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Abstract

We consider the eigenvalues of the Dirichlet and Neumann Laplacians on a bounded
domain with Lipschitz boundary and prove two-term asymptotics for their Riesz
means of arbitrary positive order. Moreover, when the underlying domain is convex,
we obtain universal, non-asymptotic bounds that correctly reproduce the two leading
terms in the asymptotics and depend on the domain only through simple geomet-
ric characteristics. Important ingredients in our proof are non-asymptotic versions of
various Tauberian theorems.
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1 Introduction and main results

A famous theorem of Weyl from 1911 describes the asymptotic behaviour of eigen-
values of the Laplacian [99]. Weyl’s motivation came, at least in part, from a question
related to black-body radiation [73, 93], but this result and its ramifications continue
to be of fundamental importance in the spectral theory of differential operators and in
mathematical physics. Various macroscopic theories in physics, including Thomas—
Fermi theory in atomic physics [71] and Ginzburg-Landau theory in the physics of
superconductivity [33], have been rigorously understood on the basis of Weyl’s law
and the corresponding semiclassical analysis. Recent applications include the study
of the area law for the entanglement entropy of a free Fermi gas and its logarithmic
violation [67, 92].

In the present paper we revisit the original problem studied by Weyl, namely the
asymptotic distribution of Laplace eigenvalues. Our focus lies on assuming rather
minimal regularity of the boundary of the underlying domain and on keeping track
of the geometric dependence of the error terms. One motivation for doing this comes
from a certain spectral shape optimization problem, which we describe in more detail
later in this introduction. Our methods are also in the spirit of semiclassics at low
regularity, which is fundamental when using such techniques in the study of quantum
many-body systems, for instance in the derivation of Thomas—Fermi and Ginzburg—
Landau theory mentioned before.

Let us be more specific. For an open set Q € RY we denote by —Ag and —Ag the
Dirichlet and Neumann realizations of the Laplacian in €2, defined using the method
of quadratic forms; see, e.g., [34, Sect. 3.1]. We write —Ag when we make statements
that refer to either of these operators. Assuming that —A?z has discrete spectrum,
its eigenvalues in nondecreasing order and repeated according to multiplicities are
denoted by An(—A?Z), neN={1,2,3,...}. Then Weyl’s law states that, as n — oo,

By rse v—2io=2.2 2
A(=Ag) =(Ly ) 212" dnd +o(nd) ()

with a certain constant Lff 4 depending only on d; see (8) below for its explicit ex-
pression. It is remarkable and one of the reasons behind the ubiquity of this law that
the leading term in the asymptotics depends on €2 only through its measure and not
through the details of its shape. In the Dirichlet case the asymptotics (1) are valid
under the sole assumption that & C R? is open with finite measure, as shown by
Rozenblum [85]. In the Neumann case, a sufficient condition for the validity is that
Q c R? is a bounded open set with the extension property (whose definition we recall
before Proposition 2.3 below). For proofs and references, see, e.g., [34, Sects. 3.2 and
3.3].
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Riesz means asymptotics on Lipschitz domains 1001

As is well known, the proof of Weyl asymptotics and also the formulation of their
finer properties become more natural in terms of the eigenvalue counting function,
defined by

N, —AL) i=#{n: 6 (=Akh) <2} fora>0.
In terms of this function, the asymptotics (1) can be equivalently stated as
# sc 4 4
N(A,—AQ)=L0’d|Q|)\2 +0(A2) as A — 00. 2)

It is natural to ask whether the error term 0()»%) can be improved. This was
achieved by Seeley [89, 90], who showed that for domains €2 with smooth bound-
ary one has

N —ADY =1 Q5 + 00T 3)
’ Q) — *0,d .

This remains valid for Neumann boundary conditions. Ivrii [53] has shown that, if
apart from the smoothness of the boundary a certain dynamical condition on €2 holds,
then one has a two-term asymptotic expansion

- = ! - -
N, Ag) = L?fd|§z|x% — ZLafdfl?fd_l(aQ)A% O(Adzl)’

g 1 . . 4
N, —AY) = L, 1Q22 +1L§fd_17!d_1(89)k‘2 o F).

Here H¢~1(3Q) denotes the surface measure of the (smooth) boundary 9€2 of 2 and
we emphasize that, while the leading-order terms coincide, there is a difference in
the signs of the second terms in the asymptotics. We do not recall the definition of
Ivrii’s dynamical condition, as we will not need it in what follows, but we note that it
is believed to be satisfied for all open sets €2 with smooth boundary. This conjecture
has been verified in a very limited number of cases, but remains open in general. For
textbook presentations of (3) and (4) we refer to [52, Sect. 17.5] and [87]. In [10, 54]
Bronstein and Ivrii claim that, still imposing the dynamical condition, the regularity
assumption on 92 for (4) to hold can be reduced to a C! Dini condition.

Our results in this paper concern open sets €2 that have only a rather minimal
amount of smoothness, namely we only assume that their boundary is Lipschitz.
Among classical smoothness assumptions on the boundary this seems to be quite
optimal to have the second term H?=1(3$2) well defined. For a textbook definition of
H4~" as well as its properties, the reader is referred to [22, Chap. 2]. We also empha-
size that Lipschitz boundaries can be quite rough and may exhibit fractal behaviour.

An informal statement of our first main result is that asymptotics (4) remain valid
for Lipschitz domains, provided there is a tiny amount of averaging with respect to
the spectral parameter A. No dynamical condition is needed. The latter may have been
known to experts in the area when the boundary is smooth, but we have not found a
corresponding assertion in the literature.
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1002 R.L. Frank, S. Larson

By ‘averaging with respect to spectral parameter’ we mean that we consider Riesz
means of order y > 0, defined by

Z(x( AG) — WL =Tr(-AL — A)V—y/ =" N (. —AG) dp

Here and in what follows, we use the notation x4 = %(|x| + x). Note that u —
yA a1 — M/A)K_l is a probability density, which explains why Riesz means are
certain averages (or means) of the eigenvalue counting function N (u, —A?Z). We
also note that as y decreases to zero, the probability density concentrates more and
more on the right endpoint « = A and converges in the sense of measures to § (i — X).
In this sense, the amount of averaging decreases as y tends to zero. By saying that
our results will be valid ‘with a tiny amount of averaging’ we mean that they are valid
for Riesz means TI‘(—AE — )7 of arbitrarily small order y > 0.

Riesz means of eigenvalues of the Dirichlet and Neumann Laplacian, and also of
more general operators, are a classical object in spectral theory and have been studied,
for instance, in [51]. In the context of Schrédinger operators they gained popularity
in the context of Lieb—Thirring inequalities [72].

It follows easily from (2) that for any y > 0 we have

Tr(— Al — 1)) = LE QIS £o7 %) ask— oo

with a certain constant L;C 4 depending only on y and d; see (8) below for its explicit
expression. Similarly, (3) and (4) imply corresponding variants for y > 0, under the
same assumptions for which (3) and (4) are valid. In contrast, in this paper we will
show that the Riesz means asymptotics corresponding to (4), and consequently also
the Riesz means analogue of (3), are valid under much weaker assumptions than (4)
and (3).

In what follows we restrict ourselves to dimensions d > 2, as in the one-
dimensional case explicit formulas are available.

The following is our first main result.

Theorem 1.1 Let d > 2, y > 0 and let @ C R be a bounded open set with Lipschitz
boundary. Then, as A — o0,

1
Tr(—Ag — 1)/ =L eyt — 1LY HITT @A 4007t (5)
and

.1 _ _
Tr(—AY — 1) = L Q78 + ZL;ﬁd_lHd*I(aszW*% +0o07+ Y. (6)

We emphasize again that the two crucial points of this theorem are that it is valid

for arbitrarily small y > 0 and that it is valid assuming only Lipschitz regularity of
the boundary.
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Riesz means asymptotics on Lipschitz domains 1003

Theorem 1.1 is a vast improvement over our main result in [27], which concerned
the Dirichlet case for y > 1. As we will explain below, fundamentally new ingredients
are needed to reach parameter values y < 1.

The error term 0()»7’4'%) in Theorem 1.1 cannot be improved within the class of
Lipschitz domains. In the Dirichlet case this follows from our results in [28], which
show that for any nonnegative function R : (0, 0c0) — R with limy_, oo R(%) = 0 there
is a bounded, open and connected set  C R with Lipschitz boundary such that for
all y > 0 we have

Tr(—AB — W)Y — L3 Q7T + 1L, Hd o+

lim sup =00.

A— 00 )LV'*'d%] R(A)

We now turn to our second main result, for which we restrict our attention to
convex sets 2. Since convex sets are Lipschitz, Theorem 1.1 is applicable to them and
we have two-term asymptotics. The point of the following theorem is that it provides a
uniform, non-asymptotic bound that depends on €2 only through the simple geometric
characteristics |2, HY1(9Q) and rin(R), the latter being the inradius of €2, see
(45). The bound is asymptotically sharp in the sense that in the limit A >> rj, ()72 it
recovers the first two terms in the asymptotics in Theorem 1.1.

Theorem 1.2 Let d > 2 and let Q@ C RY be an open, bounded, and convex set. Then,
forall x>0

1 )
Tr(—AB — 0 — LI, 1QI7 % + ZL;fd_lﬂd‘l(aQ)v“T'

S

< CHIT W T (rn(@)V3) T

and

, - i
Tr(—AN — 1) — L Q78 - ZL‘;,C,dled_l(BQ)XVJ“%

= CHT O [ (14 I (rn (V)™ 4 (ra(@vR) ',
with
a=1fory>1 andany o€ (0,y)forO<y <1,
and where C depends only on y, o, and the dimension.

The order of the error terms in Theorem 1.2 is probably not optimal, but it shows
the correct dependence on the product ri, (€2)+/A and it will be sufficient for the ap-
plications that we have in mind, which we describe next.

Similarly like Theorem 1.1, Theorem 1.2 had a predecessor in our work [27],
where we treated the Dirichlet case for y > 1. Both to reach parameter values y <
1 and to treat the Neumann case requires significantly different arguments. Earlier
results in a similar spirit include [41, 45, 46, 57, 58, 64, 76, 98].
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1004 R.L. Frank, S. Larson

A spectral shape optimization problem Our motivation for Theorem 1.1 and, in par-
ticular, Theorem 1.2 comes from the following spectral shape optimization problems

sup{Tr(—A?z—A)Z: Qel, |Q|=1},
(7N
inf{Tr(—Ag—x)Z: Qec, |52|=1},

where C is a given class of open sets in RY. While these problems are interesting
for a fixed value of A, we focus on solving them in the regime of large A. If the
asymptotics in (5) and (6) were completely uniform with respect to open sets 2 € C,
then asymptotically these optimization problems would reduce to the isoperimetric
problem

inf{’Hd’l(E)Q): Qel,|Q= 1}.

In particular, if C contains the ball of unit measure, the latter is a solution of this
isoperimetric problem and we arrive at the conjecture that in the limit A — oo op-
timizing sets €2, for the shape optimization problems (7) should converge, in some
sense, to a ball of unit measure. This problem was first investigated by one of us in
[65]. In [27] we proved convergence to a ball in Hausdorff sense when C is the class
of open convex sets and y > 1.

In a companion paper [29] we use Theorem 1.2 to extend our shape optimization
result in [27] to the Neumann case. Moreover, in both the Dirichlet and Neumann
cases, we further extend these results to a range of y > y, for certain parameters
y4 < 1/2 that we characterize (see [29, Theorem 1.7]). This leads to interesting com-
pactness questions.

The problem with the heuristics that were used to arrive at the conjecture is that the
two-term Weyl asymptotics are far from uniform for €2 € C (when C is large enough).
While we have not stated it explicitly, it is clear from its proof that Theorem 1.1 is
uniform within any subclass of Lipschitz domains for which certain (rather explicit)
geometric characteristics are uniformly controlled. Therefore, given our Theorem 1.1,
the proof of the conjecture reduces to establishing sufficiently good control of these
geometric quantities for optimizing sets 2. This remains an open problem.

The situation is somewhat simpler, but still nontrivial, when C is the class of open
convex sets. In this case Theorem 1.2 allows us to deal with the situation where the
optimizing sets €2, satisfy VA rin(€2;,) > 1. In [29] we show how to exclude the case
liminfy s oo «/er(Q;L) < 00.

As shape optimization in spectral theory is an active field of research that dates
back at least to Rayleigh [83], it is impossible to provide an overview of the topic
that does it justice. The interested reader is instead referred to [47] and references
therein. Problems concerning the asymptotic behaviour of solutions of spectral shape
optimization problems saw a rise in interest in recent years, largely motivated by a
connection to the famous Pdlya conjecture highlighted in [17] (see also [36]); see,
for instance, [3, 13, 14, 35, 43, 60, 66, 94, 95, 97] where a variety of problems of this
type are studied.
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Riesz means asymptotics on Lipschitz domains 1005

Some elements of our proofs Let us conclude this introduction by briefly describing
the methods used to prove our main results. We mostly focus on Theorem 1.1. As
a general rule, the arguments for Theorem 1.2 are similar, but significantly more
involved, since the dependence on the geometry needs to be tracked more carefully.

As we already mentioned, Theorem 1.1 is a vast extension of the main result of
[27], which concerns the Dirichlet case for y > 1. A property that lies at the basis
of our work in [27] was a variational principle for Tr(—A?2 — )Y when y = 1. This
variational principle was used both in the proof of the upper and the lower bound on
this trace. Similar variational principle exist also for y > 1, but do not exist for y < 1.
This is connected with the fact that E — (E — 1)” is convex if and only if y > 1.

In this paper we mostly deal with the case y < 1, where no variational principle
is available. We will compensate the lack of a variational principle by certain results
from classical analysis, in the spirit of Tauberian theorems. A first, important obser-
vation is

To prove asymptotics for y it suffices to prove asymptotics for some y| > y and
an order-sharp bound for some yy < y.

This is a rather straightforward consequence of a classical convexity theorem of Riesz
[84] (see Proposition 7.1), but seems to have been largely overlooked in the context of
spectral asymptotics. An exception is Hormander’s paper [51], but there the focus is
somewhat different and lies on (non-sharp) error bounds, rather than on asymptotics.

According to this principle, our work consists in
Task I:  Proving order-sharp bounds for arbitrarily small y > 0
Task II:  Proving asymptotics for some (possibly large) y
For Task II we can choose y = 1 and make use of the variational principle. Indeed, in
the Dirichlet case the corresponding asymptotics are already known from our previ-
ous work [27]. The proof in the Neumann case requires some additional ideas, which
we will describe below.

The methods that we will use to tackle Task I and the Neumann aspect of Task II
are based on Tauberian theorems. Before describing our way of using them, let us
provide some historical context. For background on these theorems we refer to the
monograph [56]. Their use in connection with Weyl asymptotics goes back to Carle-
man [15] with many further developments in the 1950s and 1960s. Tauberian theo-
rems provide a robust tool to prove Weyl asymptotics, not only for the Laplacian, but
also for higher order elliptic operators with variable coefficients, see, e.g., [40]. The
Tauberian method consists of two steps:

Step I:  Proving asymptotics for the trace of the heat semigroup or of (a power of)
the resolvent

Step II:  Proving a Tauberian theorem for the Laplace or Stieltjes transform (when
using the heat semigroup or resolvents, respectively)

In most applications the corresponding Tauberian theorems are already known
and the main part of the work goes into carrying out Step 1. These asymptotics can
be obtained by building local approximations for the solutions of the corresponding
parabolic or elliptic equations.

While Tauberian theorems are a powerful method to derive the leading order term
in Weyl asymptotics, it appears to be general wisdom that the Tauberian method (in
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1006 R.L. Frank, S. Larson

the above form) performs poorly with respect to terms of subleading order. Even
if a second term in the heat or resolvent trace asymptotics is known, this does not
lead, in general, to a second term in the asymptotics for the number of eigenvalues.
In particular, both in Task I and in the Neumann aspect of Task II, where we are
interested in second terms (or at least in a bound of the same order as the expected
second term), standard Tauberian theorems seem to be of little use.

There are so-called Tauberian remainder theorems (see [56, Chapter VII]), but
their consequences for spectral asymptotics, at least when applied naively, are rather
disappointing. Power-like remainders in asymptotics for the Laplace transform result
in logarithmic remainders for the underlying measure, while in order to get power-like
remainder for the underlying measure one would need exponentially small remain-
ders for the Laplace transform. In our situation two-term heat trace asymptotics on
Lipschitz domains are known from work of Brown [11]; see Theorem 4.1 below. The
remainders there are not exponentially small and therefore it seems, at first sight, to
be hopeless to apply Tauberian remainder theorems.

Here is how we get around the poor performance of Tauberian theorems when it
comes to second terms:

(a) In the bulk of €2 we turn our attention to pointwise asymptotics. For these we
do have an exponentially small remainder, which does allow us to get an order-
sharp remainder term through Tauberian theorems.

(b) When interested in the asymptotics in the Neumann case and assuming that the
asymptotics in the Dirichlet case are already known, we consider the difference
between the Dirichlet and Neumann Riesz means. In the difference the leading
orders cancel, so the second term, which is what we are interested in, becomes
the leading term. For Riesz means with y > 1 the variational principle implies
that the difference is monotone and we are able to apply rather standard Taube-
rian methods.

Items (a) and (b) will be used to accomplish Task I and the Neumann part of Task II,
respectively.

The observation in (a) is rooted in work of Avakumovié [4], but we track the
geometric dependence more carefully and show that this allows one to get a sharp
remainder term for the Riesz means as soon as y > 0. This is the content in Theo-
rems 3.1 and 3.2. In this connection we mention Avakumovié’s order-sharp remainder
bound for the Laplacian on manifolds without boundary [5] and the adaption of his
method to a larger class of operators [12, 44, 79] and to the presence of singular
potentials [32].

The observation in (b) is elementary, but seems to be new. It is worth mentioning
that the difference of the Dirichlet and Neumann Riesz means is not the only natural
quantity that has the key properties necessary for carrying out the argument in (b) to
accomplish Task II. An alternative construction, which is interesting in its own right,
is discussed in Sect. 6.

In our discussion so far, we have focused on the Tauberian method based on the
heat semigroup or resolvent powers. There is an alternative method based on the wave
equation, consisting in
Step I':  Proving asymptotics for the wave propagator
Step I":  Proving a Tauberian theorem for the Fourier transform
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Riesz means asymptotics on Lipschitz domains 1007

This method goes back to Levitan [68] and was perfected in [50]. It is usually the
method of choice to obtain more precise information, used for instance in the proofs
of (3) and (4). The drawback of this method, however, is that it needs, in general, very
strong smoothness assumption on the boundary of the domain (and on the coefficients
of the operator, if these are variable).

