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Odd-parity effect and scale-dependent
viscosity in atomic quantum gases
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Jeff Maki 1,2 , Ulf Gran 3 & Johannes Hofmann 4,5

Two-dimensional electron gases are predicted to possess an anomalous “tomographic” transport
regime that ismarkedbyanodd-eveneffect in the relaxation times,with odd-parity deformations of the
Fermi surface becoming long-lived in comparison to even-parity ones. In this work, we establish that
neutral two-component atomic Fermi gases also exhibit this tomographic effect. By diagonalizing the
Fermi liquid collision integral, we identify odd-parity modes with anomalously long lifetimes below
temperatures T≤0.15TF, which is within reach of cold atom experiments. Furthermore, in contrast to
electron gases, we find that the odd-even effect in neutral gases is widely tuneable with interactions
along the BCS-BEC crossover and is suppressed on the BEC side. We propose as an experimental
signature of the odd-even effect the damping rate of quadrupole oscillations, which is anomalously
enhanceddue to thepresenceof long-livedodd-paritymodes.Our findings suggest that thedynamics
of two-dimensional Fermi gases is richer than previously thought and should include additional long-
lived modes.

Thermodynamic and transport properties of the normal state of metals as
well as 3He are well described by a semiclassical Fermi gas model1,2. The
microscopic justification of this surprisingly simple description, despite
nominally strong interactions, is provided by Landau’s theory of the Fermi
liquid3,4, which describes thermodynamic and transport properties in terms
of a collection of weakly interacting quasiparticles5–7. The validity of this
picture relies on the presence of a Fermi surface and concomitant Pauli
blocking, which strongly restricts the available phase space for quasiparticle
scattering, leading to well-defined quasiparticles with lifetimes that diverge
quadratically at low temperatures, τ ~ 1/T2. In recent years, Fermi liquid
theory has also been applied to a variety of ultracold quantum gas setups,
such as minority polarons in strongly spin-imbalanced Fermi gases8–11, the
normal phase of balanced Fermi gases above the superfluid transition12–15,
transport and collectivemodes16 and even few-body systems17. For transport
measurements, quasiparticle interactions lead to internal dissipative pro-
cesses with relaxation times that set the magnitude of transport coefficients
like the shear viscosity. The general expectation is that these transport times
are equal to the quasiparticle lifetimes.

Recent theoretical work in the context of interaction-dominated
electrongases in twodimensionshas provided evidence to the contrary and
indicates the existence of deformations of the Fermi surface that have
significantly longer lifetimes18–22: Indeed, a standard Fermi liquid scaling
τe ~ 1/T2 is argued to only apply to a subclass of collective quasiparticle

deformations—dubbed even-paritymodes—while the remainingmodes—
dubbed odd-parity modes—decay significantly more slowly as τo ~ 1/T4.
This leads to the exciting perspective that, at low temperatures, these long-
livedmodes impact thehydrodynamicdescription of the gas (in addition to
modes that are linked to conserved currents and have infinite lifetime),
such that the transport properties of Fermi liquids become richer than
commonly assumed. For this reason, there is now intense effort to identify
experimental signatures of odd-parity transport, or “tomographic trans-
port", in electron Fermi liquids19,23–27. Quite generally, an isolated odd-
parity response that is not dominated by even-parity modes appears in
transverseprobes atfinitewavelengths, suchas the transverse conductivity1
9 or transverse collectivemodes23.However, it has so farnot beenpossible to
detect such transverse probes in electron Fermi liquids, while in 3He,
measurements of transverse sound have been inconclusive28,29. By contrast,
quantum gases offer an entirely separate way of inducing transverse
dynamics by manipulating the real-space confinement of an external trap.
Moreover, since on a microscopic level the odd-even effect is linked to the
Fermi statistics and Pauli blocking, one should expect (and as we confirm
theoretically) that this effect is not only present for electron gases but also in
charge-neutral Fermi liquids. The purpose of this work is thus to initiate a
search for the odd-even effect in neutral quantum gases.

