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Fast Optimization of Arbitrary-Shaped Antennas
Using a Deep Neural Network Model Trained
Once by an Efficient Electromagnetic
Field Solver

Fitim Maxharraj
Parisa Aghdam

Abstract—Fast optimization of arbitrary-shaped antennas is en-
abled by a neural network model, trained by a method of moments
(MoM) framework capable of evaluating large sets of pixel-based
antenna metal layouts. The MoM matrix equation is constructed
once for a fully metalized pattern. Matrix rows and columns are
selectively removed to reflect the absence of metal pixels. Fixed
regions, such as the ground plane, dielectric, and meshed port,
are accounted for the Schur complement. Using this framework, a
dataset of 2000 000 antenna configurations is generated in 19 h—a
speedup of 13.5 times compared to a plain MoM approach. Meshing
is done only once, as opposed to commercial solvers, including
meshing the speed advantage is 270 times. A convolutional neural
network is trained on this dataset and combined with a genetic al-
gorithm to synthesize various triple-band Wi-Fi 7 antennas, which
are experimentally validated. These results demonstrate the real-
world applicability of the proposed MoM framework for machine
learning-based optimization of arbitrary-shaped antennas.

Index Terms—Antenna synthesis, machine learning (ML),
method of moments (MoM), Wi-Fi 7.

1. INTRODUCTION

ESIGNING and optimizing antennas typically rely
D on computationally intensive full-wave electromagnetic
(EM) simulations using commercial solvers, such as Computer
Simulation Technology (CST) or High-Frequency Structure
Simulator (HFSS), in conjunction with suitable optimization
algorithms. Traditionally, the antenna geometry is parameter-
ized, resulting in a tractable low-dimensional optimization prob-
lem. To handle more generic, arbitrarily-shaped geometries,
pixel-based antenna metal layouts are often optimized using
evolutionary algorithms (EAs) [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. This is computationally
expensive: An average simulation time of 1.03 days per design
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is reported in [1] and [2] requires 26 h for a single run and 25 h
in [14], while custom EM+EA implementations still take 6 h to
20 h per solution [5], [7]. Moreover, eight out of 14 studies do
not report convergence times [1], [2], [3], [4], [5], [6], [7], [8],
[91, [10], [11], [12], [13], [14].

Machine learning (ML) methods have been explored to re-
duce the reliance on repeated EM simulations. Neural network
models (NNMs) are trained on large datasets of precomputed
EM solutions, enabling near-instantaneous prediction of antenna
performance and significantly accelerating the optimization pro-
cess [15], [16], [17]. ML methods have also been integrated with
pixel-based synthesis [18], [19], [20], but have only been applied
to small datasets, as this becomes the new computational bot-
tleneck. In [18], a dataset of 1940 samples was generated using
CST, but only 2-4 pixels were modified, severely restricting
the design space. Similarly, Zhang et al. [19] used HFSS to
produce 500 samples for a 12 x 12 grid (solution space: 2144),
while Wu et al. [20] proposed an iterative ML-based surrogate
model starting from 50 samples. Yet, even in that case, a single
optimized design took 26.5 h. Notably, none of these studies
validated their models experimentally.

Our group previously introduced a method-of-moments
(MoM)-based technique for rapid dataset generation of pixelated
antennas [21], which is extended in this letter by the Schur
complement enabling the optimization of more complex antenna
elements. Large static components of the MoM matrix are pre-
computed, such as the ground plane and dielectric layers, and are
reused across all simulations, eliminating the need for full matrix
reassembly and inversion for each geometry. Antenna-specific
variations are handled via fast matrix reductions. The key novel
contributions include: 1) a scalable, Schur complement-based
MoM method that enables fast EM modeling of complex an-
tennas employing large static regions; 2) efficient generation
of large datasets suitable for ML training through fast matrix
reduction techniques for pixel-based antenna metals; and 3)
demonstration of EM-modeling-free antenna optimization via
convolutional neural network (CNN) + genetic algorithm (GA)
synthesis and experimental validation of multiband Wi-Fi 7
antennas.

