turn accompanied by altered levels 

Table 1  Demographic, anthropometric, and biochemical characteristics of the study population. Results are expressed as the median 
and interquartile range (except for sex, expressed as percentage). Superscript letters within each row indicate significant differences 
between groups that are marked with different letters, according to the Kruskal–Wallis test (p < 0.05). NS, non-significant

CNT
(N = 26)

PO−
(N = 41)

PO+
(N = 18)

p-value

Demographic and anthropometric variables

  Age (years) 8.8 (7.5–10.0) 9.3 (8.2–10.1) 9.3 (8.5–10.5) NS

  Sex (% male) 57.7 48.8 61.1 NS

  Weight (kg) 27.3 (23.3–30.2)a 55.6 (46.7–66.5)b 56.0 (50.7–68.8)b 2.8×10−11

  Weight (Z-score) 0.04 (− 0.5–0.3)a 4.9 (3.7–6.1)b 4.9 (3.6–5.8)b 1.1×10−10

  Body mass index (kg/m2) 16.6 (15.7–17.5)a 28.0 (25.7–31.0)b 29.7 (25.3–33.4)b 7.7×10−11

  Body mass index (Z-score) − 0.3 (− 0.8–0.3)a 4.4 (3.7–5.6)b 5.1 (3.1–6.1)b 3.3×10−11

  Waist circumference (cm) 58.4 (55.0–61.1)a 90.0 (83.5–97.0)b 94.5 (87.0–106.0)b 2.1×10−7

  Waist circumference (Z-score) − 0.4 (− 0.8–0.1)a 4.6 (3.1–5.8)b 4.8 (3.7–6.3)b 1.1×10−10

Biochemical variables

  Glucose (mg/dL) 83.0 (81.0–87.0) 85.5 (80.8–91.0) 84.5 (79.0–89.8) NS

  Insulin (µU/mL) 4.7 (4.0–5.9)a 14.0 (10.0–15.8)b 18.5 (15.8–25.5)c 2.8×10−8

  HOMA-IR 0.9 (0.8–1.3)a 2.8 (2.3–3.4)b 4.0 (3.2–5.5)c 1.3×10−8

  Total cholesterol (mg/dL) 165.0 (144.3–178.8) 168.0 (149.0–189.0) 149.0 (143.0–160.0) NS

  Low-density lipoprotein cholesterol (mg/dL) 90.5 (79.0–108.5) 99.0 (85.5–117.5) 97.0 (82.0–104.0) NS

  High-density lipoprotein cholesterol (mg/dL) 63.5 (57.3–69.3)a 48.0 (43.0–51.5)b 44.0 (41.0–45.0)b 7.5×10−7

  Triglycerides (mg/dL) 44.5 (37.3–55.8)a 78.0 (59.0–101.0)b 63.0 (50.0–91.0)b 2.0×10−4
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in a multitude of metabolites participating in a variety 
of pathways that are known to be tightly regulated by 
insulin action, as summarized in Fig.  2 and detailedly 
discussed in the following paragraphs. Additional sta-
tistical analyses showed that most of these associations 
between childhood obesity, PO, and blood metabolites 
were largely attenuated after adjusting for HOMA-IR 
scores (Additional file  1: Tables S1–S2). Altogether, our 
findings suggest that IR could represent a cornerstone in 

modulating PO-mediated exacerbations in the metabolic 
derangements typically underlying childhood obesity.

Supporting this hypothesis, we found that levels of 
numerous metabolites involved in carbohydrate metabo-
lism and other energy-related pathways, which can be 
regarded as the central pathogenic hallmarks in the obe-
sity-IR crosstalk, differed between PO+ and PO− chil-
dren. Obesity has traditionally been associated with an 
excessive consumption and ineffective expenditure of 