The key results of our work, illustrated in Fig. 1, are twofold: first, we
establish that, just as for electron gases, an enhancement in the lifetime of
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odd-parity deformations of the Fermi surface also exists for neutral atomic
Fermi quantum gases [Fig. 1a]. From an exact diagonalization of the
linearized kinetic collision integral (see methods), we find that these
lifetimes differ significantly within temperature ranges accessible in cur-
rent cold atom experiments [Fig. 1b]. Moreover, in a marked difference
from electron gases, we demonstrate that the effect is widely tunable with
interaction strength along the BCS-BEC crossover and vanishes near
resonance and on the BEC side of the crossover where the chemical
potential μ is negative and the Fermi surface disappears. As a second key
result, we propose as an experimental signature of the odd-even effect the
damping rate of collective quadrupole oscillations in a harmonic trap,
which involve a shear flow of atoms in real space [Fig. 1c]. The damping
rate of the oscillations is governed by the shear viscosity, which is eval-
uated at afinitewavenumber set by the trap curvature.As discussed above,
this implies that the damping rate is proportional to the relaxation time of
themomentum space deformation that is induced by the shear flow in the
harmonic trap, η ≈ npFvFτη. For a shallow trap, the standard hydro-
dynamic result for the shear viscosity involves an even-parity deformation

with conventional Fermi liquid lifetime, while for larger confinements,
odd-parity modes dominate. Since the shear viscosity is related to the
lifetime of a deformation of the Fermi surface induced by the shear flow,
the reduced scattering of the odd-parity modes translates to an anom-
alously enhanced shear viscosity at finite wavenumber and hence an
increased damping rate of the quadrupole mode when odd-parity modes
become relevant. Indeed, a full evaluation of the momentum- and
frequency-dependent shear viscosity spectral function [Fig. 1d] shows a
strong increase of the damping rate compared to the hydrodynamic
prediction for intermediate trap frequencies ωr and realistic system
parameters. Moreover, as will be discussed below, the effect is enhanced
even further both at low temperatures and for small atomnumbers, i.e., for
mesoscopic Fermi gases. Overall, these findings imply that in experiments
with cold gases, the odd parity effect can bewidely tuned in a characteristic
manner with interaction strength, temperature, harmonic trap frequency,
and particle number. Ultracold Fermi gases are thus an ideal platform to
study the anomalous relaxation dynamics of collective modes, and it
should be readily possible to establish the odd-even effect in the

Fig. 1 | Tomographic transport in atomic gases. a Nonequilibrium momentum-
space distribution for different temperatures T (where β = 1/[kBT] is the inverse
temperature and kB is the Boltzmann constant) and b dimensionless relaxation rates
βℏ/τm of the first collective even-parity Fermi surface deformation with angular
momentumm = 2 (blue) and the first collective odd-parity deformation withm = 3
(orange). Even (odd) parity refers to an equal (opposite) deformation of the dis-
tribution at oppositemomenta.With decreasing temperature and increasing density
(i.e., increasing βμ, where μ is the chemical potential), the equilibrium Fermi surface
becomes sharper, and Pauli blocking diminishes the available phase space for
scattering, increasing the lifetime of the modes. The conventional Fermi liquid
relaxation rate ~ T2/μ of the even-parity mode is set by an angular redistribution on
the Fermi surface of pairs with equal and oppositemomenta. Such a process does not
relax the odd-parity modes, however, which have a significantly slower relaxation
rate ~ T4/μ3. For interacting Fermi gases along the BCS-BEC crossover, the dis-
crepancy of odd and even-parity lifetimes is present on the BCS side of the crossover,

for which the chemical potential is positive, βμ > 0 (the gray dashed line indicates the
non-interacting chemical potential at a moderately small temperature T/TF = 0.1 for
reference). The effect is then reduced with increasing pairing interaction and van-
ishes on the BEC side where βμ < 0. c Real-space dynamics and d damping rate ΓQ as
a function of trap frequency ωr of the quadrupole mode in a harmonic trap. The
quadrupole mode oscillates with frequency ωQ ¼ ffiffiffi