The rest of this letter is organized as follows. Section II
presents the methodology, including the MoM framework, data
generation, and ML model. Section III presents numerical results
comparing a direct MoM approach with our enhanced MoM
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https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0009-0006-1443-9446
https://orcid.org/0000-0002-8669-8045
https://orcid.org/0000-0002-1991-4334
https://orcid.org/0009-0005-8503-4078
https://orcid.org/0000-0002-6584-1826
mailto:fitim@chalmers.se
mailto:rob.maaskant@chalmers.se
mailto:marianna.ivashina@chalmers.se
mailto:lars.manholm@ericsson.com
mailto:parisa.aghdam@ericsson.com

4526

{ElyHl}A €0, Mo {ElyHl}A €0, o No Fields Outside
PEC n Sp PEC}_ Jp 31 _S_P_ &M & Sp A
ri-ed- a 3 S
8 & ! | No Fields = {Ex, Hy} ¥
5 o ek g '_,? 5 &l SDv.él:‘
1 “GND 1 /
(@) (b) ©

Fig. 1. (a) Original problem where (a) = (b) + (c) and Ey,;, is a voltage gap
source [23]. (b) External equivalent. (c) Internal equivalent.

approach. Section IV discusses experimental validation using
water-cut Wi-Fi 7 antennas. Finally, Section V concludes this
letter.

II. METHODOLOGY

A. MoM Implementation

Fig. 1(a) shows the original problem with region 1 as {110, 0}
(vacuum) and region 2 as {u,c}. Using equivalence princi-
ples [22], the original problem is divided into external and
internal equivalents shown in Fig. 1(b) and (c). The Poggio—
Miller—Chang—Harrington—Wu-Tsai formulation [24] is used,
treating the conductor and dielectric as separate regions, with
a gap-distance 0 [cf., Fig. 1(a)]. Applying boundary conditions
lead to integral equations for the unknown currents Jp, Jp,
and M using the field operators {&; ., H12} in the respective
media, i.e.,

El(JP) +61(JD7MD)|tan = = Egap’tan

(la)
gl(JP)+51(JD~MD)+52(JD'MD)|tan =0 (1b)
H](JP) + H](JD.MD) -+ HZ(JD'MD)|tan =0 (1c)

for r € {Sp, Sp}, and where “tan” denotes the tangential com-
ponent. The local E-field in the voltage-gap port is denoted by
E,,,. The left-hand side represents scattered fields and the right-
hand side the excitation vector. The perfect electric conductor
(PEC) current Jp, and the dielectric currents {Jp, Mp} are
expanded using Np and Np Rao—Wilton—Glisson (RWG) basis
functions [25], i.e.,

Np Np Np
Je=Y_Ify, Jo=> IVfo, Mp=> IMf> (2)
n=1 n=1 n=1

where f¥ and f2 are the nth RWG basis function for Jp and
{Jp, Mp}, respectively, with corresponding expansion coeffi-
cient IF, and {I2, IPv}. Substituting these expansions into (1)

and using Galerkin’s testing method [26] (equal test and basis
functions) yield the MoM matrix equation

Zpp Zpp, Zppy, I vP
ZDJ,p ZDJ,DJ ZDJ,DM IDJ — VDJ . (3)
ZDM,P ZDM,DJ ZDM,DM IDM VDM

The full complex matrix Z is of size N x N and {I,V'} are
N x 1 complex-valued vectors, where N = Np + 2Np,.
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Fig. 2.
the gap dp = 1 pum separates the patch/dielectric and ground, port extension
op = 1 mm, Hgje; = 1.5 mm, Witip = 2 mm, and Ny = 13, forming a 13 x 13
patch mesh of size 26 mm x 26 mm. (Right) MoM matrix partitioned at position
Ny ; colors illustrate material regions from (left) (not to scale).

