
Deep-learning-enabled online mass spectrometry of the reaction product of
a single catalyst nanoparticle

Downloaded from: https://research.chalmers.se, 2025-09-25 04:37 UTC

Citation for the original published paper (version of record):
Klein Moberg, H., Abbondanza, G., Nedrygailov, I. et al (2025). Deep-learning-enabled online mass
spectrometry of the reaction product of a single catalyst
nanoparticle. Nature Communications, 16(1). http://dx.doi.org/10.1038/s41467-025-62602-3

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Article https://doi.org/10.1038/s41467-025-62602-3

Deep-learning-enabled online mass
spectrometry of the reaction product of a
single catalyst nanoparticle

Henrik Klein Moberg, Giuseppe Abbondanza, Ievgen Nedrygailov,
David Albinsson , Joachim Fritzsche & Christoph Langhammer

Extracting weak signals from noise is a generic challenge in experimental sci-
ence. In catalysis, it manifests itself as the need to quantify chemical reactions
onnanoscopic surface areas, such as single nanoparticles or even single atoms.
Here, we address this challenge by combining the ability of nanofluidic reac-
tors to focus reaction product from tiny catalyst surfaces towards onlinemass
spectrometric analysis with the high capacity of a constrained denoising auto-
encoder to discern weak signals from noise. Using CO oxidation and C2H4

hydrogenation on Pd as model reactions, we demonstrate that the catalyst
surface area required for online mass spectrometry can be reduced by ≈ 3
orders of magnitude compared to state of the art, down to a single nano-
particle with 0.0072 ± 0.00086 μm2 surface area. These results advocate deep
learning to improve resolution in mass spectrometry in general and for online
reaction analysis in single-particle catalysis in particular.

The ability to detect and analyze weak signals amidst high levels of
noise has led to important discoveries across a myriad of scientific
disciplines using widely different experimental methodologies1–10.
Mass spectrometry constitutes such an experimental method since it
enables the detection of very small amounts of particles, and has
become a workhorse from (astro)physics to biology to chemistry11,12.
Accordingly, the method comes in different variants tailored for the
species subject to characterization and the operational conditions.
Mechanistically, it counts ionized particles, molecules or atoms in
vacuum by separating them according to their mass/charge ratio, and
thereby determines their (molecular) weight.

In catalysis and surface science, mass spectrometry is widely
used to quantitatively analyze the composition of molecules deso-
rbing from surfaces, often from a surface-chemical reaction13,14. In
this application, usually a quadrupole is used for mass selection due
to its high resolution and sensitivity15,16. Such quadrupole mass
spectrometers (QMS) have been instrumental in the development of
our understanding of nanocatalytic processes. Nevertheless, the
technical advance of QMS systems used for so-called residual gas
analysis has been limited during the last decades, and, therefore, no
significant progress has been made in terms of improving their limit

of detection and their ability to discern very weak signals from
noise17,18. Concurrently, this state-of-the-art (SotA) is becoming an
increasingly limiting factor since accurately measuring catalytic
activity and selectivity from small amounts of precious catalyst
materials, such as size- or shape-selected model catalysts19 or single
atom catalysts20–22 that can only be obtained in small quantities, is
crucial for the development of new catalyst materials and for
advancing our understanding of catalytic processes. To this end, in
the most extreme implementation, the aim of so-called single-parti-
cle catalysis is to study catalytic reactions on individual nanoparticles
to overcome ensemble averaging effects23.

The first strategy to enable such experiments employs detection
of photon or electron signals that report on either the product mole-
cules formed, on reactant molecules consumed, on the catalyst par-
ticle itself, or on temperature changes generatedby the reaction23–28. In
this context, single-molecule fluorescence microscopy stands out due
to its ability to resolve individual reaction events on single catalyst
nanoparticles with very high spatial resolution29–31. While both elegant
and effective for the specific reactions chosen, however, these
approaches are compatible only with catalysis in the liquid phase and
lack the wide and generic applicability of mass spectrometry.
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Furthermore, they often cannot deliver information about both the
amounts andmolecular weight of the species involved in the reaction.

To address this limitation, miniaturization of the reactor to the
level of microreactors32–34 and even nanoreactors35 to reduce the cat-
alyst surface area necessary to obtain measurable (QMS) signals has
been implemented. Very high sensitivity can be obtained in such sys-
tems by dramatically reducing reactor volume and thereby directing
the entire gas flow from the catalyst bed to a QMS to maximize the
fraction of reaction product available for analysis. In this way, as we
recently have demonstrated using a single nanofluidic channel as the
catalyst bed, the minimal required active catalyst surface area for
online QMSmeasurements was reduced by ca. 1.5 orders compared to
the lower limit proposed for microreactors32, i.e., down to ca. 10μm2

active surface area36.
While this indeed was a significant advance, it is still 2-3 orders

away from online QMS measurements from single nanoparticles. To
overcome this gap, we employ here a modified type of nanofluidic
reactor and combine it with a constrained convolutional denoising
auto-encoder. This harnesses the reaction product focusing capability
of nanofluidic reactors with the versatility, high-resolution and sensi-
tivity of the QMS, with the power of deep learning to detect and ana-
lyze very weak signals hidden in noise. As we demonstrate on the
example of CO oxidation, i.e., CO+ 1

2O2 ! CO2, over a Pd model
catalyst, this approach leapfrogs the limit of detection of a SotA QMS
system by ≈ 3 orders, and enables online mass spectrometric analysis
of reaction product from a single Pd nanoparticle with active surface
area A ≈ (0.0072 ± 0.00086)μm2 = (7200 ± 860nm2). Furthermore, we
show on the example of C2H4 hydrogenation to C2H6 that this concept
can be applied to a wide range of catalytic reactions and to boost the
performance of a QMS inferior in terms of intrinsic sensitivity. Finally,
we note that the application of machine learning to different mod-
alities of mass spectrometry has a short but lively history37–44, but the
application of machine learning to discern small QMS signals from
noise, as we do here, is hitherto completely unexplored.

Results
The reaction of COwith O2 over Pd catalysts forming CO2 is one of the
most studied reactions in catalysis, both due to its practical relevance
and due to its role in studies of structure-function correlations and
(surface) oxide formation45,46. Therefore, we chose it as our model
reactionwith the aim to enableQMSmeasurements of the CO2 formed
on a single Pd nanoparticle. We have developed a nanofluidic reactor
connected to U-shapemicrofluidic in- and a straight outlet channel(s),
which are connected to a macroscopic reactant inlet system operated
by mass flow controllers at 3 bar, and to a QMS mounted on a UHV
chamber with 1 ⋅ 10−10 mbar base pressure (Fig. 1a and Supplementary
Fig. 1). This in- and outlet system is connected to a nanofluidic catalyst
bed with 30μm× 10μm×200nm(L ×W ×H) dimensions via a nano-
fluidic inlet channel (505μm× 10μm×200nm) and an outlet channel
with dimensions 100μm× 500nm× 200nm (Fig. 1b, c). This design
ensures that the catalyst is operated in the well-mixed regime, where
concentration gradients due to reactant conversion are effectively
eliminated35. Furthermore, we note that the gas flow in such a system is
in the slipflowand transitionalflow regimes,with theKnudsennumber
increasing in the mean flow direction throughout the nanofluidic
reactor35. Consequently,momentum, heat andmass transfer boundary
layers surrounding reacting particles are thinner than in the con-
tinuum regime, and the mass diffusivities approach the Knudsen dif-
fusivity. In fact, nanofluidic reactors therefore constitute effective
“model pores" since the aforementioned effects all are present in
technically widely used porous catalyst systems36. Using a resistive
heater, the nanoreactor zone can be heated up to 450 °C36. For this
study, we have fabricated four nanoreactor chips with identical gas in-
and outlet systems, as well as catalyst beds. Using electron-beam
lithography (EBL) nanofabrication47, theyweredecoratedwith (regular