2
p

ωr and involves a shear flow in
real space. The real-space density profile is shown in the insets and sets the equili-
brium size R. The damping rate of the quadrupole mode is controlled by the shear
viscosity spectral function η(ω, q), which is proportional to the relaxation time of a
collective shear deformation of the Fermi surface in momentum space. In a bulk
system (shallow trap), this deformation corresponds to the hydrodynamic even-
parity mode withm = 2, but at finite confinement, odd-parity modes contribute, and
the increased odd-parity lifetime leads to an increased damping rate (orange line)
compared to the hydrodynamic prediction (blue line). This damping provides evi-
dence of the enhanced odd-parity lifetime.
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quasiparticle lifetimes by comparing thedamping of thequadrupolemode
at different experimental parameter values.

Results
Quasiparticle lifetimes
We first establish the odd-even effect in the lifetimes of the odd and even
parity modes of the quasiparticle distribution at low temperatures on the
BCS side of the normal region of the BCS-BEC crossover (where a well-
defined Fermi surface exists) and show that it vanishes along the crossover.
Intuitively, this is linked to the fact that fermions along the crossover form
increasingly tightly bounddimers,which reduces the chemical potential and
destroys the Fermi surface, and with it the Pauli blocking that is at the heart
of the odd-even effect. For 2D atomic gases, interactions are short-ranged
and described by a delta-function with strength ℏ2~g=m� with a dimen-
sionless parameter ~g ¼ �2π= lnðkFa2Þ, where kF is the Fermi wavevector,
m* is the mass of the atoms and a2 is the 2D scattering length. At a given
temperature and density, the interactions interpolate between the BCS side
[~g < 0 or lnðkFa2Þ > 0] and the BEC side [~g > 0 or lnðkFa2Þ < 0], tuned by
either Feshbach30 or confinement-induced resonances31.

The fundamental quantities to describe are the relaxation rates of
collective deviations in the quasiparticle distribution from local equilibrium
(which is givenby aFermi-Dirac distributionnFD(p)). These relaxation rates
are defined as the eigenvalues of the linearized collision integral (see
methods),

L ψmðpÞ
� � ¼ � 1

τm
ψmðpÞ; ð1Þ

where the eigenvalue 1/τm is the relaxation rate and the eigenfunctionψm(p)
parameterizes a collective quasiparticle deviation as

δnðpÞ ¼ nðpÞ � nFDðpÞ
¼ nFDðpÞð1� nFDðpÞÞψðpÞ:

ð2Þ

Due to the rotational invariance of the system, the eigenmodes ψm carry a
definite angular momentum quantum number m = 0, ± 1, ± 2. . . . Modes
with even (odd)m have even (odd) parity [see Fig. 1a]. An additional radial
quantum number (not indexed explicitly here) describes the number of
radial nodes in the eigenfunction, with faster relaxation (i.e., larger 1/τm) for
modes with increasing node number21. Due to conservation of particle
number, energy, and momentum, the lowest eigenvalues with m = 0 and
m = ± 1 are zero. The leading finite even-parity mode has then angular
momentum m = ± 2 while the leading odd-parity mode has angular
momentumm = ± 321. The corresponding momentum space deformations
are shown in Fig. 1a for three different temperatures. Them = 2 mode sets
the dominant contribution to the hydrodynamic shear viscosity32–34, while
the second mode will give the leading correction in a finite trap geometry
and induce the anomalous enhancement of the damping rate.

Figure 1b shows results for the smallest finite relaxation rates τm with
odd and even parity, where we use the expansion method developed in
refs. 20,21 to determine the eigenvalues of the collision integral to arbitrary
precision.Thekeyobservation is theparity-dependenceof the lifetimeat large
βμ (β=1/[kBT] andkB is Boltzmann’s constant),wherePauli blocking leads to
a different scaling of the odd- and even-lifetimes with chemical potential and
temperature: odd modes scale as β4μ3, while even modes scale as β2μ [indi-
cated in Fig. 1b]. Current experiments reach T/TF ≈ 0.1− 0.514,35–38, which is
indicated by the dashed gray line in Fig. 1b for the BCS limit, for which the
chemical potential is approximately that of a non-interacting Fermi gas.
Already at this point the odd and even lifetimes differ by a factor of two, and
even aminor further decrease in temperature (i.e., larger βμ) will significantly
enhance the odd-even effect: For example, for T/TF ≈ 0.05 the odd and even
lifetimes differ by one order of magnitude. On the BEC side [purple shaded
area in Fig. 1b], the chemical potential becomes negative, βμ < 0, and scales
with the binding energy ϵb ¼ 1=ðm�a22Þ of the two-body bound state,
μ =− ϵb/2. In this regime, odd and even relaxation times are approximately