Fig. 2  Pathway analysis of differential plasma and erythroid metabolites found to be altered in children with obesity and/or influenced by parental 
obesity
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calories, coupled to a shift toward glycolytic metabo-
lism as the predominant energy source to compensate 
for mitochondrial impairments [34]. In this work, this 
was mirrored in increased plasma and/or erythroid 
contents of simple sugars (i.e., glucose, deoxyglucitol) 
and other intermediates participating in downstream 
metabolic processes, such as glycolysis (i.e., pyruvate), 
anaerobiosis (i.e., lactate, N-lactoylamino acids), Cahill 
cycle (i.e., alanine), Luebering-Rapoport shunt (i.e., 
glyceric acid 2,3-bisphosphate), pentose phosphate 
pathway (i.e., glycerate), glycosylation (i.e., N-acetyl-lac-
tosamine), phosphocreatine system (i.e., creatine), and 
niacin metabolism (i.e., niacinamide, N1-methyl-4-pyri-
done-3-carboxamide), in line with recent metabolomics 
studies [21, 34]. Furthermore, this was accompanied by 
alterations in other metabolites suggesting mitochondrial 
dysfunctions affecting ketogenesis (i.e., lower plasma 
3-hydroxybutyrate), lipid β-oxidation (i.e., lower plasma 
hydroxylated fatty acids and N-acetylglycine, higher 
erythroid acyl-carnitines), and Krebs cycle (i.e., higher 
erythroid succinate) [21, 34]. Noteworthy, this obesity-
related metabolic fingerprint reflecting a widespread 
energy dyshomeostasis was found to be largely exac-
erbated in children born to parents with obesity when 
compared with the PO− group, but only when consider-
ing erythroid data (Additional file  1: Table  S2), whereas 
most plasmatic energy intermediates showed similar 
concentrations regardless of PO status (Additional file 1: 
Table S1). More interestingly, the rise in short-chain acyl-
carnitines was exclusively detected among PO+ children, 
whereas control and PO− subjects showed similar levels, 
thereby pinpointing to β-oxidation as a pivotal player in 
PO-mediated deleterious programming mechanisms, as 
reported in animal models [35, 36]. In close relationship 
with these findings, children with obesity also presented 
higher contents of branched-chain amino acids (BCAA) 
and derivatives when compared to controls. This incre-
ment in circulating levels of BCAAs has repeatedly been 
allocated to a complex interplay between higher dietary 
intake, abnormal expression of amino acid transporters, 
and blunted capacity to inhibit protein turnover [37]. 
In turn, this increased bioavailability may trigger skel-
etal muscle catabolism of BCAAs to produce α-ketoacids 
and, finally, short-chain acyl-coenzyme A species, which 
compete with lipid oxidation as a fuel source for entry 
into the Krebs cycle, thus causing the accumulation of 
incompletely oxidized intermediates (i.e., acyl-carnitines) 
[37]. When considering PO-based stratification, changes 
in BCAAs and catabolites were more pronounced among 
children within the PO+ group, but only when analyzing 
erythrocytes, as stated before for acyl-carnitines. This 
concurs with other studies describing that PO primarily 
influences mitochondrial β oxidation and skeletal muscle 

metabolism [17, 19]. In this respect, it should be noted 
that IR is closely involved in BCAAs and acyl-carnitine 
homeostasis and, at the same time, these metabolites 
may exacerbate insulin signaling disruption via different 
mechanisms [37], which altogether reinforce our ration-
ale about the potential role of IR in mediating adverse 
programming mechanisms in the offspring.

Besides BCAAs, childhood obesity was also character-
ized by alterations in other amino acid classes. On the 
one hand, we observed an overall increase in aromatic 
amino acids (i.e., tyrosine, phenylalanine), probably 
because of their competition with BCAAs for the same 
cellular transporters [38]. Their catabolism may in turn 
release a myriad of uremic toxins (e.g., 4-hydroxyphenyl-
acetic, -pyruvic, and -lactic acids) and pro-inflammatory 
compounds (e.g., kynurenic acid), which modulate oxida-
tive stress and inflammation [39]. Children with obesity 
also had reduced plasma levels of arginine and glutamine, 
this latter exacerbated among PO+ subjects, indicative of 
failures in nitrogen metabolism. In this vein, it has been 
reported that rates of urea excretion and glutamine for-
mation are generally decreased in obesity, being activated 
alternative mechanisms for excess nitrogen disposal, 
such as the synthesis of nitric oxide from arginine [40]. 
However, in our study, deficits in glutamine and arginine 
were accompanied by higher levels of N-acetylspermine, 
thereby suggesting that polyamines could serve as a com-
plementary sink to manage nitrogen surplus. Although 
much less investigated, growing evidence also supports a 
pivotal role of histidine in the pathophysiology of obesity, 
with decreased concentrations of this essential amino 
acid being considered as a reliable marker of activated 
immune response [41] and impaired histaminergic reg-
ulation of food intake [42]. Notably, we found histidine 
plasma reductions to be exclusively detected in children 
with obesity and PO.