arrays of) n = 1000, 10, 1 or 0 Pd particles with diameter
d = 59.4 ± 3.7 nm and height h = 23.5 ± 1.6 nm, as SEM image analysis
reveals, physical vapor deposited (PVD) onto a 8 nm thick SiO2 support
layer that separates them from a chemically inert plasmonic Au
nanoparticles previously PVD-grown through the same EBL mask with
d = 97.6 ± 6.6 nm and h = 35.3 ± 2.3 nm (Fig. 1c–g and Supplementary
Fig. 2 and Methods section on nanofabrication of the nanoreactor
chip36,48. This corresponds to an active Pd surface area
A ≈ (0.0072 ± 0.00086)μm2 = (7200 ± 860) nm2 per particle. We chose
this particular hybrid nanoparticle design, where the Au element
serves as a plasmonic light scatterer (Pd is optically dark49), to enable
the verification of the presence of the anticipated number of particles
in the enclosed nanoreactors using dark-field scattering microscopy
(Fig. 1d–g).

CO oxidation on Pd model catalysts in nanofluidic reactors
Toprepare these systems for experiments in reaction environment, we
first exposed them to a conditioning sequence, followed by a full CO
oxidation sequence at 280 °C (see Methods section on sample
mounting and pre-treatment and Supplementary Figs. 3–6). Subse-
quently,we initiated the experiment sequence consistingof 15minCO/
O2mixture pulses at a constant 6% reactant concentration and starting
with 6% percent CO, separated by 15 min in Ar. Such sequences were
executed from 280 to 450 °C in 20 °C steps for the n = 1000 sample
and 10 °C steps for the n = 10 and 1 samples, to sweep the entire
0≤αCO =PCO=ðPO2

+ PCOÞ≤ 1 range in steps of 0.05, where αCO is the
relative CO concentration in the gas mixture. (Fig. 2a–c). At each new
temperature, a single 30minpulseof 4%O2 and2%CO inAr carrier gas,
followed by a 15min pureAr pulse, was applied to reset the state of the
catalyst.

Focusing first on the highest reaction temperature of 450 °C
and n = 1000 (total active surface area of A ≈ (7200 ±
860) nm2 ⋅ 1000 = (7.2 ± 0.86) μm2), we observe a QMS response
distinctly above the noise floor for all αCO ∈ (0, 1) values (Fig. 2d).
Furthermore, starting from αCO = 1, we observe the characteristic
reaction rate increase as more O2 is added until the maximum rate is
reached at αmax

CO =0:65. This is very close to the stoichiometric
αCO = 0.66 (the small difference is the consequence of the 0.05 αCO
steps), which indicates that CO poisoning is very mild at this tem-
perature and that mass transport gradients are negligible, as
expected for a well-mixed catalyst bed. Upon decreasing αCO
beyond αmax

CO , the reaction rate decreases in an essentially linear
fashion.

Decreasing the temperature to 340 °C induces both a global
decrease in reaction rate and a shift of αmax

CO to a lower value of 0.5, due
to stronger CO poisoning (Fig. 2e). This trend continues upon tem-
perature reduction to 280 °C (Fig. 2f), with a QMS signal still distinctly
above the noise floor and αmax

CO reduced to 0.3. These measurements
thus corroborate our experimental setup and approach since they
deliver results in agreementwith thewell-establishedunderstandingof
the CO oxidation over Pd catalysts45,46. Hence, they constitute a rele-
vant baseline as we further reduce the catalyst surface area towards a
single Pd nanoparticle.

As the first step, we repeated the experiments for an identical
nanoreactor but with n = 10, which corresponds to
A ≈ (7200±860) nm2 ⋅ 10 = (0.072 ±0.0086)μm2 (Fig. 2g–i). We find
that at 450 °C, CO2 pulses still are resolved and that the counts is ≈ 2
orders smaller compared to n = 1000. Importantly, however, we also
see that the CO2 signal induced by the reactant pulses approaches the
noise floor. Accordingly, reducing the temperature makes discerning
the CO2 produced increasingly difficult. This becomes clear when
extracting the CO2 counts for each αCO pulse and directly comparing
the CO2 counts vs. the αCO trend for the n = 1000 and 10 samples. At
T = 450 °C, the trends obtained are qualitatively very similar and thus
corroborate that the catalyst is operated at identical conditions (Fig. 2j).
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It is also visible that the counts vs. αCO curve is slightly wider and flatter,
and exhibits a significantly larger standard deviation (shaded area) for
n = 10, in particular in the low reaction rate regimes at small and high
αCO values. Reducing temperature further amplifies this effect as the
signal approaches the noise floor for n = 10, with counts in the 10–40
range at T = 280 °C (Fig. 2k, l). Consequently, it becomes increasingly
difficult to extract the CO2 signal, and we are approaching the limit of
detection from a conventional data analysis perspective, where simply
the number of counts is extracted from the QMS signal.

In principle, various strategies to address this issue exist, e.g.,
digital filtering50, Fourier transforms51,52, wavelet transforms53, etc., or
statistical methods, like principal component analysis (PCA)54, among

others. When applied correctly, they enable the extraction of the
desired signal from the accompanying noise and enhance the visibility
of the underlying patterns in the data. However, these well-established
denoising techniques have inherent limitations in the context of
denoising QMS signals. Specifically, digital filtering can inadvertently
remove crucial signals if they overlap with noise frequencies55, Fourier
and wavelet transforms may falter if the signal doesn’t meet their
assumptions about periodicity or localization56 and PCA, which
assumes the primary variance in data is due to the signal, might not be
effective if noise has high variance or the signal is confined to a tight
range57. Given these challenges, a denoising auto-encoder (DAE), i.e.,
an artificial neural network, offers a promising solution since it can be
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Fig. 1 | Experimental setup. a Schematic of the micro- and nanofabricated reactor
chip. It is comprised of a U-shaped microfluidic in- and a simple straight outlet
system that connects to the model catalyst bed (the nanofluidic reactor with the
reaction zone) on either side, as well as to the high-pressure gas handling system
and the QMS, respectively. The cross-sectional dimensions of the microfluidic
channels are also shown. b Schematic depiction of the 30 μm long well-mixed
reaction zone (the model catalyst bed that contains the nanoparticle(s)) with cross
sectional dimensions 10μm×200nm, as well as its connections to themicrofluidic
in- and outlet system via a smaller microfluidic inlet channel (also with cross sec-
tional dimensions 10μm×200nm) and via a nanofluidic outlet “capillary" with
cross sectional dimensions 500nm× 200nm. Note that the schematics are not
drawn to scale. c Dark-field scattering microscopy image of a nanofluidic catalyst
bed containing 1000 nanoparticles arranged in a regular array in the reaction zone.
The inset depicts a side-view scanning electron microscopy (SEM) image of the
usedAu/SiO2/Pdhybrid nanostructures. Scale bar 100nm. The catalytically inertAu