We also give an alternative proof of the order-sharp remainder for y > 0 in The-
orems 3.1 and 3.2, which bypasses Avakumovi¢’s observation and is based on Levi-
tan’s wave equation method. However, heat equation methods enter also in this proof
in order to handle the boundary region, where wave equation methods require too
much regularity.

This concludes our discussion of Steps I and I’ of the Tauberian method.

Concerning Steps II and IT', the proof of Tauberian theorems, we note that some
of the theorems that we need appear as announcements without proofs [4, 38] or in
journals that are not easily accessible [37]. Also, we need uniform versions of these
results that track the dependence of the error term in terms of various parameters.
We have not found the corresponding statements in the literature and a considerable
fraction of our work is devoted to providing complete proofs. This constitutes Part 2
of this paper.

This finishes our rough sketch of how we prove Theorem 1.1. As we said, the
proof of Theorem 1.2 follows a similar route, except that asymptotic statements are
replaced by corresponding uniform, non-asymptotic statements. A crucial ingredient
in the Tauberian Step I is a heat trace analogue of Theorem 1.2. For the Dirichlet case
such a result can be deduced from our results in [27] while the Neumann version is
proved in [31].

Finally, we point out that the proof strategy is rather general and can be adapted
to different situations. In Sect. 6 we illustrate this claim by sketching four further
applications. Here we only highlight Theorems 6.2 and 6.3, which give three-term
asymptotics for y > 1 when Q C R? has polygonal boundary.

Structure of the paper This paper consists of two parts. So far in this introduction
we have almost exclusively mentioned the result of the first part. The core of this
first part consists in Sects. 2, 3, 4 and 5, whose content we have outlined above. In
the additional section, Sect. 6, we briefly sketch some further applications for the
methods that we develop.

The results in Part 2 are independent of those in Part 1.

Part 2 of this paper is devoted to various Tauberian-type theorems, which are
needed in our proofs in Part 1. While some basic versions of these results are known,
the references are often not easily accessible or do not contain the refined form of
the results that we need. For this reason we have decided to include full details of all
the results that we are using. In Sect. 7 we present a proof due to Riesz concerning a
certain convexity property of Riesz means. In Sect. 8 we present uniform versions of
Tauberian theorems for Laplace transforms, which have their roots in work of Avaku-
movic, Freud, Garnelius, Korevaar and others. In Sect. 9 we present an extension to
Riesz means of Tauberian theorems for the Fourier transform, as used by Levitan,
Hormander, Safarov and others.

In the Appendix we summarize some more or less known results from convex
geometry, which will play a role in the proof of Theorem 1.2.
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1008 R.L. Frank, S. Larson

Part 1. Spectral asymptotics
2 Pointwise one-term Weyl law
2.1 Main results of this section

It is well known that the spectral projectors ﬂ(—A?Z < M) are integral operators with
integral kernels that are smooth on € x 2; see [39, 40] or Lemma 2.14 below. This
implies the corresponding fact for Riesz means. In particular, we have the identity

A
(—Ah — 17 (x,x) = y/o =’ "(=AG < w(x. x)dp.

This section is devoted to the proof of pointwise bounds on the on-diagonal Riesz
means kernel. We will consider the cases y =0 and y > 0 simultaneously and put

(=A% -0 =1(-AL <),
The asymptotics will involve the constant

e Tr+D
y.d d d
@m)2 'ty + 5+ 1)

fory >0. (3)

Finally, our pointwise bounds will depend on the distance of the relevant point from
the boundary, for which we use the abbreviation

do(x) := dist(x, Q°). ©)

The following theorem and three propositions are the main results of this section.
We state and discuss them in this subsection and devote the remaining subsections in
this section to their proofs. While it will not be important for us, we emphasize that
the bounds in this section do not require the underlying set 2 to be bounded or to
have finite measure.

The first result concerns the Riesz mean kernels in the bulk of €2, i.e. the region
where dq(x) > 1/v/A.

Theorem 2.1 Letd > 1, y > 0 and k > 0. Then there is a constant Cy, g4, such that
for any open set @ C R?, all x € Q and all 1 > 0 with do(x) > k /~/X we have

d +d—1
(A =W 0 — Ly 2| = Cyanr T do(x)™'77.

We find it remarkable that the constant in Theorem 2.1 depends only on d, y and
k and not in any way on the geometry of €2 or the boundary conditions.

An important aspect of our bound in Theorem 2.1 is that the decay of the relative
1+
remainder term A_Tydg (x)~177 with respect to dq(x) increases with y. This is

particularly important in the next section when we integrate the pointwise bounds in
order to get bounds on the Riesz means. For y > 0 this feature allows us to achieve
an error bound of the correct order of magnitude.
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Riesz means asymptotics on Lipschitz domains 1009

We will give two proofs of Theorem 2.1, one based on the heat equation and one
on the wave equation. Those will be presented in the Sects. 2.3 and 2.4, respectively.
In both proofs we will apply Tauberian theorems, whose proofs can be found in Part 2
of this paper.

The next three propositions provide further bounds for the Riesz mean kernels.
These bounds are less precise than that in Theorem 2.1 but with the important feature
that they remain valid also in the boundary region dg (x) < 1/+/A. In this region both
the geometry of 2 as well as the boundary conditions come into play.

The first result concerns the Dirichlet case.

Proposition 2.2 Letd > 1 and y > 0. There is a constant Cy, 4 such that for all open
sets Q CRY, all . > 0 and all x € Q,

0<(—AB — 1) (x,x) < Cpga?+1

In contrast to the Dirichlet case, in the Neumann case it is necessary to impose
some further assumption on €2 for the validity of the corresponding bounds. Here we
shall prove a bound that is valid in sets with the extension property. Recall that an
open set Q C R? is said to have the extension property if there is a bounded, linear
operator £: H'(Q) — H'(R?) such that if u € H' () then Eu(x) = u(x) for almost
every x € Q.

Proposition 2.3 Letrd > 1 and y > 0. For every open set Q C R? with the extension
property and every Lo > 0 there is a constant Cy, q 5, such that for all A > 0 and all
x € Q we have

0< (AN = 1Y (x, 1) < Cyauh T2 max{1, (1o/2) 7} .

In our applications to shape optimization problems it is important to have bounds
that depend in a simple and uniform manner on the set €2. In the above results we em-
phasize that this is the case in both Theorem 2.1 and Proposition 2.2, as the constants
in these results are independent of the set €2. In contrast, the constant that appears in
Proposition 2.3 depends on the geometry in a more complicated manner. In fact, in
the Neumann case any bound for the kernels in the region dg(x) < 1/4/A needs to
take into account more delicate properties of the boundary as otherwise such bounds
would contradict a bound of Li—Yau [70] for the corresponding heat kernel; see also
Lemma 2.8 below. However, that 2 has the extension property is a rather weak as-
sumption on the boundary. Under stronger assumptions it is possible to prove more
explicit bounds for the Neumann kernels also in the boundary region, dg(x) < 1/+/A.
Our next result provides such a bound under the assumption that €2 is convex.

Proposition 2.4 Letd > 2 and y > 0. Then there is a constant Cy, 4 such that for any
convex open set 2 C Rd, all x e Q,all A >0andallt >0
l‘_Vet)“

0<(=AN -G, x)<Cpy—-— .
S(=Ag—M)I(x,x) < y,dmmBﬁ(x)l

In the remainder of this section we first make some historical comments and then
we provide proofs of Theorem 2.1 and Propositions 2.2, 2.3, and 2.4.
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1010 R.L. Frank, S. Larson

Historical remarks The dependence on the distance from the boundary of the remain-
der in the bound of Theorem 2.1 is crucial for the proof of our main results. We have
not found it in this form stated in the literature, but there are some precursors that we
would like to mention. Avakumovié [4] for y = 0 and Levitan [68] and Garding [40]
for y > 0 have shown that for x in compact subsets of €2 one has

y+d—1

((—Ah =) (ex) = L AT E S0 (10)

for X large enough with an implicit constant depending on the compact subset. An
alternative proof is given by Hormander [51, Corollary 5.4]. Briining [12] attributes
bounds showing how (10) degenerates close to the boundary for y = 0 to unpub-
lished lectures of Avakumovi¢ (1965). Since we do not have access to notes of these
lectures, we cannot say which boundary conditions are imposed and which regularity
of the boundary is assumed. We note that in several papers [12, 44, 79], that seem
to be influenced by the work of Avakumovié, similar bounds are shown in the case
y = 0 for more complicated operators than — A, but under stronger assumptions on
the boundary than ours and only asymptotically and not uniformly as ours. Indepen-
dently, Agmon [1] proved results about the degeneration of the interior bound (10)
for y = 0 as x approaches the boundary, but his bounds are off by an arbitrarily small
exponent ¢ > (. These bounds are not good enough for our purposes.

All the bounds mentioned so far, with the exception of that of Garding [40], con-
cern the case y = 0. Safarov [86] has essentially proved the special case y = 1 of
Theorem 2.1; see Remark 9.10 for what we believe to be a (fixable) gap in this proof.
Apart from this, we are not aware of previous works that concern the boundary degen-
eration of the interior bounds (10) for y > 0, although such bounds might be known
to experts in the field.

The thrust of Propositions 2.2, 2.3, and 2.4 is that they are valid up to the boundary.
Bounds of this type are known to experts in the field and follow rather directly, for
instance, from corresponding heat kernel bounds.

2.2 Heat kernels and a priori bounds

The purpose of this subsection is twofold. On the one hand, we will introduce the
heat kernels and state some basic bounds for them. On the other hand, we will use
them to derive the a priori bounds on the spectral function and its Riesz means in
Propositions 2.2, 2.3 and 2.4.

We recommend Davies’s book [19] for background on heat kernels. It is known

# .
that for any ¢ > 0 the operators ¢'2% are integral operators; see [19, Theorems 2.3.6

and 2.4.4]. Their integral kernels are denoted by k#z (t,-,-), that is,

(€22 f)(x) =f kbt x, x) f(x"ydx"  forall f e L*(Q).
Q

We recall the following leading order bounds for the heat kernels. They are clas-
sical and can be found, for instance, in [19].
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Lemma 2.5 ([19, Eq. (1.9.1)]) Let d > 1 and let @ C R? be open. Then, for all x, x' €
RY and t > 0

D / -4
0<kg(t,x,x) < (4mt)" 2.

Lemma 2.6 ([19, Theorem 2.4.4]) Let d > 1 and let @ C R? be an open set with
the extension property. For any ty > 0 there is a constant Cq 4, such that, for all
x,x eRYandt >0

N I -4 -4
0 <kg(t,x,x") < Cq it~ 2 max{1, (to/1)"2}.

Remark 2.7 Two minor technicalities:

(1) First, the bounds in both equation (1.9.1) and Theorem 2.4.4 of [19] are stated for
connected sets 2 C R?. The claims in Lemmas 2.5 and 2.6 follow by applying
the bounds of Davies to each connected component and recalling that a set with
the extension property has a finite number of connected components (see, e.g.,
[34, Lemma 2.94]).

(2) Secondly, Theorem 2.4.4 of [19] is stated for heat kernels associated to general
uniformly elliptic operators and with 0 < ¢ < 1. The bound claimed above fol-
lows by applying this general result with the operator —fg Ag and then extend
the obtained bound to all # by using the monotonicity argument in the proof
of [19, Theorem 3.2.9].

In the case of the Neumann Laplacian on a convex set, we shall also use the fol-
lowing bound due to Li and Yau [70]; see also [19, Theorem 5.5.6].

Lemma 2.8 Fix 8 > 0 and let @ C R? be an open convex set. For all x,x' € Q,t >0
it holds that

le—x'[? e—x'[2

cqse =4 Cy e (704

12N B ;022N B ;)2 IR0 B 40012 1QN B (x|

<kN(t, x,x") <

where the constants cq 5, Cq 5 depend only on §, d.

As a simple application of these heat kernel bounds we now deduce the pointwise
bounds in Propositions 2.2, 2.3, and 2.4.

Proof of Propositions 2.2, 2.3, and 2.4 For simplicity we only write details for y > 0,
the proof for y = 0 follows the same steps.
We shall use the elementary bound

%
aV§<Z) e“ forallo > 0.
e

This implies that

(E-2NY < <1>ye”‘ e 'E
et
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By the spectral theorem we deduce that

(—af — a7 < (%)y ot otth
e

which, in turn, implies that

AR 3y YNV ino#
(-ah “—(x’x)5<et> kA (1 x, %)

.. . _d
In the Dirichlet case we can now insert the upper bound k?z (t,x,x) < (@mt)™2
from Lemma 2.5. After optimization with respect to ¢, we obtain

Y
(—A?z -0 (x,x) < (471)_% (Z) Ar+e sup ,u_y_%e“
e u>0

—un-5 (1Y € ng%
~u0 (3 ()

corresponding to the choice u =tA =y +d/2.

In the Neumann case we can argue similarly but based on Lemma 2.6 with 7y =
Ay ! Instead of optimizing in the choice of  we simply choose r = A~!, which proves
that bound.

Finally, in the Neumann case on convex sets, we argue similarly, but use
Lemma 2.8 instead of Lemma 2.6. In this case we leave ¢ as a free parameter. This
completes the proof of all three propositions. d

2.3 A first proof of Theorem 2.1 using the heat equation

In this subsection we give a heat kernel proof of Theorem 2.1. When it comes to
the Neumann case our heat kernel based methods yield a weaker result; this is com-
mented on in the proof below. The proof we give is based on estimating the dif-
ference kg (t,x,x) — (47'rt)_%. According to the (heuristic) principle of not-feeling
the boundary, this difference should be small (with respect to (47”)_%) when x is
far away (with respect to /7) from the boundary. The following two known bounds
make this principle quantitative and show that the difference is actually exponentially
small.

We begin with the case of the Dirichlet heat kernel. The following bound is due to
Minakshisundaram [77]; see also the proof due to Weyl in the appendix of that paper.

Lemma2.9 Letd > 1 and let Q@ C R be open. For all x,x' € Q, t > 0 it holds that
X—X/z ’ ’
0<@rt) fe T kB, x,x') < e (dnr)~ % #mxllv—x'Poda(0’ datx'?)

In particular, for all x € Q,t > 0,

_d p d _d _dow?
0<@mnt) 2 —kg(t,x,x) <ez(4mt) 2e” 4 .
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We are indebted to Nikolay Filonov for pointing out an inaccuracy in Lemma 2.9
in an earlier version of this paper concerning the bound for large values of ¢ which
is not covered by the argument in [77]. The proof that follows shows how one can
extend the result from [77] to all £ > 0.

Proof The lower bound follows from Lemma 2.5. For t < % =: ty the upper

. . . d

bound is proved in [77] (without the factor e2). For ¢t > #y we observe that, by
dg (x)?
Lemma 2.5 and the monotonicity of # — e~ “ar ,

_d 2 , _d 4 4 _dow?
(Amt)~2e” & —kgo(t,x,x') < (4mt)” 2 = (4mt)” ZeZe Ho

d _d _dgw?
<e2(4mt) 2e &

this completes the proof. g

We now turn our attention to the Neumann heat kernel. The following bound on
Lipschitz sets is essentially due to Brown [11, Eq. (2.4+)]. A complete proof of the
result as stated here can be found in [31].

Lemma 2.10 ([11, Eq. (2.4+)]) Letd > 1 and let 2 C R4 be a bounded open set with
Lipschitz boundary. For any n > 0 there is a constant Cq_y such that for all t > 0 and
x € Q with do(x) > n+/t we have

N _d _d _dgw?
kq(t,x,x) —(4nt) 2| <Cqut 2e ~ ¥

For the Neumann Laplace operator in a convex set we shall utilize the follow-
ing result proved in [31]. The upshot of this result compared to Lemma 2.10 is the
uniformity of the constant with respect to 2.

Lemma 2.11 Let d > 2 and n > 0. There is a constant Cq , > 0 such that for any
open convex set @ C R%, all t > 0 and x € Q with do(x) > 1/t we have

N d 4 _dg)?
ko(t,x,x) —(4mt)" 2| <Cqpt~ 2e” W

The 8 in the exponential rate of decay in Lemmas 2.10 and 2.11 is not sharp,
the optimal value is likely 4 (as in Lemma 2.9). The proofs in [11] and [31] can
be modified to yield a corresponding result with 8 replaced by any number greater
than 4 at the price of increasing the multiplicative constants in the bounds. For our
purposes the sharp value is not important, only that the exponential rate in the bound
is independent of 2.

We combine the preceding three lemmas with Tauberian remainder theorems to
derive the pointwise bounds on the spectral function and its Riesz means. The argu-
ment will completely prove Theorem 2.1 for # = D but, as mentioned above, only a
weaker version when # = N. A full proof of Theorem 2.1 will be given in Sect. 2.4.

@ Springer



1014 R.L. Frank, S. Larson

Proof of Theorem 2.1 (in a weaker form for # = N) The proof is based on a non-asymp-
totic version of a Tauberian theorem for the Laplace transform that essentially goes
back to work of Ganelius [37]. The version of Ganelius’ result that we shall use will
be proved in Sect. 8, specifically we shall utilize Corollary 8.2.

Fix x € Q and set

fr ) i=1(=A% <) (x, x) — ffdé )

As a difference of two monotone functions f, has locally bounded variation and as
such defines a Borel measure df, on R. Note that the Borel measure on R defined by

~ . d sc 4_q
ww) = [ dfsy(X) + ELO,d A27dA
w wﬂ(O,oo)

is nonnegative.
One computes that forall y >0, A > 0

A
(—Ah — 1) (x,x) = L a7+ = /0 (A =AY dfe (),
and forall r > 0
o0
K (2, x,x) — ()~ =/0 e df (L),

For # = D, Lemma 2.9 and the fact that x®¢ ¥ < (%)ae"" forallx > 0,0, 8> 0
imply that!

dg (x)2
<4 dq (x) e~ % forallr > 0.

‘ / Yo dfc(h)
0

By Corollary 8.2 withe =1, N=1, Ko=0,v; =d/2,and K| = Lffd, it holds that,
forany y >0, A >0,

)(—Ag — ) (e x) = L] S, 0 A (L4 dg (0?7 2 (dg(x) ™ +2.9).

Using the assumption that dg (x) > «/+/A we deduce that

d—1
\(_Ag — 0 ax) = LT S AT da o)

This completes the proof of Theorem 2.1 for # = D.

