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Abstract 

Background  Malaria continues to pose a significant global health challenge, affecting approximately 200 million 
individuals annually and resulting in an estimated 600,000 deaths each year. In Tanzania, malaria ranks among the top 
five most commonly reported diseases in healthcare facilities, thus contributing to a substantial burden on the health‑
care system. This study analyzed aggregated monthly malaria count data for the period 2016-2023, to explore spatio-
temporal trends in malaria risk and assess the effects of climatic factors and vector control interventions across Tanza‑
nia mainland regions.

Methods  The Standardized Incidence Ratio (SIR) was used to assess malaria risk distribution, while a Bayesian 
spatio-temporal model using integrated nested Laplace approximations (INLA) was employed to evaluate the impact 
of climatic factors and vector control interventions. The model accounted for spatial and temporal effects by using 
a Conditional Autoregressive (CAR) dependence structure and a random walk of order two (RW2). The analysis 
was categorized into two age groups, with a cut-off at 5 years.

Results  The study recorded a total of 23.4 million malaria cases in individuals aged 5 years and above, and 17.3 
million cases in children under 5 years. The SIR and the model results identified regions with high malaria risk, 
and the model indicated that from 2016 to 2023, the malaria risk decreased by 11.0% for children under 5 years 
and by 10.0% for individuals aged at least 5 years. The use of long-lasting insecticide nets (LLINs) reduced the risk 
of malaria by 1.2% in children under 5 years and by 7.0% in individuals aged 5 years and above. Factors such 
as minimum temperature, wind speed, and high Normalized Difference Vegetation Index (NDVI) were associated 
with an increased malaria risk for both age groups. Relative humidity and maximum temperature, both lagged by two 
months, were associated with an increased malaria risk in children under 5 years, while maximum temperature lagged 
by one month was associated with increased malaria risk in individuals aged 5 years and above. Similarly, minimum 
temperature lagged by two and three months was associated with increased malaria risk in individuals aged 5 years 
and above and in children under 5 years, respectively. In addition, maximum temperature and wind speed lagged 
by one and three months were associated with decreased malaria risk in both groups.
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Conclusion  The environmental factors identified in this study, alongside the spatial mapping, are critical for devising 
targeted malaria control strategies, especially in regions where LLINs have reduced transmission. These findings are 
essential for identifying high-risk areas in endemic regions and for prioritizing immediate interventions

Keywords  Malaria cases, Areal data, Standardized Incidence Ratio (SIR), Spatio-temporal model, Random effects, 
Integrated nested laplace approximations (INLA), Tanzania Mainland

Introduction
Mosquito-borne diseases (MBDs) represent a group of 
illnesses transmitted to humans through mosquito bites, 
which involve a range of pathogens, including viruses 
(arboviruses) and parasitic organisms. Among these, 
malaria, which is caused by Plasmodium parasites trans-
mitted by bites from infected female Anopheles mos-
quitoes, is particularly prominent as a life-threatening 
disease [1, 2]. Malaria still remains a significant global 
health threat, with roughly 200 million clinical cases 
annually; the World Health Organisation (WHO) esti-
mated 249 million cases and 608,000 deaths across 85 
countries in 2022 [3]. Africa bears the highest burden of 
malaria, accounting for 94% of the global cases and 95% 
of the deaths, with young children being the most vulner-
able individuals; they comprise 78% of all malaria deaths 
in the region [3]. Despite ongoing control efforts, malaria 
cases have increased in recent years, with Tanzania rank-
ing among the top ten countries in terms of malaria cases 
and deaths, having contributed about 3.2% of global cases 
and 4.4% of global deaths in 2022 [3].

Environmental factors play a crucial role in malaria 
transmission dynamics. Temperature influences the 
development of the parasite within the vector by affect-
ing the duration of larval development and vector sur-
vival [4, 5], while warmer temperatures also increase 
the feeding frequency of female Anopheles mosquitoes 
[6–8]. Rainfall influences malaria transmission by creat-
ing and sustaining mosquito breeding sites, thus boost-
ing vector populations [9, 10]. Although less frequently 
explored, wind speed can also affect mosquito behavior 
and malaria transmission. High winds can increase mor-
tality in mosquito larvae due to water turbulence, influ-
ence adult mosquito movement (advection), and enhance 
host-seeking behavior by dispersing ( CO2 ) which attracts 
mosquitoes to hosts more effectively [11].

Several studies, employing various modeling tech-
niques, have explored the impact of climate variability 
and climate change on the distribution and intensity of 
malaria risk in various settings [12–14]. However, these 
investigations have produced disparate results, poten-
tially stemming from the lack of high-quality malaria 
data, which is often a consequence of a weak and frag-
mented nature of national health information systems 
in many malaria-endemic countries. A further potential 

reason may be that these modeling approaches vary a 
great deal in terms of structure and complexity [15]. 
Establishing an effective monitoring system that can 
promptly identify malaria cases is crucial for implement-
ing swift and efficient interventions to control or elimi-
nate the disease. Many developing countries, including 
Tanzania, have adopted the District Health Informa-
tion Software (DHIS) for this purpose [16]. This system 
evolved from the Health Management Information Sys-
tem (HMIS), which initially facilitated the reporting 
of routine health facility data to the Ministry of Health 
(MoH) through a paper-based reporting and storage sys-
tem. The transition to the electronic web-based District 
Health Information Software version 2 (DHIS2) marked 
a significant upgrade. Moreover, Tanzania’s adoption of 
the “Test and Treat"campaign has led to an increase in 
the number of health facility malaria cases confirmed 
by rapid diagnostic tests (RDTs) [17, 18]. This approach 
enhances the accuracy of malaria diagnoses and contrib-
utes to a more effective response to the disease at the 
health facility level.

In Tanzania, malaria transmission rates exhibit sig-
nificant geographical variability, traditionally being 
more prevalent in low-altitude regions but increasingly 
reported in high-altitude areas [19]. Transmission fol-
lows a distinct seasonal pattern, with major peaks occur-
ring during or after the heavy rains from March to May, 
and minor peaks following the lighter rains from Octo-
ber to December [20]. This spatial and temporal variabil-
ity presents a substantial challenge for malaria control, 
highlighting the need for targeted strategies beyond uni-
form interventions. To better capture these dynamics, 
this study first employs the Standardized Incidence Ratio 
(SIR) to estimate malaria risk across regions and time. 
By adjusting observed cases for population size, SIR ena-
bles more accurate comparisons of relative risk, helping 
to identify areas and seasons of increased susceptibility. 
Then, building on this foundation, a Bayesian spatio-tem-
poral model is applied to explore the influence of climatic 
and intervention-related factors on malaria transmission. 
These models account for spatial and temporal depend-
ence trends in malaria incidence while incorporating 
key influential factors [21, 22], offering a refined under-
standing of how these variables drive malaria dynam-
ics. To ensure a comprehensive assessment, the analysis 
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considers children under five separately from all individ-
uals aged five years and above, acknowledging differences 
in immunity, exposure patterns, and intervention cover-
age across these groups. In addition, the predictive per-
formance of the model was evaluated, assessing its ability 
to reproduce known patterns and forecast future malaria 
trends. The resulting stratified risk maps and model out-
puts provides critical insights to support targeted malaria 
control and elimination efforts, informing evidence-
based planning, resource allocation, and the design of 
effective interventions.

Materials and methods
Data sources
Tanzania Malaria, interventions and demographic data
This study utilized data from the Tanzania National 
Health Portal, managed by the Ministry of Health, cov-
ering the period from January 2016 to December 2023 
[23]. Established in 2015, the portal was designed to cen-
tralize access to health information across the country. It 
aggregates data from multiple sources, including routine 
health management information system records, surveys, 
health reports, and publications. Since 2009, Tanzania’s 
healthcare system has transitioned from paper-based 
methods to the electronic District Health Information 
System version 2 (DHIS2). DHIS2 is an open, web-based 
platform that enables the reporting, analysis, and dis-
semination of health-related data. It collects data from 
both private ( 26% ) and public ( 74% ) healthcare facilities 
and is accessible to authorized healthcare professionals 
using registered credentials. Most of the DHIS2 data are 
imported into the Tanzania National Health Portal [23]. 
Data uploads to the portal occur quarterly after the anal-
ysis of data from various reporting sources. These data 
are freely available from the portal and provide an oppor-
tunity to examine both inter- and intra-annual variations 
in malaria risk within the country, supporting the moni-
toring and evaluation of malaria programs and contribut-
ing to evidence-based decision-making.