element enables single-particle dark-field scattering (DF) imaging to confirm the
presence of the correct number of catalyst particles inside the sealed nanofluidic
reactor, without itself participating in the reaction36. d Schematic depiction and
zoomed-inDF image of the reaction zoneof the nanofluidic catalyst bed used inour
experiments, with a regular array of n = 1000 nanoparticles that become distinctly
visible in the DF image. Also shown are two top-view SEM images of a similar array
of nanoparticles, aswell as a side-viewof a singlenanoparticle, preparedon anopen
surface to facilitate SEM imaging. Scale bar 100nm. The inset image below “SEM"
includes a scale bar for reference. e Schematic depiction and zoomed-in DF image
of the reaction zone of the catalyst bed containing n = 10 Pd nanoparticles used in
our experiments. f Schematic depiction and zoomed-in DF image of the reaction
zone of the catalyst bed containing a single (n = 1) Pd nanoparticle used in our
experiments. g Schematic depiction and zoomed-in DF image of the reaction zone
of the empty catalyst bedwithout Pd nanoparticles (n =0), used in our experiments
as a negative control.
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trained to discern the structure of complex noisy data and reconstruct
the underlying signal58 (see Supplementary Note 3 and Supplementary
Table 1). In practice, this is achieved by introducing examples of
simulated signals with experimentallymeasured noise and training the
network to reconstruct the (original) simulated signal. By also con-
straining the autoencoder’s latent space to have a step function dis-
tribution,we introduce a prior,which enables denoisingwell below the
signal-to-noise ratio (SNR) of 1 and ensures robustness in the final
representations59.

A constrained DAE to improve the QMS limit of detection
We applied the DAE to our QMS experiments by using experimentally
measuredQMS readout consisting of intrinsic measurement noise and
noise induced by the nanoreactor setup (e.g., fluctuations in CO2

concentration stemming from impurities in the used gases, small
fluctuations of the mass flow controller and/or tiny leaks), combined
with an underlying true CO2 signal stemming from the catalytic reac-
tion on the Pd nanoparticle(s), as input (Fig. 3). This combined signal is
then compressed through encoder Eθ to form a latent space inside the
bottleneck, which is constrained through a consistency loss to form a
step function distribution. This compressed representation is then
upsampled in decoder Dθ to form the reconstructed true signal, i.e.,

the QMS readout with a deconvolved underlying true CO2 signal. In
this design, the DAE can learn complex non-linear relationships
between the noise and the true signal, enabling it to handle the kind of
noise-signal interactions that might confound the other noise-
reducing methods mentioned above. For a comparison between the
DAE and other denoising techniques applied to our QMS data, see
Supplementary Note 4 and Supplementary Figs. 7–9.

To evaluate the performance of the DAE, we compare the mea-
suredbaseline-adjusted (BA)QMSCO2 counts (seeMethods section on
preprocessing for explanation of the BA-procedure) as function of αCO
for n = 1000 and 10, for temperatures between 280 and 450 °C, as well
as the DAE-denoised CO2 counts for n = 10 (Fig. 4). Focusing first on
n = 1000 at 450 °C, the catalyst exhibits the highest reaction rate at
αmax
CO =0:65 and all CO2 pulses are clearly discernible (Fig. 4a).

Executing identical analysis for n = 10 at 450 °C reveals individual CO2

pulses and αmax
CO � 0:6 (Fig. 4b). Passing the n = 10 QMS data obtained

at 450 °C through the DAE reveals that it delivers more distinct and
systematically in/decreasing CO2 pulses, with a maximum rate at
αmax
CO =0:65, in excellent agreement with n = 1000 (Fig. 4c). Repeating

the same analysis for 280 °C reveals the anticipated reduction of the
overall rate for both samples and a distinct shift of αmax

CO to αmax
CO � 0:2,

due to severeCOpoisoning (Fig. 4d–f). Importantly, forn = 10, it is now

Fig. 2 | CO oxidation experiments at different temperatures on 1000 and 10 Pd
nanoparticles. CO and O2 pulse sequence applied at a reactor temperature of (a)
T = 450 ∘C, (b) T = 340 ∘C, (c) T = 280 ∘C. Note that we start all experiments with a
pure 6% CO pulse in Ar carrier gas and subsequently decrease the relative CO
concentration and increase the relative O2 concentration, such that
0≤αCO =PCO=ðPO2

+PCOÞ≤ 1, while keeping the total reactant concentration con-
stant at 6%. Corresponding baseline-adjusted (BA - see Methods section on pre-
processing for explanation of the BA-procedure) CO2 countsmeasured by theQMS
for 1000 Pd nanoparticles at (d) T = 450 ∘C, (e) T = 340 ∘C and (f) T = 280 ∘C.We note
distinct responses at all three temperatures with the expected decrease in reaction
rate for lower T. The “transient" overshoots observed for small αCO values are the
consequence of the mass flow controller “dial-in" to the correct flow rate. (g–i)
Corresponding CO2 counts measured by the QMS for the 10 Pd nanoparticle
sample. While at T = 450 ∘C a relatively clear CO2 signal is still obtained, it becomes

increasingly weaker at the lower temperatures. j Mean value of the measured CO2

QMS counts for each reactant pulse plotted vs. the corresponding αCO value for
both the n = 1000 and the n = 10 Pd nanoparticle samples and obtained at
T = 450 ∘C. Shaded area depicts the standard deviation of measured BA-counts
across each respective pulse. We note a maximum in the CO2 formation rate at
αmax
CO =0:65 for both n = 1000 and 10, aswell as a significantly larger deviation of the

derived counts for n = 10. k Same as (j) but for T = 340 ∘C. We note a shift of αmax
CO to

lower values for both samples due to increasing CO poisoning and a broadening/
flattening of the overall trend for n = 10, which is the consequence of the system
approaching the detection limit of the QMS and the consequent significant
uncertainty in thederived counts. l Sameas (j) and (k) but forT = 280 ∘C.Wenote an
even further reduction of αmax

CO and further uncertainty increase for n = 10. Source
data are provided as a Source Data file.
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clear that the standard analysis is approaching the limit of detection
where the CO2 pulses are stochastic, whereas the DAE-denoised data
still exhibits the same clear trend as seen for n = 1000 with the stan-
dard analysis.

