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ABSTRACT: The chemical structures of dissolved organic compounds in natural waters, including the degree of aromaticity, affect
their physical, chemical, and biological properties and ultimately the fate of carbon in aquatic systems and during water treatment.
Herein, a new fluorescence-based aromaticity index named ARIX is shown to link the composition of aquatic dissolved organic
matter to its aromaticity across diverse aquatic systems in both bulk DOM and extracts. ARIX predicts SUVA, a widely used proxy of
aromaticity, more accurately than the prevailing optical indices. It also predicts the percentage of polycyclic aromatic and
polyphenolic molecular formulas determined by FT-ICR MS and the ratio of “humic substances” to “building blocks” fractions
determined by LC-OCD, indicating that it is additionally a proxy of DOM molecular weight. In waterbodies exhibiting decoupling
between DOC and absorbance linked to biogeochemical processing, DOC concentrations are more accurately predicted by using a
multilinear model to account for interactions between light absorption and aromaticity. The results deliver new insights into widely
discussed trends in DOM optical properties and the molecular structures underlying optical measurements in the aquatic milieu.
They further represent an important step toward improved real-time monitoring of DOC concentration, reactivity, and fate.

KEYWORDS: CDOM, ARIX, ARINT, spectral slope, DOC, monitoring

1. INTRODUCTION

Predicting the fate of dissolved organic matter (DOM) in
aquatic systems requires the ability to detect changes in the
chemical composition of DOM."” DOM consists of potentially
millions of compounds of varying age and structural complexity,
including those derived from the degradation of biomass, as well
as compounds released as byproducts of metabolism or chemical
processes.” In river systems the molecular characteristics of
DOM affect ecosystem health” and determine whether DOM
will leave the water column via biological or photochemical
mineralization, flocculation/precipitation, or adsorption, or be
transported downstream and stored in the deep sea.”>™*
DOM aromaticity is widely studied due to its influence on
wide-ranging chemical and biological processes in water. Many
aromatic compounds resist degradation due to their stable
conjugated z-electron systems; when combined with the
continuous export of aromatic DOM from land, this contributes
to the overall carbon storage of aquatic systems over long time
scales.”” Aromatic compounds control primary production by
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attenuating light underwater and by binding and retaining
nutrients within their molecular structures.'”'' During drinking
water treatment, large polyaromatic compounds are more
susceptible to flocculation'”'® and compete more effectively
with micropollutants for sites on adsorption filters, leading to
their premature saturation.'”'® The selective removal of
polyphenolic and other compounds during water treatment
further affects the abundance, types, and toxicity of disinfection
byproducts formed during subsequent reactions with chlorine."®

DOM aromaticity, referring to the proportion of carbon
atoms associated with aromatic bonds, is a bulk property of the
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pool of molecules that comprise DOM.'” Percent aromaticity
determined using carbon-13 nuclear magnetic resonance, e
NMR, is strongly correlated to the ratio of UV absorption at 254
nm normalized to DOC concentration, termed specific UV
absorbance or commonly SUVA.'”'® In natural waters
containing low concentrations of dissolved iron, SUVA typically
spans the range 1—6 m* g.~"."”*° Although SUVA is routinely
measured as a proxy of aromaticity, it has technical shortcomings
due to requiring two different instruments (a carbon analyzer
and a spectrophotometer), which starkly increases measurement
costs and negatively affects immediacy, accuracy, and
precision.lg’21

Fluorescence spectroscopy is widely used to study DOM
composition and two fluorescence indices based on simple
emission ratios have been proposed as proxies of aromaticity:'®
the “fluorescence index” (FI or FIX), and the “humification
index” HIX.**** Also, the “biological” and “freshness” indices
(“BIX” and “f/@”), although originally proposed as proxies of
autochthonous DOM, often correlate with SUVA.'32%2S
However, all such indices have significant drawbacks when
predicting aromaticity due to low sensitivity and/or nonlinear
responses.' " Also, the relationship between index values in
DOM extracts versus bulk DOM is unclear as is the theoretical
basis underpinning their selection; furthermore, demonstrated
links to specific DOM molecular structures are missing.lg’26

Recently, a multispectral fluorescence index (“PARIX”)
derived using parallel factor analysis (PARAFAC) was shown
to predict SUVA more accurately than FIX, BIX, and HIX in a
cross-continental model that included samples from Europe,
North America, Africa, and Asia. PARIX also explained
differences in DOC removal between French rivers with
different SUVA subjected to several standardized treatments."”
PARIX in that study was defined as the ratio of two PARAFAC
components, one with peak emissions above 500 nm at
excitation wavelengths below ~450 nm and the other with
peak emissions near 400 nm at excitations below ~350 nm.
However, while often correlating with water quality parame-
ters,”” PARAFAC ratios are usually considered to be site-specific
with limited transferability to new contexts.'® Also, the
requirement to perform a PARAFAC analysis in order to obtain
PARIX has practical limitations in monitoring applications, since
PARAFAC requires many different samples and a relatively
complicated data processing procedure that has yet to be
successfully automated.”®

The present study aimed to provide a robust fluorescence
index for predicting DOC aromaticity in bulk DOM and in
DOM extracts by drawing upon insights obtained from
PARAFAC modeling. It further aimed to link the new
fluorescence index to molecular compositions determined by
Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR-MS) and DOC fractions measured by size-exclusion
liquid chromatography with organic carbon detection (LC-
OCD). Finally, it was aimed to improve the estimation of DOC
concentrations from optical measurements by accounting for
the interaction between light absorption and aromaticity, with
aromaticity represented by proxies derived from fluorescence
and absorbance spectroscopy. The work was performed by
reanalyzing nine published data sets spanning the continents and
the river-to-ocean continuum. The results provide new insights
into the molecular structures underpinning optical measure-
ments and a technical basis for real-time in situ monitoring of
DOC aromaticity and concentration in inland waters.