The malaria cases data can be accessed within the Tan-
zania National Health Portal and comprises informa-
tion on the number of positive Malaria Rapid Diagnostic 
Tests (mRDTs), positive Malaria Blood Slide (mBS) cases 
in outpatient departments (OPDs), and clinical malaria 
cases in OPDs. The malaria cases data are stratified by 
gender, distinguishing between males and females, and 
further categorized by age groups, specifically"Under 5 
Years"and"5 Years and Above."This stratification is used 
because the data we have were already structured this 
way, and we also hypothesize that climate effects dif-
fer by age due to variations in physiological vulnerabil-
ity and immune responses between younger and older 
individuals. Furthermore, the Tanzania National Health 

Portal follows a hierarchy of four levels. At the top is the 
Muhimbili National Hospital, which offers specialized 
healthcare services. Following this structure are regional 
hospitals, district hospitals, and health centers at the sec-
tor level, all contributing to the Tanzania healthcare sys-
tem. Tanzania mainland is divided into 26 administrative 
regions, each with at least one healthcare center. These 
regions are further subdivided into 184 councils, which 
act as the primary operational units for government 
resource allocation and planning of disease prevention 
and management efforts, with their own budgeting capa-
bilities. Councils are further broken down into wards, 
which serve as the lower administrative units for resource 
distribution and disease reporting. This study focuses on 
examining malaria cases at the regional level.

From the same portal, we obtained demographic data 
for Tanzania mainland, stratified by regions and fur-
ther disaggregated by age categories, with the following 
groups: infants ( < 1 year), young children (1–4 years), 
children (5–9 years), adolescents (10–14 years), adults 
of reproductive age (15–49 years), middle-aged indi-
viduals (50–60 years), and seniors (60 years and older). 
This demographic information also includes a gender 
breakdown. Additionally, we collected data on expectant 
mothers who received Antenatal Care (ANC) and were 
concurrently provided with Long-Lasting Insecticidal 
Nets (LLINs), alongside with the number of children who 
benefited from LLINs. These nets play a crucial role in 
malaria prevention, especially among vulnerable groups 
like pregnant women and young children.

Climatic and environmental data
We obtained monthly climate data for each Tanzania 
mainland region from the NASA Prediction Of World-
wide Energy Resources (POWER), Data Access Viewer 
(DAV), version 2.4.0 [24]. While the POWER platform 
serves as an access point, the underlying climate vari-
ables are derived from multiple satellite and reanalysis 
sources. For instance, precipitation data are based on 
the Global Precipitation Measurement (GPM) Integrated 
Multi-satellite Retrievals for GPM (IMERG) [25, 26], and 
temperature, humidity, and wind speed are derived from 
the Modern-Era Retrospective Analysis for Research and 
Applications, Version 2 (MERRA-2) ensemble product 
[27]. The climate data have a spatial resolution of approx-
imately 0.5◦ × 0.5◦(≈ 50 km) and are available at daily, 
monthly, and climatological temporal scales. For this 
study, we extracted monthly averages of the following 
variables: near-surface air temperature (maximum, mini-
mum, and mean), relative humidity, precipitation, and 
wind speed. To align the climate data with the adminis-
trative boundaries used in our analysis, we aggregated 
the gridded data spatially to the regional level using a 
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zonal mean approach. Specifically, all grid points within 
each region geographic polygon were aggregated to pro-
duce a single monthly value per variable per region.

For Normalized Difference Vegetation Index (NDVI), we 
used the Global Information and Early Warning System 
on Food and Agriculture (GIEWS) [28, 29], as a proxy 
for moisture and water availability for mosquito breed-
ing and survival. GIEWS utilizes remote sensing data 
to provide insight on water availability and vegetation 
health across the globe. NDVI measures the greenness 
of ground cover and is used as a proxy to indicate the 
density and"greenness"of vegetation. NDVI values range 
from +1 to −1 , with high positive values corresponding 
to dense vegetation (i.e. high availability of water), and 
low and/or negative NDVI values indicating sparse veg-
etative cover (indicating low availability of water for veg-
etation growth).

Data cleaning
Since the Tanzania National Health Portal and the DHIS2 
database do not differentiate between zero cases and 
missing values, treating both as blanks, we assumed that 
in otherwise complete routine monthly malaria reports 
(from January 2016 to December 2023), any missing 
values represented true zero cases. In line with WHO 
recommendations, in this study we focused on two key 
indicators for malaria diagnosis: the number of malaria-
positive Blood Smears (BS) in OPDs and positive mRDTs, 
as these are considered reliable tools for malaria diagno-
sis. On the other hand, to ensure the demographic data 
matched the monthly malaria data, we restructured it 
into two age groups: children under 5 years (labeled as"< 
5 years") and individuals aged 5 years and above ("≥ 5 
years"). Infants (under 1 year) and young children (1–4 
years) were grouped into the  "< 5 years" category, while 
older children (5–9 years), adolescents (10–14 years), 
adults (15–49 years), middle-aged individuals (50–60 
years), and seniors (60+ years) were categorized into 
the "≥ 5 years" group. Furthermore, to facilitate monthly 
analysis, annual population data for each gender and age 
group were divided by 12, assuming a consistent popu-
lation growth rate throughout the year. This approach 
provided a more accurate representation of population 
dynamics for model development. Additionally, we care-
fully calculated the monthly percentage of long-lasting 
insecticidal net (LLIN) users. This involved summing the 
number of pregnant women who received LLINs during 
antenatal care (ANC) visits and the number of children 
benefiting from LLINs. By dividing this total by the cor-
responding monthly population, we obtained precise 
proportions of LLIN users for each month, adding valu-
able context for our analysis.

Statistical analysis
Our data encompasses both spatial and temporal infor-
mation for each data point, making it spatio-temporal in 
nature. To analyze this spatio-temporal data effectively 
with stochastic models, it is crucial to account for the 
spatial locations and corresponding time points associ-
ated with the multivariate model’s random variables.

In the realm of spatio-temporal data analysis, differ-
ent data types can arise depending on how the spatial 
sampling units are specified within a given area. The 
data considered in this study were of areal unit type, as 
we analyzed aggregated counts of malaria cases at the 
regional level (the boundary of each region is known); for 
other spatial(-temporal) data types, see e.g [21, 30]. This 
means that we analyze aggregated counts of malaria cases 
at the regional level, and the boundaries of each region 
are well defined and known. This approach allows us to 
gain insights into the multivariate distribution and pat-
terns as well as correlations of malaria, over time, across 
different regions of Tanzania mainland.

Standardized incidence ratio (SIR)
There are different exploratory/non-parametric approaches 
for assessing the risk of a specific disease for a specific spa-
tial region, which is part of a group of smaller geographic 
regions that constitute a larger study area. Such approaches 
allow us to gain insight into how the disease risk var-
ies across different locations and, in turn, can guide sub-
sequent parametric modeling approaches. Moraga [31] 
addressed this by introducing a method for estimating 
disease risk in these smaller areas and propose the use of a 
statistical measure called the Standardized Incidence Ratio 
(SIR) to quantify disease risk. An SIR value greater than 
1 indicates that the disease risk in a given region exceeds 
what would be expected in a standard population, while a 
value below 1 suggests the risk is lower than expected.

For each specific region, denoted as area i = 1, . . . , n , at 
time t, the SIR is calculated by comparing the observed 
number of disease cases ( Yit ) to the expected number of 
cases in an ideal scenario ( Eit ), as expressed by

The expected count Eit is crucial because it represents 
the number of disease cases that one would anticipate 
in region i at time t if the underlying population would 
exhibit the same disease incidence as a standard (or 
regional) population. This comparison allows us to iden-
tify regions that deviate from the expected disease risk. 
To compute the counts Eit , Moraga [31] suggests a sta-
tistical technique known as indirect standardization. 

SIRit =
Yit

Eit
.
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This method involves summing up the products of two 
factors: the disease rate ( r(s)jt  ) in various subgroups or 
strata at time t, within the standard population, and the 
population size of each stratum within region i at time t. 
Consequently,

In some cases, where this information about stratum-
specific data is unavailable, we can simply calculate the 
expected counts using a more straightforward approach, 
namely

where r(s)t  represents the overall disease rate in the stand-
ard population, calculated by dividing the total number 
of disease cases in the standard population by the total 
population across all regions. Meanwhile, n(i)t  denotes 
the population of the specific region i being analyzed at 
time t. The SIR for each region and year were estimated 
to assess the spatial variation in malaria risk. This infor-
mation can help inform public health decisions, resource 
allocation, and targeted interventions in areas with vary-
ing disease risks.