As the next step, we extract the mean CO2 counts for each αCO
pulse along the αCO sweep for n = 1000, obtained for temperature
steps of 20 °C from280 to 450 °C (Fig. 4g). This reveals a constant and
stoichiometric αmax

CO =0:65 down to 380 °C, below which αmax
CO sys-

tematically shifts to smaller valuesdue to increasingCOpoisoning, and
reaches αmax

CO =0:25 at 280 °C. Furthermore, it reveals a decrease in
reaction rate from 5240 CO2 counts at αmax

CO at 450 °C, to 1700 CO2

counts at αmax
CO at 280 °C. Plotting the same data for n = 10 obtained for

10 °C temperature steps, and comparing the standard analysis (Fig. 4h)
with the DAE-based analysis (Fig. 4i) reveals qualitatively very similar
behavior.However, crucially, SNR is very poor for the standardanalysis
to the point where the underlying chemical dynamics become
obscured by stochastic shifts in, e.g., αmax

CO . This is different for theDAE-
based data, which reproduces the T-dependent αmax

CO trend found for
the n = 1000 sample very clearly (Fig. 4j–l). The situation is similar
when comparing the absolute BA - CO2 counts at αmax

CO at 450 °C. For
n = 1000, we count 5240 CO2 molecules, whereas we count 90 and 65
for n = 10 for the standard and DAE-based analysis, respectively. The
DAE-based value of 65 is indeed proportional to a 100 ×decrease in
catalytic surface area (compared to n = 1000), within a relative error of
roughly 10%. Thus, the measured raw value of 90 counts likely over-
estimates the true CO2 production rate due to residual noise or
background signal, highlighting the DAE’s ability to accurately correct
for that. The results demonstrate that the DAE effectively reconstructs
the catalysts’ CO2 production rate and, e.g., the temperature-
dependent poisoning state of the system, even when dealing with
considerably noisy data and theQMS operated very close to its limit of
detection.

Resolving reaction products formed on Pd NPs with a DAE
We put the DAE to the test by further reducing the amount of catalyst
by a factor 10, down to a single Pd nanoparticle with a surface area of
≈ 7200nm2. We used a chip with n = 1 (cf. Fig. 1f) and an empty chip
with n = 0 as the control (cf. Fig. 1g). Clearly, even at the highest tem-
perature of 450 °C, the αCO sweeps for n =0 and 1 look very similar
using the standard analysis (Fig. 5a, b). They are characterized by small
stochastic CO2 pulses, indicating a certain level of background CO2 in
the reactant gas mixture, as well as the signal stemming from the CO2

produced by the catalyst particle drowning in background noise. This
is further corroborated by extracting the BA-CO2 counts and plotting
them vs. αCO for both n = 1 (7 identical sweeps) and 0 (5 identical
sweeps), which reveals that no clear activity trend as a function of αCO
is resolved for n = 1, despite a generally slightly higher number of
counts compared to n =0 (Fig. 5c and Supplementary Figs. 6, 10).

Applying theDAEfirst to theαCO sweep at450 °C forn = 1 reveals a
different picture (Fig. 5d). Rather than stochastic CO2 pulses, a clear
trend of in- and decreasing CO2 counts along the αCO sweep is recov-
ered, which again exhibits a maximum at the stoichiometric
αmax
CO =0:65. This is in very good agreement with the corresponding

experiments for n = 10 and 1000. Applying theDAE to the αCO sweep at
450 °C for the n = 0 control outputs a close to completely flat baseline
at zero BA-counts, corroborating that the DAE is able to eliminate the
noise contaminating the raw QMS signal (Fig. 5e).

Encouraged, we apply the DAE to αCO sweeps measured at
temperatures 330 to 450 °C for n = 1 and plot the extracted CO2

counts vs. αCO (Fig. 5f). Remarkably, we clearly resolve the antici-
pated increase of the reaction rate to an αmax

CO =0:65 for decreasing
αCO, and the subsequent decrease of the reaction rate upon
decreasing αCO. Furthermore, the extracted number of CO2 counts
≈ 6 is ≈ 10 times lower than for n = 10 at 45 °C, which is in excellent
agreement with a reduction of the active surface area by a factor of
10 from n = 10 to 1. Finally, upon reduction of temperature, we see an
indication of a shift of αmax

CO to lower values at 410 °C, before the DAE-
signal also drops below the limit of detection of a single count.
Similar analysis of the n = 0 control at 450 °C consistently delivers
CO2 counts very close to or significantly below the limit of detection
of a single count and thus confirms the ability of the DAE to resolve
CO2 produced by the single Pd nanoparticle (Fig. 5f). As a last point,
we note that the low absolute counts observed for single nano-
particles (c.f. Pd n = 1 in Fig. 5f) raise the question of potential error in
the activity analysis in this regime of very few counts. While it is true
that low count numbers can, in principle, lead to larger relative
uncertainties, the DAE’s denoising capabilities mitigate this issue.
Specifically, the DAE is trained to distinguish genuine signals from
noise, even when the signal is very weak. Therefore, while the abso-
lute number of counts might be low, the proportion of those counts
representing actual CO2 production is very high after DAE processing
compared to the raw data and thus the counts predicted by the DAE
are indeed significant. Furthermore, the consistency of the DAE-
derived trends across multiple independent measurements (c.f.

Reconstructed
signal

Eθ
Encoder

Dθ
Decoder

Bottleneck

Bθ

Underlying
signal

QMS
 readout Input

L2
norm

Consistency
loss

Fig. 3 | The constrained denoising auto-encoder. The underlying signal that we
want to access in our experiments, i.e., the CO2 production rate step functions as a
function of time, is corrupted by both correlated and uncorrelated noise in the
experimentallymeasured readout from theQMS.Therefore, the experimentalQMS
readout is input to a denoising autoencoder, which transforms the input into a
minimally dimensioned representation of the underlying signal and then

reconstructs it sans corruption, which means, it reconstructs the original signal,
rather then the QMS readout that also contains different types of noise. The DAE is
trainedwith a standard L2 normbetween reconstructed and underlying signal, and
the latent space is constrained by an L1 norm and a consistency loss, which forces
the latent space to take on the form of the underlying signal.
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Fig. 5) corroborates the reliability of the activity trends obtained by
the DAE, even for single nanoparticles.

We put these results into perspective by comparing them to the
data obtained for n = 10 and 1000. Specifically, we plot the αmax

CO values
for n = 1000, 10 DAE-denoised and 1 DAE-denoised for 400 °C≤ T ≤
450 °C, i.e., the range for which the n = 1 DAE-signal is above the limit
of detection (Fig. 5g). Thesevalues are very similar for all three samples
and very close to the stoichiometric value of αmax

CO =0:66. This is
important because it confirms that the catalyst experiences identical
reaction conditions in all three implementations in terms of the
number of particles.We also compare the CO2 counts obtained atαmax

CO
for 400 °C ≤ T ≤ 450 °C normalized by the number of particles on the
respective sample, i.e.,n = 1000, 10 and 1 (Fig. 5h). This revealsparticle-
number-normalized CO2 count values between 4 and 6 and thus cor-
roborates direct scaling of extracted QMS counts with catalyst surface
area, within the expected level of uncertainty that is imposed, e.g., by
slightly different particle dimensions on each of the three chips.

To ensure that the CO2 signal observed in the catalytic experi-
ments originates exclusively from surface reactions on Pd nano-
particles, we conducted a control experiment using an identical
nanofluidic chip lacking any catalytically active material. Pulses of CO2

diluted in Ar were flushed through the chip under identical conditions

(450 °C, 2 bar, 20mLmin−1 total flow), and the resulting QMS signal
was analyzed. As detailed in Supplementary Fig. 17a, b, no evidence of
spurious CO2 formation or retention effects was observed. Further-
more, the DAE successfully retrieved the shape and timing of the low-
intensity CO2 pulses even when the raw signal approached the noise
floor, confirming the robustness of the signal processing method and
excluding non-catalytic sources of CO2 response.