Oxidative stress is another of the pathogenic events 
most frequently linked to obesity, which is primarily 
triggered by sustained free radical generation as a con-
sequence of mitochondrial electron transport chain 
overload due to excess calorie intake [43]. Not surpris-
ingly, this stressful environment was ultimately mirrored 
in higher plasma and erythroid contents of a multitude 
of metabolites derived from the oxidative damage to 
proteins (i.e., dityrosine), lipids (i.e., malondialdehyde, 
4-hydroxynonenal, 4-oxononenal glutathione), and cat-
echolamines (i.e., adrenochrome, adrenolutin) among 
children with obesity. Furthermore, we observed an 
enhanced degradation of nucleotide bases, as reflected 
in lower levels of xanthosine 5-triphosphate and subse-
quent accumulation of purine (i.e., hypoxanthine, uric 
acid, 5-hydroxyisouric acid, allantoin) and pyrimidine 
(i.e., ureidosuccinic acid, N-acetylcytidine) catabolites. 
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Accompanying this rise in oxidative stress markers, child-
hood obesity was also associated with impairments in 
glutathione metabolism, one of the most important anti-
oxidants in the human body. In particular, we detected 
higher levels of cysteinyl-glycine and 2-hydroxybutyrate, 
metabolites derived from the over-expression of the glu-
tathione system under a pro-oxidative scenario [44]. As 
previously reported for energy-related intermediates, we 
found PO to predispose to exacerbated changes in some 
of these metabolites (i.e., 2-hydroxybutyric acid, uric 
acid, allantoin), but again only within erythrocytes. In 
this respect, it should be stressed that these cells contain 
powerful antioxidant systems to fight against the contin-
uous exposure to free radicals generated during oxygen 
transport. Accordingly, it has been proposed that eryth-
rocytes could serve as reliable systemic biomarkers to 
study redox physiology in health and disease [45], in line 
with our findings.

The metabolism of cholesterol was also found to be 
altered in children with obesity and possibly influenced 
by PO. On the one hand, children with obesity showed 
higher plasma levels of numerous steroid hormones, 
including androgens, estrogens, progestogens, and cor-
ticosteroids. This enhanced steroidogenesis is known 
to be originated by various inter-related mechanisms 
mediated by IR and pro-inflammatory cytokines, such 
as the secretion of gonadotropin-releasing hormone, 
the over-expression of adrenocorticotropic hormone, 
and lowering of sex hormone-binding globulin levels 
[46]. Alternatively, obesity may also promote choles-
terol metabolism toward the production of bile acids 
with the aim of facilitating the absorption of excess body 
fat [47], in line with our findings. The release of steroid 
compounds may in turn bidirectionally modulate insulin 
secretion and function by activating many signaling path-
ways, thus creating a vicious pathological cycle [48]. As 
a result of this tight interplay between insulin action and 
cholesterol homeostasis, other studies have evidenced 
that IR may imprint profound disturbances in the profile 
of steroid hormones and bile acids [21, 49]. Similarly, we 
have reported in the present work that children born to 
parents with obesity, who had higher HOMA-IR scores, 
manifested worsened impairments in steroid derivatives, 
further emphasizing the potential involvement of IR in 
driving these PO-related metabolic disruptions. Besides 
the aforementioned changes in cholesterol-related 
metabolites, children with obesity also presented lower 
levels of various lyso-phospholipids and phospholipids 
containing polyunsaturated fatty acids, as well as higher 
levels of saturated phospholipids and sphingolipids. In 
this vein, a recent study has reported similar results in 
children with obesity and IR, which were allocated to 
impaired lecithin cholesterol acyltransferase activity, 

changes in cell membrane phospholipid composition, 
and improved biosynthesis of ceramides and sphingomy-
elins [21]. However, none of these lipid species have been 
found to be influenced by PO.