'Here and in what follows we sometimes use the notation < to mean that the left side is bounded by
a constant times the right side, where the implied constant is independent of the relevant parameters.
Sometimes, as here, we put a subscript under the symbol <, emphasizing that the implied constant only
depends on the parameters appearing in this subscript.
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As mentioned at the start of this subsection a weaker form of Theorem 2.1 when
# = N can be proved in the same manner. Indeed, if one in the above proof instead of
Lemma 2.9 applies Lemma 2.10 (with suitably chosen 1) this yields

d—1
(—AN =) (6, x) = LE 7P <€), T da(x)™ 7,

for all x € Q, A > 0 with do(x) > k/+/A. When applying Lemma 2.10 one needs
to choose the parameter 1 so small that the obtained bound is valid for all A >
Kz/dgz(x)z. Any n so that k2> Dn2(1 + nz) where D is the constant appearing
in Corollary 8.2 suffices. Note that this bound is weaker than that in Theorem 2.1
for two reasons; firstly, it requires that €2 is bounded with Lipschitz boundary and,
secondly, the constant in the bound depends on 2. However, if one additionally as-
sumes that €2 is convex then the boundedness assumption and the dependence of the
constant on €2 can be dropped by using Lemma 2.11 instead of Lemma 2.10. |

2.4 Asecond proof of Theorem 2.1 using the wave equation

In this subsection we give a wave equation proof of Theorem 2.1. Our proof is not
only valid for the Dirichlet and Neumann Laplacian but for general selfadjoint exten-
sions H of the symmetric operator —A|ce(g). To simplify the exposition, we restrict
ourselves to nonnegative extensions H.

Proposition 2.12 For any d € N and y > 0 there is a constant Cy, 4 such that the
following holds. Let 2 C R? be open and let H be a nonnegative selfadjoint operator
in L*(2) such that C°(2) C dom H and for any u € CZ°(2) one has Hu = —Au.
Then for all x € Q2 and ). > 0

. d
’(H — ) (x.x) = L a7

y+d—1

c L
< S
= N\ da(oH

Remark 2.13 A couple of remarks:

(1) We emphasize that the constant C, 4 does not depend on €2 nor the chosen
selfadjoint extension of the Laplacian.

(2) While for the Dirichlet and Neumann Laplacians the error term A dg (x)_d in
the boundary region dq(x) <1/ /A can be improved (in the Neumann case at
least when the boundary has some regularity), it is interesting to note that this
is not possible for all selfadjoint extensions H of the Laplacian; see discussion
following Corollary 2.15 below.

(3) For y =0and y = 1 Proposition 2.12 and its proof are closely related to bounds
due to Safarov [86], although, disregarding the value of the constant C, 4, the
bounds in [86] for y = 1 are slightly worse than ours close to the boundary; see
also Remark 9.10 for an inaccuracy in [86, Lemma 2.7]. Our contribution here
is to extend these bounds to all parameters y > 0. We do this with the help of
a novel Fourier Tauberian theorem, which will be stated and proved in Sect. 9
below.

1(da(x) > 1/VA) + ——— 1(da(x) < 1/v ))

d()d
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In the statement of Proposition 2.12 we implicitly use the fact that any nonnega-
tive selfadjoint extension H of —A|ce(q) has a spectral function. This was shown
by Garding [39] (see also [40]), even for a larger class of operators. Since these ref-
erences are not easily accessible and since we need some properties of Garding’s
construction we reproduce a sketch of his argument.

Lemma 2.14 Let Q C R? be open and let H be a nonnegative selfadjoint operator
in LE(Q) such that CX(Q2) Cdom H and Hu = —Au for all u € CX°(2). Then for
every A > 0 there is a function e) € C(2 x Q) such that for all compactly supported
[ f e LA(9),

(FLA(H <1 f) = / /Q T30 ) dyy

Proof of Lemma 2.14 We fix an integer k > d /4 and set
F(x,y)i=calx —yI* 7,

where the constant ci 4 is chosen such that (—AFF(., y)=§8(—y)forall y e R,
Let U € 2 be open and choose x € C2°(€2) suchthat y =1on U.Fory e U, we
consider the following functions on €2,
FoC.y) = (=)A= 0)F(.y).  Fi(.y):=xF(.y).
We claim that

Usyr> Fj(-,y) € L*(Q) is continuous for j =0, 1. (11)

This assertion for j = 1 follows easily from the fact that F (-, y) € LIZOC(Rd) since

k > d /4. The assertion for j = 0 follows from the fact that (1 — x) F (-, y) is smooth
because 1 — x vanishes in a neighbourhood of the point y where F (-, y) is singular.
Next, we claim that for any f € C>°(U), fU Fi(-,y)f(y)dy € dom H* and

/UFo(wy)f(y)dy+H"/UF1(-,y)f(y)dy=f. (12)

Indeed, since f € C°(U), we have fU F(x,y) f(y)dy € C®(R?). Multiplying this
by x € C°(2), we infer that fU Fi(,y)f(y»)dy € CX(2) C dom H and

H/UFl(-,y>f(y>dy=—AfUFl(-,wf(y)dy.

According to what we have just mentioned, the right side lies in CZ°(€2) C dom H.
Therefore [, F1(-,y) f(y)dy € CZ(R) C dom H? and

H? /U FiCoy) f () dy = A /U FiCoy) f () dy.

@ Springer



Riesz means asymptotics on Lipschitz domains 1017

Iterating this argument, we deduce that fU Fi(,»)f(y)dy € C°(2) C dom H* and
kaUFlc,y)f(y)dy:(—A)kaFlc,y)f(y)dy.
The integral on the right side is equal to
ot [ Ry =cat [ Fenso - [ pensod.

and the first term on the right is equal to f. This proves (12).

Now let U’ C 2 be another bounded and open set and choose x’ € C2°(€2) with
x'=1onU’. We define the functions F{j and F; similarly as before.

For y € U and y’ € U’ we define

1
e,y =) /m)uk“*”d(F,-(-,y),ﬂ(H<u)F;,<-,y/)>. (13)
_0 ’

From (11) we deduce that e, € C(U x U’). Moreover, for f € C°(U) and f’ €
C°(U’) we find

// fMe . ) ') dydy
UxU’

1
= /[ok)“k(jﬂ/)d ( /U Fi,y)f(y)dy, 1(H < p) /U Fiy (-, y’)f’(y/)dy/)
=071

We have shown above that fU Fi(-,y)f(y)dy € dom H* (this is trivial for j = 0)
and similarly for the primed quantities. Thus,

/ ptiting ( / Fi(,0)f()dy, 1(H < ) f F}/(ny’)f’(y’)dy’)
[0,1) U U
= / d(H"’ f FiGo0) f)dy, 1(H < p) HY' / F}/(-,y’)f’(y’)dy’>
[0,1) U [

_ <ijfUFj(.,y)f(y)dy,]1(H</\)H"f’/uE},(uy/)f/(y’)dy/)-

Using identity (12) we obtain
1

> (ij/UFj(wy)f(y)dle(H<A)ij/fuF,/-/(',y/)f/(y/)dy/)
j,j/:()
= Zij/ Fi(,»)f(y)dy, 1(H <)»)2ij / F;,(~,y’)f’(y/)dy/
=0 Y =0 Y
=(f.1(H <N f).
This proves the claimed identity for f € C2°(U) and f' € C°(U").
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Since e; € C(U x U’) the identity extends to f and f’ whose supports are com-
pact subsets of U and U’, respectively.

Since U and U’ are arbitrary bounded open sets whose closures are contained in
2, one easily concludes that the function e, is defined on all of €2 x €2, is continuous
there and satisfies the claimed identity. g

Proof of Proposition 2.12 We fix a point xo € 2 (which plays the role of the point x in
the inequality in the proposition). For r < dg(xo) and f € C2°(B,(xg)) we consider

u(t) := cos(t\/ﬁ)f,

which satisfies 8,2u + Hu = 0. Moreover, u(0) = f and 9,u(0) = 0. Testing the equa-
tion against a test function in C2°(2) C dom H, we see that for any # € R we have
8,2u — Au =01n Q in the sense of distributions. Moreover, noting that u(t) € dom H
for all ¢ (since f € CZ°(2) C dom H) and that dom H C HI%C(Q) (by interior ellip-
tic regularity since —Au = Hu € L?(Q2) for u € dom H), we see that the equation
9u — Au=0holds in L} ().

We now deduce, using finite speed of propagation, that

suppu(t) C Bryys)(x0) U {x : do(x) <|r|}.

To prove this we can use the classical energy method; see, e.g., [21, Theorem 2.4.6].
Indeed, given x” ¢ B,1;/(x0) U {x : do(x) <|t|} it holds that the backward cone

Coi={(y,s) €Qx[0,t]:|y—x'| <t —s}

satisfies that C,v , C Q x [0, ]. Since u(0), 9;u(0) both vanish in B;(x") ={y € Q:
(y,0) € Cy ;} we can now argue precisely as in [21, Theorem 2.4.6] to conclude that
u vanishes in Cy , and in particular u(¢) vanishes at x’. Note that in the proof of [21,
Theorem 2.4.6] one only needs to consider balls whose closure is contained in €2 and
on such balls u(r) belongs to H?, so all the manipulations are justified.

As an aside we mention that if 2 has sufficiently regular boundary and if H corre-
sponds to either a Dirichlet, Neumann or Robin boundary condition, then the above
conclusion can be strengthened to suppu(t) C By (xo). For the proof one can ar-
gue as in [21, Theorem 2.4.6], but now also including the intersection of balls with 2.
This improved bound on the support of u(¢) could be used to improve the constants
in our error bound, but does not significantly improve the result.

Restricting ourselves to ¢ such that |¢| < % (dq(x0) — r) and denoting by x (¢) the
characteristic function of {x € Q: dq(x) > |t|}, we see that x (t)u(¢) solves the wave
equation in .

Extending f by zero to a function on all of R?, we define

u(t) :=cos(t/—Aga) [,

which satisfies 37 — Au = 0 on R? x R, as well as 7(0) = f and 8,7(0) = 0. Applying
the uniqueness theorem [21, Theorem 7.2.4] for the wave equation, we find that

xOu() =0@t)  forallt € [—1(da(xo) —r), $(da(xo) —r)].
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Let ¢ € S(R) with supp¢ C (—%dg(x()), %dg(xo))). Then for all sufficiently

small r > 0 (specifically for all » > 0 such that [—%(dg (x0) — 1), %(dg (x0) — 1)1 D
supp @) and all f € C2°(B,(xo)) we have

f@(l)u(t)dt=f¢(t)ﬁ(t)dt.
R R

Taking the inner product with f and appealing to the spectral theorem, we deduce
that

/@(;)(/ cos(tv M) d(f, 1(H <k)f)>dt
R [0,00)

:/ @(r)(f cos(tv/A) d(f, 1(—Aga <A)f)>dt
R [0,00)

Interchanging the integrals, we obtain

1
/[ ~(e(V2) +o(—V1) d(f. 1(H < 1) f)

0,00) 2

1
= /[ (@) + (=) d(f, 1(=Aga < 1) f)

0,00) 2
Let us set
nr(v):=(sgnt) (f, 1(H <> f)  and
()= (sgnt) (f, L(~Apa < T [),

which are nondecreasing functions on R, so dn and d7 are measures on R via the
Lebesgue—Stieltjes construction. We see that

/(p(f)dnf(f)=/<p(f)dﬁf(f)- (14)
R R

We recall that we have proved this identity for every f € C2°(B,(xo)) with r suffi-
ciently small (depending on ¢).

Given x € C° (R?) with fRd x(x)dx =1, we apply the above identity to
fox) = p’dx ((x — x0)/p) with p > 0 sufficiently small. We claim that

lim w(r)dnfp(r)=/<p(r)dnxo(r) and
0t Jr R

p—>

lim </)(T)d77fp(f)=/¢(f)dﬁxo(f)
R R

p—0F
where

Mo (T) := (5gnT) L(H < t3)(x0,x0) and 7y, (7) := (sgn7) L(—A < 72)(x0, X0) -
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The first convergence (the second one is proved similarly) follows from the fact that
for any bounded, measurable and rapidly decaying function ¥ on [0, co) one has

lim /I/I()‘«)d(fpvﬂ(H<)‘«)fp)=/w(k)dek(x01x0)~
p—0t JR R

To prove the latter convergence, we recall the definition (13) of the spectral function,
choosing U = U’, an open neighbourhood of xy. We obtain

1
fo LH <D f)= Y /[0 ) pFG 4 (Fy o 1(H < ) Fyr )
jvj/:0 N

with Fj , := [, Fj (-, ) fo(y)dy. Thus,

1

Aw(x)d(fp,ﬂ(y<x)fp)= > (Fjp HUTDW(H)F) )

J+J'=0

with W (p) := f:o ¥ (X)) dA. By our assumptions on i the operator Hk(j“‘-/,)\II(H) is
bounded. The same arguments show that

1
f Y (W) dex(xo, x0) = Y (Fj(-x0), HHUTDW(H)Fji(-, x0))
R J'=
Since Fj , — Fj(-, xp) in L%(Q) and since Hk(j+-/,)\II(H) is a bounded operator, we

obtain the claimed convergence.
As a consequence of this convergence, we deduce from (14) that

/¢(T)dnx0(f)=/¢(t)d77'x0(f)- 15)
R R

Let us show that the measure dn,, is a tempered distribution. Since the deriva-
tive of a tempered distribution is a tempered distribution, it suffices to show that the
function A = n,, (1) is locally bounded and has at most polynomial growth. These
properties follow immediately from the definition (13) (with xg € U = U’), which
implies

1 .
0<enxo,x0) < Y MWIHDIFC 072
J,J’=0

Moreover, using the explicit diagonalization of —Apgs in terms of the Fourier
transform we see that

fixo = (sgnt) LY, 7|7

Since dny, and d7y, are tempered distributions and since (15) is valid for all
¢ € S(R) with supp¢ C (—%dQ (x0), %dg (x0))), it follows that the (distributional)
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Riesz means asymptotics on Lipschitz domains 1021

Fourier transform of the difference dny, — d7y, vanishes on the set (—%dQ(Xo),
%dQ (xp)). Consequently, we have

Pa * (dnxo - dﬁxo) = 0

for any ¢ € S(R) with suppp C (—1, 1) and ¢,(t) = a_lgo(r/a) witha =2/dq(x0).
Replacing ¢ with a dilate and letting the dilation parameter tend to 1, we see that the
support assumption on ¢ may be relaxed to suppp C [—1, 1].

We are now in position to apply Corollary 9.4. Indeed, for y = dny, and v =
dfx, we have shown above that the assumptions of the corollary are satisfied with
parameters a = ag = a1 =2/dq(x0), « =d — 1, My a constant depending only on d
and M| = 0. The resulting bound states that

|R;l/'lx0 () - R;/ﬁx() (Dl = Cy,ddgz(xo)*d(l + dg(xo) T4 .

Taking v = A/ this leads to the claimed bound, since for all T > 0

2 T 2\7
R, ®=" f (1 - "—2) 2 (@) do =7 (H — 1) (x0, x0)
o T Jo T T
and
-1
2y [T o2\"" & - d
This completes the proof of the proposition. g

Proof of Theorem 2.1 To prove Theorem 2.1 we apply Proposition 2.12 with H =
—Aé. If «x > 1 then we are done. If k < 1 then we observe that for x € Q with
Kk /A < dg(x) < 1/+/A it holds that

=t yrd=1
2
— = ()Y T < max{c T 1
dao? ~ @atvR) dGoyry =M Vot
This completes the proof. O

While not related to our main purpose, we find the following consequence of
Proposition 2.12 noteworthy. In particular, this result implies the sharpness of Propo-
sition 2.12 close to the boundary. The result concerns the harmonic Bergman space
and we refer to [6, Chap. 8] for further information. We note that in a general open
set Q C R the space of harmonic functions in L2(£2) is a closed subspace of L2(2).
Moreover, the orthogonal projection Rg onto this subspace has an integral kernel,
which we are going to denote by R (x, x). The following corollary gives a bound
on the singularity of this kernel when x approaches the boundary.
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1022 R.L. Frank, S. Larson

Corollary 2.15 Let d > 1. There is a constant Cq such that for any open set Q C
R the kernel Rq(-,-) of the orthogonal projection in L*(2) onto the subspace of
harmonic functions satisfies for all x € Q

Ra(x,x) < Cadgo(x)™@.

Proof We consider the selfadjoint operator H in L?(2) defined as the Krein exten-
sion of —A defined on C2°(2) [2, 42]. It follows immediately from the definition
of this extension that ker H is the subspace of harmonic functions in L?(£2). From
Proposition 2.12 we deduce that, for any x € 2 and any A > 0,

Ra(x, x)
<1(H <A)(x,x)

d-1
AT 1
= Lffd)»% + Co,d(— 1(do(x) > 1/VA) + ——

da (x) do(n)d Hda) = 1/ﬁ)>.

For fixed x, the right side tends to Cp 4 dg (x)_d as A — 0. This proves the claimed
bound. O

The first remarkable fact about the bound in Corollary 2.15 is that the order of the
singularity dg(x)~? is sharp. This follows when €2 is a ball or a halfspace from the
explicit formulas for Rg in [6, Theorems 8.13 and 8.24] and when 2 is a smooth do-
main from [20]. The second remarkable fact of the bound is that the constant depends
only on d and not on the set 2.

Let us now return to the question of sharpness of the bound in Proposition 2.12. It
is natural to wonder if the error bound AYdg (x)~¢ in the boundary region dg(x) <
1/+/ is optimal for certain selfadjoint extensions H. We argue that it is, at least for
y = 0 and for smooth sets 2. Indeed, this follows from the sharpness of the bound in
Corollary 2.15 which was deduced from Proposition 2.12 applied with y =0 and H
as the Krein extension of —A.

3 Integrated one-term Weyl law

In this section we will use the pointwise bounds on the spectral function and its Riesz
means from the previous section to obtain bounds on the Riesz means Tr(— A?Z -0
The idea of the proof is to write the Riesz mean as an integral of the corresponding
integral kernel and then use our pointwise bounds for the kernels appropriately de-
pending on the relative size of ~/Adq(x). Under the assumption y > 0 our bounds
will have an order-sharp remainder.

It will be convenient to abbreviate

[{x € Q:dq(x) <[} Ogq = supvdq(l)

va(l) = 7 ;
>0

where we recall that the distance dg to the boundary was introduced in (9).
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Riesz means asymptotics on Lipschitz domains 1023

Theorem 3.1 Let d > 1 and y > 0. Then there is a constant C, 4 such that for any
open set @ C RY with || < 0o and Ogq < oo and for all 1 > 0 we have

(= AR — 1) — L QI+ < €y O AT

Theorem 3.2 Let d > 1 and y > 0. Then for any open set 2 C R? with || < 0o,
Oq < oo and the extension property and for all Lo > 0 there is a constant Cy, q 3,
such that for all . > 0 we have

I Tr(= A% = )7 = L3120 2] < Cpang A7 max{1, Go/m) 7 |

Theorem 3.3 Let d > 1 and y > 0. Then there is a constant C,, 4 such that for any
bounded, convex, open set 2 C R4 and for all ). > 0, we have

ITr(= AN — )7 — L Q078 |

<Cya AT max{1, (rin(Q)\/X)_dH }’Hd*l(agz)_

Remark 3.4 A couple of remarks:

(1) The bounds in Theorems 3.1, 3.2 and 3.3 are important ingredients in the proofs
of our main results, Theorems 1.1 and 1.2. Once these main results have been
shown, we deduce conversely that the error bounds in Theorems 3.1, 3.2 and 3.3
are order-sharp as A — oo.