2. MATERIALS AND METHODS

2.1. Data Sets. Nine published data sets (N = 1340) were
reanalyzed in this study (Table 1 and Supporting Information

Table 1. List of Studied Data Sets”

data set N site description refs
Alaska 53 Boreal North America: rivers 32
Rivers
Yukon 90  Boreal North America: lakes 33
Lakes
Everglades 12 Subtropical North America: rivers 34
SUEZ 58  Europe, USA, Mediterranean, Cameroon: lakes, 19
rivers and water treatment plants
Horsens 325  Danish river and tributaries 35
Australia 120  Australian river and tributaries 36
Congo 135 African river and tributaries 37
S. America 106  South American headwater streams in Brazil, 38
Chile, and Uruguay
Isolates 37  North America, Europe, and Antarctica: lakes, 20

rivers, estuaries, marine

“All data sets contain optical measurements performed on bulk DOM,
except for Isolates, which contain measurements performed on DOM
extracts.

Table S1). The data sets were created by eight independent
research groups during the past two decades. They include
samples from all seven continents, represent bulk DOM and
extracted DOM obtained using three isolation techniques, and
span inland surface waters (rivers, lakes, drinking water plants),
groundwater, coastal waters, and the ocean. At a minimum, each
data set contained SUVA measurements plus fully-corrected
fluorescence excitation—emission matrices (EEMs). SUVA was
determined according to the traditional USEPA method, which
divides absorbance at 254 nm measured on a spectrophotometer
(Azs4) by DOC concentration measured on a separate TOC
analyzer,”' or was measured by LC-OCD, which combines both
detectors in a single instrument,”” after bypassing the chromato-
graphic column. In data sets where both SUVA and DOC were
available from the LC-OCD (SUEZ, S. America), A,g, was
calculated as SUVA;/DOC,¢. In all other cases, A,;, was
measured using a dedicated spectrophotometer. Spectral
absorbance measurements were additionally available for all
data sets except SUEZ.

Fluorescence intensities were measured on filtered samples in
a 1 cm cell using a scanning excitation—emission (EEM)
fluorometer. Absorbance was measured in a 1 cm cell within an
Aqualog fluorometer or else using a dedicated UV—vis
spectrophotometer with a 1, S, or 10 cm cell (Table S1). In
this article, SUVA is expressed in units of m® g™ (“meters
squared per gram of carbon”), which is a simplification of (i.e.,
equivalent to) the unit L mg C™' m™" (“liters per milligram of
carbon per meter”).*

In all data sets except for Isolates, spectroscopic measurements
were performed on bulk water samples. In the Isolates data set,
measurements were made after first extracting and concentrating
the DOM according to standard methods for measuring
hydrophobic organic acids (HPOA, n = 22), fulvic acids (FA,
n = 13), or natural organic matter (NOM, n = 2).”" The Isolates
data set included relative abundances of several compound
classes derived from molecular formulas identified using
FTICR-MS following electrospray (ESI) ionization. Kellerman
defined the compound classes using a modified aromaticity
index, Al .4 which indicates the degree of saturation of

https://doi.org/10.1021/acs.est.5c05408
Environ. Sci. Technol. 2025, 59, 16430—16442


https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c05408/suppl_file/es5c05408_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c05408/suppl_file/es5c05408_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c05408/suppl_file/es5c05408_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c05408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

molecular formulas.’” Specifically, polycyclic aromatic com-
pounds were defined as having Al .4 above 0.66 and
polyphenolic compounds were defined as having Al 4 between
0.5 and 0.66°°

2.2. Optical Proxies of DOM Aromaticity. Two data sets
(Isolates and Everglades) were used to test the generality of
PARIX, i.e., the PARAFAC-based index developed for
estimating aromaticity in bulk DOM."? Philibert et al."” defined
PARIX as the ratio of two components, with Hj; representing a
long-wavelength component with peak emissions above 500 nm
and Hy; representing a shorter-wavelength component with peak
emissions near 400 nm. Specifically, it was tested whether
PARIX derived from different PARAFAC models created by
different research groups predicts SUVA in bulk EEMs
(Everglades) or DOM extracts (Isolates). In both cases, the raw
data consisted of PARAFAC loadings reported in published
tables, and PARIX was calculated as the ratio between reported
F.x values for components similar to Hy; and H;;. The Isolates
data set was further used to test whether PARIX predicts the
relative abundance of molecular formulas associated with
polycyclic aromatic and polyphenolic compound classes.

The Isolates data set, as well as the ei§ht data sets comprisin
whole-water DOM (Alaska Rivers.,,>” Australia,*® Congo,3
Everglades,34 Horsens,” S. America,”® SUEZ,"® Yukon Lakes™),
were used to assess correlations between SUVA and a newly
identified fluorescence ratio called ARIX. ARIX is defined as the
ratio of emission intensities detected at two fixed emission
wavelengths (520/390 nm) when excited by light at 320 nm.
ARIX tracks the ratio of PARAFAC components identified by
Philibert et al.'” and referred to as H; and H;. Since Hy; overlaps
spectrally with several ubiquitous PARAFAC components
having emission peaks between 400—450 nm,'”*”~*' the
ARIX algorithm tracks PARIX using wavelengths on the
shoulders of the underlying PARAFAC components instead of
the positions of F,,,. This is so that ARIX will (to the furthest
foreseeable extent) avoid interfering fluorescence, both from
overlapping nontarget fluorophores and from Raman scatter.*”

The slope of the absorbance spectrum measured between 275
and 295 nm (S,75_»95) is often used to trace terrestrial DOC in
the ocean™ and correlates inversely with DOM molecular size
and absorptivity.'¥** S, _,os was calculated according to Helms
et al.” for use in ARINT models and Yan et al.** for use in
DOCyy and DOC g models. It was not possible to determine
Sy75-295 for the SUEZ data set because of the lack of absorbance
spectra.