Spatio‑temporal Bayesian model formulation
While SIRs provide valuable insights into the relative risk 
of malaria across different regions, they do not address 
the underlying"why"or"how"questions related to disease 
risk. To comprehensively understand how various factors 
or covariates influence malaria risk, a stochastic model 
becomes essential. Bayesian spatio-temporal models pro-
vide a detailed understanding of malaria distribution by 
estimating risk levels across regions while accounting for 
spatial and temporal dependencies. A key advantage of 
this approach is the ability to generate posterior predic-
tive distributions, allowing for robust predictions while 
incorporating uncertainty in model parameters. Addi-
tionally, Bayesian models can integrate prior information, 
improving estimate stability, particularly when data is 
sparse or incomplete. Ultimately, this enhances the accu-
racy and reliability of conclusions regarding disease dis-
tribution and its risk factors.

The number of malaria cases, denoted by yit , is 
observed across 26 regions ( 1 = 1, · · · , 26 ) over 96 time 
points (t, representing the months from 2016 to 2023). 
To model this data, we define Yit as the random variable 
representing the malaria case counts. Given that malaria 
cases are count data, we assume Yit follows a Poisson dis-
tribution, which is a common and appropriate choice for 
modeling such data. In the employed model, the mean is 

Eit =
∑

j

r
(s)
jt n

(i)
jt .

Eit = r
(s)
t n

(i)
t ,

given by Eitθit , where Eit represents the expected counts 
of the malaria cases, and θit signifies the relative risk 
associated with region i at time t. The relative risk, θi , 
quantifies whether region i has higher (θi > 1) or lower 
(θi < 1) risk than the average risk in the standard popula-
tion. Additionally, covariates are often included to quan-
tify specific risk factors, while other random effects are 
incorporated to address further sources of variability.

This statistical model can be expressed as

where the log relative risk can be obtained as

The logarithm of the relative risk, θit , is modeled as the 
sum of several components, including spatial and tem-
poral structures that account for both spatial and spatio-
temporal correlations. The expected number of cases for 
each region over time, log(Eit) , is included as an offset 
to adjust for varying exposure levels. This offset acts as 
a correction factor and is assumed to have a fixed regres-
sion coefficient of 1 [21]. Here, α is the intercept, quanti-
fying the overall or average risk for all regions, essentially 
the baseline level of risk, ui is the spatially structured 
region-specific random effect, which accounts for spa-
tial correlation among regions. It allows for smoothing 
among adjacent regions, considering that regions closer 
to each other tend to have more similar risk levels. vi is 
the unstructured residual, modeled using exchangeabil-
ity among the 26 regions. It captures the additional het-
erogeneity in the counts of malaria cases attributed to 
unobserved risk factors that are not spatially structured. 
In other words, it accounts for unexplained variation and 
random noise. Tt denotes the temporal effects, captur-
ing how the risk of malaria cases changes over time. This 
can be defined as either a parametric or a nonparametric 
structure, depending on the specific temporal patterns 
we want to capture. X is a matrix of covariates (fixed 
effects) for each region-time combination, and β is a 
matrix of coefficients corresponding to these covariates. 
It allows the inclusion of additional explanatory variables 
in our model, explaining how they affect the log of the 
expected risk.

(1)

Yit ∼ Poisson(�it),

�it = log (θit) = α + ui + vi + Tt + Xβ + log (Eit),

(2)

log

(

θit

Eit

)

= α + ui + vi + Tt + Xβ ,

α ∼ N
(

0, τ−1
0

)

,

ui|u−i ∼ N

(

µ̄δi ,
σu

2

nδi

)

,

vi ∼ N
(

0, σ 2
v

)

.
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The notation ui|u−i refers to the conditional distribu-
tion of the random effect ui (associated with a specific 
region i) given all other random effects u−i , where u−i 
represents the collection of random effects for all regions 
except region i. This formulation suggests that we are 
dealing with a multivariate random vector (Markov ran-
dom field (MRF)) where the dependence between regions 
is spatially structured. In this case, the spatial depend-
ence is modeled through a Conditional Autoregressive 
(CAR) model, which is a specific type of MRF. In a CAR 
model, the random effect for a particular region depends 
only on its neighboring regions rather than on all other 
regions globally, which is a characteristic of MRFs. The 
conditional distribution ui|u−i is typically assumed to fol-
low a normal distribution with a mean that is a function 
of the random effects of the neighboring regions and a 
variance inversely related to the number of neighbors.

In the following subsections, we outline several adap-
tations to the model in equation (1), where the temporal 
component can be modeled using either parametric or 
semi-parametric approaches.

A parametric version of  the  model  Bernardinelli et  al. 
[32] proposed a spatio-temporal model with parametric 
time trends that expresses the logarithm of the relative 
risks in equation (1), as

Here, α is the intercept, ui + vi is an area random effect, 
β is a global linear trend effect, and δi is an interaction 
between space and time representing the difference 
between the global trend β and the region specific trend. 
The components ui and δi are modeled using a condi-
tional autoregressive (CAR) model, while vi are inde-
pendent and identically distributed normal variables. 
This modeling approach allows each region to have its 
own unique time trend, characterized by a spatial inter-
cept represented by α + ui + vi and a slope determined 
by β + δi.

To ensure identifiability of the resulting model, a con-
straint is applied to the variables δ = {δ1, · · · , δ2, δn} and 
u = {u1,u2, · · · ,un} , requiring that their sum equals 
zero. This constraint is crucial for identifiability because 
it removes the redundancy in the model parameters, 
ensuring that the effects attributed to these variables 
can be uniquely determined. Without such a constraint, 
the model would have an infinite number of solutions 
because adding a constant to all δi or ui values would 
not change the model’s fit to the data. By constraining 
the sum to zero, we effectively ensure that the parame-
ters are uniquely determined. The value δi is referred to 
as the"differential trend"and it is signifying the extent to 

(3)
log (θit) = α + ui + vi + (β + δi)t + Xβ + log (Eit).

which the time trend in region i differs from the overall 
time trend β . That is, when δi < 0 it indicates that the 
area-specific trend is less steep than the average trend. In 
other words, the rate of change in that particular area is 
lower compared to the overall trend. Conversely, when 
δi > 0 it suggests that the area-specific trend is steeper 
than the average trend, indicating a faster rate of change 
in that specific area compared to the overall trend.

A semi‑parametric version of the model  The parametric 
model described in equation (3) assumes a log linear rela-
tionship between the disease risk and time, but this may 
not fully capture the complex dynamics of how disease 
risk evolves over time across different regions. To address 
this limitation, Knorr-Held [33] proposed an enhanced 
model that incorporates both spatial and temporal ran-
dom effects, as well as an interaction between space and 
time:

In this model, α represents the intercept, while ui + vi 
denotes the spatial random effects. These are parameter-
ized in the same way as in Equation (1), with ui following 
the CAR model and vi being independent and identi-
cally normally distributed random variables. The terms 
γt and φt represent temporal random effects which allow 
the model to capture complex temporal dynamics that a 
simple linear trend might miss. γt is used to account for 
broad temporal trends and patterns, such as seasonality 
or long-term shifts in disease risk. It is modeled as a ran-
dom walk, which can either be of first-order (RW1),

or of second order (RW2),

In a second-order random walk (RW2), the parametriza-
tion 2γt−1 − γt−2 helps capture more complex changes 
over time by looking at data from two previous time 
points. This approach allows the model to understand 
not just how the trend is changing at the moment, but 
also how the rate of change itself is shifting. This makes 
the model better at reflecting more intricate patterns in 
the data, such as speeding up or slowing down trends, 
rather than just assuming a steady, linear change. Fur-
thermore, φt represents an unstructured temporal effect 
that captures additional variability not explained by γt . 
This effect is modeled as an independent and identically 
distributed normal variable:

(4)
log (θit) = α + ui + vi + γt + φt + δit + Xβ + log (Eit).

γt |γt−1 ∼ N (γt−1, σ
2
γ ),

γt |γt−1, γt−2 ∼ N (2γt−1 − γt−2, σ
2
γ ).