(2) We find the simple dependence on €2 of the error bounds in Theorems 3.1 and
3.3 quite remarkable.

(3) Theorem 3.1 provides an analogue for y > 0 of Seeley’s bound (3) from [89,
90]. The latter bound was proved under several smoothness conditions on the
boundary, while our point is that no such conditions are necessary, as soon as
one moves away from y = 0.

(4) The special case y = 1 of Theorem 3.1 is proved in Safarov’s paper [86], except
for the issue discussed in Remark 9.10.

Proof of Theorem 3.1 Decomposing € into the two sets {x € Q : do(x) > 1/+/A} and
{x € Q:dq(x) < 1/+/A} we have

Tr(—AB — 0 — L, Q)27+

/Q((_Ag — 0 (x,x) — L;idv+%)dx

d
5/ |(—Ag—A)Z(x,x)—L;CdxHﬂdx
{xeQ:dq (x)<1/v/A} ’
+/ (—AB =) (e, x) — LI 278 dx.
{(reQuda(x)=1//2) '
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1024 R.L. Frank, S. Larson

The first integral we bound using Proposition 2.2, for the second we use Theorem 2.1
with ¥ = 1. This yields

d
Tr(—Ag — 1) — LY 1@V F2| 5,

(A”Tﬂ{x € Q:dg(x) < 1/VA)]

+/ do(x)~17 dx)
{xeQ:dq(x)=1/+/1}

frmn{)» T, do(x)” ! V}
Q

+d—1

Sy *
It remains to prove an estimate for the integral in the last line.
By the layer cake representation, Fubini’s theorem, and a change of variables
ty

A
/mln{ ,do(x)™177) dx—// LiyeQudg(y)-1-7 =1 (X) dtdx

+v

E 16
=/ l{x € Q:do(x)™"7 >1}|dt (16)
0
o
_ l{x € 2:dg(x) < s}
={1+y) U Tty ds
Since
(o) o o
[ CERT P L IR
1V sy N/ TN/ 1
this completes the proof of Theorem 3.1. g

Proof of Theorem 3.2 As in the proof of Theorem 3.1 we decompose €2 into the two
sets {x € Q:dq(x) > 1/+/A} and {x € Q : dg(x) < 1/+/A}. In the first set we again
apply Theorem 2.1 with « =1 in the second we apply Proposition 2.3 with A¢ re-
placed by Ao. Assuming that ri,(€2) > 1/+/4, this yields

Tr(—AN = 1) — L3, [Qa7

5/|(—A§—A)Z(x,x)—LS;d)\V+%l|dx
Q

<C, g, TE(L+ Go/)l(x € Q:da(x) < 1/VA)]

y+d-1

+Cyah do(x)™'"77 dx

/{xegzdg(x)>1/ﬁ}

W+ (XO/A)%)f min{% %", do ()7} dx
Q

’S)’,Q,Xo
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The bound stemming from (16) therefore implies that
Tr(— AN — )7 — L Q175 | < C, 5 47T (14 (o/1)%)Og
+451 e
= C%Q’;O@Q(AV T+ AYT2G)
d
<C, 05,092 T 0 ()R Ao ) -

If rin(Q) < 1/7/A, then the set {x € Q : do(x) = 1/+/A} is empty and Proposi-
tion 2.3 (with Ag replaced by Ag) yields

! d d ~ d
Tr(—Ag — 0 = LYIQUFZ < C, o 5 W2 (14 Go/M)?) 1€
= d
<C, a7, e 2(14 (R0/2)?)Ogrin(R2)
i1 _d
<C,05,@2(W T + A (@A)
d—1

- ~d
Given Ao we choose Ag such that ri; ()4 = koz (note that rip () <q |2|/¢ < 00).
This completes the proof of Theorem 3.2. g

Remark 3.5 Concerning the assumptions of Theorem 3.2, we note that any open set
Q c R? with the extension property and finite measure is bounded. This follows
easily from the density bound [34, Equation (2.64)]; see also the references therein.

Proof of Theorem 3.3 Similarly to the previous proofs we split the integral and this

time apply Proposition 2.4 in the set {x € Q: dq(x) < 1/+/A} and Theorem 2.1 in
the set {x € Q: dq(x) > 1/+/A} with k¥ = 1. In this way we find

Tr(—AYN — 1) = LY Q7+

d—1 1
Syd A / min{)\¥,dg(x)7177’}dx
Q

+M’/ Va(x, 1/v/3) " dx,
{xeQudo(x)<1/v/4}

a7
where we abbreviate Vo (x,r) := |2 N B, (x)].
In Lemma A.3 we shall prove that

Hx € Q: do(x) <s}| <sH' Q).
Therefore, using (16) we find

00 d—1 o0
/ min{)»HTy,dQ(x)flfy}dxi(l‘H/)/ Hli_:)ds
o Vi s

1
Y190
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1026 R.L. Frank, S. Larson

Thus, the first term on the right side of (17) is bounded by the quantity in the right
side of the inequality in Theorem 3.3. Therefore, the theorem will follow if we can
show that for all £ > 0 we have

ed
— dx <g |+ rin () |1 (09) . (18)
~/{.er:dQ(x)<Z} Va(x, ) [ " ]

Indeed, this inequality with £ = 1/+/A shows that also the second term on the right
side of (17) bounded by that in the right side of the inequality in Theorem 3.3.

We now turn to the proof of (18). Let {xk},’{‘/i':1 C {x € Q:dq(x) < £} satisty
Be(xx) N Be(xj) =0 for k # j and {x € Q : dq(x) < £} C U}{"I:]Bzg(xk). The ex-
istence of such a collection can be proven by induction as follows. Start by choosing
an arbitrary point in {x € Q : dq(x) < £}; then, given a finite collection of points
with pairwise distances > 2¢, we can either find a new point in {x € Q : d(x) < ¢}
whose distance to all of the previous points is > 2¢ or the collection satisfies that
{(xeQ:dokx) <t} C Uk By (xx). Since {x € Q:dq(x) < £} is bounded, the algo-
rithm terminates after a finite number of steps.

It follows from the Bishop—Gromov comparison theorem that the function

rd

Fe —
Va(x,r)

is nondecreasing for each x € R (see Lemma A.5). Together with the properties of
the collection {xz}27, it follows that

M

ea’
<3 / _Y
i JenBy ) Val(x, )

M d
k=17

NBog(xx) VQ (X P 43)

ea’
f _Y
(reQdo(x)<t} Va(x, £)

For any x € Bag(xx), 2 N Bag(xg) C 2 N Bge(x) and so Va(x, 4f) > Vo (xx, 20).
When inserted into the previous bound this yields
S / 40!
——dx
QN By (xy) VQ (xk7 2{)

Kd
[
(reQdo ()<t} Va(x, £) P

=49pef .
It thus remains to bound M. In order to do so, we write
|U,1€W=135(xk)| - [{x € Q:dist(x, 0Q) < 2¢}|
|B1] - |B1]

l{x € Q€ : dist(x, Q) < £}
| B1| ’

M=

We estimate the two terms on the right side separately.
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For the exterior term Proposition A.6 implies

[l € : distCr, R) < €] Sa HO OR)[ 1+ (,. fg))dil]‘

For the interior term we bound
20
[{x € Q :dist(x, 902) < 2¢}| :/ ’Hd_l(a{x € Q :dist(x, 92) > n}) dn
0

<2H1(39).

The last bound comes from the inequality H4 ™' (d{x € Q : dist(x, dQ) > n}) <
HI=1(3Q) (see Lemma A.2).
Combining the above bounds proves (18) and thereby completes the proof. |

We note that the case y = 0 is not included in Theorems 3.1, 3.2 and 3.3. Although
it is not needed for our later arguments, we state the following result for y = 0.

Proposition3.6 Lerd > 1 and let @ C RY be an open set with |2] < 0o and Og < co.
Then for all A > 0,

ITr(—AB = 2% — L1212 | < 4001 T (1 + In, (rn(VR)),

where Cg is a constant depending only on the dimension. Moreover, if Q additionally
has the extension property, then for any Ao > 0 there exists a constant Cgq 3, so that
forall & > 0,

—1

Tr(—AN =)0 — LRI | < Ca g T (max{1, (/)T } +1In (rin(@)VR)) -

Proposition 3.6 can be proved by following the proofs of Theorems 3.1 and 3.2
given above. The only change in the argument is that one needs to take into account
logarithms appearing upon integration. In this case, the error term obtained is not
of the (conjectured) sharp order, but is only off by a logarithmic term. Essentially
the same result was obtained by Courant [18] using a completely different method,
based on Dirichlet-Neumann bracketing. A detailed proof in the Dirichlet case ap-
pears in [78, Theorem 1.8]; see also [34, Corollary 3.14] and references therein. We
have not found the result in the Neumann case in the literature, even though closely
related results appear, for instance, in [78].

Remark 3.7 In the results above we have assumed that ®q < oo in order to obtain
the order-sharp bounds that are needed for the applications to two-term asymptotics.
However, the proof provided establishes Weyl’s law for Tr(—A’g't2 — )" under the
assumptions of Proposition 3.6 but in place of ®g < 0o assuming that

/Oo {x € Q:dqo(x) < s}
2+ d
1/v% s

Ity
s=0o(A"2 ) asi— o0.

In particular, if [{x € Q : dq(x) < s}| ~ s# for some 0 < 8 < 1 the proof reproduces
the order of error predicted by the modified Weyl-Berry conjecture; see, e.g., [61].
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1028 R.L. Frank, S. Larson

4 Two-term asymptotics for Riesz means with y > 1

In this and the following section we will prove Theorems 1.1 and 1.2. We will dis-
tinguish the cases y > 1 and y < 1, treating the former case in this section and the
latter one in the next. As the main point of our paper is to treat arbitrarily small y,
the present section is in some sense a preliminary step towards this goal. In fact, the
asymptotics for y = 1 will be one ingredient in proving the asymptotics for 0 < y < 1
in the next section. The same applies to the non-asymptotic bounds in the case of con-
vex sets.

The y > 1 parts of Theorems 1.1 and 1.2 concerning the Dirichlet case are essen-
tially contained in our previous work [27]. The results in the Neumann case, how-
ever, seem to be new. We have devised an argument that allows us to deduce the
asymptotics in the Neumann case in Theorem 1.1 from those in the Dirichlet case
via (known) heat trace asymptotics and a (known) Tauberian theorem. A similar ar-
gument works for the non-asymptotic bound in Theorem 1.2, except that now nei-
ther the non-asymptotic heat trace bound nor the non-asymptotic Tauberian theorem
seemed to have been known. We will prove the latter in Part 2 of this paper while the
former is proved in the companion paper [31].

The two subsections in this section are devoted to Theorems 1.1 and 1.2, respec-
tively, in the case y > 1.

4.1 Proof of Theorem 1.1 fory > 1

We begin with the Dirichlet case.

Proof of Theorem 1.1 fory > 1,# =D The assertion of the theorem for y =1 is
proved in [27]. The assertion for ¥ > 1 can be easily deduced from that in the case

y = 1. Indeed, for any lower semibounded operator H, any constant A and any y > 1
we have

Tr(H —)»)7: =y - 1)/ ‘L'V_ZTI‘(H —A+7T)_drt. (19)
0

We apply this formula with H = —AD. In view of the formula

LSC )\‘}/+2 _/ (|E|2 )\’)V E
@n)*

2 2 d§
—V(V—l)/ 120 /(ISI —)»+T)7(2 )d

=y(r -1 / 2, G-
0

the asymptotics for y > 1 follow from those for y = 1 by a simple limiting argu-
ment. For the details of a similar argument (where asymptotics for y > 0 are deduced
from asymptotics for y = 0) see [34, Corollary 3.17]. This completes the proof of
Theorem 1.1 for#=D and y > 1. O
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We now turn to the proof in the Neumann case. The basic strategy will be to deduce
the asymptotics in the Neumann case from those in the Dirichlet case. To do this, we
combine asymptotics for the traces of the associated heat kernels with a Tauberian
theorem. The following theorem of Brown [11] provides the relevant asymptotics for
the heat trace.

Theorem 4.1 ([11]) Let d > 2 and let Q C R? be a bounded open set with Lipschitz
boundary. Then, as t — 0,

Tr(e'28) = —— <|sz| S ) +o<¢?>)
(4r1)7 2
and
Tr(e'2%) = ; (|sz| + i1 00 +o<ﬁ>> :
(471)2 2

Proof of Theorem 1.1 for y > 1,# =N We consider the function
FO) :=Tr(=AR =) —Tr(—=AB —2)_.

We claim that f is nondecreasing. Indeed, since for any lower semibounded operator
H we have Tr(H — 1)_ = ffoo Tr(H — 11)° dju, we have

A
poy= [ (185 = ) = Te(-88 = °) du.

—0Q0
In particular, when 1| < X, then

A2
FO2) = fn) = f (m_Ag —)° —Tr(—AB - u)?) dp.

Al

Since, by the variational principle, Tr(—Ag —n)? - Tr(—AP2 —)? >0 for any p,
we deduce the claimed monotonicity.
We note that

o N D
/ e~df () =17 (Tr(e'*2) — Tr(e'2)).
0
Thus, Theorem 4.1 implies that
o0 1
/ e df (V) = ———HT @D +o(1)) ast— 0.
0

2t(4mt) 7

It follows from the standard Tauberian theorem (see, e.g., [91, Theorem 10.3] or [56,
Theorem VII.3.2]) that

fo)= HITTOQAT (1 +0(1))  as i — oco.

26 T (4 4 1)
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1030 R.L. Frank, S. Larson

We note that (47[)_[1%1* (% +1) = LY, _,. Since the asymptotics in Theorem
1.1 have already been proved in the Dirichlet case for y = 1, we obtain the corre-
sponding asymptotics in the Neumann case and y = 1.

The asymptotics for y > 1 are deduced from those for y = 1 by the same argument
as in the Dirichlet case. This completes the proof of Theorem 1.1 for # = N and
y =1 0

4.2 Proof of Theorem 1.2fory > 1

In this subsection we turn our attention to non-asymptotic bounds when the underly-
ing domain is convex.

Proof of Theorem 1.2fory > 1,# =D The assertion of the theorem for y =1 is
proved in [27, Theorem 1.2]. The bounds for y > 1 are deduced from that for y =1
by means of the integral identity in (19). This completes the proof of Theorem 1.2
for#=Dand y > 1. 4

It remains to prove Theorem 1.2 with # =N, y > 1. To this end we follow the
same strategy as applied above for the asymptotics in the corresponding case of The-
orem 1.1. However, each ingredient in the proof is replaced by a quantified version.
The Tauberian result applied above is replaced by a Tauberian theorem with a re-
mainder estimate, which is a non-asymptotic version of a result of Ganelius [37] and
which will be proved in Sect. 8. Likewise, the heat trace asymptotics of Theorem 4.1
are replaced by the following estimates. If Q2 C R4, d > 2, is a bounded convex set
then, for all > 0,

‘(4m)g Tr(e'28) - |9 + @H"—l(m)‘ < Hd—l(asz)x/?(r_g))“ :
‘(471;)% Tr(e'A%) — |Q| — @H"‘l(ag)‘ (20
d—1 \/Z ﬁ \/; d-1
s “W[(mm)) () }

We emphasize that the implicit constants in these bounds can be chosen depending
only on d. The bound in (20) for the Dirichlet case follows from the bound in [27,
Theorem 1.2] by means of the formula

Tr(e ") = ¢? / e MTr(H — \)_dh,
R

valid for any semibounded operator H and applied here with H = —A?Z. The bound
in (20) for the Neumann setting is proved in [31]. In passing we note that a combi-
nation of our arguments in [31] and those in [27, Theorem 1.2] gives an alternative
proof of (20) in the Dirichlet case, which is more direct than going via Riesz means
[27, Theorem 1.2] and then integrating. Probably this approach would also give a
better exponent than 1/11 in the error term.
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Proof of Theorem 1.2 for y > 1, # =N Consider the function
1
g ==Tr(—=AN — 1) —Tr(—AD —A)_ — 3 LY, 1™ 1(8Q)A1+ 7,

1441
In the previous subsection the function A —> g(A) + 5 1pse Ld— lHd_l(BSZ))»++ 2 was

shown to be nondecreasing. Consequently, the Borel measure i on [0, co) defined by

) :=/dg(k)+( : D Ta IHd_l(BSZ)/ATdA

is nonnegative.
We note that

foo e rdg(n) =17 (Tr(e’A?z) — Tr(e'22) — (4m)‘%«/ﬁ’ﬂd‘l(89)) ,
0

and for y > 1

A 1—
/ (1 —v/0) tdg(v) = u(Tr(—Ag — Y = Tr(=A5 — 1)
0 Y
' 2n

~ 3Ly I’Hd—l(asz)ﬂ“%').

By (20) it holds that

d—1 & d—1
V e d (A)‘ i (39)[< vt ) +<i> ] forall > 0.
[+ rin(£2) Tin(§2)

The Tauberian remainder theorem in Proposition 8.1, applied with v = d%l

Z 1’
implies that there are constants B, ko depending only on d, y such that for all k > kg
and A >0

s
| / (1= /0 dg(v)|
0
<y Hd—l(aQ)BkAH%
_ 1 _
x nllaxk|:j_1_Tl 2 (rin(QVA) T+ 7 (rin (V) d}
L qgd—1 1+451
-I—ky’H, OR)A T2
d- -4 _
:Hdl(aﬂ)BkA1+l21|:(rln(Q)«/—) T 4 (rin(Q)V2)" d]
+ L1+t
kv
Without loss of generality we may assume that B > 2.
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For ¢’ > 0 to be chosen we set

k = max{ko, | ¢’ ln(rin(Q)«/X)/ln(B)J }.