(Left) Antenna geometry with a delta gap excitation (red/blue), where
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Fig.3. Original problem where Z is of size N x N and the equivalent problem
using the Schur complement where Z', is of size Ny x Ny-.

B. Dielectric Antenna

A patch antenna formed by a 13 x 13 binary mesh of square
elements, each subdivided into two triangles, is placed on a
substrate with ground plane as shown in Fig. 2(a). The Z in
Fig. 2(b) is computed once, similar to [21] and [27], further-
more, it is partitioned in the submatrices: Z,, which is of
size Ny x Ny containing the reaction integrals between the
reconfigurable patch, strip, and voltage-gap port RWGs; Zp is
of size (N — Ny ) x (N — Ny) representing the ground-plane
and substrate interactions; Zg and Z are of size Ny x (N —
Ny )and (N — Ny) x Ny,respectively, capturing the coupling
between Z, and Zp. In the shown configuration, N = 6340
and Ny = 516. The current distribution I’ is of size Ny x 1,
computed using the Schur complement [28]

1 -1

I'=(Zx-2ZpZy' Zc) V' = [Z,] V' 4)
where zg is only of size Ny x Ny and represents the recon-
figuration region while implicitly accounting for the presence of
the fixed dielectric and ground plane. Without a fixed region, or
including the fixed region in Z', then Z', = Z.

As shown in Fig. 3, the dataset is generated by randomly
removing RWGs associated with square elements, as opposed
to triangles [21], or zeroing out matrix elements [29]. This is
accomplished by eliminating corresponding rows and columns
from the original matrix Z, (red strikethroughs). The row-
column removal process can equivalently be done directly on
the original but smaller matrix Z’, for a fully metalized pattern.
It is computed once and reused across the simulations, reducing
computation time while preserving accuracy. Hence, instead of
inverting the full 6340 x 6340 matrix, the reduced system in-
volves inverting matrices upto 516 x 516, greatly lowering com-
putational cost. Using a direct lower-upper (LU) decomposition-
based solver (Gaussian elimination), the speedup factor scales
as O((N/Ny)?).
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Top View

“
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Fig.4. Geometry of the full metal antenna with height H = 5 mm, strip width
2 mm (Wyip = 1 mm), and Vg = 13, forming a 26 mm x 26 mm patch. The
red box on the right highlights a2 mm x 2 mm, corresponding to one cell in the
13 x 13 grid representation of the patch.

Since the gap values {dp, dp } are case-dependent, inappropri-
ate choices leads to inaccuracies [30].

C. Metal-Only Antenna

Although numerical validation will be done for a mixed
dielectric-metal structure, the Wi-Fi 7 antenna design is a metal-
only antenna in air dielectrics for high-radiation efficiency. This
also simplifies the formulation to the well-known electric field
integral equation in (1a), thus removing dielectric currents and
reducing the problem size from /N to Np unknowns.

Removing squares introduces sharp corners requiring finer
local meshing for accurate current modeling. Hence, a 26 x 26
patch grid is used to capture the current, as shown in Fig. 4(left),
corresponding to an RWG length of approx. A/42 along the
shortest edge and /30 along the diagonal. This is a form of
submeshing, since the 2 x 2 highlighted red block in Fig. 4(right)
is mapped as PEC or vacuum in a coarser 13 x 13 mesh for NNM
training. The full MoM matrix, of size(Z) = 5604 x 5604, is
computed once and block-partitioned such that size(Z',) =
2089 x 2089.

D. Data Generation and ML Model

A dataset of 2000000 randomly generated antennas was
simulated in 19 h on three nodes at the Chalmers cluster Vera,
from 1 GHz to 7 GHz in 100 MHz steps, totaling 61 freq.
points. Each antenna has 20%-80% random metal coverage.
Furthermore, the dataset contains only antenna configurations in
which all pixels are edge-connected (i.e., no point-connected or
isolated pixel antennas are included). The dataset was partitioned
into 70% for training, 15% for validation, and 15% for testing.
The test set is used for evaluating the model’s accuracy. This
partitioning is common for large datasets, and ensures a balance
between effective model training and reliable performance as-
sessment [15], [18], [20], [21]. In contrast, small datasets often
omit a validation or test set entirely [31].