φt ∼ N (0, σ 2
φ ).
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To capture the interaction between space and time, the 
model includes the parameter δit which can be speci-
fied in different ways by combining the structures of 
the random effects which are interacting. This param-
eter accounts for the differences in the time trend (of 
malaria cases) across various regions, enabling an exami-
nation of how the time trend varies geographically. 
Knorr-Held et  al. [21, 33] proposed four different types 
of interactions, namely, interaction between the effects 
(ui, γt), (ui,φt), (vi, γt) and (vi,φt) . These interaction are 
summarized in Table 1.

Table  1 presents different interaction models, each 
with its own set of assumptions and characteristics. 
In the Type I interaction model, it is assumed that two 
unstructured effects, denoted by ui and φt , interact with 
each other. These effects are considered to have no inher-
ent spatial or temporal structure. Additionally, there is no 
spatial or temporal structure attributed to their interac-
tion. Essentially, this model assumes no specific patterns 
or relationships among these effects and the matrix Rδ 
(describes the way different random effects or param-
eters interact with each other) has a rank nT (provides 
insights into the dimensions and complexity of the inter-
actions being modeled). In the Type II interaction model, 
a structured temporal main effect, γt , is combined with 
an unstructured spatial effect ui . In this scenario, the 
spatial effect is not subject to any specific constraints 
( Ru = I ), while the temporal effect is structured based 
on a specified neighborhood structure, often established 
through a first or second-order random walk ( Rγ ). This 
results in an assumption that, for each area, the parame-
ter {δi1, · · · , δiT } exhibits an autoregressive structure over 
time. This structure is independent of other areas, and 
the matrix Rδ has a rank determined by the choice of ran-
dom walk, either n(T − 1) for first-order or n(T − 2) for 
second-order. The Type III interaction model combines 
an unstructured temporal effect, φt , with a spatially struc-
tured main effect, vi . In this case, there is no specific tem-
poral structure associated with ( Rφ = I ), while the spatial 
effect is structured using the Conditional Autoregressive 
(CAR) specification ( Rv ). This leads to the assumption 
that the parameters for each time point, δ1, · · · , δn , pos-
sess a spatial structure that is independent of other time 

points. The matrix Rδ has a rank of T (n− 1) . The Type 
IV interaction model assumes that both the spatially and 
temporally structured effects interact. This implies that 
the temporal dependence structure for each area is not 
solely independent but depends on the temporal pat-
terns of neighboring areas as well. The structure matrix 
in this model is formed as the Kronecker product, and 
its rank depends on the order of the random walk cho-
sen, either (n− 1)(T − 1) for a random walk of order 1 or 
(N − 1)(T − 2) for a random walk of order 2.

Model fitting and validation
Model fitting  Given that our response variable repre-
sents counts, as we have already indicate, the natural 
model to use would typically be the Poisson model. How-
ever, the Poisson model assumes that the mean and vari-
ance are equal, which is often not the case in real-world 
scenarios. We may often encounter overdispersion [34, 
35], where the variance exceeds the mean, or there might 
be an excessive number of zeros in the data [36]. In cases 
of overdispersion, the Poisson model may not be suitable, 
and alternative models that can accommodate a larger 
variance relative to the mean become necessary. One such 
model is the negative binomial, where each Yit follows a 
negative binomial distribution. This model is recom-
mended as it introduces an additional parameter to inde-
pendently model the mean and variance, effectively han-
dling overdispersion [34]. Furthermore, when the dataset 
exhibits an excessive number of zeros, such as in regions 
with low malaria transmission or specific seasons, zero-
inflated models are valuable [36]. Such models address the 
surplus of zeros by incorporating additional parameters to 
capture structural and sampling issues.

During the model selection process, we utilized the 
Watanabe-Akaike Information Criterion (WAIC), Mar-
ginal log likelihood (mlik), and Deviance Information 
Criterion (DIC). These metrics offer unique valuable 
insights into the goodness of fit and model complex-
ity. The WAIC and DIC allows us to assess the balance 
between these two factors, with smaller values indicat-
ing better fitting models that offer a favorable trade-off 
between accuracy and complexity. The Marginal log like-
lihood provides an estimation of the average likelihood of 
the observed data given the model. It serves as a measure 
of how well the model captures the observed data, with 
higher values indicating better fit. The DIC is a generali-
zation of the Akaike Information Criterion (AIC), explic-
itly for Bayesian model comparison, with smaller values 
indicate better fitting models.

Given that climate variables are often highly correlated, 
there is a potential risk of multicollinearity when fitting 
a model. Multicollinearity occurs when two or more 
predictor variables are highly correlated, meaning they 

Table 1  Interaction Types and Structure Matrices

Interaction 
Type

Structure matrix Rδ Parameters 
interacting

Rank

I Rδ = Ru ⊗ Rφ = I⊗ I = I ui and φt nT

II Rδ = Ru ⊗ Rγ ui and γt n(T − 2) for RW2

III Rδ = Rφ ⊗ Rv vi and φt (n− 1)T

IV Rδ = Rv ⊗ Rγ vi and γt (n− 1)(T − 2) 
for RW2
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offer similar information [37]. This can lead to unreliable 
estimates of coefficients, making it difficult to assess the 
individual effect of each predictor. To assess and address 
multicollinearity, we specifically used the Variance Infla-
tion Factor (VIF) [37], which quantifies how much the 
variance of a regression coefficient is inflated due to col-
linearity with other predictors. A VIF value exceeding 10 
is typically considered indicative of significant multicol-
linearity, warranting further investigation or remedial 
action. This method helps in reducing the impact of cor-
related predictors on the model, ensuring more reliable 
and interpretable results.

Model validation  Before conducting exploratory analy-
sis and model fitting, we divided the dataset into training 
and test sets. The training set, encompassing the first 84 
months (January 2016 to December 2022), was used for 
training the model. The test set, covering the remaining 12 
months (January to December 2023), was used for testing 
the performance of the model on unseen data. We evalu-
ated the predictive performance of the optimal model by 
comparing observed malaria cases with predicted cases 
from the training set and forecasted cases from the test 
set, assessing how accurately the model captured the 
actual malaria trends. In addition to directly comparing 
predicted and observed cases, we used a Receiver Operat-
ing Characteristic (ROC) curve to assess the model’s abil-
ity to distinguish between high-risk and low-risk malaria 
areas. To construct the ROC curve, we set a threshold 
of 1 to categorize the SIR values. SIR values greater than 
1 were labeled as 1, indicating a predicted high malaria 
risk, while values equal to or less than 1 were labeled as 
0, indicating low or no malaria risk. The ROC curve plots 
the true positive rate (sensitivity) against the false posi-
tive rate (1-specificity) at various threshold levels, provid-
ing a visual measure of the model’s discrimination abil-
ity. Moreover, we quantified the model’s performance by 
calculating the Area Under the Curve (AUC). The AUC 
gives a single numeric value summarizing the ROC curve, 
where 0.5 indicates performance equivalent to random 
guessing, and a value closer to 1 suggests strong predic-
tive accuracy. This approach allowed us to robustly evalu-
ate how well the model distinguished between high-risk 
and low-risk malaria areas, providing key insights into its 
practical utility for malaria prediction.

All data management and statistical analysis was 
performed in the software R, version 4.4.2 [38]. The 
Bayesian hierarchical model was estimated using Inte-
grated Nested Laplace Approximation (INLA) package 
(R-INLA). INLA is a deterministic algorithm specifi-
cally developed for Bayesian inference in latent Gauss-
ian and spatial models [39, 40]. It is a robust estimation 

method that combines analytical approximation and 
numerical integration to derive the approximate pos-
terior distribution of parameters [21, 41]. Compared 
to the traditional Markov Chain Monte Carlo (MCMC) 
methods, Bayesian estimation using INLA offers sig-
nificant computational advantages, allowing for faster 
estimation times [21].

Results
Descriptive analysis
Between January 2016 and December 2023, a total of 
40.7 million malaria cases were recorded across all Tan-
zania mainland regions, with an average of 1.5 million 
cases per region. The highest number of cases during 
this period was 6.6 million cases, in 2019, while the 
lowest was 3.4 million cases, in 2022.