2k
Then if A < rin(2) 2B ¢, we find that

HA-1(99)

A
P P . 1Y
[ =g Sy o

%
If instead A > rin(Q)_zB < and we choose ¢’ < ﬁ,

A
[ vy tagw)

Spa W 0T [(Fin(ﬂ)ﬁ)_‘l_'“/ + (rin(sz)«/i)l‘d“’]

1
¢ In(rin()V/2))”

d—1

Sy HTHO@QATT (14 1Ing (rn()V2)) 77

del(ag)/\u%

i

In conclusion, for any d > 2, y > 1 and all A > 0,

A
|[[a=umytago)
’ (22)

SO 0@ (1 (Vi @)+ (m(@VE) ]

Consequently, by (21), (22), and the quantitative two-term asymptotic expansion
of Tr(—AB — 1)” obtained from [27, Theorem 1.2] combined with (19),

1 )
Tr(— AN =)/ — L 1M+ - ZL;ﬁd_IHd—l(asz))\W‘Tl

A
yarl / (1 —v/2) Vdgw) + Tr(—=AB — 1)) — L;ﬁd|9|xy+%
0

+ 1 sc Hd—l(agz))\')/-l-%

Z y.d—1
A
<|yar! / (1 —v/1)7 " dg )
0
1 _
+|Tr(=Ag =) — Lsyc,dlﬂlk”% + ZL;ﬁd_IH"*l(aQ)xH%
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< M @At [(1 + Iy (Vorin(@) 77+ (rin(@VR) T
+ (rin(Q)\/X)‘l‘:|

SyaHI 02 (140 (@) 7+ (m(@VR) .

This completes the proof of Theorem 1.2 for y > 1 and # =N. g

5 Two-term asymptotics for Rieszmeanswith0 <y <1

In this section we will complete the proofs of Theorems 1.1 and 1.2 by considering
therange 0 <y < 1.
Our proof of the first theorem will rely on two main ingredients:
(1) The one-term asymptotics

Tr(— Ak — 1) = LR + 007+ 23)

with order-sharp remainder, which are valid for arbitrary small y > 0; see The-
orems 3.1 and 3.2.
(2) The two-term asymptotics

Tr(—AL —0)- = LIRS ¢ %L;fd,lﬁd—l O T o+,
(24)
valid if €2 is open, bounded, and has Lipschitz regular boundary. This is a special
case of Theorem 1.1 that was proved in the previous subsection.
The important tool that we will use in order to tie these two ingredients together is a
convexity result for Riesz means, due to Riesz, which we will discuss in Sect. 7.
To prove Theorem 1.2 we follow the same overall idea. However, now we rely

in addition on quantitative estimates for the error terms in the asymptotic expan-
sions (23) and (24).

Proof of Theorem 1.1for0 <y <1 Weset tp=—1, tn =1 and
FO) = LEQDE + T LS, 1T 0@ —Tr(—al - 1)°.

Set f(()) := f and for k¥ > 0 define f(l{) by

1 A
90 = s /0 (= F ) .

Note that
f(y)(k)
1 —_
= m(L;CAQMV"'% + %L;Cd_lﬂd_l(aﬂ))\y—’_d% —Tr(—Aq — )L)Z) .
Y ’ .
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1034 R.L. Frank, S. Larson

Therefore, the claim follows if we show that f MK = 0(k7+%).

We fix 0 < k < y and apply Proposition 7.1 to the function f*, y replaced by
1 — k, and 0 = y — k. By the semigroup property of Riesz means (see (29) below),
we then obtain

=

Y=k Y=

I=1= =
If(y)()»)ISC< sup If(K)(A)I) 1 (sup |f“>(A)|)' : (25)
]

A€[0,1] Ae[0,A

By Theorems 3.1 and 3.2, we have

sup [ £ (A)| = 0T,
A<

(Here, in the Neumann case we use the well known fact that bounded Lipschitz do-
mains have the extension property; see, e.g., [34, Theorem 2.92].) By the y = 1-case
of Theorem 1.1 proved in the previous section, we have

d—1
sup [ A =0 TTT).
A<

The assertion now follows from the fact that

e A YU L AW 2l RN el AV et
-« )\* T2 11—« 2 )TV T

This completes the proof. g

The proof of Theorem 1.2 is almost identical to that of Theorem 1.1 presented
above, but in each step we rely on quantitative asymptotic inequalities instead of the
non-quantitative versions used above.

Proof of Theorem 1.2for0 <y <1 We define f, f*) as in the previous proof and
recall inequality (25). We need to bound the two suprema on the right side.
We begin with the bounds for f*) with ¥ > 0. In the Dirichlet case we have

sup [ £®(A)] < €y H @A T
A<i

This follows from Theorem 3.1 since the convexity assumption implies Oq <
HI=1(3Q); see Lemma A.3. In the Neumann case we have

sup [ £ (A)] < €y g HI (092) (x”"%l Y rin(gz)‘*d) .
A<A

This follows from Theorem 3.3.
Next, we turn to the bounds for f (D In the Dirichlet case we have

_ 1
sup | FO(A)] < Cp g H O T (rin(VA) T
A<
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and in the Neumann case we have

sup |/ (A)] = €y B GA T [(1410, (rn(@VA) ™'+ (rn(@VR) ]
A<i

Both bounds follow from the y = 1 case of Theorem 1.2, which has already been
proved in the previous section.

The assertion of Theorem 1.2 now follows as in the previous proof, together
with the fact that (0,y) 3 k }1/:5 is a continuous decreasing function with

: Y=k _ : Y=k _
lim, o+ = =y and lim,_, ,- 7—-=0. O

6 Variations on the theme

The method that we have applied in the previous section to prove Theorems 1.1 and
1.2 for y < 1 is rather general and can be used in other situations as well. In this
section we sketch four further sample applications.

6.1 Two-term Riesz means asymptotics from two-term asymptotics for the heat
trace

In this subsection we discuss a closely related but slightly different route to get around
the poor performance of Tauberian theorems for the Laplace transform in regards
to two-term asymptotics. The upshot of this method is that one avoids comparing
the Neumann and Dirichlet Riesz means as in our proof of Theorems 1.1 and 1.2,
and uses only information for the operator of interest as input. The downside is that
the proof relies more crucially on the fact that we are considering the Dirichlet or
Neumann Laplace operators, and generalizing this approach to a more general context
appears difficult.

Theorem 6.1 Let d > 2, # € {D,N}. Let Q C RY be an open set satisfying that, as
t— 0,

Nt
2

1
Tr(e'22) = - <|sz| + 14

oy HIH @) + o<ﬁ>> : (26)
Tt)2

Then, for all y > 2,
_AB VY _ psc y+% L Hose d—1 y+a5t y+4t
Tr(—AG — A7 _Ly,d|Q|)L z 4+ ) LWFIH @A T2 +o(AYT 7)), (27)

as A — o0.
1If, in addition, there is a yy € [0, 2) so that

Tr(_A?z -0 = L;f)’d|Q|)\VO+% + 0(kVo+%) ,
as A — 0o, then (27) holds for all y > yy.
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1036 R.L. Frank, S. Larson

Proof By the Berezin—Li—Yau [8, 69] (for # = D) and Kroger’s inequality [59] (for
#=N) it holds that, for all A > 0,

Tr(—AB — A)- < LY, QTS < Tr(—aN — ).
It thus follows from (19) that
FO) =Tr(=Ak — 0% — L, Qa2+

is monotone (increasing for # = N, decreasing for # = D).
By (26),

[ e aro = (st — @ 4i)
0
T4

WHd LOQ)( +o(1)).
t Tt) 2

The standard Tauberian theorem (see, e.g., [91, Theorem 10.3] or [56, Theorem
VIL.3.2]) implies that

f0) = —L;Cd VH LA T (1+0(1))  ash— oo,

This proves (27) for y = 2. The claim for y > 2 follows from the fact that, for all
A>0and y > 2,
# Y x 3 # 2
Tr(—AG — M. = —/ VP Tr(—AG — A+ 1) dT.
. vy =Dy =2 Jo .
To extend the two-term asymptotics to y € (yp, 2) we argue as in Sect. 5, but now
we interpolate between Riesz means of orders 2 and yy instead of between Riesz
means of order 1 and some 0 < x < y. This completes the proof of Theorem 6.1. [

We have chosen to formulate Theoremﬁil in the case where the second term in the
heat trace asymptotics is of the form Ct~ 2 .In principle the argument might be also
applicable when the second term is of the form C¢~ for some 0 < 8 < 1. Sucha
situation can occur if the boundary of €2 is fractal- llke and d — B is the dimension,
in some sense, of 2. The heat trace asymptotics then give two-term asymptotics for
Riesz means with y > 2. If, at the same time, N (A, —A%) = Lafd|§2|)\% + 0()»%),
then this gives asymptotics for Riesz means with any y > 0. Examples of heat traces
that show this behavior can be found, for instance, in [62]. Moreover, in the Dirichlet
case a sufficient condition for the required bound on N (A, —A?z) - Lff d|Q|A% is
given in Remark 3.7. We refrain from pursuing this further.

6.2 Three-term asymptotics in planar polygons
Let  C R? be a bounded, open set whose boundary is polygonal; that is, d$2 consists

of a finite number of line segments {ey, ..., e,} that meet only at their endpoints
{p1, ..., pn} and each endpoint is shared by exactly two of the segments. The interior
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angle at the vertex p; is defined in the natural manner and here denoted by «; €
0, 2m].

The following theorem provides a non-asymptotic bound on Tr(—Ag -7,
which depends in a rather explicit way on the geometric characteristics of 2.

The geometric characteristics in question are as follows. For each vertex p; of
Q let W; denote the infinite wedge with vertex p; and opening angle «; with the
property that the two edges of €2 adjacent to p; are contained in d W;. Define

o= min «;,
i=l1,..., n

W;(r):=W; N B.(p;),

1 n
Ri=3 sup{r >0: W) NW;(r) =@ foralli # j, | JWir) Q] .
i=1
The following is our result concerning non-asymptotic bounds for planar poly-
gons.

Theorem 6.2 Let Q C R? be a bounded, open set whose boundary is polygonal with
interior angles {a;}!_,. Then, for all y > 0 and A > 0,

7? — a2
247 o

1 n
Tr(—AG—W)Y — L, + ZLS;lHl(aszw+% — A Z
i=1

. _v#l 121\ 1
< C, (1 + Rsin(a/2)%1) 2 (|QW+1 + <n n F)Eﬂ)’

where the constant C,, depends only on y .

Besides the non-asymptotic bound in the Dirichlet case, we also have an asymp-
totic result in the Neumann case.

Theorem 6.3 Let Q@ C R? be a bounded, open set whose boundary is polygonal with
interior angles {o; ;’:1 Afy =0, then, as L — 00,

, 1
Tr(~AN — )7 = LI, |Q 4 ZL;ﬁl’i—L] (AQ)AY+3
"
A
+ ; 24w o
We emphasize that the bound in Theorem 6.2 is non-asymptotic, reminiscent of
that in Theorem 1.2, but here we do not assume convexity. Asymptotically, as A —
00, the following accuracy of the bound should be emphasized:
(a) For y = 0 the bound reproduces the correct leading order term and gives an
order-sharp remainder (to be compared with the logarithmic excess factor for
more general sets in Proposition 3.6). This was previously proved in [7, 23].

(b) For 0 < y <1 the bound correctly reproduces the first two asymptotic terms
and gives an order-sharp remainder term. (This is reminiscent of Theorems 1.1

2
L4007,
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and 1.2, but here in a uniform way without assuming convexity.) Similar, but
different bounds of a comparable accuracy appear in [23]. (The difference is
that there the author considers Riesz means with respect to the variable A,
while we consider Riesz means with respect to the variable A.)
(c) For y > 1 the bound correctly reproduces the first three asymptotic terms. As
far as we know, such asymptotics have not appeared in the literature before.
Corresponding remarks apply to Theorem 6.3.

We have restricted ourselves to the two-dimensional case. Some asymptotic results
for the case of d > 3 can be found in [24].

The non-asymptotic bound in Theorem 6.2 might be useful in spectral shape op-
timization problems for polygons, just like our Theorem 1.2 will be useful in such
problems for convex sets. In fact, the motivation for the present paper came from
a question, asked by J. Lagacé at an Oberwolfach conference in summer of 2023,
concerning spectral shape optimization problems for polygons. We are grateful to
J. Lagacé for a stimulating discussion.

The input in the proof of Theorems 6.2 and 6.3 are corresponding asymptotic
expansions for the heat traces with exponentially small remainder. In the context of
the heat trace it has been known for some time that the presence of corners influences
the short time asymptotics, see e.g. [7, 55, 75, 96]. Motivated by Kac’s celebrated
question ‘Can one hear the shape of a drum?’, recently there have been several works
pertaining to ‘hearing corners’ by means of heat trace asymptotics [48, 49, 74, 81, 82].

In the Dirichlet case the required estimate for the heat trace is provided by a theo-
rem of van den Berg and Srisatkunarajah [96] which states that:

Theorem 6.4 ([96, Theorem 1]) Let Q be a bounded, open set whose boundary is
polygonal. Then, for all t > 0,

] ’H(E)Q) Zn —a?

T ZAQ
e =gt Y4

20121\ 1 _ 1 pagingay2)?
_( n-+ R2 );6‘ Tor .

Proof of Theorem 6.2 Define a Borel measure on R by
ww) = Z% aB) (@) = L2 f
N(, 00)

1 2 2
+ L H‘(asz)/ A2 d) — () ,
8 0.1 ®N(0,00) Z 247‘[0[1

where &, denotes the Dirac measure at x. Note that the Borel measure i defined by

n 2 2
T —
A(w) := p(w) + do(w) =+ L,l€ dx
; 24 a; 0.2 0N (0,00)
> 1 |
=2 0 cap @+ G LEH (09) AT2d
k=1 wN(0,00)

is a nonnegative measure.
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Recalling that Ly, = #, Ly, = % we calculate

] H(E)Q) Zn —a?

—tA tAD
du) =Tr(e'72) —
/[O,Oo)e e e

Similarly, using the properties of L;C a

f[o (A —v/N)Vdu@) =177 [Tr(—Ag Y - L;ﬁzmwﬂ
,A)

1 2 2
L‘C H (9Q)AY T — 0 ,
AT Z 24ma; }

for y > 0.
By Theorem 6.4 we see that for all t > 0

I

Therefore, Corollary 8.2 yields for any y > 0, A > 0O that

20[€2] o 1o R sin(@/2)?
a2 )

(5+

7'[2—011-2

247‘[05,’

Tr(—=AG — W)Y — L, T + LSCIH QAT+ — 37 Z

R%sin(a/2)? \-4* 20192\ 1 Q
<, )J’<1+ sin(er/2) ) 2 (<5n+ | |)—2+uk)
o

X
16 R? 47
R2sin(e/2)* -4+ 20| 1
< (1 7k) ((5 )—)J’ xV“)
Sy ( N "R 4n
This completes the proof. d

Proof of Theorem 6.3 This theorem can be proved in complete analogy. The use of van
den Berg and Srisatkunarajah’s uniform bound is replaced by the asymptotic bound

Q] H'O0Q) ~ni-ad? .
- 0] 3
4t + 8/t +§ 24 a; +oE)

Tr(e'2%) =

for some ¢ depending on the polygon €2, which appears, for instance, in [48]. The
asymptotic expansion is also proved in [7] but without an explicit expression for the
third term. g

6.3 Remainder terms for more regular boundaries

We return our attention to the asymptotics in Theorem 1.1. As we have already em-

. . d—1 . c1s .
phasized, the remainder term o(A” ™2 ) cannot be improved within the class of Lip-
schitz domains. In this subsection we briefly discuss possible improvements for sets
2 whose boundary has a limited amount of smoothness.
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1040 R.L. Frank, S. Larson

Theorem 6.5 Letd >2,0<y <1,0<a < landlet Q2 C R4 be a bounded open set
with boundary of class CL% Then, as A — oo,

1 _
Tr(—Ag — M) = LSf,,;IQIA“% — ZL;fd,IHd*‘(aQ)AV+%
+ oW T E i)',

Proof We only give a sketch of the proof. We define f and f*) in the same way as
in the proof of Theorem 1.1 and use inequality (25) with « = 0. To bound the term
involving (V) we use the result of [25] (which is the assertion of the theorem in the
special case y = 1). To bound the term involving £ we use Proposition 3.6. g

6.4 Two-term asymptotics for Robin Laplacians

In this subsection we show that our method is applicable to the case of Robin bound-
ary conditions as well. This paper already being long, we have restrict ourselves to
stating a result under assumptions that are stronger than necessary, but we will sum-
marize the main steps of a possible strategy to extend this result. We note that after
the first version of this paper appeared, in [30] we have proved an analogue of The-
orem 1.1 for Robin boundary conditions through a different approach than that we
shall explain here. However, it should be mentioned that the approach followed in
[30] takes Theorem 1.1 with # = N as its starting point.

Note that in the case of Robin boundary conditions the first two terms in the
asymptotic expansion are expected to be the same as in the Neumann case. The de-
pendence on the function appearing in the Robin boundary condition is only expected
to enter in the third term in the asymptotics, provided of course an asymptotic expan-
sion with so many terms exist (which should require y > 1 or at least y > 1). This
expectation comes from the heat kernel asymptotics that appear, for instance, in [9].

We denote the function that appears in the Robin boundary condition by o with the
sign convention that positive values of ¢ correspond to a repulsion from the bound-
ary. Thus, if —Ag) denotes the corresponding selfadjoint realization in L2(Q), its
quadratic form is

/ |Vu(x)|* dx +/ o )u@)PdH T (x).
Q 02

Theorem 6.6 Letd >2 andy > 0. Let Q@ C RY be a bounded open set with boundary
of class ClandletO<o € L*®(0R). Then, as . — 00,

1 _ _
Tr(—AY) — )7 = L Qs + ZL;fd_IHd*I(aQ)x”% Fo(r+ T,

Proof The result for y = 1 appears in [26, Theorem 1.2]. (This is where the C! as-
sumption on the boundary comes in. Note also that [26, Theorem 1.2] does not have
a restriction on the sign of o.) The result for y > 1 follows from that for y =1 by
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the same integration method as in Sect. 4. To prove the result for 0 < y < 1 we argue
as in Sect. 5 and reduce matters to proving the order sharp bound

Tr(—AY — ) =L QW+ o). (28)

In our proof of the latter, the sign assumption on o comes in. (Note however that the
proof is valid assuming only Lipschitz regularity of the boundary.)

To prove (28), we note that the assumption o > 0 implies the operator inequalities
—Ag < —Ag) < —A?z, which in turn implies that

Tr(—AB — 1)) < Tr(=AY) =) < Tr(—=AN —2)".
Therefore (28) is an immediate consequence of Theorems 3.1 and 3.2. O

We believe that Theorem 6.6 extends to the case of Lipschitz boundaries and to
not necessarily nonnegative functions o and we expect that our methodology should
allow to prove this. There are, however, several steps that need additional work.

To obtain two-term asymptotics for y > 1 in the Lipschitz case one can try to fol-
low the method in Sect. 4, comparing again with the Dirichlet Laplacian. (To achieve
(o)
Q

a higher accuracy one might also compare first —A,” with —Ag *) and then compare

- Agi) with Ag. This higher accuracy might be relevant for three-term asymptotics.)
This comparison reduces the problem to proving an analogue of Brown’s result (The-
orem 4.1) with Robin boundary conditions. We have not pursued this.