2.3. Regression Models. For each data set, individual
regression models were calculated in MATLAB (ver. 2022a)
using the fitlm function to predict SUVA with model y = f;
(P)ARIX + f3,. Models were made with and without MATLAB’s
robust statistics option that performs automatic outlier
exclusion. Regressions were additionally calculated using four
widely used fluorescence indices as the independent variable in
place of ARIX. These were FI (“fluorescence index”), HIX
(“humification index”), f/a (“freshness index”), and BIX
(“biological index”). FI was calculated as the ratio of emission
intensities detected at 470 and 520 nm upon excitation at 370
nm.”” HIX was calculated according to two different algorithms;
HIX is the sum of emissions at 435—480 nm divided by the sum
of emissions from 300—345 and 435—480 nm following
excitation at 254 nm,”” whereas its predecessor HIX,gg has
the same numerator but the denominator integrates emissions
from 300—345 nm only.*® BIX was calculated as the ratio of
emission intensities detected at 430 and 380 nm upon excitation

at 310 nm.”* 8/ was calculated as the ratio of emission detected
at 380 nm to the maximum emission detected at 420—435 nm
upon excitation at 310 nm.”> The algorithms for BIX and f3/a
produced very similar regression results, so BIX alone is plotted,
although regression statistics for both indices are reported in
tables. Similarly, HIX and HIX 499 are reported in tables but only
HIX is plotted.

To derive a global model linking SUVA with ARIX in whole-
water samples, a geometric regression (model II regression) was
calculated using Isqfitgm code from MBARI with SUVA as the Y-
variable and ARIX as the X-variable.*” In contrast to traditional
(model I) regression, where X is the error-free independent
variable and Y depends on X, model II regressions are used to fit
relationships between X and Y when both contain errors and
depend upon a third (unmeasured) variable. This is done by
minimizing offsets along both axes equally instead of only along
the y-axis.”” Since seven different fluorometers were used to
measure the global data set, the model II regression was most
appropriate. Model I regressions were used for individual data
sets since each was measured using a single fluorometer.

Prior to regression analyses, outliers were excluded from four
data sets. In the Horsens data set, ARIX values varied randomly in
estuarine samples, indicating a complete loss of measurement
sensitivity; thus, all estuarine samples were removed. Con-
versely, in the Isolates data set, where measurements were
performed on DOM concentrates, marine samples were retained
from Penobscot Bay, the Gulf of Maine, and the Pacific Ocean.
In the Australia data set, one clearly erroneous sample was
excluded, while in Yukon Lakes, one sample with extremely high
DOC (>120 mg/L) was excluded. In the Horsens data set, two
samples with unrealistically high SUVA above 7 m* gc~" were
excluded. Additionally, in 13 riverine samples, SUVA was half
the value predicted by ARIX, although ARIX values were
consistent with neighboring sites and with measurements from
the same site during other sampling campaigns. For these
samples, absorbance measurements were 2X higher than
expected, which suggests an oversight when recording the
path length (S cm vs 10 cm). Deleting all river samples with
SUVA below 2 removed nine such outliers; four others were
retained.

2.4, Sensitivity Analysis. Fluorescence, absorbance, and
DOC measurements have different inherent sensitivities, and
instruments from different manufacturers (and even different
versions of the same model) have varying levels of sensitivity and
bias. A simulation was performed to estimate how much of the
scatter in the relationship between SUVA and ARIX in bulk
EEMs might be attributable to measurement error. The eight
bulk EEM data sets containing 876 samples from inland waters
were used to generate simulated data sets. Initially, an “error-
free” simulated data set was created with DOC, SUVA, and
ARIX chosen to be identical to their values in the real data set,
whereas A,s, was recalculated so that the data aligned exactly
with the regression equation. Thus, A,5, was obtained by
multiplying the equation for predicting SUVA from ARIX by
DOC. The resulting data set had a similar distribution of ARIX
and SUVA as the original data set but no deviation from the
regression line. Thereafter, 100 simulation runs were performed.
In each run, an error residual was added to each measured
variable (DOC, ARIX and A,g,), with this residual selected
randomly from an error distribution assumed for the specific
type of measurement. In each case, errors were assumed to
follow a normal distribution with a mean of zero and standard
deviations chosen to reflect typical measurement errors reported
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for a range of laboratories and instruments (Table $3).*"** The
median RMSE value across all 100 simulations estimates how
much prediction error in the global model could feasibly be
attributed to random measurement error.

2.5. DOC Predictions from Optical Measurements.
DOC was predicted from optical measurements using linear and
nonlinear models. An Aromaticity Interaction (ARINT) Model
was developed using a multiple linear regression to predict DOC
from A,s,, allowing an interaction between A,s, and DOM
aromaticity. Aromaticity was represented by an optical proxy,
either ARIX or 1/8,75_59s, since S,75_,95 is inversely correlated to
aromaticity.”* While it is meaningless to predict DOC from
SUVA, models were also investigated with SUVA standing in for
an optical proxy to indicate the expected performance of a model
in which A, interacts with a perfect proxy of SUVA. Multiple
linear regressions for ARINT models were performed using the
regress function in MATLAB with A,y as the independent
variable and DOC as the dependent variable, allowing an
interaction between A,s, and one of the above three proxies.
Multiple linear regression models typically include all terms with
significant interactions as main effects; however, an exception is
made for nested variables if including them as a main effect could
lead to them taking on meaningless values. Since ARIX and
Sy75_205 are undefined when absorbance is zero, aromaticity is
included as an interaction term but not a main effect.

For comparison with the ARINT models, DOC was
additionally predicted according to two recent empirical models
derived from nonlinearly transformed absorbance measure-
ments. The “Pan-Arctic” model of Gongalves-Araujo and
colleagues® predicts DOC from CDOM absorption at 350
nm (a350 m™") and S,75_50s after estimating parameters C and M
in the equation log;((DOC/as50) = C + (M X S,75_595). The
algorithms of Yan and colleagues** predict DOC from CDOM
absorption at 275 nm (a,,5 m™') combined with spectral slopes
obtained in the 275—295 and 380—443 nm range, using the
formula DOC = ®@a,;5(S,75 395 + 0.0788350_443 — 0.0084) +
DOC,,,. Using their global DOCyy model, ® and DOC,,, have
fixed values of 1507 m-nm-umolL™' and 32.2 umolL™},
respectively.** Using their local DOC; g model, optimal ® and
DOC,,, values are calculated for any specific data set using least-
squares fitting, which should produce more accurate DOC
predictions than the global model. In the current study,
MATLAB (v2023b) was used to obtain optimal ® and DOC,,,
for each data set, and fits were calculated for both the DOCyy
and DOC; ¢ models.