Figure 1 depicts the variation in malaria cases in Tan-
zania mainland from January 2016 to December 2023, 
showing significant fluctuations in transmission across 
different years, age groups, and genders. The lines rep-
resenting different age groups reveal that individu-
als aged five years and above had a higher number of 
malaria cases compared to those under five years of 
age. However, this should be viewed in the context of 
the larger population size in the older age group. While 
the number of malaria cases is higher in the older age 
group due to its larger population size, the risk or likeli-
hood of contracting malaria may actually be higher for 
children under five years. This means a larger propor-
tion of children in the younger age group are likely to be 
more affected by malaria, despite the lower number of 
reported cases. Furthermore, the same plot illustrates 
that females had a somewhat higher number of malaria 
cases compared to males across all age groups. This 
observation could be attributed by the higher number 
of females in the country and the fact that women tend 
to visit health centers more frequently, either for treat-
ment or pregnancy-related care.

The intensity and timing of the seasonal peak of 
malaria cases vary from year to year for each age group 
(Figure  1b and 1c). For both groups, malaria cases 
typically peak from December to July, coinciding with 
the high rainfall season from November to May and 
relatively warm conditions. This peak is followed by 
a decrease in cases from August to October, corre-
sponding to a period of low or no rainfall, suggesting 
fewer malaria cases. However, this trend reverses with 
an increase in cases in November, aligning with the 
moderate rainy season in October and November in 
some regions of the country. It is notable that monthly 
malaria cases remained consistently high in 2018, 2019, 
and 2020 for both age groups, compared to other years.
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Spatial and temporal variations in malaria SIR
Figure  2 depicts the spatial and temporal variations in 
malaria SIR for children under five years of age (Fig-
ure  2a) and for individuals aged five years and above 
(Figure  2b) across Tanzania mainland regions from 
2016 to 2023. The regions shaded in shades of red, 
from light to dark, represent areas with ( SIR > 1 ), i.e. 
those regions with a higher malaria risk compared to 
the standard population. The maps reveal a consistent 
pattern of malaria cases across various regions in both 
age groups. In both groups, the Eastern Zone (which 
includes Tanga, Dar es Salaam, and Pwani), the South-
ern Zone (comprising Lindi, Mtwara, and Ruvuma), and 
the Lake Zone (including Kagera, Kigoma, and Tabora) 
consistently exhibit a higher malaria burden compared 
to other regions throughout the study period. Nota-
bly, the risk is somewhat higher in children under five 
years of age in the regions of Lindi and Mtwara. Some 
regions experience a somewhat lower risk of malaria 
for both age groups. These include the Northern Zone 

with the Arusha, Kilimanjaro, and Manyara regions; the 
Southern Highlands Zone with regions such as Mbeya, 
Njombe, and Songwe; and the Central Zone, encompass-
ing the Dodoma, Singida, and Iringa regions. Moreover, 
the maps provide valuable insights into the spatial and 
temporal correlations in the malaria risk. This becomes 
evident by the clustering of similar colors in neighboring 
regions over time, indicating that geographically proxi-
mate regions tend to exhibit similar patterns of malaria 
cases, both in their spatial distribution and temporal 
changes. The global spatial autocorrelation of malaria 
cases was evaluated using Moran’s I statistic, calculated 
based on the total number of cases aggregated by region 
over the study period. The results revealed a Moran’s 
I value of 0.41399 (p = 0.0014) for children under five 
years of age and 0.36542 (p = 0.002) for individuals aged 
five years and above. These statistically significant val-
ues indicate a clear spatial clustering of malaria burden 
in both age groups. Regions with high case counts tend 
to be adjacent to other high-burden areas, while regions 

Fig. 1  Intra- and inter-annual malaria cases by age and gender in all Tanzania mainland regions from 2016 to 2023
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Fig. 2  Spatial and temporal distribution of malaria Standardized Incidence Ratio (SIR) by region in Tanzania Mainland from 2016 to 2023 for children 
under 5 years and for individuals aged at least 5 years. Regions highlighted in red indicated an SIR greater than 1, indicating a somewhat higher 
malaria risk, while regions with an SIR of 1 or less indicate a relatively lower malaria risk
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with lower cases are similarly clustered together. This 
pattern highlights the geographical concentration of 
malaria cases, suggesting the potential influence of local-
ized environmental, climatic, and intervention-related 
factors.

Relationship between malaria SIR and climatic factors
During the analysis, a high correlation was observed 
between average temperature and both maximum and 
minimum temperatures, raising concerns about multicol-
linearity, which could compromise model accuracy and 
interpretation. To address this, a variance inflation factor 
(VIF) analysis was conducted, identifying average tem-
perature as the primary contributor to multicollinearity. 
As a result, maximum and minimum temperatures were 
retained in the model, as they demonstrated lower VIF 
values.

The relationships between the Standardized Incidence 
Ratio (SIR) and various climatic variables at different 
scales throughout the year, for both age groups, are visu-
alized in Fig. 3. In this figure we observe that the pattern 
of SIR closely aligns with precipitation trends, showing 
higher values during the rainy season (December to June) 

and lower values during the drier months (July to Octo-
ber). Regarding temperature, SIR decreases slightly dur-
ing periods of high maximum temperature, particularly 
between July and November. Conversely, SIR exhibits a 
weak positive association with minimum temperature, 
with slightly higher values during the warmer months 
(November to April). Additionally, SIR is positively cor-
related with relative humidity during the wet season 
(November to May), reflecting higher disease incidence 
in more humid conditions. In contrast, SIR shows an 
inverse relationship with wind speed, as periods of 
lower wind speeds during the rainy season coincide with 
increased SIR values.

Table  2 presents Pearson correlation coefficients 
between monthly malaria cases and climatic factors (pre-
cipitation, maximum and minimum temperature, relative 
humidity, and wind speed) across lags of 0 to 3 months 
for both age groups. Precipitation yielded a significant 
correlation for children under five years of age up to lag 1, 
implying that rainfall from the previous month was asso-
ciated to malaria risk in children. For individuals aged 
five years and above, the correlation extended up to lag 
2, indicating that rainfall had a more prolonged effect on 

Fig. 3  Relationship between standardized malaria cases (SIR) and time-series plots of scaled weather variables for: (a) children under five years 
of age and (b) individual aged five years and above.

Table 2  Pearson correlation between monthly malaria incidence and climatic variables analyzed at four lag intervals: Lag 0 (current 
month), Lag 1 (previous month), Lag 2 (two months prior), and Lag 3 (three months prior)

a Statistically significant correlations at the 5% level

Climatic factor Children < 5 years Individuals ≥ 5 years

Lag 0 Lag 1 Lag 2 Lag 3 Lag 0 Lag 1 Lag 2 Lag 3

Precipitation 0.0648 a 0.0663 a 0.0419 0.0217 0.0873a 0.0756a 0.0627a 0.0325

Max. temperature 0.1075a 0.129a 0.1079a 0.0655a 0.0955a 0.1304a 0.0849a 0.0093

Min. temperature 0.2390a 0.2191a 0.1642a 0.0984a 0.3348a 0.3141a 0.2245a 0.1159a

Relative humidity 0.1116a 0.0676a 0.0416 0.0376 0.1594a 0.10177a 0.0821a 0.0898a

Wind speed −0.1630a −0.1665a −0.1681a −0.1654a −0.1299a −0.1310a −0.1536a −0.1612a
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older individuals, potentially due to a longer incubation 
period or different exposure dynamics. Maximum tem-
perature showed significant positive correlations across 
all lags for children under five years of age, indicating 
that higher temperatures in the past 1 to 3 months are 
consistently associated with an increased risk of malaria. 
For individuals aged five years and above, the effect was 
significant only up to lag 2, suggesting a shorter-term 
effect of temperature on malaria risk in older individu-
als. Minimum temperature showed significant positive 
correlations at all lags for all age groups, indicating that 
minimum temperature in the past 1 to 3 months can con-
tribute to a higher malaria risk, regardless of age. Rela-
tive humidity had significant positive correlations at all 
lags for individuals aged at least five years, meaning that 
higher humidity in previous months increased malaria 
risk in this group. For children under five years, the rela-
tionship with relative humidity was only significant up to 
lag 1, suggesting a shorter-term impact on younger chil-
dren. Wind speed showed consistent negative correla-
tions across all lags and age groups, meaning that higher 
wind speeds were associated with a decreased malaria 
risk. This effect was consistent over time, regardless of 
the age group, suggesting that wind may play an impor-
tant role in reducing mosquito transmission, possibly by 
disrupting mosquito flight patterns or dispersing larvae.