Finally, childhood obesity was also closely associated 
with several metabolites derived from environmental and 
dietary sources, which tended to be exacerbated in chil-
dren with PO. When compared to controls, children with 
obesity and PO, and to a lesser extent those born to lean 
progenitors, had higher plasma levels of propylparaben 
sulfate and naphthyl sulfate. These can be considered as 
markers of exposure to parabens and polycyclic aromatic 
hydrocarbons, respectively, which have extensively been 
documented to possess endocrine-disrupting and obeso-
genic properties [50]. Conversely, the opposite direction 
of association was observed for other metabolites com-
ing from the consumption of polyphenol-rich foods and 
further microbial metabolization (i.e., hydroxyphenyl-
γ-valerolactone sulfate, N-(2-hydroxyphenyl)acetamide 
sulfate, 2-hydroxybenzoic acid, 4-hydroxybenzaldehyde) 
[51], which could be indicative of lower adherence to 
healthy dietary habits. Concurring with our findings, it 
is well recognized that, besides genetics and metabolic 
programming, the greater predisposition to childhood 
obesity induced by PO might be related to lifestyle habits, 
since children grown by families with obesity often have 
lower preference for vegetables and higher preference 
for fatty/sugary foods [52]. However, the lack of dietary 
assessment data in our study population impedes us from 
corroborating these findings.

The major strength of this study has been the recruit-
ment of a cohort of children with obesity, born to parents 
with or without obesity, to deepen into the role of PO in 
mediating deleterious metabolic programming mecha-
nisms in the offspring. This differs from most previous 
metabolomics publications in this regard, which have 
often been conducted in general populations (i.e., non-
obese offspring), thereby hindering elucidation of a direct 
pathophysiological link between parental and childhood 
obesity. In this respect, it should also be stressed that 
greater attention has traditionally been paid to investigat-
ing the impact of maternal obesity on offspring health, 
especially along the perinatal period, whereas the influ-
ence of paternal obesity has frequently been underesti-
mated. However, growing evidence suggests that both 
maternal and paternal obesity are equally important 
determinants in predisposing individuals to obesity dur-
ing mid-childhood. Accordingly, herein we decided 
to explore the influence of combined parental insults. 
Another strength was the use of a population exclusively 
comprising prepubertal children to minimize biologi-
cal interferences (e.g., hormonal development, puberty-
related physiological IR). Moreover, the combined 
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analysis of plasma and erythrocyte samples enabled us to 
comprehensively characterize the molecular mechanisms 
underlying such a complex and multifactorial disorder as 
obesity, and thus compare the utility of complementary 
biological matrices to identify markers associated with 
its pathophysiology and risk factors. Nonetheless, some 
limitations deserve to be mentioned as well. As afore-
mentioned, unlike previous studies in this field, we exclu-
sively recruited children with obesity. This, together with 
the strict inclusion criteria (i.e., Tanner stage 1, match-
ing for BMI) and further stratification according to PO 
status, considerably limited our sample size. Further-
more, although our secondary analyses supported that 
the influence of PO is independent of which progenitor 
presents obesity, in line with growing scientific evidence 
[3, 7], we cannot discard that, at least in part, this lack 
of observed differences could be due to limited statisti-
cal power (i.e., reduced sample size, unequal number 
of subjects within groups). Accordingly, future studies 
separately addressing maternal, paternal, and combined 
parental obesity in larger populations would be of inter-
est. In this vein, to investigate potential differences in 
parental influences over children with and without obe-
sity, further investigations also considering the PO status 
in healthy control children are needed (not feasible here, 
as none of the control children were born to parents with 
obesity in our study population). To conclude, it should 
be highlighted that, given its multifactorial origin, obe-
sity pathophysiology may be mediated by a variety of risk 
factors, many of which are closely associated with PO. 
In this respect, it is noteworthy that PO primarily pre-
disposes to childhood obesity through complex biologi-
cal mechanisms (e.g., genetic inheritance, induction of 
adverse metabolic programming), but also by influencing 
deleterious lifestyle habits (e.g., children grown by fami-
lies with obesity frequently have sedentary behaviors and 
overeating-type eating styles). Thus, an in-depth charac-
terization of risk factors behind childhood obesity would 
be necessary to better understand the overall impact of 
PO, and its relationship with other obesogenic determi-
nants, on offspring health.