equal and scale as τm ~ e−βμ. As discussed, intuitively on the BEC side there is
no well-defined Fermi surface and thus one expects the odd-even effect to
vanish. This result implies that the odd-even effect is tuned not only by
changing the temperature but also the interaction strength. Since the odd-
even effect is due to the kinematic constraints of low-energy scattering in the
presence of a Fermi surface, it is not overly sensitive to the structure of the
two-particle matrix element in the collision integral18,20. We have confirmed
this by considering various approximations for the two-body scattering
matrix, see Supplementary Note I for details.

Shear viscosity
We now propose to observe the odd-even effect along the BCS-BEC
crossover by examining the transverse collective dynamics of the gas in real
space. In atomic gases, a transverse flow is induced by collective quadrupole
modes, which are anisotropic oscillations of a harmonically trapped
quantum gas14,35,39–47. This is shown schematically in Fig. 1c alongside the
radial equilibrium density distribution for the Fermi gas for different trap
confinements, which at low temperatures is a Thomas-Fermi profile with

radius R ¼ ℏkF=ðm�ωrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ

ffiffiffiffi
N

p
=ðm�ωrÞ

q
. The quadrupolar flow is

incompressible and there is no change in the internal energy14,39–41. This
yields an oscillation frequency that is independent of the equation of state in
the strongly interacting limit,ωQ ¼ ffiffiffi

2
p

ωr
14, whereωr is the frequencyof the

harmonic trap. In general, the frequency of the quadrupole mode depends
on the interaction strengthand scales asωQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ ~gÞ=ð1� ~gÞ

p
ωr in the

collisionless limit39. However, this change in the frequency does not quali-
tatively affect our analysis, which relies primarily on the finite wave-
number q.

The damping rate ΓQ of the quadrupole mode is linked to the local
shear viscosity spectral function evaluated at the quadrupole mode fre-
quency, η(ωQ, r), via

14,35,42–45

ΓQ ¼ E�1
kin;Q

Z
dr ηðωQ; rÞ

1
2

∂xv
y
Q þ ∂yv

x
Q

� �2
: ð3Þ

In this expression, Ekin;Q ¼ R
dr m�

2 v2QnðrÞ is the kinetic energy associated
with the quadrupolar velocity field vQ ¼ bðyx̂ þ xŷÞ (b is a constant with
units of frequency), and the density of the gas in the harmonic trap n(r) is
evaluated in the local density approximation [see Fig. 1c]. The shear visc-
osity is then a local quantity that also depends on the characteristic fre-
quency. The wavenumber dependence of the shear viscosity spectral
function encodes the odd-even effect and the anomalously long-lived odd-
parity modes. Seen in Fourier space, the integral over space in Eq. (3) is
equivalent to a trap average that selects a finite dominant wavenumber q at
which the density n(r) and current n(r)vQ vary during the quadrupole
motion. At low temperatures, the density profile is a Thomas-Fermi
distribution, and the relevant momentum scale is set by the inverse of the
Thomas-Fermi radius: q ~ 1/R. The damping rate of the quadrupole mode
after trap averaging is then ΓQ ~ η(ωQ, q), which in turn is a measure of the
relaxation time of shear deformations in momentum space.