Multimodel inference was used to compare the goodness of fit
of the above six competing models by balancing fit (determined
as —2 X log likelihood) with parsimony, whereby each estimated
parameter incurs a penalty.’’ Ignoring the fit, the DOCy model
is most parsimonious since no parameters are estimated. In
comparison, two parameters are estimated when predicting
DOC from A, (a slope coefficient and an intercept), when
using the Pan-Arctic model (C and M), or when using the
DOC;s model (® and DOC_,). ARINT models draw the
largest penalties since three components are estimated, i.e., two
regression coefficients and a y intercept. Akaike’s Information
Criteria (AIC, AICc, and CAIC) and the Bayesian Information
Criterion (BIC) were each calculated in MATLAB. These
metrics each calculate slightly different penalties to log
likelihood fits based on the number of estimated parameters
and (in the case of BIC, AICc, and IC) the number of samples.
The model achieving the lowest value for most or all information

criteria is preferred according to the dual criteria of fit and
parsimony.

3. RESULTS AND DISCUSSION

3.1. Predicting DOC Composition from Fluorescence
Ratios. PARIX was an unbiased predictor of the proportion of
polycyclic aromatic (PA) and polyphenolic (PP) structures in
DOM extracts comprising the global Isolate data set, according
to molecular formulas measured using FT-ICR MS (Figure 1A).
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Figure 1. Prediction of DOC aromaticity from PARIX in the global
Isolates data set. Aromaticity was determined by (A) FTICR-MS; or (B)

SUVA. PARIX was calculated from Table 1 in Kellerman et al.'” as C4/
C3. SUVA has units m” g.~", and PARIX is dimensionless.

In Figure 1, as in subsequent figures, the dashed lines on either
side of the regression line represent 95% confidence bounds for
the predicted re§ression equation. Data are from Table 1 in
Kellerman et al.,” representing diverse freshwater and marine
samples, with PARIX calculated as the ratio of tabulated scores
for PARAFAC component C3 divided by C2. Pacific samples
from 21 and 240 m depths conformed to the regression, whereas
a deep ocean sample and a river sample diverged (Figure 1A).

Equation 1 in Figure 1A estimates the relative abundance of
polyphenolic compounds within 5% for samples in which these
formulas comprised 2—45% of total formulas.

9%(PA + PP) = 30.28PARIX (1)

Equation 1 has no y intercept, indicating that the PARIX
denominator will be zero when there are no PA or PP structures.
This further implies that all electrospray-ionized molecular
formulas identified as polycyclic aromatic and polyphenolic
structures in the Isolates data set were fluorescent. Whether or
not this finding is generalizable to all FT-ICR-MS data sets

https://doi.org/10.1021/acs.est.5c05408
Environ. Sci. Technol. 2025, 59, 16430—16442


https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c05408/suppl_file/es5c05408_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.5c05408?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.5c05408?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.5c05408?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.5c05408?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c05408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

5

(A) Everglades (PARIX)
4 | R?=0.96, RMSE = 0.25

SUVA

[ ]
1t /% © Harney Rr| {
@® TaylorRr
ol . . L . .
0.5 0.7 0.9 1.1 1.3 1.5
PARIX
(C) EU/AS/NA/AF drinking water resources
51 o 1
[
4t o ® J
3 00 , BT
> 37 °? 3 © © Cameroon|
o 60 ® China
2+ ] o .’ o* ©)  Spain :
@° * ©  France
11 %® % e Il ]
* USA

5 T T T T T T
(E) Danish River Catchment, EU

sl , 2809 |

Agri-int
Agriculture
Estuary
Lakes
Natural
Springwater
ww

0.3 0.4 0.5 0.6 0.7 0.8 0.9
ARIX

SUVA
g,
]

[ X X EoRoNoX ]

(B) Everglades (ARIX)

4 | R? =0.97, RMSE = 0.21 o ]
<3 1
>
>
D, |

1r 1

0 L— . L . . . . L .

055 06 065 07 075 08 085 09 095 1
ARIX
6 T T T T T
(D) Alaska Rivers, NA
5 - .

SUVA
.i

0.4 0.5 0.6 0.7 0.8 0.9

T T T T

(F) Yukon lakes, NA
5 - =

2420y
i 0, &M’ﬁ 7
| sttt & |

I-FO

SUVA
w

0 \ . . : .
0.4 0.5 0.6 0.7 0.8 0.9

ARIX

Figure 2. Prediction of SUVA from (P)ARIX in bulk surface waters. (A) PARIX; (B—F) ARIX. Samples are from inland waters and water treatment
plants in Europe (EU), North America (NA), Asia (AS), and Africa (AF).'>***'~** In A, B, D, and F, each new symbol represents a different river or

lake. SUVA has units m* g-~' and ARIX is dimensionless.

should be confirmed by future studies. It is especially of interest
to test different DOM extraction methods (e.g, PPL), since
compounds vary in their affinities to extraction sorbents, and
other ionization techniques (e.g, APCI and MALDI), since
compounds additionally vary with respect to the efficiency with
which they are ionized using different techniques.”>>

PARIX also predicted SUVA in samples from inland waters
and the coastal ocean (Gulf of Maine, Penobscot Bay), but not
in the samples from the central Pacific (Figure 1B). It is likely
that the carbon in Pacific ocean samples was extensively
photobleached during transport from land to open ocean,
causing a decoupling between carbon content and color.”” The
same river sample was again an outlier, indicating PARIX to be
responsible for the divergence.

PARIX accurately predicted SUVA in bulk EEMs from two
brackish river systems in the Florida Everglades (Figure 2A).
PARIX in Figure 2A is calculated from Table 2 in Timko et al.**
as the ratio of scores for PARAFAC component C4 divided by
CS. This reveals a tight correlation between PARIX and SUVA
spanning both river systems (R* = 0.96). These two data sets
demonstrate linearity between PARIX and two different proxies
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of DOC aromaticity. Importantly, these relationships hold for
both bulk DOM and DOM extracts, and are independent of the
specific PARAFAC model used to calculate PARIX.