Conclusions
This study evidences that PO may induce a multitude of 
deleterious programming mechanisms in the offspring, 
affecting energy-related, amino acid, redox, and ster-
oid metabolisms, thereby worsening metabolic health 
and predisposing them to childhood obesity. Further-
more, our findings interestingly suggest that IR, which 
was exacerbated among children born to parents with 
obesity, could be a pivotal driving force triggering 
these metabolic disturbances. Noteworthy, we found 

erythrocytes to be a more valuable study matrix rather 
than plasma, the most common biological material in 
biomedical research, to investigate the influence of PO 
on offspring health. Altogether, this study highlights 
the great impact of PO as an important early risk factor 
in shaping obesity-related metabolic impairments dur-
ing childhood.

Abbreviations
BCAA​	� Branched-chain amino acid
BMI	� Body mass index
CNT	� Healthy control
HOMA-IR	� Homeostatic model assessment for insulin resistance
PO	� Parental obesity
PO + 	� Children with obesity born to parents with obesity
PO − 	� Children with obesity born to parents without obesity

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12916-​025-​04282-w.

Additional file 1: Tables S1-S2. Table S1 - Summary of differential plasma 
metabolites between children with obesity and parental obesity (PO+), 
children with obesity without parental obesity (PO-), and healthy control 
children (CNT). Table S2 - Summary of differential erythroid metabolites 
between children with obesity and parental obesity (PO+), children with 
obesity without parental obesity (PO-), and healthy control children (CNT).

Acknowledgements
Not applicable.

Authors’ contributions
Conceptualization, R.G.-D.; methodology, Á.G.-D., O.S., and R.G.-D.; formal 
analysis, L.J.-S., Á.G.-D., O.S., and R.G.-D.; investigation, L.J.-S., Á.G.-D., O.S., R.L., 
and R.G.-D.; resources, J.D.-R., R.L., and R.G.-D.; data curation, R.G.-D.; writing—
original draft preparation, L.J.-S. and R.G.-D.; writing—review and editing, 
L.J.-S., Á.G.-D., R.L., and R.G.-D.; supervision, R.G.-D.; project administration, 
R.G.-D.; funding acquisition, R.G.-D. All authors read and approved the final 
manuscript.

Funding
This research was funded by the Spanish Government through “Instituto de 
Salud Carlos III” (PI22/01899). Á.G.-D. was supported by an intramural grant 
from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-
CO24) and a Scientific Exchange grant from EMBO (ref. 9400). J.D.-R. thanks 
the “Río Hortega” program from “Instituto de Salud Carlos III” (CM23/00026). 
R.G.-D. was the recipient of a “Miguel Servet” fellowship (CP21/00120) 
funded by “Instituto de Salud Carlos III” and a "José Castillejo" mobility grant 
(CAS22/00080) funded by Spanish “Ministerio de Educación”.

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The Ethical Committee of “Hospital Universitario Puerta del Mar” (Cádiz, Spain) 
approved the study protocol (Ref. PI22/01899), and all participants and/or 
legal guardians provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1186/s12916-025-04282-w
https://doi.org/10.1186/s12916-025-04282-w


Page 10 of 11Jurado‑Sumariva et al. BMC Medicine          (2025) 23:458 

Author details
1 Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hos-
pital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz 11009, Spain. 
2 Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York 
City, NY 10029, USA. 3 Division of Food and Nutrition Science, Department 
of Life Sciences, Chalmers University of Technology, Gothenburg SE‑412 96, 
Sweden. 4 Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediat-
ría, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain. 

Received: 20 January 2025   Accepted: 15 July 2025

References
	1.	 Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. 

Front Endocrinol. 2021;12: 706978.
	2.	 Larqué E, Labayen I, Flodmark CE, Lissau I, Czernin S, Moreno LA, et al. 

From conception to infancy - early risk factors for childhood obesity. Nat 
Rev Endocrinol. 2019;15:456–78.

	3.	 Lee JS, Jin MH, Lee HJ. Global relationship between parent and child 
obesity: a systematic review and meta-analysis. Clin Exp Pediatr. 
2022;65:35–46.