In the limit of very shallow harmonic traps, the system is nearly
homogeneous and the damping rate is related to the shear viscosity spectral
function at q = 0. This is the hydrodynamic limit that is dominated by the
relaxation of the even-paritym=±2mode32–34. Atfinite trap frequencies, i.e.,
for finite trap curvature q ~ 1/R, the odd-parity modes (m = ±3 and higher
angular momenta) contribute. To obtain an estimate of the characteristic
parameter scales atwhich these odd-paritymodes become relevant, we use a
relaxation time approximation with a single characteristic even (odd) parity
modes decay rate γe (γo). At low temperatures, these relaxation rates scale as
γe � ~g2T2=TF and γo � ~g2T4=T3

F
19–21.When the odd-even effect is present

γe ≫ γo, there is an emergent length scale that defines the tomographic
transport limit ξ ¼ vF=

ffiffiffiffiffiffiffiffi
γeγo

p
, where for qξ ~ 1 the system is in the

tomographic transport regime, while for qξ ≪ 1 is the hydrodynamic
regime. In the presence of a harmonic trap, both the relevant wavenumber
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q � ffiffiffiffiffi
ωr

p
=N1=4 and frequency ωQ ¼ ffiffiffi

2
p

ωr are set by the harmonic trap
frequencyωr and the atom numberN. Hence, by tuning the trap frequency
we explore the shear viscosity spectral function on a line in the {ω, q}
parameter space. Expressed in terms of the trap frequency, the condition
qξ ~ 1 to observe the odd-even effect in a harmonic trap translates to

qξ � Nω3
r

~g2T3 � 1; ð4Þ

implying that the odd-even effect will be important for ωr � ~g2T3=N .
In Fig. 1d,we compare the results for the shear viscosity atfinite and zero

momentum forT/TF=0.1 following theFermi liquid approachoutlined in the
methods section and Supplementary Note II. Already for intermediate trap
sizes, we see a noticeable difference between the hydrodynamic and finite
momentum predictions, which indicates a significant enhancement of the
damping rate compared to the hydrodynamic prediction that is due to the
anomalous increase in the lifetime of odd-parity modes.

For further illustration, Fig. 2a shows a spectral plot of the shear
viscosity spectral function at finite frequency and momentum as obtained
using a Fermi liquid two-body scattering matrix element, where we extract
the Landau parameters from experimental data on the low-temperature
equation of state37. In general, the shear viscosity spectral function is related
to the retarded correlation function of the off-diagonal elements of the stress
tensor48, the poles ofwhich give the transverse collectivemodes.However, in
our case the transverse sound pole is diffusive, as the transverse soundmode

only becomes real when F1 > 149. At zero momentum and finite frequency,
we find that the spectral function has a Lorentzian shape that describes the
standard hydrodynamic-to-collisionless crossover42–44. At finite momen-
tum, the shear viscosity spectral function vanishes at small frequencies,
which reflects the fact that the fluid responds instantaneously to the
transverse velocity field. At large frequencies the shear viscosity is known to
decay asω−2 in the collisionless limit32.Henceoneobserves a localmaximum
in the shear viscosity spectral function at finite momentum. The trajectory
(q,ω) = (1/R,ωQ) that is traced out in frequency-momentum space relevant
for the damping of the quadrupole mode is indicated by the white lines in
Fig. 2a for two different atom numbers.

Compared to experiments in condensed matter systems, cold atomic
gases offer unprecedented tunability of the universal system parameters,
such as confinement, interaction strength, andparticle number. Figure 2b–d
show results for the anomalous enhancement of the shear viscosity for these
different parameters evaluated atmomentum q=1/R and frequencyω=ωQ

compared to the hydrodynamic shear viscosity (i.e., evaluated at zero
momentum but finite frequency). First, Fig. 2b shows the ratio of the shear
viscosity as a function of the harmonic trapping frequency βωr for four
interaction strengths lnðkFa2Þ ¼ 0:39; 0:49; 0:56; and 0.63 (corresponding
to chemical potentials βμ = 6.8, 7.8, 8.4, 9.0, respectively) at fixed atom
number N = 103 and temperature T/TF = 0.1. On the BCS side of the
crossover (i.e., for lnðkFa2Þ > 0), there is a strong enhancement of the shear
viscosity over the hydrodynamic result at small frequencies. As expected we
observe hydrodynamic transport in the strongly interacting limit
(lnðkFa2Þ � 0) implying there is no odd-even effect. This trend continues