In the diverse treated and untreated water samples comprising
the SUEZ data set, ARIX was an unbiased predictor of the ratio
of humic substance (HS) to building block (BB) fractions
determined by LC-OCD (Figure 3 and eq 2). While HS is
understood to comprise high molecular weight humic
substances, the BB fraction represents lower molecular weight

weathering and oxidation products of humic substances.””
HS
— = 6.1ARIX
BB (2)

The simple relationships in eqs 1—2 are notable considering
that FT-ICR MS and LC-OCD characterize a wide range of both
colored and uncolored molecular structures. Both techniques
also have different inherent biases. In FT-ICR MS analysis,
electron spray ionization leads to variable ionization of different
molecular formulas, affecting the relationship between signal
strength and concentration. In LC-OCD analysis, chromato-
grams achieve incomplete separation of HS and BB signals, so
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Figure 3. Prediction of the LC-OCD composition from ARIX. Samples
represent treated and untreated surface and groundwaters from the
SUEZ data set (HS: humic substances, BB: building blocks). Both axes
represent dimensionless parameters.

must be combined with chromatographic deconvolution,”

similar to using PARAFAC to deconvolute overlapping
fluorescence signals when calculating PARIX. The linear
correlation between a fluorescence ratio and LC-OCD ratio in
eq 2 provides support for both deconvolution techniques.
However, it is important to recognize that regression slopes
could vary between data sets depending on instrument
resolution, ionization source, spectral biases, and the specific
algorithms used to resolve overlapping peaks. Also, Figure 3
shows that ARIX predicts DOM molecular weight in addition to
aromaticity, confirming earlier observations about the inter-
dependence of these properties.'®

Whether aromatic molecules in the DOC pool exhibit
fluorescence depends on their specific structures and electronic
properties. The ARIX numerator tracks a long-wavelength
fluorescence component identified repeatedly in PARAFAC
analyses””>® and wsually attributed to extensively 7-conjugated
polyaromatic structures.”* The denominator tracks a short-
wavelength component with a secondary excitation maximum
around 330 nm and emission peak below 400 nm.'”*' This is
similar to several oxidized fluorophores consisting of a single
aromatic ring with attached carboxy, hydroxy, and methoxy
groups, e.g., vanillic acid, syringic acid, and acetovanillone>
albeit with longer absorption, possibly indicating additional
substitution and/or the presence of a short, conjugated side
chain, as in ferulic acid or coniferyl alcohol, or a conjugated
heterocycle, as in coumarin,*>°

3.2. Predicting SUVA from (P)ARIX in Inland Waters. In
individual data sets, ARIX and PARIX were reliable predictors of
SUVA by linear regression (Figure 2 and Table S2). In the
Everglades data set representing two river systems draining a
tropical wetland, ARIX predicted SUVA more accurately than
PARIX with RMSE = 0.21 m* g~ Low prediction errors
(0.24—0.36 m* g ") were also observed for two high-latitude
data sets consisting of six rivers (Figure 2d) and 1S
hydrolo§ically isolated lakes (Figure 2f) in the Yukon basin,
Alaska.*”*® In most data sets, ARIX and/or PARIX out-
performed traditional fluorescence indices when predicting
SUVA. Average prediction errors (m? gc_l) in increasing order
for whole-water data sets were: ARIX (0.35) < #/a (0.43) = BIX
(0.43) < HIX g0 (0.52) < HIX (0.55) < FI (0.58) (Table S2 and
Figures S1—S4). Thus, although FI and HIX are the two

fluorescence indices used most frequently to predict DOM
aromaticity,'® both were significantly poorer predictors of
SUVA than ARIX and the two “biological” indices.

ARIX correlated with SUVA in marine samples from the
Isolates data set, but there was no correlation between ARIX and
SUVA in the Horsens estuary (Figure 2e). Horsens river flows
past relatively pristine sites in its upper reaches, then through an
agriculturally impacted landscape, and ultimately past a
wastewater treatment plant near the entrance to the estuary.”
This progression is seen by decreasing the SUVA and ARIX
while moving downstream. Estuary sites featured high salinities
(32 ppt) and low SUVA (1.6—2.4 m* g ") as is typical for
marine samples,’® and at these sites ARIX varied randomly. It is
likely that for Horsens in contrast to Isolates, the rapid dilution of
terrestrial DOM in the estuary caused fluorescence intensities to
drop below detection limits for quantifying ARIX. This
highlights the need to establish detection limits for using
ARIX to predict DOC in aquatic systems that have low DOC
concentrations or significant seawater intrusion.

Variations in water chemistry affect the prediction of DOC
aromaticity from fluorescence ratios. Changes in pH from 4 to 8
have small systematic effects on fluorescence ratios HIX, BIX,
and FIX,”” but pH effects on ARIX have not been examined.
Assuming a significant effect of pH, this could manifest as a
lower coefficient of determination (R*) when pH varies within
the data set. Fe(II) and Fe(III) cations interfere with SUVA due
to light absorption by aqueous iron complexes,”® and both
species, as well as several other metals (e.g., Cu, Hg, Al), reduce
fluorescence via quenching reactions.” In the presence of
quenching metals, nonlinearities would be expected to arise
between SUVA and ARIX because A, increases with increasing
iron concentrations, whereas ARIX will decrease due to the
preferential quenching of long-wavelength fluorescence.®’~">

Overall, the regression slope terms (3,) for predicting SUVA
from ARIX varied between data sets, with the North American
data sets having steeper slope terms than their European,
Australian, and African counterparts (Table S2 and Figures S1—
S3). Comparing regressions equations for pairs of data sets, 3,
was not statistically different in Alaska Rivers (6.36 £ 0.41) vs
Yukon Lakes (7.03 % 0.45) or SUEZ (5.8 + 0.36), although the
latter data set is dominated by European samples. Also, 3| for
Yukon Lakes was not statistically different from Everglades (8.01
+ 0.48). The remaining four data sets had significantly lower f,:
S. America (4.51 = 0.58), Congo (3.71 % 0.50), Horsens
(Denmark) (3.26 + 0.16), and Australia (2.08 + 0.19).
Differences in slope can arise from compositional variation
between DOM in different data sets linked to differences in
source or biogeochemical processing. A small slope indicates
that either the higher molecular weight fraction producing long-
wavelength fluorescence is less efficient at emitting light than the
same fraction in a data set with a larger slope, or that the lower
molecular weight fraction producing short-wavelength fluo-
rescence is relatively more efficient.