DAE for ethylene hydrogenation with a less sensitive QMS
To demonstrate the versatility of the DAE presented in this work, as
well as to test it from a different perspective and using a different
catalytic reaction, we investigated ethylene hydrogenation on 1000 Pd
nanoparticles using a QMS with lower intrinsic sensitivity. This
experiment was designed to illustrate that our system is not limited to
CO oxidation and not only can reduce the amount of catalyst surface
area required for online QMS measurements but also can be used to
increase the sensitivity of lower grade QMS instrument. Therefore, we
exchanged the high-sensitivity Hiden HAL/3F PIC QMS used in the CO
oxidation experiments by a significantly less sensitive Pfeiffer Prisma
QME200. Furthermore, as in the CO oxidation experiments, we used a
pulsed gas sequence comprised of alternating pulses of pure Ar and
C2H4mixed with H2 in different ratios in Ar at a total constant reactant

Fig. 4 | Direct comparison of standard and DAE-enhanced QMS readout for
1000 and 10 Pd nanoparticles. a Baseline-adjusted (BA - see Methods section on
preprocessing for explanation) raw QMS counts for CO2 (gray line) together with
themean CO2 signal (blue line - obtained as the averagemeasured BA-count across
each pulse) for n = 1000 Pd nanoparticles across the entire αCO range, αCO ∈ (0, 1),
and at 450 ∘C. b BA-QMS counts for CO2 (gray line) together with the mean CO2

signal (green line) for n = 10 Pd nanoparticles across the entire αCO range and at
450 ∘C. c BA-QMS counts for CO2 (gray line) together with the CO2 signal denoised
by the DAE (orange line) for n = 10 across the entire αCO range, αCO ∈ (0, 1), and at
450 ∘C. (d–f) Same as (a–c) but at 280 ∘C. g BA-mean CO2 counts for αCO sweeps at
reactor temperatures ranging from 280 to 450 ∘C in 20 ∘C steps for n = 1000. Red
dots indicate the αCO value corresponding to the highest reaction rate, αmax

CO .

h Sameas (g) but forn = 10, using 10 ∘C temperature steps. i Sameas (h) butwith the
QMS signal denoised by the DAE. j αmax

CO values extracted from (g) for all tem-
peratures for n = 1000, plotted as a function of αCO. We note the constant stoi-
chiometric αmax

CO value of 0.65 down to T = 360 ∘C. Below this temperature, we find a
systematic shift to lower αmax

CO values, as a consequenceof increasing COpoisoning.
k Same as (j) but for n = 10. We note the qualitatively similar trend compared to
n = 1000, but also the significantly higher spread in the data points. l Same as (k)
but based on the DAE-denoised QMS signal in (i). Clearly, the uncertainty in αmax

CO is
significantly reduced and the T-dependent trendof αmax

CO for both n = 1000 and 10 is
now very similar. The small discrepancies are discussed in the text. Source data are
provided as a Source Data file.
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concentration of 1% and 4 bar inlet pressure (Fig. 6a). This sequence
wasdesigned to transition frompureC2H4 to pureH2, andback topure
C2H4, while monitoring the formed ethane (C2H6) with the QMS. The
experiment was conducted at temperatures of 85, 90, 120, 160, and
170 °C, respectively. Analyzing the raw normalized C2H6 ion current
measured by the QMS alongside the filtered signal derived using the
DAE for three representative temperatures reveals a distinct QMS
response at the highest temperature of 170 °C that quickly drowns in
noise when the reaction temperature is reduced (Fig. 6b, see Supple-
mentary Fig. 16 for all measured temperatures). Accordingly, it again
showcases the ability of the DAE to extract the weak QMS signals from
noise in this regime, as the DAE predicted C2H6 QMS response exhibits
clear pulses even at the lowest temperature of 85 °C.

To further analyze the obtained results, and in analogy to the CO
oxidation experiments, we plot the averaged ion counts for each step
of the pulse sequence predicted by the DAE as a function of themixing
parameter αC2H4

=PC2H4
=ðPC2H4

+PH2
Þ for the down-sweep (Fig. 6c) and

up-sweep (Fig. 6d), respectively. In the down-sweep, as the con-
centration of C2H4 decreases, the C2H6 production initially peaks and
then decreases, indicative of first-order kinetics with respect to C2H4,
followed by a regime of negative-order kinetics. Conversely, in the up-
sweep, the system exhibits first-order kinetics relative to H2, followed
by a zero-order plateau, and then transitions into negative-order

kinetics. This behavior is attributed primarily to the competitive
adsorption between ethylene and hydrogen on the Pd catalyst surface.
During the up-sweep, H atoms accumulate more rapidly than ethylene
can compete for adsorption sites, resulting in a surface saturated with
H and thus a zero-order kinetic regime with respect to H2

60,61. In con-
trast, starting with a surface saturated with C2H4 during the down-
sweep hinders H adsorption once introduced, preventing the estab-
lishment of the zero-order regime62. These findings align with the
Horiuti-Polanyi mechanism, where surface coverage and competitive
adsorption play crucial roles63,64. Overall, these results demonstrate
that the DAE in combination with nanofluidic reactors enables the
extraction of detailed kinetic information also from a much slower
hydrogenation reaction, and that at lower overall reactant concentra-
tion and with a less sensitive QMS than for the CO oxidation experi-
ments above, using a small catalyst bed of 1000 Pd nanoparticles.

Discussion
We have demonstrated how the combination of nanofluidic reactors
and DAE-based deep learning enables the reduction of catalyst surface
area required for online QMS analysis of reaction product in the gas
phase by ≈ 3 orders from the current SotA, down to the level of single
nanoparticles. This breakthrough was enabled by the ability of nano-
fluidic reactors to focus reaction products from tiny catalyst surfaces

Fig. 5 | Online mass spectrometry from a single Pd nanoparticle. a Baseline-
adjusted (BA) raw QMS counts for CO2 (gray line) together with the mean CO2

signal (green line - obtained as average measured BA-count across each pulse) for
n = 1 Pd nanoparticle, measured across the entire αCO range, αCO ∈ (0, 1), and at
450 ∘C. b Same as (a) but for an empty nanochannel, i.e., n =0. Note the very similar
and stochastic appearance of apparent CO2 pulses both for n = 1 and 0 when ana-
lyzed in the standard way. c Mean BA-CO2 counts extracted for each αCO pulse
based on the standard analysis across the entire αCO range, αCO ∈ (0, 1), and at
450 ∘C, for both n =0 (black lines) and 1 (green lines). For n = 1 we executed 7
consecutive αCO sweeps, and for n =0 we executed 5 consecutive αCO sweeps. As
key observation, we note high reproducibility of the αCO sweeps for both n =0 and
1, as well as that no clear activity trend as a function of αCO is resolved for the
n = 1 sample, despite a generally slightly higher number of counts compared the
n =0 reference. d Same as (a) but for DAE-denoised BA-QMS CO2 counts (purple
line). Note the significantly smaller but at the same time non-stochastic CO2 pulses

resolved by the DAE compared to the standard analysis. e Same as (d) but for an
empty nanochannel, i.e., n =0. Note that using the DAE, a flat baseline at zero BA-
counts is obtained for the empty nanochannel. f Same as (c) but for DAE-denoised
data, where distinct reaction rate maxima are resolved for n = 1 (purple curves),
with αmax