To obtain two-term asymptotics for 0 < y < 1 one can try to follow the method in
Sect. 5. Given the asymptotics for y = 1, one needs to find an order-sharp remainder
term as in Theorem 3.2. In the case o > 0 this was achieved in (28) in the proof above.
For general o one could try to follow the proof of Proposition 3.2, based on pointwise
bounds. A pointwise bound in the bulk can probably be obtained via wave equation
methods. (Some modification to what we explained in Sect. 2.4 is necessary when the
operator is no longer nonnegative.) One should also be able to deduce an analogue of
the heat kernel bound in Lemma 2.6, which would then lead to a pointwise a priori
bound that can be used close to the boundary.

This concludes our outline of how we believe one can extend Theorem 6.6. Finally,
we mention that it is also interesting to consider the Robin problem in a semiclassical
form where the boundary condition depends on the semiclassical parameter; see [26].
In this setting the contribution of the boundary condition can appear already in the
second term of the asymptotics. Since one is no longer dealing with the spectrum of a
single operator, but rather with the spectra of parameter-dependent operators, it is less
clear to which extent the methods of the present paper can be applied. We consider
this a worthwhile problem to study.

Part 2. Tauberian theorems
7 A convexity theorem of Riesz

An important role in our analysis is played by a result of Riesz stating the log-
convexity of Riesz means [84]. For A > 0, ¢ a bounded measurable function on [0, A],
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k >0, and A € [0, A] we define
1 A |
e (A) = — / (A= ouwydu,
() Jo

and set q)(o) (A) := @(A). There is no canonical choice for the normalization of the
Riesz means. The above choice, which is the one from [84], leads to the semigroup

property
(P )P (A) = 1T (A) . (29)
The result of Riesz that we shall rely on can now be stated as follows. For the sake

of completeness we reproduce Riesz’s original proof below; this proof also appears
in [16]. For an alternative proof see [51].

Proposition 7.1 Fix y > 0. There is a constant C < oo such that for all ). > 0, every
bounded, measurable function ¢ on [0, A] and every 0 < o < y, one has

a

-2 -4
sup |¢<"><A>|SC( sup]|<p<A>|> ( sup |¢<V)<A>|)y.

A€[0,7] Ae[0,A A€e[0,7]

Before giving the proof of the proposition we state and prove an auxiliary asser-
tion.

Lemma7.2 LetO <y <1,0 < Ay <A and let ¢ be a bounded, measurable function
on [0, A1]. Then there is a Ay € [0, A1] such that

Al Ao
=) o du = A (o — 1) oy dp.

Proof of Lemma 7.2 For y = 1 the claimed equality follows by choosing Ag = Aj.
For fixed 0 < y < 1 and 0 < A1 < X we introduce the function

M(A): Oo—mw)? N pu—N)"Vdp  for0O<A <i;. (30)

1 M
a W/A
From the identity (see, e.g., [80, Eq. 5.12.1])
1 A 4 _
m/;\ A=) (u—=A)""Vdu=1

it follows that

A
- A=) N w—=AN)"Vdu. 31
Fo) T =) M( W’ (u ) w 3D

From this formula it follows that M is differentiable. We claim that

M(A) =1

Al
(A—/L)V_IM’(A)a’A:—()»—,u)”‘1 forall0 < pu < Aqp. (32)
%
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To prove this, note that

Al 1 d A
f (A—M)V_IM’(A)dAz———(/ (A—,u)VM’(A)dA>.
n ydu\Ju

By integration by parts, the definition of M, and interchanging the order of integra-
tion, one computes

A A
/I(A—mVM/(A)dA=—y/ (A — w7 M(A)YdA
n n
y A Al | |
=-— 7 A=) 'O0=uHrtw = AN)Vdu dA
F(y)F(l—y)/M A( WA =) (= A) T dp

Ao
14 —1 Ny—1, 1 — /
= A=) Y= —A)VdAd
w)m_y)fﬂ /M A=W o=yt —A) I

Al
=—y | —w)ytay
)7

== =G —p?.

Taking the derivative with respect to u one arrives at the claimed formula (32).
Integrating (32) against ¢ and interchanging the order of integration, we obtain

Al Al A
= () dp = —f / (A=W’ ey du M'(A)dA .
0 0
Noting that M’ < 0 by (31), we deduce from the first mean value theorem that there
isa 0 <A’ < Ay such that
A 1 A 1 A
/ A=) () du = —/ =) e(wdu M'(A)dA.
0 0 0
Since M (11) = 0, this is the same as
A A

A =W o du = M(0) A O =W e du. (33)

By (30) and (31) 0 < M(0) < 1. The function s fos (s — M)V_lgo(u) du is contin-
uous and vanishing at s = 0. Therefore, the intermediate value theorem implies that
there is a 0 < A9 < A’ such that
ho 1 , 1
(o=’ oWy dpu = M(O)/ W =W ewdu,
0 0

which combined with (33) proves the assertion of the lemma. Il
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Proof of Proposition 7.1 Set for k >0

@, = sup |p®(A)].
Ae[0,A]

The inequality claimed in the proposition then becomes

-2 <
D, <CP, '@ .

Step 1. We first assume y < 1. For 0 < A; < A < A to be determined, we split

1 A
P (N) = —/ (A=) odu=1+11
') Jo

where
1M )
I:= %/O (A=W p(u)du,
1 A |
I:= % N (A=) eu)du.
1
We bound

1 A
1| < —— A— )t d
| 'frm/m( 07 o) du

A

1
<®g— | (A=)’ ldu=

T(0) Ja, ar(o)%(A—AI) '

On the other hand, by the second mean value theorem, for some 0 < A’l < Aj,

1=t [N - e e
=t n W’V o(uydu
1 A

=—— (A=A A—w o du.
F(0)( 1) A’l( W’ o) dup

By Lemma 7.2, there are 0 < Ag < Aj and 0 < Aj, < A} such that
Ay | Ao |
/0 (A — o) dp = /0 (Ao — " o).,
A} . Ay .
fo (A= )"y dp = fo (N = ) gy dp.
In particular, we find that

Aq
/ (A — ) p(u)dp
M

<2l'(y)®,
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and therefore

< )

_ o=y
< Ty S (A AT

To summarize, we have shown that, for any 0 < A < A <A,

1 2I'(y) _
(o) _ o _ oy
[ (A)] < oF(o)(bO(A A1) +—F(o) D, (A=A .

1
IfFA>(2(y —o)T(y) %)7 we can choose

_ Py Ny
Ar=A—(2(y —o)I'(y)
o)
and obtain

o ¥ —142 oo
PINEP R L (R T
I'ec+1) y

. CDV 2
ifAz (20 —oro) L)
Do
At the same time, we have for all A € [0, A] the trivial bound
o' P (M) <

< DoA7,

#/A(A— ) o(wd
T(o) Jo 123 o\p)apn

ol'(o)
which corresponds to taking A = 0, so that the term [ is absent.
1
Note that as long as A < (1 — %)_% (2()/ —o)'(y) %’))7, the trivial bound is

1
better than the first bound. Since (1 — %)_F > 1, this covers the whole parameter
regime and therefore

oI 1% 142 q_2 ¢
Icp(")(A)lsm%( —%) "®, "®L  forall A €[0,A].

Furthermore, since I'(1 + «) € [1/2, 1] for k € [0, 1] we have

Ly +br _,
Co+1) —
forall 0 <o <y <1 and thus
©) 1+ oNTIHF =5
0@ (A)] <2 V(l——) ®, 'O, forall A€[0,A].  (34)
y

By maximizing with respect to o/y € (0, 1) one observes that

a —1+7
25 (1 —3> " < 4e%
y

forall0 <o < y.
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1046 R.L. Frank, S. Larson

Step 2. We now extend the previous result to arbitrary y > 1.

Fix y > 1 and choose N € N with N > 2 such that % < % (To make N unique,

1 L )
we could assume ¥ > 3, but this is not necessary.) Set y, := & forn =0, ..., N.

Our first goal is to prove the inequality

11— Y

@, <Cd, '@  foralln=1,...,N—1, (35)

with a constant C which is only allowed to depend on y .

To prove (35), we use the semigroup property (29). Applying the bound (34) from
Step 1 to the function ¢*»~1) with y replaced by Y41 — yp_1 = ZWV <1 and o by
Yn — Yn—1 = &, we find that

Nl—

(DVVL = 4 (q))’n—l q)yn+l)

It follows now by iteration that

- rn
@, <4"NVP T @)

Indeed, this inequality is obtained by multiplying the inequalities

m(N—n)

CD%N_”) <4m"WN=m (@, @, ) ? form=1,...,n,
and
n(N—m)
QUN=M < gnN=m) (@, @y, )2 form=n+1,...,N—1.

Estimating 4"V =" < 4NTZ and noting that N only depends on y, we find the
inequality we set out to prove.

This proves the inequality in the proposition if o = y,, for some n =0,..., N.
When ¢ is not of this form, we choosen =1, ..., N such that y,,_1 <o <y, and we
apply the bound from Step 1 to ¢"»-1), using the semigroup property. We obtain

Yn—0 o Yn—1

1 — —
A Yn—VYn—1 Yn—Yn—1
(l) 2 (l) (l)
o <de Yn-1 Y .

Applying the interpolation inequality for y,—; and y,, proved above we finally obtain
the inequality claimed in the proposition. This completes the proof. O

8 A Tauberian theorem for the Laplace transform

This section is devoted to Tauberian theorems for the Laplace transform. The results
as well as their proofs essentially go back to the work of Ganelius [37]. However,
in the applications of these results in the present paper it is necessary to have state-
ments that are uniform and not only asymptotic in nature. For this reason we provide
complete proofs.
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Asymptotic results that are related to those in [37] have been announced in [4]
for y =0 and in [38] for general y > 0 without proofs. See also [32, Sect. 2] for a
related, but different non-asymptotic version of a Tauberian theorem of Ingham.

Proposition 8.1 Let 1 be a locally finite signed Borel measure on R. Assume that
there exist finite collections {K,-}l{\]:0 C [0, 00) and {v,-}lN | C (0,00) such that the

Borel measure 1 on R, defined by

N
@) = (@) + Kodo(@) + Y viK; / o,

P @N(0,00)

_I_

is nonnegative. Then, for all y > 0, all integers k > ko, and all u > 0,
< BX sup

SU C
¥ du(w) IKilu"
I<s<k ./[o,oo) ky+1 Z l

ivi>1
D U\ Vi
5 'K"'<E> ,

i<l

‘ / (1 v/uw) dp(v)
[0,u)

with B, C, D, ko depending only on y, {v1,...,vn}.

As we shall multiple times need to use Proposition 8.1 in a setting where the
Laplace transform satisfies an exponential bound we record it as a separate corollary.

Corollary 8.2 Let u be a locally finite signed Borel measure on R. Assume that there
exist &, ¢y, ¢, A > 0 and finite collections {Ki}lN:O C [0, 00) and {v,-}fv:1 C (0, 00)
such that

(1) the Borel measure [i on R defined by

N
@) = (@) + Ko@)+ Y wiki [
i=1 wN(0,00)

is nonnegative, and
(2) forallt <cA

<cpe— @/ (36)

‘ / e "Vdu(v)
[0,00)

Then, for all y > 0 there exist constants C, D depending only on y, e,{vy,...,vn}
so that

V (I=v/u)’du(v)
[0.1)

37
(tp)e (1-vj)e
<C(1+czu)7%<c1+ E |K;|u" + E |Ki|uw(czu)ﬁ>

iv;>1 i<l
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1048 R.L. Frank, S. Larson

forallu > Cz%(l + A™%). In particular, if (36) holds for all t > O then (37) holds for
all u > 0.

The key ingredient in our proof is the following polynomial approximation result
[56, Theorem VII.3.4].

Theorem 8.3 Fix m € NU {0} and «, B € R. Set

G (1) = 1-=" forO0<t=<1,
" o forl <t <oo.

There exist constants By > 0, By > 1 and ko € N depending only on m, 8, o such that
the following holds. For every integer k > ko, there are polynomials in the variable
e " of degree <k:

k k
=Y ape . Pn)= bye I,

j=1 j=1
which satisfy

pe) =Gu(t) < P(1) forO<t<oo, pr(0)=F(0)=1,

B

o0
[ et = paonan <

k k
k k
> lajl < B, D bl < B
j=1 j=1

Before we prove the full statement of Proposition 8.1 let us show how the polyno-
mial approximation in Theorem 8.3 can be used to prove a bound when y € N.

Lemma 8.4 Let i be a locally finite signed Borel measure on R. Assume that there
exist finite collections {Ki}lN:O C [0, 00) and {v;};_, C (0, 00) such that the Borel
measure fi on R, defined by

N

ﬂ’(w) = M(w)+K050(w)+ZV1KZf uvi—l du,
i=1 wﬂ(O,oo)

is nonnegative. Then, for all y € NU {0}, all integers k > ko, and all u > 0,

) c X
ju
e wdu)|+ —= ) |Kilu",
k K0,00) k)/+l ; i

with B, C, ko depending only on y, {v1,...,vy}.

§Bk _max
J

=1,...,

‘ / (1 v/u) dp(v)
[0,u)
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Remark 8.5 We note that in this lemma we do not need to distinguish between v; < 1
or v; > 1. It is not clear to us if the distinction can be avoided also in Proposition 8.1.
However, in this paper we shall only need to apply the proposition in situations where
v; > 1 foralli.

Proof of Lemma 8.4 The proof follows that of Ganelius in [37].
Define

o) ::f e duu).
[0,00)

Let pi, Pr be the polynomials provided by Theorem 8.3 with m =y, o =1,
B=1—minj—;__nyv and k > kg to be chosen below. Then with u = pu* — u~
denoting the Hahn—Jordan decomposition of p,

/ (1= v/w)” du(v)
[0,u)
_ / (1= v/u)" du* (v) — f (1= v/w)" du™ (v)
[0,u) [0,u)
S/ Pk(”/”)dﬂ+(v)—/ pr(w/u)du (v)
[0,00) [0,00)

- f Pe(v/uydp(v) + / LPe(v/u) — pr(o/u)]dp=(v)
[0,00) [0,00)
In the same manner,

/ (1 v/u) dp(o)
[0,u)

> f pe(v/u) dp(v) — / LPe(v/u) — pr(o/u)]dp=(v)
[0,00) [0,00)

Note that the second integral is nonnegative as Py > p; and du™ is a nonnegative
measure.
By the properties of py, Py, we have

k
‘ /[o P/ dp()| = Y aiQGj/u sB§jpaxk|Q<j/u)|,
,00 =1 =1,...,
k
/[O P/ du(o)| = 2 b Q(j/w| =By max |0Gj/uw)l.
, 00 =1 =l1,...,

To bound the remaining integral we use the assumption that [ is nonneg-
ative (which is equivalent to the measure —u™ (@) + Kodp(w) + ZlN:l v;K; x
fwﬁ(O 00) u’i—ldu being nonnegative). Since P (0) = px(0) = 1, the assumed non-
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1050 R.L. Frank, S. Larson

negativity implies that

f[o (Puo/i) = ol di- ) < 3 Koo / [PLw/u) — pr(v/u)]o"~

i=1

N o0
= Kbl [ 1P - ol s
i=1 0

Next note that max;—;._ ys" ! < C,e’s™# with C, depending only on {v1, ..., vy}
When combined with the fact that Py (s) — px(s) > 0 and the estimate above, one ob-
tains

‘[O )[Pk(v/u) — pk(v/u)ldp (v)

<CUZ|K vl|u”'f e's PLP(s) = pr(s)]ds

i=1

BIC
< it ZIK viu'

Upon combining the above we reach the conclusion that for every k > ky and
u>0,

< B2 ‘max

’ / (1= v/uw) dp(v)
[0,u)

N
_Jv BC, .
v du(v)| + Kivi|u" .
k/moo) nO)|+ ; ivil

This completes the proof Lemma 8.4. g

Proof of Proposition 8.1 To extend Lemma 8.4 to arbitrary y > 0 we utilize the semi-
group property of Riesz means. Set

1 4
= — — 14 _— 1_ Y .
Fy(u) NUES) [O,u)(u V)" du(v) NUES) [O’u)( v/u)’ du(v)

Observe that for y > 1 F), is Lipschitz continuous and F (u) = Fy_1(u) (weakly if
=1).

If meN,m—1<y<mand6 =y -+ 1—m, then an application of Fubini’s
theorem yields

Fy(u) = L/u(u — )/ Fp 1 (v)dv= qu(u — )7 'F (v)dv.
re) Jo r'®) Jo "
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Assume that 0 < u; < u, for u; to be chosen. Then, by splitting the integral and an
integration by parts (using that F,, is continuous and F;, (0) = 0),

[T(O0) Fy (u)]

uj
5/ (u— )~ F (v)dv| +
0

/u(u — ) E, i (v)dv
uy

<l —un)? " Ep )| + (1 —

m

u
+ / (u—v)!" " Fp_i(v)dv
uj

(38)
sup [ Fpu (v)]

ve[0,uy]

<@ —u)? " Fu@)+ (1 —e)vu'(u — )’ 2av
0

f (u—v)?dv
ug

= u* 11— ur /)Y )| + 1 (A =y /w)’ = 1) sup [ Fp ()]

ve[O,uy]

+ sup |Fu—1(v)|

veluy,u]

0 %
u’ (1 —uy/u)
+———— sup [Fp-1(v)].
0 veluy,u]

By the nonnegativity of fi the function

1

- 1— Y dii
= ity [O’u)( v/u)” dji(v)

- Ko Kivil'(vi)
=u"VF,(u)+ + ui
i’ T(1+y) ;F(y—i—w—i—l)

is nondecreasing and nonnegative. Therefore, u > F, (1) + Y i, %”vﬁy

is nondecreasing and nonnegative (as the product of two nonnegative nondecreasing
functions). Thus, we can estimate for any 0 < up < u;

N
KT (v;
O+ Y o W) _ s

sup |Fp(v)| < sup Fm v+ 1)
1

ve[0,uq] ve[0,uz]

N

Kivil'(v .