3.3. Global Models for Predicting DOM Aromaticity.
The SUEZ and Isolates data sets each span several continents and
multiple biomes yet produced similar or higher R* than several
geographically restricted data sets. For the Isolate data set,
fluorescence measurements were performed on extracted DOM,
which probably limited interfering matrix effects and improved
signal/noise, especially for the marine samples. However, the
SUEZ data set was measured on whole-water EEMs and still
indicates a single regression for predicting SUVA from ARIX
regardless of sample origin.
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Figure 4. Prediction of SUVA from ARIX in bulk DOM from global surface water and groundwaters. Samples represent fresh and brackish waters (R:

rivers, L: lakes, DW: treated and untreated drinking water).

Plotting all eight whole-water data sets together (Figure 4)
showed ARIX to be confined within the range 0.15—1.1, with
most samples falling between 0.25 and 0.9. Excluding Everglades,
all data sets were reasonably well captured by a single regression
equation. Equation 3 is derived from a geometric (model 1I)
regression”’ and has slope 6.07 + 0.14 and intercept —0.67 +
0.09.

©)

The Everglades data set showed a similar slope as the overall
trend, except with ARIX transposed right by ~0.3 units or SUVA
transposed down by ~1 unit. This may well reflect true variation
with a source that is presently unknown. It is difficult to explain
in terms of instrumental artifacts, since a constant offset in one
detector does not produce a constant offset along the SUVA or
ARIX axis.

A strong correlation between SUVA and ARIX was also seen
for the DOM extracts. For the Isolates data set, the robust
regression of SUVA upon ARIX indicated a strong correlation
(R* = 0.82, RMSE = 0.50) with slope = 4.50 + 0.10 and no
significant intercept (t= —1.77, p = 0.08, df = 35) (SI Figure S3c-
iv). A similar slope (4.50 + 0.09) is obtained after excluding the
three Pacific Ocean extracts and using an ordinary linear
regression without intercept, producing eq 4 (R* = 0.84, RMSE
= 0.40, df = 33)

SUVA = 4.5ARIX

SUVA = 6.1ARIX — 0.7

(4)
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Extending Weishaar’s equation linking '*C NMR aromaticity to
SUVA in XAD-8 isolates'’

percent aromaticity

= 6.52SUVA + 3.63

= 29.3ARIX + 3.63 ()

Assuming that fluorescence properties of Weishaar’s isolates
followed similar trends to the Isolates data set, eq S suggests that
in DOM isolated on XAD resins, percent aromaticity can be
roughly estimated as 30 X ARIX.

Whereas diverse molecular compositions probably explain
much of the variability in regression slope coeflicients among the
nine data sets, some variability may reflect artifacts. Comparing
the global data set of DOM isolates (eq 4) with bulk DOM (eq
3), alower slope was obtained for the DOM extracts. A possible
explanation is that the molecules responsible for the ARIX
numerator and denominator have different selectivity toward
extraction.”®* This is difficult to verify due to a lack of
sufficiently detailed studies of wavelength-dependent extraction
efficiencies for XAD extracts. However, Wiinsch et al.”® reported
that for samples from arctic fjords extracted on PPL sorbents, the
longest wavelength PARAFAC component with maximum near
500 nm was extracted with efficiency less than half that of a
component with maximum near 410 nm (17 + 4% for Cqo vs SO
+ 15% for C,0). This will produce a smaller slope in the
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Figure S. Prediction of DOC concentrations from absorbance and ARIX in hydrologically isolated catchments. Top row: Measured DOC vs A, in
(A) Everglades; (B) Yukon Lakes data sets. Bottom row: Measured DOC vs DOC predicted from eq 6 for (C) Everglades; and (D) Yukon Lakes.

regression of SUVA upon ARIX for PPL isolates compared with
bulk DOM.

Among the eight whole-water data sets, artifacts could instead
arise from systematic differences in measurement protocols and
instruments. For example, the desire to stabilize samples prior to
shipping overseas introduced logistical challenges that were
solved differently in different studies. Congo and S. America
samples were, in each case, transported to Europe for analysis.
Prior to transportation, Congo samples were filtered (0.2 ym)
and refrigerated, whereas S. America samples were filtered, then
acidified and frozen, and prior to measurement, were thawed,
refiltered, and neutralized with a base. Although some studies
have reported that both acidification and freezing effects on
DOM optical properties were fully reversible upon subsequent
neutralization and/or thawing,é(”67 others have observed
permanent changes in DOM concentration and composition
including altered fluorescence intensities and SUVA.®*~7°
Alterations appear to result from changes in the conformation,
aggregation, and/or hydrolysis of dissolved molecules and are
especially observed in samples with higher DOC concentrations
and/or higher aromaticity.

Interlaboratory comparison exercises often highlight biases
arising from slightly different procedures and analytical
instruments, including for fluorescence spectroscopy,™ DOC
and SUVA,”" and FTIR-MS.”" SUVA measured by the USEPA
method is the ratio of measurements derived from a
spectrophotometer and a carbon analyzer, both with different
inherent sensitivities and biases, making it highly susceptible to
both random and systematic errors.”’ In developing the USEPA
standardized method for SUVA analysis, Potter and Wimsatt™'
compared SUVA measured on duplicate samples using five
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different commercial DOC analysers placed in the same
laboratory. Despite these efforts to standardize measurement
conditions and the use of a single spectrophotometer to measure
absorbance in a 10 cm cell, a high standard deviation (~0.3 m*
gc ') was observed across all measurements.

In the current study, since seven different laboratories and 19
different detectors were used to derive eq 3 and Figure 4,
systematic biases related to different instruments and measure-
ment protocols are unavoidable. In data sets where SUVA was
measured using both the USEPA method and using LC-OCD, it
was observed that the strongest correlations were obtained
between ARIX and SUVA, .. For the SUEZ data set, deviations
could be traced to the lab spectrophotometer because DOC
measured by LC-OCD was identical to DOC measured using
the lab carbon analyzer (8, = R* = 1, RMSE = 0.01 mg L™") yet
SUVA was 11% lower than SUVA; . (3, = 0.89, R* = 0.85). In
two other data sets, traditional SUVA correlated only weakly
with SUVA, .