CO ranging between 0.65 and 0.6 for temperatures between 450 and 410 ∘C
(inset), in good agreement with the earlier results for n = 10 and 1000. For lower
temperatures, as well as for n = 0 (black lines representing multiple sweeps at
450 ∘C), the DAE outputs counts < 1, which is physically unreasonable and thus
defined as the limit of detection. gαmax

CO values forn = 1000 (blue), 10DAE-denoised
(orange) and 1 DAE-denoised (purple) for 400 ∘C≤ T ≤ 450 ∘C, i.e., the range for
which the n = 1 DAE-signal is above the limit of detection. h CO2 counts normalized
by the number of particles on the respective sample, obtained at αmax

CO for n = 1000
(blue), n = 10 DAE-denoised (orange) and 1 DAE-denoised (purple) for
400 ∘C ≤ T ≤ 450 ∘C. Source data are provided as a Source Data file.
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Fig. 6 | Ethylenehydrogenationexperiments atdifferent temperatureson1000
Pdnanoparticles using a lower sensitivityQMS. aMixedC2H4 andH2 pulses with
systematically varied concentrations in Ar carrier gas applied to the 1000 Pd
nanoparticle catalyst bed at different temperatures. b Baseline-adjusted (BA - see
Methods section on preprocessing for explanation) normalized C2H6 reaction
product counts measured by QMS atm/z = 30 (gray lines), together with the signal
denoised by the DAE (colored lines) for 85, 120, and 170 ∘C catalyst bed

temperatures. The colors refer to the corresponding temperatures shown in panel
(c). c, d BA-adjusted C2H6 counts as a function of the reactant mixing parameter
αC2H4

=PC2H4
=ðPC2H4

+PH2
Þ, calculated for every step of the pulse sequence shown

in (a). The arrows indicate the direction of the sequence: in (c) αC2H4
goes from 1 to

0 in steps of 0.1, in (d) αC2H4
goes from0 to 1 in steps of 0.1. The colors in (d) match

the temperatures reported in (c). Source data are provided as a Source Data file.
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towards analysis, and the high capacity of autoencoders to discern
weak signals fromnoise.We have illustrated this on the example of the
CO oxidation reaction on Pd nanoparticle model catalysts
A ≈ (0.0072 ± 0.00086)μm2 = (7200 ± 860) nm2 per particle, localized
inside well-mixed nanofluidic catalyst beds.We analyzed nanoreactors
with n = 1000, 10, 1 and 0 Pd particles across a temperature range from
280 to 450 °C and found the characteristic dependence of the reaction
rate on αCO =PCO=ðPO2

+PCOÞ, as well as a stoichiometric highest
reaction rate at αmax

CO =0:66 for the highest temperatures, with a dis-
tinct shift to lower αCO at lower temperatures, due to CO poisoning.
While standard data analysis enabled meaningful results for n = 1000
and 10 (at the highest temperatures) only, DAE denoising produced
reliable QMS data even for n = 1, and facilitated the analysis of the
reaction dynamics in terms of αCO-dependent surface poisoning also
for a single Pd nanoparticle.

In a wider perspective, we highlight that our approach is not
specific to CO oxidation, and we have shown that it can be adapted
for other catalytic reactions, such as the hydrogenation of C2H4 to
C2H6 on Pd, and in principle any measurement problem, in which the
structure of the underlying true signal is known. Our results thus
constitute a new paradigm to significantly improve the resolution in
online reaction analysis in (single-particle) catalysis and advocate
deep learning to extract tiny QMS signals from noise, as well as to
boost the sensitivity of QMS instruments beyond the limitations
imposed by the used hardware.

Methods
Deep learning architecture
We employed a constrained denoising autoencoder to denoise the
experimental QMS data. This architecture was designed to accept an
input shape of 6400 timesteps, equaling the full size of a single αCO
sweep. The encoder segment consists of seven convolutional layers,
each with 32 neurons and a kernel size of 9. These layers are system-
atically interspersed with max-pooling operations to achieve optimal
data compression and utilize the leaky rectified linear unit (LeakyR-
eLU) as its activation function due to its proven efficacy in handling
complex non-linearities whilst avoiding mode collapse, vanishing and
exploding gradients. Following this sequence, the encoded data is
transformed into its latent space through a dense layer, reducing its
dimensionality to equal the number of steps of the αCO sweep. This
compressed representation is then reshaped and combined with the
previously encoded data to retain both quantitative and structural
information of the underlying signal to the decoder.

In the symmetrical decoder segment, the model reconstructs the
data through another series of seven convolutional layers, each fol-
lowedby anupsamplingoperation, ensuring accurate data restoration.
The final layer then produces a reconstruction of the initial data.

To enhance the model’s accuracy and ensure it only outputs
functions representative of the underlying signal, we incorporated a
consistency loss function which compares mean values across specific
data segments of the reconstructed input with their corresponding
latent space representations. This function ensures that the auto-
encoder’s reconstructed output aligns structurally with the original
data. The network is trained with anMSE function between target and
predicteddata segments, as elaboratedupon inSupplementary Table 1
and corresponding discussion. Overall, this architecture effectively
balances noise reduction, feature retention, and data consistency.

The architecture was implemented through TensorFlow65 and the
code can be found in the corresponding GitHub page.

Synthetic data generation
The system utilizes two generator functions: a generator for the
underlying signal and a generator for the noise. The noise is generated
first, and is defined by its standard deviation and shape of the gas
pulses. It is generated in two parts; firstly from typical stochastic

fluctuations in the QMS readout itself such as thermal noise, environ-
mental fluctuations, residual particles (flicker noise), shot noise and
ion feedback noise. We model these by a Gaussian distribution with a
high range of variability, to encapsulate the (white noise) effects of all
these sources in the training set. Secondly, there is contamination
noise, resultant of reagent reactions which occur outside the catalyti-
cally active surface area of the nanoparticles. We model these by an
added term for each gas pulse, proportional to the concentration of
input reagents to the system, also with a high variability.

The signal generator creates a step function with a desired signal-
to-noise ratio SNR=

μsignal

σnoise
, which is chosen during training tomatch the

SNR of 1-10 PdNP reactor readouts based on the given noise. The steps
are always placed the same (i.e., in an on-off pulsing form), but each
with a random signal value. Thus, there is no inherent inductive bias
regarding the relation of one pulse to another within the same overall
step function.

Deep learning training
The training consists of two steps. Firstly, a curriculum learning
scheme is employed on artificially generated signals on Gaussian-
distributed noise with a pre-defined SNR. The SNR is drawn from a
uniform distribution in the range SNR ∈ (0.95, 1), quantitatively cor-
responding roughly to the highest amount of experimentally mea-
sured catalytic activity of the n = 10 Pd sample at T = 450 °C. The lower
end of this range decreases by a factor of 0.05 to aminimumof 0 each
time the network is trained to convergence, as defined by an early
stopping mechanism with a patience of 32 epochs. This scheme helps
prevent problems of vanishing gradient and thusmode collapse result.
of directly training on extremely-low SNR examples. The artificial data
generation allows the model to train on a broad range of noises and
signal distributions, increasing its robustness by forcing it to learn
generalizable functions for denoising. The loss curve for this training
can be found in Supplementary Fig. 14.