_Z i (vi) v,+m’+ sup | F (V)]
= 1F(m+vl 1) velug,ug]

< sup
vel0,usz]

N
KiviI'(v;) .
F vi+m
(”)+Zr(m+v,-+1)”
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1052 R.L. Frank, S. Larson

+osup [0 LD ) | F)]
ve[0,uz] F(m +vi + 1) velun,uy]
N
Kivil'(v;) Vidm
=F 2 _u; S F,
m (U2) + iZF(mMH) 5 +v€[;1?ul]| (V)]

N

K‘)lr(‘)l ulitm

<2 E 42 sup  |Fu(v)l.
T(n+vi+ 1) veluanl

Inserted into (38), this yields

IT(O)Fy (u)|
WA =y /)N Ey ) 4+ 207N (0 = wy /w)? ™ = 1) sup | F(v)]

veluz,uq]

0 6
u’ (1 —uy/u)
+7/ sup | Fu—1(v)|
0 veluy,u]

N
+ 20?7 =y Ju)? ! = I)Z Kivil'(vi) I it
Cm+vi+1) 2

Sy u’ A —ur/w’ sup |Fu )|+’ —ur/u)® sup |Fuo1(v)|

~
velug,uy] veluy,u]

9 1(1 M]/M)9 lZlK |uvt+m

i=1

Since
K

u K
Fe(u) = NS [O,u)(l —v/u) du(v)

we can write this as

‘ / (1= v/w)” du(v)
[0,u)

Syu (1 — ur /)’ sup

~J
veluz,uq]

p™ / (1= s/v)" dp(s)|
[0,v)

+u " (1 —uy/u)?  sup

veluy,u]

p! / (1= s/0)" " dus)|
[0,v)

+u"(1 ul/u>“2|1<|u”'+'”

i=1
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By Lemma 8.4 applied with y =m and y = m — 1, there exist By, Bn—1, km,
ku—1 so that for all ky > k,,,, ko > k1,

‘/ (1= v/u) dp(o)
[0,u)

Syu (A —ur/w)’"" sup v (B’“ max |Q(J/U)|+km+IZ|K|UV’>

vElug,ur] N J=Fhew 1 i=l
+u" N =y /u)?

X sup vm‘<B,’jf_1 max |Q(]/U)|+—Z|K|v"‘>
j=

veluy,ul

w1 = u /)~ IDK Juy ™"

i=1

<y (L—up/u)’™!

X sup 8’"(8’“ max |G/l + kaDKKalu)“f)

s1e[2,51] 1 =1

+(1— ul/u)g

X sup 6m‘1(322_1j:max |Q(J/(52u))|+—mZ|K|(32M)>

ety N T 2,1

+ (1= () Z|1<|u2

Choosing k1 = 81k and kp = 8k with k > max{k,, /81, k;u—1/62} for each 81, 87 in
the appropriate ranges we arrive at

’ / (1= v/uw) dp(v)
[0,u)

<y (L—uy /u)?™!

N
1 ,
X sup 6’"(3;2:" sup |Q(S/“)|+W§:|Ki|(5lu)v’)
1 i=l

s1el%2,%1] s <s<k

+ 1 —up/u)?
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X sup 8;”—1<Br3nzk1 sup |Q(s/u)|+8mkmZ|K|(52u)vz)
]

326["71,1 5 los<k

(1 —w/w' (22)" Z|K|u2.

Further choosing uy = u —u/k and uy = k,,u/k whichis ok if k > k;,_; + 1, we find

V (I —v/u)’ dpu(v)
[0.1)

S sup (k”cﬁ’”B‘S"‘ sup | Q(s/w)| + |K|(81u)“')
7 1€l K 1—1/K] bom 51 <5<k 8kV+1Z

— — 52k Vi
+  sup (k Iy 1B sup  |QGs/u)| + ——— > |Ki|(82u) )
Spell—1/k.1] 2 m 321<y<k 8 ky+l Z i

N
1 )
t E 1 |Ki|(u/ k)"
i=

Sy [0 BL +kBE | sup IQ(S/M)I+ky+1 3 1Kt

<s<k
I=s ii>1

= > IKilw/k"

i<l

<y BY sup IQ(S/u)|+ky+l D Kl 4 Z |Kil(u/k)"

<, < .
l=s ivi>1 i<l

This completes the proof of Proposition 8.1. g

Proof of Corollary 8.2 By Proposition 8.1 there exist constants B, C, ko such that for
allk >kpandu >0

< Bk sup
1<s<k

C N
+ky+1 Z |Ki|u

iv;i>1

’ / (1 v/uw) dp(v)
[0,u)

/ e~ W du(v)
[0,00)

(o .
+5 2 K@/

i<l
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If we choose k satisfying k/u < ¢ A then (36) implies that

- ¢, C :
< B¥¢y sup em(2/¥) o Z |K;lu"

1<s<k

‘/ (1 —v/u)’dp(v)
[0.1)

ii>1

= Y IKilw/k)" (39)

i<l

C )
— Bkcjem(u/k)" _ky+1 Z |Ki|u"

i>1

= > IKilw/kv

ivi<l

where we used the fact that (0, 00) 3 x > e (@) jgqa decreasing function and so the
supremum is attained at s = k.
1
To prove the claimed bound we want to choose k = max{kg, [(2In(B)™ T+ ) x

(czu)lgﬁj} for an appropriately chosen ¢’. To justify this particular choice of k we
note that

| =

1+
ko Cy ¢ }

< max{ : :
u’ (2In(B)) e ut+e

and so k/u < A if

u > Lmax{ko, ;} .
A 2A¢1In(B)
Thus the choice is justified for all u > CZ%(I + A~¢) for any D > max{ko, #(B)} In
particular, if the bound on the Laplace transform of p is valid for all # > 0 our choice
of k is justified for all u > 0.
Plugging the choice of k into (39) yields,

V (1= v/u) d ()| oy (1 + cou)™ 11 (q + > K"
[0,u)

iv;>1

1)5
Y K o) ),

i<l

f0ra11u>—(1+A ). O

9 A Tauberian theorem for the Fourier transform

Let u be alocally finite signed Borel measure on R. Assume that 7, the distribution
associated with u through

TM(W)szw(r)du(r), ¥ e S(R),
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is a temperate distribution. There exists a unique function N, € BV, (R) satisfying
that

(1) the distributional derivative of N is T},

(2) N.(0) =0, and

(3) forall t € R

lim Ny(t+e&)+Ny(t —¢)

=N .
e—0 2 H(T)

Explicitly, we can write the regular distribution function N, as

ROODEMO.D) g s,

Ny (t) =10 ift=0,
_M([T,O]);M((T’O]) ift <0.

We are interested in the asymptotic behavior of N, (t) as T — oo and also in the
asymptotics of the quantities

2y 7 o2\r-lo
RZ(T)Z=?/O (1—3) ZNu(0)do

for y > 0. Note that we can also write this as

o2\
RZ(I):/[‘O’T](I — ?) du(o).

If f(x) = Nﬂ(ﬁ) for x > 0, then RZ(r) is the y-Riesz mean of f evaluated
at 72, up to multiplication by an explicit factor; specifically, RZ =T+
D72 £ (12) in the notation of Sect. 7.

Our aim is to show that the asymptotic behavior of N, or R}: can be computed
in terms of the corresponding quantity for a second measure v under the assumption
that the distributional Fourier transforms of 7}, and T, agree on an interval around
zero, or more generally, that their difference is small on this interval.

Fix a function ¢ € S(R) such that

(1) ¢=0,

(2) @ iseven,

(3) suppp S [—1,1],

4 [re(mdr=1.
For a > 0 define ¢, by ¢.(7) :=a~'¢(r/a). Note that @, (1) = ¢(at) and conse-
quently supp@, C [—1/a, 1/a]. In particular, if YA“M =T, on (—1/a, 1/a), then the
above assumptions on ¢ imply that ¢, * T, = @, * T),.

Our aim in this section is to prove the following result:

Theorem 9.1 Let w, v be two signed measures satisfying that
(1) N is nondecreasing,
(2) the distribution functions N, N, are odd,
3) 1Ty ()| < Mo [ 1Y (D)|(ao + |t)* dt for all y € CP(R),
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4) |@a * (T, — T,))(7)| < My(ay + |t])? forall T € R, and
for some oo > B >0 and ap,a) > a. If m € N there exists a constant C depending
only onm, ¢, a, B such that for all T > 0

|RI!(t) = RI ()] < C(Moa" " (ao + [t + Mi(a + |t (a1 + |t])F).

Remark 9.2 The case m = 0 of Theorem 9.1 is the content of [52, Lemma 17.5.6].
The special case where m = 1 and where v is absolutely continuous with a monomial
density is proved in [86], disregarding the issue discussed in Remark 9.10.

Remark 9.3 For us the important case is when fﬂ =T, on (=1/a, 1/a). In this case
assumption (4) in Theorem 9.1 holds with M| = 0.

By combining Theorem 9.1 with Riesz’s concavity theorem (Proposition 7.1) we
can also get a bound for non-integer y .

Corollary 9.4 Let (v, v be as in Theorem 9.1. For any y > 0 there exists C depending
onlyony, ¢, o, B such that forall Tt >0

|Ri(0) = RY (@)
= C(Moa*7 (@0 + [t )7 + Mi(a + Iz (@ + [z])?
+ (Moa'™ (ap + ) )" (M1 (a 4 t) (a1 + 0)P))
x (@ ag + )10V,

where {y} denotes the fractional part of y, that is the unique number in [0, 1) so that
y —{r}eZ

Remark 9.5 If v ¢ (la — B — 1], [a — B — 17) then the third term in the bound is
insignificant in the limit T — oco. While we believe that the first two terms are nec-
essary, it is unclear to us if one might argue differently and prove a bound for y ¢ N
without this additional third term (corresponding to the bound for y € N of Theo-
rem 9.1). Since in this paper we will apply Corollary 9.4 only with M| = 0, where
the third term vanishes, we did not explore this further.

Proof of Corollary 9.4 1f y € NU{0} the claimed bound is exactly Theorem 9.1. There-
fore, without loss of generality we assume that y ¢ N.

Set f(s) := Ny (/5) — N, (J/s). As observed above, a change of variables in the
integrals defining RZ and R} implies that

Ly +1)
2y

RY () — R (v) = .

In particular, for any m € N Theorem 9.1 implies that

|F U (5)] < Cs™(Moa' ™ (ag + /3)* ™™ + Mi(a + /5) (a1 + v/5)P)

with C depending only on m, ¢, «, B.

@ Springer
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Write y =m + « with m e NU {0}, « € [0, 1) (i.e. « = {y}). By Proposition 7.1
and the semigroup property of Riesz means

IR}, (t) — R ()]

F
(V LVED ) pr )

1-x K
5%[ s 1171 | s 17 0]
T

0<s<t? O<s<t?

c 1—k
=< TT)/[ sup (sm(M0a1+m(a0+\/E)a_m+M1(a+«/.§_‘)(al+\/5)ﬂ))i|

0<s<t2

[ (5 (Moa™ @ + /)" + Ma(a + V3 (a1 + ﬁ)%)}
<s<12

1—«
— C(Moa“’"(ao %M 4 My(a+ 1) (ar + r)ﬂ)
K
x <M0a2+m(a0 + 0% L My (a+ T)(ar + r)ﬁ) ,
where C depends on y, ¢, o, B and the final step uses the fact that s — sk(ao +

/5)%¥ is monotone increasing if k € NU {0} and o > 0.
In particular, the previous bound implies that

IR) () — R} (7)]
1 1—«
< Cmax{Moa Mg+ ), My(a + 7)(a; + ‘L')'H}

K
X max{M0a1+”’ (a0 + 1) ™a(ag+ 1), Mi(a + 1t)(a; + r)ﬁ} )

Since ag > a, T > 0 the factor a(ap + t)~! < 1 and so if the second maxima is
attained by the first quantity the same holds for the first maxima. Therefore,

IR)(¥) = R} (0)]
=< C<Moa]+y(ao +1)*7 + Mi(a+ 1) (a1 + 1)
+ (Mo (ag + 1)) (M) (@ + D)@ + 1)) (@ (g + 1)1 7).
This completes the proof of the corollary. g

We now turn our attention to the proof of Theorem 9.1. One of the main ingredients
in its proof is an integral identity that is recorded in Lemma 9.6. Our aim is to apply
this identity to the integral defining RZ. In order to do this, we need to first introduce
some auxiliary functions that appear in the analysis.
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Fix x € CSO(R) with x >0, x even, fo(l’)d‘C =1, and supp x < [—1, 1]. For
& > 0 define

-1 T
@ =e"x(2).
£
For ¢ > 0 define

@0,6(t) = (1).

For k > 1, ¢ > 0 define ¢ € S(R) by the property

(p]/(’g(‘c) = @p—1,6(T) — (VAA{ Yr—1,6(0) dU)Xe(T) s

which is equivalent to setting

pueo) = [ (st ( /R 91,6011 do") e(0) ) do

—00

Since ¢, x are assumed to be even, it follows that ¢y . is odd for odd k and even
for even k. In particular, for even k the defining equation simplifies to (p,’cy e = Pk—1e-

With these definitions we record the following lemma. When m = 1 the statement
(after taking the limit & — 0™) corresponds to [86, Theorem 1.4]. Our new observa-
tion is that this idea can be iterated.

Lemma 9.6 Let {¢k c}k>0. Xe be defined as above. Define recursively

m—1
bo:=1 and by :=(—1)""" Z bj/ Ym—j(0)do  formeN.
; R
=0
j]even

Then by, = 0 when m is odd. Moreover, the following holds for every m € No and
> 0. Forany u € S'(R) and f € C"™(0, t) for which the limits

0N = lim f90) and fP7):= lim f9(0)
o—>0t o—>T~
exist for all 0 < j <m — 1, it holds that

/r f (@) xe *u(o)do
0

= Z b /T f(j)(a)goo,g*u(a)do
j=0 0

Jj even

m T
— (=" > b; / F™ @) pmi1—jexu'(0)do
0 0
j]even
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1060 R.L. Frank, S. Larson

m—1 k
> O[O @1 D) = PO 1+ 10)].
k=0 j=0
J even
In the statement of the lemma, we use the convention that 26" 1., =0 when

m = 0. Similarly, the assumption on ) for 0 < j <m — 1 is void in this case.

Remark 9.7 The recursion defining b,, can be solved and we find

by = Z(—l)/ Z H(/ goki,g(a)da) form e N.
j=1

(k1. kj)eN/ i=1

We defer the proof of Lemma 9.6 to the following subsection and continue towards
the proof of Theorem 9.1.
Define

Gy(r):=(1—-1t)""'t  forre(-1,1).

Note that G, : (—1,1) — R is an odd function that is continuously differentiable to
all orders on (—1, 1) with

Gy(0)=0 and G/(0)=0 foralljeN,
and furthermore

lim G(J)(r) 0 forall jeNN[0,y —1).

T—>1-

For higher derivatives there is a singularity as 7 — 17 unless y is an integer. For
j=y —1eNwehavelim,_,- GY (z) = (=2)/ jl = (=2)* L (y — D)L.
The relevance of the function G for us is that

RZ(‘[) = Zr /r Gy(o/t)N,(0)do .
T Jo

For technical reasons we will rather work with the smoothed quantities

2y [T
R}:’g(r) = —/ Gy(0/T)xe * Ny(o)do .
T Jo

Note that in the sense of distributions x, — &g as € — 0. In particular, the fact that
limg .0 xe * N, (t) = N, (7) for all 7, implies lim;—. R}, -(7) = R}, (7).

The following identity will follow from Lemma 9.6, applied to the integral defin-
ing R,’f’ .
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Proposition 9.8 Let u be a signed measures such that the distribution function N, is
odd. Then, with {¢ ¢ }k>0 defined as above and m € N,

m T ) .
R (t)=2m ) b,/o t 'GP (6/T) @0, % Ny(o) do
=0

J even

m T
—2m (—1)mbj/ TG (6 /) pmi1— e * Ty(0) do
; 0

Jj even

— Z 2mm!bjf_m(pm7j,g * Ny (7).
je_ven

Proof of Proposition 9.8 Fix y =m € N, ¢,7 > 0. By Lemma 9.6, applied with
f(o)=Gu(o/t) and u(o) = N, (o), we have

—Rm (1) = Z bj f I GY (0/1)¢0 % Nu(o) do

J even

m T
-y (—1)’%,-/0 TG (6 /) pmt1—je * Tu(0) do
=0

J even

= > 2" = DT g e % Nyu(T)
j=0
Jj even

m—1 k

+ ) > DTG 0 giri—je * Nu(0).

k=1 j=0
k odd j'even

Here, we have simplified the boundary terms using the properties of G,(,f )(1’) and
G%(0) that we listed before.

The identity that we have shown is essentially the claimed identity in the proposi-
tion, except for the double sum. We claim that each term in this double sum vanishes.
This is seen as follows: As N, is an odd function, the fact that ¢; . is an even function
for [ € 2N yields

@re * Nu(0) = wa,s(—G)NM(U)dG =0

whenever / € 2N. In the double sum we have k odd and j even,sol =k+1—j € 2N.
This completes the proof of the proposition. O
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To prove Theorem 9.1 we shall apply the above proposition for the two measures
w and v and use the assumptions to control the differences of the terms in the corre-
sponding representations. To prove something more concrete about the convolutions
that appear in this approach requires bounds for the functions |k .(o)| that are uni-
formin e.

Lemma 9.9 Define ¥_1 := Yo := ¢ and for k > 1

V() = / Vi) do

Then, for each k > —1, vy, belongs to S(R) and is even and nonnegative. Moreover,
for each k > 0 there is a constant ci so that for all T € R and ¢ € (0, 1] we have

[0r,e (T)] < crhi(T) .

Proof We begin by proving the claimed properties of ;. We argue by induction.
Since o = ¥_1 = ¢ these properties hold for k € {0, —1} by the assumptions on ¢.

For k > 1 assume that we have proven the claimed properties for ¥;_>. The fact
that ¥x_» € S(R) ensures on the one hand that v is well defined. The fact that v, _»
is even leads to

1#k(—f)Z/ oYr-2(0)do — Y (r) = Yi(7),

since o > o Yx_2(0) is odd, that is, v is also even. Since Yx_p is nonnegative, it
follows directly from the definition that v is positive for T > 0. That v is positive
for t < 0 follows as we have already proved that Y is even. That ¥ € S(R) can
be readily verified by using the entailed decay estimates ensured for y_» and its
derivatives by the fact that y;_» € S(R).

Since ¢y ¢ is either odd or even depending on the parity of k, it suffices to prove
bounds for T > 0.

We begin by proving that |¢x ¢ (t)| < ¥« (tr) for T > 1. We argue by induction.

Clearly |¢o.¢(7)| < ¥o(7r) for each T € R by definition. Since supp x. C [—¢, €] C
[—1, 1] we have for all T > 1 that

lp1.e(T)| =

o
/ @o,e(0)do

/ U(p(),e(a)d(7
_ Y1(7)

T

< —

=¥1(7).
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Since supp x. € [—¢,¢] € [—1, 1] we have for any k > 2 and all T > 1 by the

induction hypothesis that
o o
/ / Pr—2,6(t) dtds
T s

/ (t = Dgrze () dt

lpx.e(T)| =

o0
< / Horn(0)]dt
T

o
< / () di
T
=Yi(1).
Thus we have proved that for all k > 0, ¢ € (0, 1], |t| > 1 it holds that

|k, (D) < Y (7).