	4.	 Hieronimus B, Ensenauer R. Influence of maternal and paternal pre-
conception overweight/obesity on offspring outcomes and strategies for 
prevention. Eur J Clin Nutr. 2021;75:1735–44.

	5.	 Linabery AM, Nahhas RW, Johnson W, Choh AC, Towne B, Odegaard AO, 
et al. Stronger influence of maternal than paternal obesity on infant and 
early childhood body mass index: the Fels Longitudinal Study. Pediatr 
Obes. 2013;8:159–69.

	6.	 Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing mater-
nal and paternal intergenerational transmission of obesity risk in a large 
population-based sample. Am J Clin Nutr. 2010;91:1560–7.

	7.	 Wang Y, Min J, Khuri J, Li M. A Systematic Examination of the Associa-
tion between Parental and Child Obesity across Countries. Adv Nutr. 
2017;8:436–48.

	8.	 Botton J, Heude B, Maccario J, Borys JM, Lommez A, Ducimetière P, et al. 
Parental body size and early weight and height growth velocities in their 
offspring. Early Hum Dev. 2010;86:445–50.

	9.	 Knight B, Shields BM, Hill A, Powell RJ, Wright D, Hattersley AT. The impact 
of maternal glycemia and obesity on early postnatal growth in a nondia-
betic Caucasian population. Diabetes Care. 2007;30:777–83.

	10.	 Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced 
changes in developmental programming. Front Cell Dev Biol. 2022;10: 
918080.

	11.	 Batra V, Norman E, Morgan HL, Watkins AJ. Parental Programming of 
Offspring Health: The Intricate Interplay between Diet, Environment. 
Reproduction and Development Biomolecules. 2022;12:1289.

	12.	 Rabadán-Diehl C, Nathanielsz P. From Mice to Men: research models of 
developmental programming. J Dev Orig Health Dis. 2013;4:3–9.

	13.	 González-Domínguez Á, González-Domínguez R. How far are we from 
reliable metabolomics-based biomarkers? The often-overlooked impor-
tance of addressing inter-individual variability factors. Biochim Biophys 
Acta Mol Basis Dis. 2024;1870: 166910.

	14.	 Yuan X, Ma Y, Wang J, Zhao Y, Zheng W, Yang R, et al. The influence of 
maternal prepregnancy weight and gestational weight gain on the 
umbilical cord blood metabolome: a case-control study. BMC Pregnancy 
Childbirth. 2024;24:297.

	15.	 Guixeres-Esteve T, Ponce-Zanón F, Morales JM, Lurbe E, Alvarez-Pitti J, 
Monleón D. Impact of Maternal Weight Gain on the Newborn Metabo-
lome. Metabolites. 2023;13:561.

	16.	 Schlueter RJ, Al-Akwaa FM, Benny PA, Gurary A, Xie G, Jia W, et al. 
Prepregnant Obesity of Mothers in a Multiethnic Cohort Is Associated 
with Cord Blood Metabolomic Changes in Offspring. J Proteome Res. 
2020;19:1361–74.

	17.	 Francis EC, Kechris K, Cohen CC, Michelotti G, Dabelea D, Perng W. 
Metabolomic Profiles in Childhood and Adolescence Are Associated with 
Fetal Overnutrition. Metabolites. 2022;12:265.

	18.	 Rahman ML, Doyon M, Arguin M, Perron P, Bouchard L, Hivert MF. A 
prospective study of maternal adiposity and glycemic traits across 

pregnancy and mid-childhood metabolomic profiles. Int J Obes. 
2021;45:860–9.

	19.	 Romero-Ibarguengoitia ME, Vadillo-Ortega F, Caballero AE, Ibarra-
González I, Herrera-Rosas A, Serratos-Canales MF, et al. Family history 
and obesity in youth, their effect on acylcarnitine/aminoacids 
metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural 
equation modeling approach PLoS One. 2018;13: e0193138.

	20.	 Santos Ferreira DL, Williams DM, Kangas AJ, Soininen P, Ala-Korpela M, 
Smith GD, et al. Association of pre-pregnancy body mass index with 
offspring metabolic profile: Analyses of 3 European prospective birth 
cohorts. PLoS Med. 2017;14: e1002376.