The second step consists of training on artificial signal distribu-
tions in the range SNR∈ (0, 1), corresponding to the full range of SNRs
considered in this work, generated on examples of experimentally
measured noise. This fine-tuning step ensures that the final functions
learnt by the network work appropriately for the particular noise dis-
tributions relevant to the experimental conditions at inference time.
The noise is here defined as the output of a COoxidation sequence of a
n = 0 Pd sample chip at T = 40 °C.

Preprocessing
QMS data was preprocessed using a custom Python script (see Code
Availability) developed for this study. To adjust for baseline shifts of
the QMS signal over time, which can occur if the pressure inside the
UHV chamber on which the QMS is mounted has not yet entirely sta-
bilized, the following procedure is applied. First, a separate linear fit is
made to the QMS signal for each pulse in pure Ar. Secondly, this fit is
subtracted from said QMS signal and from the QMS signal of the next
corresponding αCO pulse in time. This shifts the baseline to a con-
sistent level for each individual pulsewithin a sweep. This procedure is
referred to as baseline adjustment (BA) in the main text. Outliers,
defined as individual QMS data points deviating more than three
standard deviations from the mean, were removed. The mean QMS
count value for each period was thereafter calculated and thus con-
stituted the standard analysis for this study. Finally, the data are scaled
downbya factor 100 tobring it in rangewith theorder ofmagnitudeof
a standard Gaussian, which is how the neural network’s weights are
initialized and therefore stabilizes training.

Experimental setup
Experiments were performed on a setup reported in detail earlier35,36

(see Supplementary Fig. 1). In brief, it is comprised of an elevated/
atmospheric pressure gas mixing/handling unit connected to the inlet

Article https://doi.org/10.1038/s41467-025-62602-3

Nature Communications |         (2025) 16:7203 9

www.nature.com/naturecommunications


side of a nanofluidic chip holder that, on the outlet side, is connected
to an ultrahigh vacuum system (base pressure of 10−10 mbar) equipped
with a triple filter QMS equipped with a pulsed ion counting detector
(Hiden HAL/3F PIC) and a gold-plated ion source. The QMS was
operated in SEMmode and at 12s sampling rate. In the case of ethylene
hydrogenation, a Pfeiffer Prisma QME200 was used to detect the
ethane formation. No absolute calibration was performed; instead, all
signals were analyzed comparatively using consistent instrument set-
tings, flow conditions, and background subtraction protocols for all
executed experiments. The gas mixing/handling unit was built from
quarter-inch stainless steel tubing with Vacuum Coupling Radiation
(VCR) (Swagelok) fittings as connectors. The nanofluidic chip was
hosted in a stainless steel connection block with welded VCR fittings,
which provided gas and QMS connections. The connection block
featured interior gas lines connected to exterior flexible stainless steel
tubing. The gas inlet and outlet of the chip were sealed with per-
fluoroelastomer (FPM) O-rings to the connection block. To avoid
unwanted background signals, a constant flow of Ar (18 mL min−1) was
flushed around theO-rings, limiting any diffusion to Ar. Connectors on
the connector block allowed for integration with four Bronkhorst Low
ΔPmass flow controllers and a pressure controller (max pressure of 10
bar). This system facilitates the creation of a gas mixture with up to
four different gases and a defined inlet pressure up to 10 bar upstream
of the mass flow controllers (here we used 4 bar). All gas flows and
pressures were controlled and monitored through a customized Lab-
VIEW program. The system can be heated up to 450 °C using a
microfabricated resistive heater on the backside of the chip. Tem-
perature readout was performed through a four-wire resistance tem-
perature probe microfabricated on the backside of the chip at the
position of the nanofluidic system. The chipwas electrically connected
for heating and temperature readout through six gold-plated electro-
nic spring spins embedded in a machined ceramic block. The pins are
connected to a temperature controller (Lakeshore 335) operated via a
LabVIEW program. The chips are calibrated by placing one in an oil
bath with a thermocouple readout to monitor the temperature before
anymeasurements are performed, see Supplementary Fig. 15. The chip
holder is equipped with a water-cooled copper block to maintain a
constant temperature, helping to reduce mechanical movements due
to heat transfer into the holder assembly.

Sample mounting and pre-treatment
Prior tomounting of a nanofluidic chip, the pipe connecting the outlet
of the nanofluidic chip to the inlet of the QMS vacuum chamber are
heated to 353K to minimize water adsorption. Once the chip was
mounted, the system was pumped for up to 72 h, until the base pres-
sure of the QMS chamber reached the desired of 10−10 mbar. After
mounting and pumping/baking, the sample was heated to 280 °C and
subsequently exposed to 20 cycles of alternating pulses of 10% CO in
Ar carrier gas and 15%O2 inAr carrier gas, each 15min long, followedby
a complete αCO sweep, in order to activate the catalyst and reach a
stable QMS signal baseline.

CO oxidation experiments
For the CO oxidation αCO sweep experiments, CO (10% in Ar) and O2

(15% in Ar) were used with Ar carrier gas (99.99999% purity). The inlet
pressure was set to 4 bar, and a total flow of 10 mL min−1 through the
microchannels was applied. The experiment sequence consists of
15 min pulses of CO/O2 mixtures at a constant 6% percent reactant
concentration, separated by 15 min in pure Ar (Fig. 2a–c) at constant
temperatures ranging from 280 to 450 °C. In each pulse, the con-
centration of CO/O2 is varied such that αCO is systematically varied
from 1 to 0 in steps of 0.05 for each subsequent pulse. The only
exception is the first (and last) two pulses, which vary in steps of 0.11
(0.02) and 0.02 (0.11), respectively. This is due to instrumental lim-
itations of the MFC controllers at very low values of absolute flow,

where they are unable to control the flow accurately. Each experiment
is also started with a single 30min pulse of 4% O2 and 2% CO, followed
by a 15min Ar pulse, to reset the state of the catalyst before each
sequence.

C2H4 hydrogenation experiments
The ethylene hydrogenation experiments were conducted with C2H4

(2% in Ar) andH2 (3.5% in Ar). Themixture of gases were flown through
the microchannels with a total flow rate of 20 mL min−1 and an inlet
pressure of 4 bar. The sequence of pulses consisted in 45 min of
exposure to C2H4/H2 mixtures at constant 1% reactant concentration,
followed by 15 min of pure Ar (see Fig. 6a). The concentrations were
chosen such that the mixing parameter αC2H4

was varied from 1 to 0
and from0 to 1 in steps of 0.1. The experiments were conducted while
heating the nanofluidic chip to the constant temperatures of 85, 90,
120, 160 and 170 °C.