The CNN architecture (see Fig. 5) uses 128 filters to capture
higher order patterns and a GA is employed for binary optimiza-
tion. GAs are well-suited for discrete, nondifferentiable design
spaces, making them more effective than methods, such as par-
ticle swarm optimization or gradient-based approaches [32]. A
detailed description of each hyperparameter can be foundin [21].
The current model is tailored to the 13 x 13 configurations
with |S11] as output. The model can incorporate additional
input parameters (e.g., substrate height, €,., and mesh variations)
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Convolutional Neural Network (CNN)
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Fig. 5. Generalized CNN model: Input mesh features (M = 13), single-

output layer (O = 1) with Y = 61 frequency points. M — 2 convolutional
layers with F' = 128 filters and rectified linear unit activation function. Two
dense layers (C7; = 512, Cy = 256), Adam optimizer [33], batch size = 1024,

and dropout = 0.25, trained for 136 epochs with early stopping.
0
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Fig. 6. |Sq1| for full patched dielectric and metal antenna; Z~! versus
(Zy)

and/or outputs (e.g., radiation pattern and efficiency), as shown
in [21].

III. NUMERICAL RESULTS

The relative Frobenius norm is used to assess accuracy; for
two matrices, A and B, it is defined as

VL T 1Ay - Byl?
\/Z¢:1 Z?:l |Bij|2

_lA-B|r _

1B] x 100%.
F

(&)
Fig. 6 shows no visual deviation of the |Si;| when re-
sults are obtained through the full matrix Z or the Schur-
complement-reduced matrix Z’,. This is valid for both the
mixed metal-dielectric and metal-only antenna cases, for which
€ = 0.00577%/1.043x10"1% (single/double precision) and
€ = 0.00316%/3.784 x 10~ 19%, respectively. Single precision is
used to reduce memory usage and improve the computational
efficiency of matrix inversion.

Fig. 7 compares the in-house MoM to the CST-computed
|S11|—time domain (TD), frequency domain (FD), and MoM
solvers—of the dielectric patch antenna. Differences between
the top and bottom figures are primarily due to differences by
the solvers in handling the singularities at the sharp corners.

Matrix inversion was performed and timed using a single core
of an Intel 19-14900 K processor for the full metal-covered
antenna [i.e., Fig. 7 (top)] at 1 GHz and across the 1 GHz-
7 GHz range, for both Z and Z',. In the dielectric case,
size(Z) = 6340 x 6340 and size(Z'y) = 516 x 516, while for
the metal-only case size(Z) = 5604 x 5604 and size(Z',) =
2089 x 2089. The metal-only antenna is meshed twice denser
than the dielectric antenna, so Z', for the pixelated metal region
ends up larger. Also, the size reduction is different because the
fixed region for the dielectric case is relatively large compared
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Fig. 7. Comparison between in-house MoM and CST (TD, FD, MoM): (top)

full patch, (bottom) random. CST settings, TD: Adaptive mesh with 110k/256 k
cells (top/bottom); FD: 219 k/341 k tetrahedra; MoM: 1300 triangles.

TABLE I
COMPARISON OF MATRIX INVERSION TIMES FOR Z AND REDUCED SYSTEM
Z', FOR FULL METAL-COVERED ANTENNA CONFIGURATIONS

Antenna Freq. z-1 (Z/) ! Speed-up
Dielectric 1 GHz 0.5097 s 0.0042 s 121.1x (1857x)
1-7GHz 30.839s 0.2419 s 127.5x (1857x)
Metal-Only 1 GHz 0.8216 s 0.0746 s 10.96x (19.3x)
1-7GHz 51.021's  3.7682 s 13.54x (19.3x)
0.02 _30 0.1 —
Training 2 Training Training
- Validation = 201 ’ Validation | | = = \'-.ll!(lallon
Z 0.01 8 E 0.05
- 10}
(a) =R ()
0 0 0
10° 10? 10° 10? 10° 10?
Epoch Epoch Epoch