A sensitivity analysis indicated that around a third of the
variability in Figure 4 can be explained by purely random
measurement errors under realistic assumptions about the
precision of fluorescence, absorbance, and DOC detectors
(simulated/observed RMSE = 32.4%, Figure S4 and Table S3).
The relationship between ARIX and SUVA is especially sensitive
to absorbance errors because A, is typically measuredina 1 cm
cell and then multiplied by 100 to produce SUVA. Individual
data sets encompassing geographically diverse samples and
precise detectors may therefore provide more realistic estimates
of the variability to be expected when predicting SUVA from
(P)ARIX across systems. For the Isolates (extract) and SUEZ
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(whole-water) data sets, RMSE was 0.40—0.50 m* g~ (Table
S2).

3.4. DOC Prediction Models. For nearly all whole-water
data sets, an improved correlation between DOC and A,g, was
achieved by assuming an Aromaticity Interaction (ARINT)
Model. This model extends a simple regression of DOC on A,s,
alone (the “base model”) by adding a term to represent the
interaction between absorbance and aromaticity

DOC = by + bAys + byAy5,P
(DOC — bo) = A254(b1 + bZPﬂ') (6)

In eq 6, P, represents a proxy of aromaticity, either ARIX, SUVA
or 1/S,75 595, while by, b, and b, are coefficients in the
multilinear regression. SUVA and A, have units m* g~' and
m™" respectively, while DOC has unit mg L™", which simplifies
to gm™>. ARIX has no units, and S,;5_,95 has units um™". The
coefficient by has the same units as DOC, i.e., gm ™, while b, has
unit gm 2. The unit of b, depends on the choice of P,; when P, =
SUVA, b, has unit g m™*, when P, = ARIX, b, has unit gm ™ and
when P, = 1/S,75_595, b, has unit Mg m™.

The y intercept b, represents uncolored DOC, and thus
(DOC — b,) represents colored DOC, herein termed cDOC.
The equation can be further rearranged to predict A,s, from
c<DOC.

_ (DOC - b))  ¢DOC
BT (b +b,R) (b + byP) (7)

Equation 7 takes the form of the Beer—Lambert law A o €lc,””
where c is the molar concentration, [ is the path length, and € is
the molar absorptivity. In samples from data sets that conform to
eq 7 the molar absorptivity of chromophoric DOC is
proportional to 1/(b, + b,P,).

The results of using eq 6 with different P, proxies to predict
DOC in the eight whole-water data sets are provided in Figures
§5—S12 and Tables S4—S5. Using P, = SUVA indicated how
well the model would theoretically have performed had P, been
a perfect proxy of SUVA. For seven data sets (Yukon Lakes,
Horsens, Alaska Rivers, Everglades, Australia, Congo, SUEZ), the
ARINT model with P, = SUVA reduced prediction errors
relative to the base model by 43—88%, while for S. America, error
decreased by 12% (Supporting Information Table S4). In these
models, coeflicient b, was always positive and in the range of
0.16—0.86. Coefficient b,, which scales the interaction between
A,s, and aromaticity, was always negative, indicating that the
rate of increase in DOC with increasing A,s, decreased with
increasing SUVA. Congo had the smallest absolute b, (—0.02),
whereas Yukon Lakes had the largest (—0.19).

Using P, = ARIX in eq 6 improved DOC predictions relative
to the base model in all data sets except Congo, although always
by less than P, = SUVA models (Supporting Information Table
S4). The largest improvements occurred for Everglades and
Yukon Lakes with prediction errors decreasing by 47% and 35%,
respectively, relative to the base model (Figure S and Table S3).
For SUEZ, Horsens, and S. America, prediction errors decreased
by 21-26%. Very small but statistically significant improve-
ments were also obtained for Alaska Rivers and Australia (1—
4%) As in the P, = SUVA models, in valid P, = ARIX models the
coefficient b; was always positive (0.23—1.0) while the
coefficient b, was negative (—0.04 to —1.18) (Table S4).

Using P, = 1/S)75 195 led to large improvements in DOC
predictions for Everglades and Yukon Lakes (Table S4), with

prediction errors decreasing by 65% and 46% relative to the base
model. Modest improvements were obtained for Alaska Rivers
(9%) and S. America (12%), while Horsens improved by 1%.
Across these data sets, SUVA was nonlinearly correlated with
Sy7s 205 with equation SUVA = 8.48 exp(—0.060S,5 595)
(RMSE = 0.54, R* = 0.57) (Figure S13). No significant
improvement was obtained for Australia or Congo. The slope of
the nonlinear relationship between SUVA and S,;5 ,95 changes
most slowly when SUVA is small (Figure S14), indicating that
Sy75 205 Will be most sensitive when predicting DOC within the
lower range of DOM aromaticities. This would increase its
relevance for predicting DOC concentrations in nearshore and
coastal waters compared to inland waters experiencing higher
inputs of terrestrial organic matter.**’

Overall, ARINT models using optical proxies of P, led to large
(21-65%) improvements in DOC prediction errors for five data
sets (SUEZ, Horsens, Everglades, Yukon Lakes, S. America) but
little improvement (1—4%) for Australia, Congo, and Alaska
Rivers (Figures S5—S12). However, the relative lack of
improvement for the latter data sets is expected due to the
strong prior correlations between DOC and A,g, (R* = 0.94,
0.98, and 1.0 for Australia, Congo, and Alaska Rivers,
respectively) (Table S4).

The Pan-Arctic model*” predicts DOC from S5 595 and a5,
using tunable constants C and M. For the current “data sets, C
ranged between —1.0 and +1.3 while M ranged between 0.04
and 0.07 (Tables S4—SS and Figures S5—S12). For Yukon Lakes,
the Pan-Arctic model produced the most accurate DOC
predictions among all tested models, with a 58% reduction in
error. However, for all other data sets, the Pan-Arctic model
produced larger prediction errors than ARINT models, and in
five cases, it performed worse than the base model (Table S4).
Note that the Pan-Arctic model was not tested with the SUEZ
data set due to the missing absorbance spectra.