Model fit
We compared three models (in terms of distribution for 
the response variable): the Poisson, Negative Binomial, 
and the Zero-Inflated Negative Binomial. The results 
(Table  3) indicated that both the Deviance Information 
Criterion (DIC) and Watanabe-Akaike Information Cri-
terion (WAIC) were lower for the Negative Binomial 

model compared to the Poisson model, while the mar-
ginal likelihood (mlik) was higher. These findings suggest 
that the Negative Binomial model provided a better fit for 
the data, both for children under five years of age and for 
individuals aged five years and above. When we exam-
ined the Zero-Inflated Negative Binomial model, there 
was no significant improvement in these metrics com-
pared to the Negative Binomial model, indicating that 
the Negative Binomial model was the most suitable and 
effective choice for capturing the malaria case dynamics 
in our dataset.

We also assessed the contribution of climatic factors 
and the proportion of LLIN usage to malaria cases by 
comparing seven distinct spatio-temporal Negative Bino-
mial models. These models were structured as follows: 
the first was a non-spatial model, the second incorpo-
rated a spatial component, the third included both spatial 
and temporal components, and the fourth through sev-
enth models accounted for various interactions between 
time and regions. Based on the DIC, WAIC, and mlik, we 
found that the spatio-temporal Negative Binomial model 
with type I interaction achieved the smallest DIC and 
WAIC, and the largest mlik, demonstrating the best fit 
among all models (see Table 3).

Model validation
The relationship between the predicted and forecasted 
malaria cases versus the observed cases is illustrated 
in Figure 4 for both age groups. The observed malaria 
cases (blue) closely match the predicted values (red) 
during the training period (2016-2022), demonstrat-
ing the models ability to capture underlying trends and 
seasonal patterns. Furthermore, the forecasted values 
(cyan) align well with the observed data for the year 

Table 3  Model selection and comparisons: we first choose the model distribution by comparing three distribution (Poisson, Negative 
Binomial and Zero inflated Negative Binomial), then we compare several model using the chosen distribution

The bold values highlights the model that outperforms the others, having lower DIC and WAIC, as well as a higher mlik

Model Children < 5 years Individual aged ≥ 5 years

DIC WAIC Mlik DIC WAIC Mlik

Poisson 8814647.07 370781.23 −6446288.33 11351175.49 415013.54 −6763198.11

Negative Binomial 48108.63 48106.43 −24199.19 49603.28 49601.08 −24964.50
Zero inflated Negative Binomial 48108.79 48109.18 −24203.31 49606.11 49603.57 −24970.99

Choosing the best negative binomial spatio-temporal model

Non-spatial model 48109.63 48108.43 −24199.19 49603.28 49601.09 −24964.50

Spatial model 42395.33 42404.42 −21436.57 44861.55 44866.83 −22681.99

Spatio - temporal model 42031.46 42042.47 −21312.20 44469.51 44474.57 −22508.91

Spatio - temporal model with type I interaction 33549.56 34843.39 −21292.36 44030.54 44044.00 −22655.79
Spatio - temporal model with type II interaction 41817.66 41836.99 −21399.90 44045.86 44059.39 −22524.67

Spatio - temporal model with type III interaction 490719.25 41987.43 −21341.20 44202.28 44223.46 −22452.30

Spatio - temporal model with type IV interaction 41806.96 41828.07 −21530.54 44038.65 44073.36 −22467.69
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2023, indicating that the models generalize effectively 
to future unseen data. This alignment highlights the 
model accuracy in fitting historical data and profi-
ciency in forecasting future trends. The model capa-
bility to identify peaks and troughs in malaria case 
patterns further signifies its sensitivity to variations in 
malaria risk, allowing it to reliably pinpoint periods of 
high and low malaria cases.

We further evaluated the model’s ability to predict 
malaria cases using the Receiver Operating Character-
istic (ROC) curve and Area Under the Curve (AUC). 
As shown in the lower panel of Figure  4, the ROC 
curve approached the upper-left corner for both age 
groups, indicating the model’s strong capacity to dis-
tinguish between high and low/no malaria risk sce-
narios. To quantify this performance, we calculated 
the AUC based on the band scores, yielding a value of 
0.957 for children under five years of age and 0.923 for 
individuals aged five years and above. These results 
confirm the model’s high predictive accuracy.

Effects of climatic factors and intervention 
on spatio‑temporal changes in malaria cases
The estimated relative risks (RR) of the malaria cases, 
determined using the Bayesian Negative Binomial 
spatio-temporal model with type I interaction, for the 
years 2016–2023, are shown in Table  4. For children 
under 5 years of age, the RR was 0.89, indicating a 11.0% 
decreased risk of malaria for each unit increase in year 
from 2016 to 2023. Meanwhile, for individuals aged 
5 years and above, the RR was 0.90, reflecting a 10.0% 
decreased risk of malaria for each unit increase in a year 
over the same period. The use of long-lasting insecti-
cide nets (LLIN) showed a significant protective effect 
for both age groups. A 1% increase in the proportion of 
households distributed with at least one LLIN was asso-
ciated with a 1.2% decreased risk of malaria for children 
under 5 years of age and a 7.0% decreased risk of malaria 
for individual aged at least 5 years.

Climatic variables revealed distinct impacts on the 
malaria risk. Precipitation showed a non significant 

Fig. 4  Model validation for malaria cases in two age groups. The plots display observed malaria cases in blue, predicted cases (in the training set) 
in red, and forecasted cases in cyan for the year 2023. The model was fitted using data from 2016 to 2022 and validated against the 2023 cases data. 
The shaded region represents the 95% credible interval (CI) for the predictions. The area under the curve (AUC) values for the Receiver Operating 
Characteristic (ROC) curves are provided at the bottom, further indicating the predictive performance of the model.



Page 14 of 21Njotto et al. International Journal of Health Geographics           (2025) 24:20 

effect on the malaria risk for either age group. Rela-
tive humidity in the current month showed a non-sig-
nificant increase in malaria risk, while a two-month 
lag in relative humidity significantly increased malaria 
risk in children under 5 years of age. The current 
month’s maximum temperature was significantly asso-
ciated with a decreased risk of malaria for both age 
groups, while minimum temperature showed a posi-
tive association with increased malaria risk. Specifi-
cally, for each 1 ◦ C increase in maximum temperature, 
malaria risk decreased by 3.1% for children under 5 
years and 2.8% for individuals aged 5 years and above. 
However, the lagged effects of maximum temperature 
revealed slightly, yet statistically significant, increases 
in malaria risk. A one-month lag was associated with 
a 0.6% increased malaria risk for individuals aged 5 
years and above, while a two-month lag led to a 0.3% 
increased risk of malaria for children under 5 years of 

age. Conversely, for each 1 ◦ C increase in minimum 
temperature during the current month, the risk of 
malaria increased by 4.4% for children under 5 years 
of age and 3.9% for individuals aged 5 years and above. 
Lagged effects of minimum temperature also indicated 
an increased risk of malaria: a two-month lag resulted 
in a 1.2% increased risk for individuals aged 5 years and 
above, while a three-month lag corresponded to a 0.5% 
increased risk for children under 5 years.

For each unit increase in wind speed during the cur-
rent month, the risk of malaria increased by 12.0% for 
children under 5 years of age and 7.7% for individuals 
aged 5 years and above. However, at a one-month and 
three-month lag, wind speed significantly reduced the 
risk of malaria for both age groups. Areas with dense 
vegetation (NDVI > 0.5) were associated with a sub-
stantially high risk of malaria compared to areas with 

Table 4  Estimated relative risks (RR) and 95% credible intervals (CI) of malaria cases from Bayesian negative binomial Spatio-temporal 
model with type I interaction, including climatic and interventions effects, and the random effects.