For 7 € (—1, 1) we again argue by induction. By definition the bound |¢g . (7)| <
Yo(r) holds for all T € R independently of e. Assuming that |gr_;.(7)] <
ck—1Yk—1(7) for all T € R, then by the bound |k (7)| < Y () for 7 > 1 we also
have that, for any 7 € (—1, 1),

lpr.e(T)| =

1
Pre (1) — f ¢h.(0)do
T

1
(D) — —1l,e - —1e(c)da") xe d
0o = [ (or1e@) = ([ 1@ o)) do
1 1
§|¢k,e(1)|+/ |<Pk1‘8(0)|d0+<[l;|‘ﬂk1,8(0/)|d0/>/ %e(0)do
Sl/fk(1)+20k71/Rlﬁk71(0)dG,

where we used x. > 0 and fR Xs(0)do = 1. We argued above that ¥ (7) > O for all
T € R and k > 1. Therefore, if we define

e Vi (1) +2ck—1 [p Yk—1(0)do

- >1,
infoer—1,11Yx(0)
then, for all T € R,
ok, (D] < ek (T) .
This completes the proof of the lemma. U

We are now ready to prove Theorem 9.1.

Proof of Theorem 9.1 We begin by reducing to the case a = 1. Assume that p, v sat-
isfy the assumptions in the theorem with the parameters a = a’, ap = ay, a1 = aj,
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Mo = My, My = M, o, . Define measures fi, U by

(w) = i/,u(a’a)) and D(w) = l/v(a/a)).
a a

Then /i, ¥ satisfy the assumptions of the theorem with parameters a = 1, ag = a;,/d’,
ay =aj/a’, Mo = (a")* M}, M| = (@)PM!, « =o', B=p. Indeed, one can check
that

¢ * (Tp — T5)(v) = ¢ % (T, — Ty)(a't)  and
1
Ii(y) = ;R(Iﬁ('/a’)) vy e C(R),

and so the claimed bounds for ji, v follow from those assumed for i, v. Furthermore,
the definition of i, U together with a change of variables shows that

1 1
RE(I):;RZ(C:%) and R§(r)=;Rg(a’r).

Consequently, the claimed bound for w, v follows from the theorem when applied to
i, V. Therefore, we may without loss of generality assume that a = 1.

The case y = 0 is the content of [52, Lemma 17.5.6], which states that there exists
a constant C, depending only on «, 8, so that

INu (1) = No ()| < C(Mo(ag + |T)® + Mi(1+ [t (It +a)P).  (40)
By applying Proposition 9.8 with both measures pu, v, we find

|R} (1) — R (1)

m
<2m ) |bjl
j=0

Jj even

m
+2m Y |bj
j=0

Jj even

T ) X
/ 171G (0/T)p0.6 % (N, — Ny) (o) do
0

T
/0 TﬁmilG;(rr;n)(o'/T)ﬁom—H—jvg * (T —Th)(o)do

m—1
+ Y 2"mlbjlt " gm—je ¥ (N — N)(@))|

j=0
J even

m
<2m Y b1t NG o SUP g0, % (Ny — Ny (@)
=0 o€l0,7]

Jj even

m

+2m Y bt G oo SUP |@my1—j.e * (Ty — T,)(0)]
=0 o€l0,7]
J even
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m—1

+ Y 2"mlbjlt " gm—je * (N = N)(@).
j=0
Jj even

Since ¢g ¢ = ¢ and ¢ * (N, — N,,)(0) = 0 by symmetry, the assumptions yield that
7 1
lpo,e * (N,LL —Ny)(o)| = ‘/ P0,¢ * (Tp, —T))(s)ds| < Mi(a1 + |U|)I3+ .
0
This allows us to bound the terms in the first sum.

By an integration by parts and the estimate |¢x . (0)| < cx ¥k (o) from Lemma 9.9,
we obtain

|§0m+l—j,8 * (Tu —T))(0)]

- '/R%H_j,e(a’)wu(a —0') = Ny(o — ') do’
= '/R‘Pm—j,s(a/)(]vu(a —0')=Ny(o —a'))do’

- (f wm—j,s(a”)da”>/ X (@) (Ny(o —0") = Ny(o — ")) do’
R R

< cCm—j¥m—j * Ny — Nyl (o)

+] [ on-seerdo”
R

Xe * [Ny — Nyl(0),

and
l[@om—j.e * (Ny — No) (0| < Cm—j¥m—j * [Ny — Ny|(T).

To control the remaining convolutions we utilize (40) together with the elementary
inequality (ap + |0 —o’|) < (ag + |o| + |o’|) < (ap + |o|)(1 + |&’]). This yields the
bound

Yix|Ny — Nyl(o)

Z/Rl/fk(U/NNM(U —0') = Ny(o —o')ldo’
=C ka(a’)(Mo(aoJrIU—G’I)“+M1(1+|0—0'I)(a1+|0—0’l)ﬂ)d0’
SCMo(ao+IGI)“AW(G’)(IHU’I)“M’

+CM (1L + oD (e + loi)ﬁf Y (@) (1 + o'+ do’
R

< Crp.ap(Molao + o)) + My (1 + o (a1 + [o])P).
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Similarly, for any ¢ € (0, 1]
Xe * [Ny — Ny|(0)
< ||X||oo/_ll C(Mo(ao + |0 — g0’ )* + Mi(1+ |0 — e0”'|)(a1 + |o — e0’|)F) do”
<X llooCa.p(Mo(ao + 1o D* + My (1 + |0 (a1 + o )F).
Putting all this back into the bound for the difference of the Riesz means yields
[Rit.e (™ = RV

m
<2m Y bt NG e Mi(ar + o )P

=0
feven
m
+2m Y TG 0Cy g p (Molao + [TD® + My (1+ T])(ar + [T])F)
Jeven

m—1
+ Y 2"mlbjlt T Cr oo p(Moao + 1T + Mi(1+ 7)) (a1 + [2)F).

feven

Since G, is a polynomial whose coefficients depend only on m, we conclude that
there exists a constant C, depending only on ¢, o, B8, m such that

Ry} (7)) = R} (D] < Ca(Mo(ao + [T)* ™ + Mi(1+ [z ])(ar + [2)P).

Taking the limit ¢ — 0 completes the proof. O
9.1 Proof of Lemma 9.6
We finally derive the identity whose proof we deferred.

Proof of Lemma 9.6 Step 1. In this step we will prove two key identities on which the
proof hinges. The first one is

Xe xu(0) =@ xu(o) — @1 xu'(0), (41)
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and the second one is, for any k € Ny,

/(; f(O)pr e * u'(0)do = —/0 f’(0)<pk+1,g xu'(0)do

+ @) pre xu(@) = fO)gr e * u(0)

c (42)
—( f Pr.e(0)do”) / f'@)0.s % u(0)do
R 0

([ onetorde’) [ o su@rdo.
R 0

To prove these identities, we recall the definition of ¢ . and integrate by parts to
obtain

(@) = [ gato = o) do’
— [ (vt =)= ([ oret@do") 1ot =) Jutado’
+( fR ore@do”)( /R xe(0 =0 (o) do)
~Gire#1@) + ([ a0 d") 1o 10

=g 11 ©@)+ ([ our(e")do" 1o v ute).

That is, for any k > 0,
( / 0o (0")d0" ) o+ U(@) = Pre #u(0) = prare # (@) (43)
R

In particular, for k = 0 since ¢p . = ¢ and ngo(r)dr = 1, we obtain the claimed
identity (41).
By using (43) and an integration by parts

[ r@wssuorda
= [ 1@ (o e @ + ([ oreo"do") e wuto)) do
0 R
= e xu 'd
/0 @) (@16 %1 (@)) do
([ oetorao") [ p@e i ordo (44)
R 0
:—/0 f(©@)prt1.e xu'(0)do
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+ @) Prt1,e % u'(T) = [0 )@rr1,e % ' (0)

+( / gok,g(a”)da”) f F(0) 56 %' (0)do
R 0

Again by integration by parts it also holds that

ft f©@)xe xu'(0)do
0
= —/0 @) xe xu(o)do + f (T ) xe xu(t) — f(OT) xe % u(0).

Plugging this into the last integral in (44) and using (43) to rewrite the boundary terms
we have proved

/0 F(0)prs 1 (0)do = — /0 Fl(@)rsre 5 (0)do
+ a & - £ ! d ! £
1@ (v ) = ([ a0 do) 1o xu)

= 10 (i 210 = ([ prs(0)de) e 4000)

+ (/ka,s(a’)da’)(—/or f (@) xe xu(c)do

+ L@ % 1(D) = FOO) e+ 4(0) )

= —/0 f(©@)prt1.e xu'(0)do

+ f@ ) @ke xu(t) — FO)@r.e * u(0)
- (/ <pk,e(a’)do’)/ F(0) e *u(o)do
R 0

Finally, we use again (41) to rewrite the remaining integral containing x. * u and
obtain the claimed identity (42). This concludes the first step of the proof.

Step 2. With the identities from Step 1 at hand, we now turn to the main part of
the proof of Lemma 9.6. The idea is to apply identity (42) iteratively.

Before carrying this out, however, it is imporant to note that the numbers b,,, vanish
when m is odd. This follows easily by induction, observing that ¢; . is odd when j
is odd, so fR @j,e(t)dt =0 in this case.

We will prove the identity in the lemma by induction on m € Nyp. The base case
m = 0 with by = 1 follows immediately by integrating identity (41) against f over
the interval [0, t].
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Now let m > 1 and assume that the identity claimed in the lemma holds when
m=M — 1, that is,

/Tf(d)xe xu(o)do
0

M—1 r
=y b,-/ F0) 0. *u(o)do
=0 0
J even

M—1 -
— (=DM N " b, /0 FM (o) pr—je U (0) do
j=0

J even

[\S]

k
k=0 j=0
J even

D8, [ FP 1o (@) = F PO g1 xu(0) |

We rewrite the terms in the second sum using identity (42) with k = M — j and with
f replaced by f™~D and find

/Orf(M_l)(G)fﬂMj,s xu'(0)do
= —(f om—j.e(0") da’) /T FM (6o % u(o)do
R 0
- L f(M)(U)fﬂMJrl—j,a *u'(0)do

+( / or—je(0')do’) / F @)1 #u(0)do
R 0
+ FM D @Yo je xu@)— FMD O ppr—j e % u(0).

Inserting this formula into the previous one and reallocating the terms in the sum
yields

/T f©@)xe xu(o)do
0

= Z bj/(;r FY90)p0.e xu(o)do

M—1 -
+ =DM Y by ( / or—je(@')do’) / F*@)go.c % u(o)do
R 0

j=0
Jj even
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M—1 .
— (=DM 3" b, /0 FM @) prr1-je w1 (0)do

J=0
J even
M—1 -
— (=DM Y by( /H; ou-j.e(0)do") /0 FM@)pre xu'(0) do
jle:ven
M-2 k
=3 Y D B[Pk kD) = F OO i1 5 1(0)]
k=0 j=0
Jj even

M—1

— DM by [ f MO e D) = YO pn— e+ uO)]
j=0
Jj even

Recalling the recursive definition of bj;, we can write this as

/Tf(d)xs *u(o)do
0

M

= Z b./'for FY90) g0 xu(o)do

J=0

M—1

— =DMy bj/O S @) pmy1-je xu'(0)do

j=0

k
=2 2 D[ SO (D) = [P O g1 51 0)].
j=0
Jj even

~
Il
)

~
Il

This is almost the claimed identity for m = M, except that the integral involving ¢y . *
u’ has the prefactor —by, instead of —(—I)M by . Therefore the proof is completed
by observing that by, = (—l)M by, which follows from the fact that byy = 0 if M is
odd. O

Remark 9.10 We close this subsection by pointing out what we believe to be an inac-
curacy in [86]. The issue arises in Lemma 2.7 of that paper, in which the author claims
certain bounds for three convolutions involving a function F with supp F' C (0, co)
or its derivative. However, to our understanding the proof as written only yields these
bounds for the corresponding convolutions involving the odd extension of F rather
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than with F itself. Carrying out the subsequent applications of Lemma 2.7 with F re-
placed by its odd extension and restricting at the very end of the argument to positive
values of the argument one recovers the claimed results.

Appendix: Convex geometry toolbox

In this appendix we record some elements of convex geometry. Most of the results
that we shall make use of are either well known to experts or follow from well-known
results.

We begin by recalling the fact that perimeter is monotonically increasing under
inclusion of convex sets.

LemmaA.1 If Q' C Q C R? are convex sets, then
HIT Q) <1 (8).
In particular, if @ C R? is convex and x € R?, r > 0 then
HITNOQN B (x) <HTN @B (x) Sar'T

The second lemma provides an upper and a lower bound for the size of the level
set of the distance function dgq, defined in (9). It is stated in terms of the inradius

rin(2) :=supdq(x). 45)

xeQ

The lower bound is proved in [63] and the upper is a consequence of Lemma A.1.

LemmaA.2 If Q C R? is a bounded convex set, then for any s € (0, rin(2)]

<1 -— )d_lHd_l(aQ) <HIT N ({x € Q:do(x) =s) <HI' Q).
rin(€2)

By an application of the co-area formula and the bounds in Lemma A.2 one can
prove the next two lemmas (see for instance [27, Sect. 5] or [65]).

Lemma A3 If Q C R? is a bounded convex set, then for any s € [0, rin($2)]
l{x € Q:da(x) <s}| <sHY1OQ).

LemmaA.4 If Q@ C R? is a bounded convex set, then

7“2' <rin(R2) < 761'9'
HI-L(aQ) — T T HA-1(Q)

Throughout the paper we several times make use of the following consequence of
the Bishop—Gromov comparison theorem, which in Euclidean space has an elemen-
tary proof.
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LemmaAS5 IfQ C RY is convex, then the function

12N B, (a)]

0,00)>r > ~
,

is nonincreasing for any fixed a € Q.

Proof Fora € Q and R > r > 0 consider the set
Ei=(1- %))+ = (@0 Br(@)
= R a R R

:{(1_%>a+%x: erﬂBR(a)}-

Then,

1E1= |5 @0 Br@n| = ()" 1920 Brta).

Meanwhile,
EcCQnNB.(a).

Indeed, on the one hand, E C (1 - %) {a} + % Br(a) = Br(a) and, on the other
hand E C (1 - %) {a} + % © C Q by convexity of Q2. Combining the bound |E| <
|2 N B, (a)| with the explicit expression for | E| we obtain the inequality

2N B, (a)| - 2N Bgr(a)|
rd - R4

which is the desired monotonicity. g

Proposition A.6 Fix d > 1. Given c| > 0 there exists ¢y > 0 with the following prop-
erties. If 2 C RY is open, bounded, and convex, then

Q4+ B, | — Q| > rHI"0Q) forallr >0,

12+ Byl — 120 Sa #0201+ ( )‘H] forallr >0,

rin(£2)
r

rin(§2)

|24+ B, | — 2] < Hd_l(BQ)r[l +c ] forallr € [0, c1rin(2)],

r
rin(£2)

d—1
12+ B, | gczH"*l(aQ)r( ) forallr > e1rin(9).

Proof of Proposition A.6 The proof of these inequalities are based on writing |2 +
B, | in terms of mixed volumes. (Technically mixed volumes are usually defined for
compact convex sets, but as 2 is convex and may be assumed non-empty each of the
geometric quantities appearing in the statement are the same if €2, B, are replaced by
their respective closures.)
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With W denoting the mixed volume,

d

d _ _ _
|Q+Br|=z<.)W(Q,...,Q,B,,...,B,). (46)
j=0 d—j copies  j copies

To prove the estimates we recall the following basic properties of W (see, for in-
stance, [88]); if K1, ..., K4 are convex bodies, then

i W(Ki,...,Kq) 20,

(>i1) W(K],...,Kd)§W(K1,K2,...,Kd) for any KiDK],

(i) W(K1+ {x},Ka,...,Kg) =W(K1,Ka,...,Kg) foranyxeRd,
(iv) W(Ky,...,Kq) =W(Ks(1), ..., Ks)) for any permutation o,
v) WrkK1,Ks,...,Kg)=rW(Ky,...,Ky) forany r > 0,

(vi) W(Ky,..., K1) =1|Kil,
(vil) W(K1,...,Ki,B)) =d "HI 1 (8K)).

Note that by (iv)-(vii),

1
Z(é)W(ﬁ,...,ﬁ,B_r,...,B_r)=|52|+r7-[d1(89). (47)
J %/_/

- \—/—/
j=0 d—j copies  j copies

The first bound in the proposition follows by (47) and dropping all the terms in
the right-hand side of (46) with j > 2 (which are nonnegative by (i)).
For the second and third bounds in the proposition note that by (iv) and (v),

|2+ Br| — €|
d_ B L B
=> (. )Ww&.....2.B,..... B,
- J —_——— —— —
j=1 d—j copies  j copies (48)

d .

d r Jj _ _
= rin(Q ( )WQ,...,Q,B. .....B, 2. B1).
Fin( )jEZI (]) ) ( 2, Briy(2) rin(2)s B1)

d—j copies Jj—1 copies

Since there exists xo € €2 such that B, (q)(x0) C Q it follows from (ii)-(iv) and (vii)
that

W(R, ..., Bry(@)» > By, B < W(Q, ..., Q2 B) =d "H""'(0Q), 49)
N ——’ —_———

d—j copies j—1 copies d—1 copies

forany j =1,...,d (with equality if j = 1).
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From (48) and (49),

d .
~ 1 de1 d r J
|+ B | — Q] =d™ rin(Q)H" ™ (092) ;:]: <J> (rin(sz))

=rin(QH(3R) y

Sa M |1+ (rin:Q))d_l] :

this proves the second bound.
Similarly from (48), (49), and the assumption r < ¢7i, (£2),

12+ B[ — €]

d .
d—1 -1, d—1 d il !

d i—
:md—l(asz)+d‘1rin(Q)Hd‘1(39)(r_ :Q))ZZG)(r Zsz))] 2
in = n

d—1 —1,. d-1 Y el
<rH (0Q) +d rin(O)H (BQ)<rin(Q)) ;(])Cl

- ro (I+ep?—1—de

=i o)1+ |
0 7in (§2) dct

This proves the third bound for any

- (1+c1)d— 1—dc;
- dc%

2

For the final bound we deduce from (48), (49), the inequality || <
Fin (Q)H4! (0R2) (see Lemma A.4), and the assumption r > c1rip(£2)

d
12+ Byl < rin(@H T (09) +d ™ rin(@HT (99) <d><
H )+ DH Z J
/:1

rinzﬂ) )/

d
(1 + rinZQ)) +d—1

=rin(QH 1 (0Q) p

<t oo ()
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for any
(I1+5)?+d—1
> sup —————.
s€ler,00) ds
This completes the proof of Proposition A.6. g
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