The global DOCyy model improved DOC predictions
relative to the base model for Yukon Lakes (R* = 0.66, RMSE
= 7.1 mg L"), but produced poorer predictions than the base
model for all other data sets. In the case of Congo, the DOCyy
model produced very high error residuals and negative R? which
occurs when a regression model represents a worse fit to the data
than a horizontal line (Figure $7). Among local DOC_ g models,
coefficient ® ranged from 604—3156 compared to 1507 in the
global model, while DOCcor ranged from —317 to 300
compared to 32.2 in the global model. As expected, the locally
calibrated DOC; g models made more accurate DOC
predictions than the global model, but improvements relative
to the base model were still only observed for Yukon Lakes and
Everglades (Tables S4—SS and Figures S5—S12).

Since the Pan-Arctic, DOCyy and DOC; ¢ models were each
developed from data sets consisting of predominantly marine
samples,**” the higher error residuals produced by these
models illustrate the inherent risks of applying empirical models
developed from oceanic data sets to predict DOC concen-
trations in inland waters. The ARINT model results further
suggest that in inland waters, the ability to sensitively detect
variations in DOC aromaticity is key to accurately estimating
DOC concentrations.

3.5. Improving DOC Predictions from Absorbance
Measurements. In aquatic systems dominated by terrestrial
DOM, there are typically tight correlations between CDOM
absorption and DOC, allowing DOC concentrations to be
accurately predicted from A,g,.”> However, numerous studies
show that these parameters diverge in concert with decreasing
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hydrologic connectivity to the landscape. In impounded
waterbodies, sustained photoirradiation reduces the overall
diversity of DOM molecular formulas by diminishing the
abundances of highly aromatic compounds while producing a
smaller number of lower-molecular-weight compounds, includ-
ing many unsaturated molecules but also some phenolic
compounds.””*”* Phytoplankton primary productivity produ-
ces DOC molecules that can be consumed or modified during
secondary microbial production, with a high overlap in
molecular formulas between photolabile versus biolabile
molecules.”® High diversities in aromatic structures result in
the decoupling of absorbance and DOC, preventing the accurate
prediction of DOC concentration from A, alone.””**”*”* This
phenomenon is extensively described and presents a significant
hindrance to predicting DOC concentrations from optical
measurements in ecological, biogeochemical, and remote-
sensing studies.

Equation 6 extends the prediction of DOC concentrations
from A,s, by accounting for interactions between light
absorption and aromaticity. The first term (b, X A,g,) represents
the prevailing relationship between DOC and absorbance across
a data set, whereby absorbance increases in direct proportion to
the number of carbon atoms. The second term (b, X Ay, X P,)
is negative. This term reduces predicted DOC relative to the
prevailing relationship, with the smallest reductions in samples
with low aromaticity and the largest in samples with high
aromaticity. When P, = ARIX, this term probably compensates
for the situation that the conjugated polyphenolic structures
represented by the ARIX numerator emit significantly more light
per carbon atom than the simpler phenolic structures
represented by the ARIX denominator.

Equation 7 allows estimation of the variability in molar
absorptivities of DOC molecules using € « 1/(b; + b,P,). When
b, is large, there is a relatively slow increase in A,g, with
increasing DOC, indicating absorption by lower-molecular-
weight CDOM. Thus, Yukon Lakes and Everglades with b; ~ 1.0
are expected to be dominated by lower molecular weight
chromophores compared to Alaska Rivers and Horsens with b, ~
0.2—0.4. The range of b,P, relative to b, indicates the influence
of aromaticity on the proportionality between A5, and DOC.
For all proxies in the studied data sets, the full range of values
taken by b,P,/b, was approximately —0.1 to —0.8 (Table S6).
When b,P, was small relative to b; across the entire data set (e.g.,
Alaska Rivers), or when b,P,/b, spanned a small range (e.g.,
Australia), then & was effectively constant, and little improve-
ment was obtained relative to predicting DOC from A,;, alone.
Conversely, b,P,/b, was relatively large and variable in the data
sets that benefited the most from ARINT models (Everglades,
Yukon Lakes, Table S6).

Further research is needed to test the ARINT algorithms
more widely and examine how different factors affect the
prediction of SUVA and DOC concentrations from DOM
optical properties. It is especially important to investigate how
predictions are impacted by seasonal and temporal variation, to
quantify potential interferences and matrix effects, and to isolate
natural sources of variability from instrumental sources. Also,
since optical measurements do not detect colorless DOC,
predictions from ARINT models about the size of this fraction
are especially uncertain, and experimental validations are
warranted. While prior research indicates that the linear
correlation between SUVA and PARIX is usually preserved
during physical—chemical treatment,'’ further studies are
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warranted to identify potential limitations and interferences in
a water treatment context.

3.6. Benefits for Water Quality Monitoring. Global
surface waters face a changing climate with greater variability in
both the quantity and quality of DOM. Warmer temperatures
are increasing rates of litter decomposition in soils and rates of
biological production in water at the same time as changes in
land use and altered rainfall patterns are changing hydrological
regimes and the connectivity between landscapes and
DOM.”””® Decreasing hydrological connectivity reduces
correlations between DOC and spectroscopic measurements
and decreases the accuracy of predicting DOC concentrations
from in situ measurements or from remotely sensed imagery.”’
Especially in inland systems, the accurate retrieval of absorption
coefficients from satellite data is often challenged by complex
atmospheric and optical conditions combined with seasonal
variation and episodic events that cause rapid changes in DOC
characteristics over relatively small temporal and spatial
scales.”®” Due to the link between aromaticity and chemical
reactivity, any lack of predictability in surface water composition
negatively affects drinking water treatment by increasing the risk
of chemical over- or underdosing."’

The relationships revealed in this study can be used to
improve the prediction of DOC aromaticity and concentration
from spectroscopic measurements obtained in inland water-
bodies exhibiting decoupling between DOC concentrations and
absorption coeflicients. New in situ spectroscopic instruments
could leverage these results to deliver currently missing data and
provide real-time predictions of DOC concentration, reactivity,
and fate. Such instruments could simplify ground-truthing of
remote-sensing algorithms in optically complex inland waters.
Further applications include drinking water treatment, whereby
real-time optical data could be used to adjust chemical doses in
response to changing DOC composition, facilitating the
sustainable removal of DOC compounds and their associated
micropollutants.
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The data needed to reproduce these results are available in the
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