	21.	 González-Domínguez Á, Savolainen O, Domínguez-Riscart J, Landberg 
R, Lechuga-Sancho A, González-Domínguez R. Probing erythrocytes as 
sensitive and reliable sensors of metabolic disturbances in the cross-
talk between childhood obesity and insulin resistance: findings from 
an observational study, in vivo challenge tests, and ex vivo incubation 
assays. Cardiovasc Diabetol. 2024;23:336.

	22.	 Hernández M, Castellet J, Narvaiza JL, Rincón JM, Ruiz I, Sánchez E, et al. 
Curvas y Tablas de Crecimiento. Instituto de Investigación sobre Crec-
imiento y Desarrollo, Fundación Faustino Orbegozo. Madrid: Editorial 
Garsi; 1988.

	23.	  González-Domínguez Á, Armeni M, Savolainen O, Lechuga-Sancho 
AM, Landberg R, González-Domínguez R. Untargeted Metabolomics 
Based on Liquid Chromatography-Mass Spectrometry for the Analysis 
of Plasma and Erythrocyte Samples in Childhood Obesity. In: González-
Domínguez R, editor. Mass Spectrometry for Metabolomics (Methods 
in Molecular Biology, vol 2571). Humana; New York, NY, USA: 2023. pp. 
115–122.

	24.	 González-Domínguez Á, Estanyol-Torres N, Brunius C, Landberg R, 
González-Domínguez R. QComics: Recommendations and Guidelines 
for Robust, Easily Implementable and Reportable Quality Control of 
Metabolomics Data. Anal Chem. 2024;96:1064–72.

	25.	 Klåvus A, Kokla M, Noerman S, Koistinen VM, Tuomainen M, Zarei I, 
et al. “notame”: Workflow for Non-Targeted LC-MS Metabolic Profiling. 
Metabolites. 2020;10:135.

	26.	 Blaženović I, Kind T, Ji J, Fiehn O. Software Tools and approaches for 
compound identification of LC-MS/MS Data in Metabolomics. Metabo-
lites. 2018;8:31.

	27.	 González-Domínguez Á, Santos-Martín M, Sayago A, Lechuga-Sancho 
AM, Fernández-Recamales Á, González-Domínguez R. Analysis and 
annotation of phospholipids by Mass Spectrometry-based metabo-
lomics. In: Bhattacharya SK, editor. Lipidomics (Methods in Molecular 
Biology. Volume 2625). New York: Humana; 2023. pp. 79–88.

	28.	 González-Domínguez R, Urpi-Sarda M, Jáuregui O, Needs PW, Kroon PA, 
Andrés-Lacueva C. Quantitative dietary fingerprinting (QDF)-A Novel 
Tool for Comprehensive Dietary Assessment based on urinary nutrime-
tabolomics. J Agric Food Chem. 2020;68:1851–61.

	29.	 Blaise BJ, Correia GDS, Haggart GA, Surowiec I, Sands C, Lewis MR, 
et al. Statistical analysis in metabolic phenotyping. Nat Protoc. 
2021;16:4299–326.

	30.	 Krutkin DD, Thomas S, Zuffa S, Rajkumar P, Knight R, Dorrestein PC, et al. 
To Impute or Not To Impute in Untargeted Metabolomics─That is the 
Compositional Question. J Am Soc Mass Spectrom. 2025;36:742–59.

	31.	 Do KT, Wahl S, Raffler J, Molnos S, Laimighofer M, Adamski J, et al. Char-
acterization of missing values in untargeted MS-based metabolomics 
data and evaluation of missing data handling strategies. Metabo-
lomics. 2018;14:128.

	32.	 Martínez-Villanueva J, González-Leal R, Argente J, Martos-Moreno 
GÁ. La obesidad parental se asocia con la gravedad de la obesidad 
infantil y de sus comorbilidades [Parental obesity is associated with 
the severity of childhood obesity and its comorbidities]. An Pediatr. 
2019;90:224–31.

	33.	 González-Domínguez Á, Jurado-Sumariva L, Domínguez-Riscart J, 
Saez-Benito A, González-Domínguez R. Parental obesity predisposes to 
exacerbated metabolic and inflammatory disturbances in childhood 
obesity within the framework of an altered profile of trace elements. Nutr 
Diabetes. 2024;14:2.