Nanofabrication of the nanoreactor chip
Fabrication of the nanofluidic systems was carried out in the clean-
room facilities of Fed. Std.209 E Class 10 - 100, using electron-beam
lithography (JBX-9300FS / JEOL Ltd), direct-laser lithography (Heidel-
berg Instruments DWL 2000), photolithography (MA 6 / Suss Micro-
Tec), reactive-ion etching (Plasmalab 100 ICP180 / Oxford Plasma
Technology and STS ICP), electron-beam evaporation (PVD 225 / Les-
ker), magnetron sputtering (MS150 / FHR), deep reactive-ion etching
(STS ICP / STS) and wet oxidation (wet oxidation / Centrotherm),
fusion bonding (AWF 12/65 / Lenton), and dicing (DAD3350 / Disco). In
particular, the fabrication steps comprised the following processing
steps of a 4-inch silicon (p-type) wafer:

Fabrication of alignment marks: spin coating HMDS (hexam-
ethyldisilazane) adhesion promoter (MicroChem) at 3000 rpm for
30 s and soft baking on a hotplate at 115 °C for 120 s, spin coating
UV5 (MicroChem) at 2000 rpm for 60 s and soft baking at 130 °C
for 120 s, electron-beam exposure of alignment marks for both
optical and electron-beam lithography at 10 nA with a shot pitch of
20 nm and 34 μC cm−2 exposure dose. Post-exposure bake at 130 °C
for 90 s, development in MF-24A (Microposit) for 90 s, rinsing in
water and drying under N2 stream. Reactive-ion etching (RIE) for
15 s at 60mTorr chamber pressure, 60W RF-power, 60 cm3 STP
min−1 O2 flow (PlasmaTherm Reactive Ion Etcher). RIE for 15 min at
40 mTorr chamber pressure, 50 W RF-power, 100 W ICP-power, 50
m3 STP min−1 Cl2 flow (600 nm etch depth in silicon).

Thermal oxidation: Cleaning in 50 mL H2O2 and 100mL H2SO4 at
130 °C for 10 min, rinsing in water and drying under a N2 stream. Wet
oxidation in water atmosphere for 45min at 950 °C (200nm ther-
mal oxide).

Fabrication of nanochannels: spin coating HMDS adhesion pro-
moter (MicroChem) at 3000 rpm for 30 s and soft baking on a hotplate
at 115 °C for 120 s spin coating UV5 (MicroChem) at 2000 rpm for 60 s
and soft baking at 130 °C for 120 s electron-beam exposure of nano-
channels at 1 nA with a shot pitch of 10 nm and 34μC cm−2 exposure
dose. Post-exposure bake at 130 °C for 90 s, development in MF-24A
(Microposit) for 90 s, rinsing in water and drying under N2 stream. RIE
for 10 s at 40mTorr chamber pressure, 40 W RF-power, 40 cm3 STP
min−1 O2 flow (PlasmaTherm Reactive Ion Etcher). RIE for 100 s at
8mTorr chamber pressure, 50W RF-power, 50 cm3 STPmin−1 NF3 flow
(70 nm etch depth in thermal oxide). Cleaning in 50mL H2O2 and
100mLH2SO4 at 130 °C for 10min, rinsing in water and drying under a
N2 stream.

Fabrication ofmicrochannels: spin coatingHMDSat 3000 rpm for
30 s and soft bakingon ahotplate at 115 °C for 2min. spin coating S1813
(Shipley) at 3000 rpm for 30 s and soft baking at 115 °C for 2min.
Expose microchannels for 10 s in a contact aligner at 6mWcm−2

intensity. Development in MF-319 (Microposit) for 60 s, rinsing in
water and drying under N2 stream. Buffered oxide-etch for 3min to
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remove thermal oxide, rinsing in water and drying under N2 stream.
Deep reactive-ion etching for 100 cycles of 7 s at 6 mTorr chamber
pressure, 800 W RF-power, 8 W platen power, 130 cm3 STP min−1 SF6
flow (Si-etch), and of 5 s at 6 mTorr chamber pressure, 800 W RF-
power, 8W platen power, 85 cm3 STPmin−1 C4F8 flow (passivation) at a
rate of 600 nm per cycle. Removal of resist in 50mLH2O2 and 100mL
H2SO4 at 130 °C for 10min, rinsing in water and drying under N2

stream. The resulting channels have a depth of 60μmmeasured using
a Dektak 150 surface profiler.

Fabrication of inlets (from backside): Magnetron-sputtering of
200 nm Al (hard mask). Spin coating S1813 at 3000 rpm for 30 s
and soft baking on a hotplate at 115 °C for 2min. Expose inlets for
10 s in the contact aligner at 6mW cm−2 intensity. Development in
MF-319 for 60 s, rinsing in water and drying under N2 stream.
Aluminum wet etch (H3PO4:CH3COOH:HNO3:H2O (4:4:1:1)) for
10 min to clear the hard mask at inlet positions. Deep reactive-ion
etching for 300 cycles of 12 s at 5 mTorr chamber pressure, 600 W
RF-power, 10W platen power, 130 cm3 STP min−1 SF6 flow (Si-etch),
and of 7 s at 5 mTorr chamber pressure, 600 W RF-power, 10W
platen power, 85 cm3 STP min−1 C4F8 flow (passivation) at a rate of
2 μm per cycle. Removal of Al-hard mask in 50mL H2O2 and 100
mL H2SO4 at 130 °C for 10min, rinsing in water and drying under
N2 stream.

Fabrication of heater elements on the backside: Spin coating
HMDS at 3000 rpm for 30 s and soft baking on a hotplate at 115 °C for
2min. Spin coating LOR3A (MicroChemicals) at 3000 rpm for 30 s and
soft baking at 180 °C for 5min. Spin coating S1813 (Shipley) at 3000
rpm for 30 s and soft baking at 115 °C for 2min. Exposeheater elements
with direct-laser lithography at 10mWcm−2 intensity. Development in
MF-319 (Microposit) for 60 s, rinsing in water and drying under N2

stream. Electron-beam evaporation of 10 nm Cr / 100nm Pt. Lift-off in
remover Rem1165 (MicroChemicals), rinsing in isopropanol, and dry-
ing under N2 stream.

Fabrication of nanoparticles inside nanochannels: spin coating
copolymer MMA(8.5)MMA (MicroChem Corporation, 10 wt.% dilu-
ted in anisole) at 6000 rpm for 60 s and soft baking on a hotplate at
180 °C for 5min. spin coating ZEP520A: anisole (1:2) at 3000 rpm for
60 s and soft baking at 180 °C for 5min. Electron-beam exposure at
1 nA with a shot pitch of 2 nm and 280 μC cm−2 exposure dose.
Development in n-amyl acetate for 60 s, rinsing in isopropanol and
drying under N2 stream. Development in methyl isobutyl ketone:i-
sopropanol (1:1) for 60 s, rinsing in isopropanol and drying under a
N2 stream. Electron-beam evaporation of Au/SiO2/Pd triple layer.
Lift-off in acetone, rinsing in isopropanol, and drying under a N2

stream.
Fusion bonding: (a) Cleaning of the substrate together with a lid

(175μm thick 4-inch-pyrex, UniversityWafers) in H2O:H2O2:NH3OH
(5:1:1) for 10 min at 80 °C. (b) Pre-bonding the lid to the substrate by
bringing surfaces together andmanually applying pressure. (c) Fusion
bonding of the lid to the substrate for 5 h in N2 atmosphere at 550 °C
(°C min−1 ramp rate).

Dicing of bonded wafers: Cutting nanofluidic chips from the
bonded wafer using a resin-bonded diamond blade of 250μm thick-
ness (Dicing Blade Technology) at 35 krpm and 1mm s−1 feed rate.

Data availability
The data that support the findings of this study are available from
Zenodo66 and from the corresponding author upon request. Source
data are provided in this paper.

Code availability
Code generated during this project, used to define and train the DAE
algorithm, and to plot the results in this study is available from
Zenodo66 and from the corresponding author upon request.

Instructions for installation and proper usage is included in the doc-
umentation within the repository.
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