* Statistically significant at 5% level, as indicated by the 95% CI excluding 1

Variables Children < 5 years Individuals ≥ 5 years
RR (95%CI) RR (95%CI)

Fixed effects

Intercept 0.545 (0.485, 0.613)* 0.623 (0.556, 0.698)*
Year 0.890 (0.874, 0.906)* 0.90 (0.880, 0.912)*
Proportion usage of LLIN 0.988 (0.986, 0.989)* 0.930 (0.925, 0.936)*
Climatic variables

Precipitation 0.996 (0.986, 1.005) 0.9995 (0.991, 1.008)

Relative humidity 1.00005 (0.998, 1.002) 1.001 (0.999, 1.003)

Relative humidity lag 2 1.002 (1.0008, 1.0029)*
Maximum temperature 0.969 (0.962, 0.977)* 0.972 (0.965, 0.979)*
Maximum temperature lag 1 1.006 (1.003, 1.009)*
Maximum temperature lag 2 1.003 (1.0013, 1.0050)*
Minimum temperature 1.044 (1.031, 1.057)* 1.039 (1.027, 1.051)*
Minimum temperature lag 2 1.012 (1.009, 1.015)*
Minimum temperature lag 3 1.005 (1.0007, 1.0093)*
Wind speed 1.120 (1.079, 1.162)* 1.077 (1.042, 1.114)*
Wind speed lag 1 0.921 (0.896, 0.947)* 0.950 (0.919, 0.981)*
Wind speed lag 3 0.941 (0.919, 0.964)* 0.962 (0.947, 0.976)*
NDVI ( ≤ 0.3) 1 1

0.31 - 0.5 1.115 (0.990, 1.253) 1.094 (0.983, 1.219)

> 0.5 1.258 (1.1007, 1.437)* 1.242 (1.098, 1.405)*
Random effect

nbinomial observations (1/overdispersion) 374.72 (68.32, 1558.33) 11.69 (9.10, 14.54)

Precision for structured spatial component ( ui) 0.19 (0.10, 0.31) 0.36 (0.19, 0.61)

Precision for unstructured spatial component ( vi) 1648.06 (806.93, 3033.01) 1292.01 (680.25, 2302.68)

Precision for temporally unstructured random effects ( φj) 1925.32 (193.04, 9164.18) 5250.87 (241.89, 28699.24)

Precision for temporal structure random effects ( γj) 263.22 (60.97, 810.15) 78.39 (20.38, 201.00)

Precision for interaction index (Region and month) 6.84 (6.25, 7.37) 26.23 (15.80, 42.57)
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sparse or no vegetation. The risk of malaria increased 
by 25.8% for children under 5 years of age and 24.2% 
for individuals aged 5 years and above in regions with 
dense vegetation.

We assessed the posterior temporal trend effect for 
malaria relative risk for the CAR component for the 
two age groups (children under five years of age and 
individuals aged five years and above); see Figure 5. The 
general trend reveals an increased risk of malaria from 
February to July followed by a decrease from Septem-
ber to November, and then start to increase again from 
December. Comparing these trends with the time series 
plots of monthly malaria cases (Figure 1b and c), we find 
indications that the random walk time model effectively 
captures the observed temporal patterns in the malaria 
incidence.

The maps of the posterior mean of the spatial effect, 
ζi = exp(ui + vi) , and the differential time effect, δi , for 
malaria risk across Tanzania mainland regions are pre-
sented in Figure 6 for the two demographic groups: chil-
dren under five years of age and individuals aged five 
years and above. Figure 6a focuses on the spatial effects, 
which capture the underlying geographic variation in 
malaria risk. These maps reveal that regions in the south 
(Ruvuma, Mtwara, and Lindi), the Lake Victoria zone 
(Kagera, Geita, Mwanza, Shinyanga, and Mara), the west 
(Kigoma, Katavi, Rukwa, and Tabora), parts of the cen-
tral zone (Morogoro), and the eastern coastline (Pwani, 
Dar es Salaam, and Tanga) consistently show increased 
spatial effects, signaling a higher baseline malaria risk. In 
contrast, lower spatial effects are observed in the central, 
southern highlands, and northern highlands regions, such 
as Dodoma, Singida, Mbeya, Songwe, Njombe, Manyara, 
Arusha, and Kilimanjaro, suggesting a reduced underly-
ing risk of malaria in these regions. Complementing the 
spatial patterns, the differential time effects shown in Fig-
ure 6b illustrate the posterior probabilities used to assess 
whether region-specific malaria trends significantly differ 

from the national average trend. A value of δi > 0 (shaded 
in red) indicates that the trend in a particular region is 
steeper than the national mean, suggesting that malaria 
risk is increasing more rapidly in that region. Conversely, 
a value of δi < 0 (shown in lighter shades) suggests a less 
steep trend, indicating that malaria risk is decreasing or 
increasing more slowly than the national average. These 
temporal dynamics closely mirror the spatial patterns: 
regions with high spatial effects, particularly those in the 
east, south, and Lake Zone, also tend to exhibit above-
average increases in malaria risk over time. Conversely, 
regions in the north, central areas, and southern high-
lands not only show lower spatial effects but also dem-
onstrate flatter or decreasing temporal trends. Note that, 
the posterior mean of the spatio-temporal interaction, 
δit , for malaria cases in Tanzania mainland for both age 
groups is presented in Appendix A (Figure 7).

Discussion
Model-based malaria surveillance that integrates 
weather variables is increasingly recognized as a cru-
cial strategy for mitigating the impact of climatic vari-
ability on malaria outbreaks [12, 42]. In this study, 
we applied the Standardized Incidence Ratio (SIR) to 
assess regional malaria risk across Tanzania mainland 
and employed a Bayesian spatio-temporal modeling 
approach to analyze the influence of climatic factors 
and disease interventions on malaria cases. Our find-
ings revealed a significant reduction in malaria risk 
during the study period (2016–2023): an 11.0% decrease 
among children under five years of age and a 10.0% 
decrease among individuals aged five years and above. 
This decline may be partly attributed to disruptions 
caused by the COVID-19 pandemic, which affected 
healthcare service delivery and likely contributed to 
underreporting and decreased healthcare-seeking 
behavior. As observed in Figure  1, malaria cases in 
both age groups exhibited an increasing trend from 

Fig. 5  Exponential posterior mean for temporal trend with its credible intervals for children under five years (left) and for individuals aged five years 
and above (right)
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2016 to 2019, followed by a notable decline beginning 
in 2020. Furthermore, the distribution of long-lasting 
insecticidal nets (LLINs) significantly reduced malaria 
risk, with a 1% increase in LLIN coverage leading to a 
1.2% decrease in risk among children under five years 
and a 7.0% decrease among individuals aged five years 
and above. Several climatic factors were also identified 
as significant drivers of malaria risk across both age 
groups, including relative humidity, minimum tempera-
ture, wind speed, and vegetation indices. Maximum and 
minimum temperatures consistently emerged as key 
predictors, with specific time lags influencing malaria 
incidence differently across age groups. These find-
ings provide crucial insights for the Tanzania National 
Malaria Control Programme (NMCP) by highlighting 
the importance of integrating climatic factors into sur-
veillance systems to predict and manage malaria risk. 
Moreover, the results can support localized efforts by 

guiding county health departments in tailoring malaria 
control interventions to regional conditions and popu-
lation dynamics.

Temperature plays a crucial role in driving malaria 
transmission by influencing both the survival and devel-
opment of mosquito vectors and the malaria parasite. 
Higher temperatures accelerate the mosquito blood-
feeding cycle, which is essential for the transmission 
of malaria [4, 43, 44]. Our study found that the average 
minimum temperatures during the month of reported 
malaria cases were associated with an increased risk 
of malaria for both age groups (Table  4). Specifically, 
increased minimum temperatures one month prior sig-
nificantly increased the risk malaria for individuals aged 
five years and above, while increased minimum tem-
peratures three months prior had a similar effect on 
children under five years of age. In contrast, for maxi-
mum temperature a different scenario was observed: 

Fig. 6  Posterior mean of the spatial main effect ζi = exp(ui + vi) (a) and the differential time effect δi (b) for malaria risk in Tanzania mainland 
regions for children < 5 years (left) and for individuals ≥ 5 years (right), respectively. These maps illustrate spatial heterogeneity in malaria risk 
across different regions. Areas are shaded in varying intensities to represent the range of effects, with red colors indicating regions with relative 
malaria risk.