Fig. 8. CNN Training and validation loss: (a) MSE, (b) MAPE, and (c) MAE.

to that of the metal-only antenna. Table I summarizes the results
and shows that, in the dielectric case, computational overhead
significantly limits the theoretical speedup O((N/Ny)?3). The
computation of Z’A, which includes the inversion of Zp, took
50.7 s for the dielectric case and 56.9 s for the metal-only case.
Performed only once, this step has negligible impact on total
simulation time. It amounts to a 13.5x speedup for the inversion,
20 x for the matrix assembly (our previous work [21]), and
totaling 270 x compared to a plain MoM approach. The ML
model was trained on an RTX 4080S GPU (136 epochs, ~
5.3 min/epoch, ~12 h total) until the mean squared error (mse)
convergence stalled for 20 epochs. Fig. 8 shows the training and
validation loss versus epoch. The model’s losses on unseen data
are: mse: 7.74x 10~%, mean absolute percentage error (MAPE):
4.51%, and mean absolute error (MAE): 0.013. Using the CNN
inFig. 5, which is capable of analyzing thousands of antennas per
second, three Wi-Fi 7 antennas were synthesized. Fig. 9 shows a
computer-aided design (CAD) model example, radiation pattern,
directivity, and efficiency.

IV. EXPERIMENTAL RESULTS

The MoM-CNN-GA framework was used to predict the per-
formance of three metal-only Wi-Fi 7 antennas, each of which
was waterjet-cut three times from a 0.4 mm thick brass plate.
Each of the nine prototype antennas was soldered to a SubMinia-
ture version A (SMA) connector mounted on the ground plane,
the |51 | was measured using Agilent Technologies’ VNA model
ES071C and electronic calibration module N4431-60006.

Fig. 10 shows good agreement between the ML-predicted,
MoM-simulated, and measured | S11 |, with prototypes operating
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Phi= 90

3
GHz — 5 GHz — 6 GHz

—25

Fig.9. CAD layoutand far-field polar plot (¢ = 90°) theta/degrees versus dBi
(Dir.) of an ML-generated Wi-Fi 7 antenna with |S11| < —10 dB at 2.5 GHz,
5.0 GHz, and 6.0 GHz, directivities of 4.09 dBi, 6.11 dBi, and 3.67 dBi,
respectively, and a simulated radiation efficiency of 99% (—0.03 dB) over the

bands.
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Fig. 10. Measurements of three Wi-Fi 7 antennas, Full-wave simulations, and

ML predictions, with a photograph of the brass watercut prototypes in the center.

near the target bands—2.5 GHz (20 MHz/40 MHz bandwidth),
5.0 GHz (80 MHz/160 MHz) and 6.0 GHz (160 MHz/320 MHz).
Minor deviations from the |S1;| < —10 dB threshold are at-
tributed to a 0.5 mm corner-cutting error in fabrication and
challenges in manual soldering of metal parts suspended in air,
which could be mitigated by printed circuit board (PCB)-based
dielectric designs.

V. CONCLUSION

A fast matrix construction and inversion method was pre-
sented for the MoM to accelerate dataset generation for ML-
based antenna synthesis. A 270x speed-up factor was achieved
compared to a plain MoM approach without noticeable accuracy
loss.

The ML model achieved an mse of 7.7430x10~* and was
used to synthesize three metal-only Wi-Fi 7 antennas with |S1 |
resonances at 2.5 GHz, 5.0 GHz, and 6.0 GHz. The manufactured
prototypes matched the simulation results with minor deviations,
demonstrating the practicality of ML-driven antenna design
without full-wave solvers during the synthesis.

Future work will explore the use of more efficient NNMs
to predict S-parameters and radiation pattern with the help of
reduced-order modeling techniques. Additional goals include
macrodomain basis function modeling of surface currents and
synthesis of large antenna arrays.
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