	34.	 De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, 
Vanhaecke L. Paediatric obesity: a systematic review and pathway map-
ping of metabolic alterations underlying early disease processes. Mol 
Med. 2021;27:145.



Page 11 of 11Jurado‑Sumariva et al. BMC Medicine          (2025) 23:458 	

	35.	 Zhang L, Wang Z, Wu H, Gao Y, Zheng J, Zhang J. Maternal High-Fat Diet 
Impairs Placental Fatty Acid β-Oxidation and Metabolic Homeostasis in 
the Offspring. Front Nutr. 2022;9: 849684.

	36.	 Ornellas F, Carapeto PV, Mandarim-de-Lacerda CA, Aguila MB. Obese 
fathers lead to an altered metabolism and obesity in their children 
in adulthood: review of experimental and human studies. J Pediatr. 
2017;93:551–9.

	37.	 Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid 
metabolism in the pathogenesis of obesity and type 2 diabetes-related 
metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabe-
tes. 2022;12:35.

	38.	 Polidori N, Grasso EA, Chiarelli F, Giannini C. Amino acid-related metabolic 
signature in obese children and adolescents. Nutrients. 2022;14:1454.

	39.	 García-Carrasco A, Izquierdo-Lahuerta A, Medina-Gómez G. The kidney-
heart connection in obesity. Nephron. 2021;145:604–8.

	40.	 Alemany M. The problem of nitrogen disposal in the obese. Nutr Res Rev. 
2012;25:18–28.

	41.	 Thalacker-Mercer AE, Gheller ME. Benefits and Adverse Effects of Histidine 
Supplementation. J Nutr. 2020;150:2588S-2592S.

	42.	 Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. His-
taminergic regulation of food intake. Front Endocrinol. 2023;14:1202089.

	43.	 Panic A, Stanimirovic J, Sudar-Milovanovic E, Isenovic ER. Oxidative stress 
in obesity and insulin resistance. Explor Med. 2022;3:58–70.

	44.	 Sousa AP, Cunha DM, Franco C, Teixeira C, Gojon F, Baylina P, et al. Which 
role plays 2-Hydroxybutyric acid on insulin Resistance? Metabolites. 
2021;11:835.

	45.	 Cortese-Krott MM, Shiva S. The redox physiology of red blood cells and 
platelets: implications for their interactions and potential use as systemic 
biomarkers. Curr Opin Physiol. 2019;9:56–66.

	46.	 Burt Solorzano CM, McCartney CR. Obesity and the pubertal transition in 
girls and boys. Reproduction. 2010;140:399–410.

	47.	 Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile 
acids in overweight and obese children and adolescents. Front Endo-
crinol. 2022;13:1011994.

	48.	 Curley S, Gall J, Byrne R, Yvan-Charvet L, McGillicuddy FC. Metabolic 
inflammation in Obesity-At the crossroads between fatty acid and cho-
lesterol metabolism. Mol Nutr Food Res. 2021;65: e1900482.

	49.	 González-Domínguez Á, Domínguez-Riscart J, Savolainen O, Lechuga-
Sancho A, Landberg R, González-Domínguez R. Identifying metabotypes 
of insulin resistance severity in children with metabolic syndrome. 
Cardiovasc Diabetol. 2024;23:315.

	50.	 Catalán V, Avilés-Olmos I, Rodríguez A, Becerril S, Fernández-Formoso 
JA, Kiortsis D, et al. Time to consider the Exposome hypothesis in the 
development of the obesity pandemic. Nutrients. 2022;14:1597.

	51.	 Castellano-Escuder P, González-Domínguez R, Wishart DS, Andrés-Lac-
ueva C, Sánchez-Pla A. FOBI: an ontology to represent food intake data 
and associate it with metabolomic data. Database. 2020;2020:baaa033.

	52.	 Wardle J, Guthrie C, Sanderson S, Birch L, Plomin R. Food and activity pref-
erences in children of lean and obese parents. Int J Obes. 2001;25:971–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Insulin resistance as a potential driving force of parental obesity-induced adverse metabolic programming mechanisms in children with obesity
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study design
	Sampling and biochemical data collection
	Metabolomics analysis
	Statistical analysis

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