Page 17 of 21Njotto et al. International Journal of Health Geographics           (2025) 24:20 	

increased maximum temperatures during the month of 
reported malaria cases had a significant negative impact 
on malaria risk for both children under five years of age 
and individuals aged five years and above. Furthermore, 
maximum temperatures one and two months prior to 
the reported malaria cases also exhibited a significant 
negative effect on malaria risk for individuals aged five 
years and above and for children under five years of age, 
respectively. These results align with previous studies. 
For instance, research in Lower Moshi, Tanzania, found 
that malaria test positivity rates were positively corre-
lated with average monthly minimum temperatures and 
negatively correlated with average monthly maximum 
temperatures [19]. Other studies have shown that tem-
peratures below 27◦ C are associated with higher malaria 
incidence rates [45, 46], consistent with our study’s find-
ing that the highest recorded minimum temperature 
was 26.30◦ C. Conversely, temperatures above 30◦ C were 
linked to reduced malaria incidence [47, 48], which aligns 
with our observation of an average maximum tempera-
ture of 30.17◦C.

Precipitation and relative humidity are key determi-
nants in the dynamics of malaria transmission. The inten-
sity and duration of precipitation are crucial in creating 
aquatic habitats conducive to mosquito breeding. While 
the water pools need to persist long enough for mos-
quito larval development, excessive precipitation can 
result in high immature mosquito mortality [49]. Given 
the varying breeding preferences of Anopheles mosqui-
toes and the influence of other environmental factors, 
the impact of precipitation on malaria incidence has 
produced inconsistent findings, with studies reporting 
positive [50–52], negative [53], or non-significant [54] 
correlations. In this study, we observed that precipitation 
did not significantly affect the risk of malaria. Moreo-
ver, our study identified a non-significant association 
between current relative humidity and an increased risk 
of malaria cases across both age groups. However, at a lag 
of two months, relative humidity was associated with an 
increased malaria risk for children under five years of age 
(Table 4). This observation is consistent with existing lit-
erature, which highlights a positive association between 
malaria transmission and relative humidity [55, 56]. 
However, other studies have shown that relative humid-
ity and malaria incidence have a negative correlation [57, 
58], while some show that they have no significant cor-
relation [19].

We found that incorporation of Normalized Differ-
ence Vegetation Index (NDVI), which serves as a sur-
rogate for vegetation response to rainfall, showed that 
the risk of malaria was higher in areas with dense veg-
etation compared to areas with sparse or no vegetation 
in both age groups. Dense vegetation likely provides 

favorable conditions for mosquito breeding and sur-
vival, such as increased humidity and more breeding 
sites, which in turn raises the risk of malaria transmis-
sion. Similar observations have been reported in studies 
conducted in Uganda [59], Mozambique [53], Nigeria 
[60], and Ivory Coast [61], where regions with higher 
NDVI values, indicative of dense vegetation, were asso-
ciated with increased malaria risk.

Vector control interventions are pivotal in the fight 
against malaria, significantly reducing the incidence 
and prevalence of this disease. Among these interven-
tions, long-lasting insecticidal nets (LLINs) are par-
ticularly effective, providing a physical barrier against 
mosquito bites and delivering insecticides that kill mos-
quitoes upon contact. The widespread use of LLINs has 
been a cornerstone in malaria control strategies across 
sub-Saharan Africa, including Tanzania. Our study has 
shown that usage of LLIN was associated with a reduc-
tion in malaria risk across both age groups (Table  4), 
with a more substantial impact observed in individuals 
aged five years and above. This disparity could be due 
to several factors, including differences in exposure 
patterns, immunity levels, and adherence to LLIN use. 
Younger children, while benefiting from LLINs, may 
still be vulnerable due to their weaker immune systems 
and greater exposure during peak mosquito activity 
times. These findings have significant implications for 
malaria control strategies in Tanzania. The evident pro-
tective effect of LLINs, particularly in older individu-
als, underscores the importance of maintaining high 
coverage and consistent use of LLINs. For children 
under five, additional interventions may be necessary 
to complement LLIN usage, such as targeted indoor 
residual spraying (IRS), community health education, 
and improving access to prompt malaria diagnosis and 
treatment.

The spatio-temporal model, which was divided into 
spatial and temporal effects, each with structured and 
unstructured heterogeneity of malaria cases, revealed 
interesting patterns in the non-parametric dynamics. The 
structured temporal effect showed fluctuations over the 
study period, with malaria cases peaking between Janu-
ary and July, following the main rainy seasons. The struc-
tured spatial effect varied across different regions, with 
the eastern, western, southern, and lake zones experienc-
ing higher effects compared to the central and northern 
zones. These findings align with research by Gosoniu 
et  al. [62], based on data from the 2007/2008 Tanza-
nia HIV/AIDS and Malaria Indicator Survey (THMIS), 
which predicted high malaria prevalence in regions 
around Lake Victoria (Kagera, Mara, and Shinyanga) and 
the southern part of the country (Pwani, Lindi, Mtwara, 
and Ruvuma provinces). This indicates that these zones 
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experienced more significant variations in malaria cases 
and had higher incidence rates.

The spatio-temporal trend model employed in this 
study stands out for several reasons, making it a valuable 
tool for shaping policy decisions related to malaria pre-
vention and control. By integrating spatial and temporal 
data, the model can accurately predict areas and peri-
ods of high risk, facilitating targeted interventions and 
resource allocation. Another strength lies in the adapt-
ability of the model, allowing it to be applied in different 
locations with similar data availability, adding a practical 
dimension to its utility. The regional-level trends identi-
fied in the study provide valuable insights for regional 
health offices to assess the effectiveness of malaria pre-
vention efforts. Moreover, the study takes into account 
the impact of climate and malaria transmission interven-
tions. It is however crucial to note that the model is most 
suitable for the study area during the specified period 
and cannot be universally applied to other locations or 
time periods without re-estimating all model parameters. 
Despite this, some transmission dynamics parameters are 
expected to be similar in analogous malaria settings, par-
ticularly in moderate to high transmission environments. 
It is worth mentioning that our models did not consider 
other potential factors influencing malaria transmission 
beyond climate and LLINs (as an intervention). Nev-
ertheless, these un-utilized factors have been partially 
taken into account by the random effects incorporated 
into the model.

The model demonstrates its potential for long-term 
planning and resource allocation by accurately forecast-
ing trends in malaria cases. In the predicted trends for 
2023, the forecasted cases closely matched the observed 
data (Figure  4). Although it is not designed as a tradi-
tional early warning system (which typically predicts 
outbreaks within a two-week window), the model high-
lights key climatic factors that can be used to refine pre-
dictions of malaria risk over time and across different 
regions. Additionally, the malaria risk maps produced by 
the model as regionally aggregated estimates, are valu-
able tools for local health departments, helping to guide 
timely interventions such as vector control measures and 
resource allocation. However, it is important to note that 
using only malaria case data may cause delays in outbreak 
predictions due to the lag between mosquito activity and 

confirmed malaria cases, which results from the dis-
ease’s incubation period. To improve prediction timeli-
ness, incorporating entomological data-such as mosquito 
population monitoring-could provide earlier warnings 
of transmission risks. Mosquito surveillance provides a 
direct and real-time indicator of vector presence, which 
could complement malaria case data and enhance the 
model’s effectiveness in forecasting outbreaks.

Conclusion
In this study, we utilized the Standardized Incidence 
Ratio (SIR) to evaluate the regional distribution of 
malaria risk across Tanzania mainland regions and 
applied Bayesian spatio-temporal models to examine 
the influence of climatic factors and disease interven-
tions on malaria incidence in two groups: children 
under five years of age and individuals aged five years 
and above. Our analysis revealed a clear temporal pat-
tern, with malaria cases peaking from November to 
July, coinciding with the main rainy seasons. The risk 
of malaria was clustered in specific regions, with the 
eastern, western, southern, and lake zones experienc-
ing higher effects compared to the central and north-
ern zones. The study showed a notable reduction in 
malaria risk during the study period, and the use of 
Long-lasting insecticidal nets (LLINs) were found 
to significantly reduce the risk of malaria in both age 
groups. Climatic factors, including relative humidity, 
minimum temperature, and vegetation indices, were 
associated with an increased risk of malaria, with spe-
cific month lags amplifying the influence of these fac-
tors differently across age groups. The malaria risk 
maps produced by the model are valuable tools for 
local health departments. They can guide timely inter-
ventions, such as vector control measures and resource 
allocation, to mitigate malaria transmission effectively. 
By understanding and addressing the climatic and 
environmental predictors of malaria, health authori-
ties can better plan and implement targeted strategies 
to reduce malaria incidence.

Appendix A
See Fig. 7 
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Fig. 7  Yearly averaged predicted relative risk of the spatio-temporal interaction δit (nonspatially or temporally structured interaction) across the 26 
Tanzania mainland regions
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