Fig. 2 | Shear viscosity spectral function and anomalous damping of the
quadrupole mode. a Shear viscosity spectral function in units of ℏn, where n is the
particle density at the center of the harmonic trap, as a function of wave number q
and frequency ω (both in thermal units with λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2=m�

p
). The white solid

(dashed) line describes the path in parameter space (q = 1/R, ω = ωQ) explored by
tuning the trap confinement for N1 = 103 (N2 = 106) atoms. b–d Ratio of the shear
viscosity spectral function η(ω = ωQ, q = 1/R) and the hydrodynamic shear viscosity

ηHD= η(ωQ, 0) as a function of b trap frequency, c interaction strength, and d particle
number. Unless otherwise specified, we use an atom numberN = 103 and interaction
strength lnðkFa2Þ ¼ 0:63 (corresponding to βμ = 9). In each case, we observe a
pronounced deviation from the hydrodynamic prediction for smaller atom number,
interactions that are deeper in the BCS limit, and for weaker harmonic traps (or
lower temperatures), respectively.
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on the BEC side (lnðkFa2Þ < 0) where the odd- and even-parity relaxation
rates are of the same order of magnitude. This can be seen in Fig. 2c which
shows the shear viscosity spectral function as a function interaction strength
for three different values of the trap frequency βωr = 0.1, 0.2, and 0.3, again
with N = 103 particles and temperature T/TF = 0.1. On the BCS side of the
crossover and for finite confinement, the shear viscosity is enhanced due to
the odd-even effect. The enhancement increases with increasing confine-
ment and reduces to the hydrodynamic result for weak confinement.
Finally, in Fig. 2d, we examine the shear viscosity as a function of atom
number at fixed interaction strength lnðkFa2Þ ¼ 0:63 atT/TF= 0.1 for three
values of the trap frequencyβωr=0.1, 0.2, and0.3. Since adecreasingparticle
numberN increases the momentum as q = 1/R ~N−1/4, we observe a strong
enhancement for mesoscopic particle ensembles and a trend toward the
hydrodynamic limit for large particle number.

Comparing these results with the criterion in Eq. (4), we indeed find
that it accurately predicts the onset of the tomographic regime. As an
example, for parameters where we observe an anomalous shear viscosity—
such as for βωr = 0.1, lnðkFaÞ � 10 and N = 103—we find qξ ≈ 3.2. By
contrast, near resonance with lnðkFaÞ � 1 with the same βωr and N, we
find qξ ≈ 0.05.

Discussion
Wepropose neutral quantum gases as a platform to observe and control the
odd-even effect in quasiparticle lifetimes, which is an essential but to date
unobserved fundamental aspect of Fermi liquid theory. Compared to
electron Fermi liquids, neutral quantum gases offer three distinct advan-
tages that will favor an experimental observation of the odd-even parity
effect: First, the effect is widely tunable with interaction strength and van-
ishes on the BEC side of the crossover because the Fermi surface vanishes
and Pauli blocking no longer provides a phase-space constraint for scat-
tering. Second, the real-space confinement allows to directly access oscil-
latory transverse dynamics in real space and probe the shear viscosity
through the damping of collective modes. While we here discuss the
quadrupolemodedamping in detail, in principle, one could also excite other
collective modes, like the breathing mode, which is isotropic and will not
depend sensitively on the odd-even effect, as a benchmark to examine the
anomalous behavior of the shear viscosity. Third, the odd-even effect
depends sensitively on both trap confinement and particle number and is
strongly enhanced for mesoscopic Fermi gases. Although the odd-even
effect will be present for any particle number as long as the temperature is
sufficiently small, our findings suggest that the onset temperature of this
effect increases with decreasing particle number, providing an additional
way to access this effect. Already a number of experiments have been able to
create mesoscopic ensembles of fermions50–53 and would make an excellent
platform for investigating this odd-even effect and its effect on the damping
of the quadrupole mode.

Methods
Wemodel thedynamicsof the two-dimensionalFermigas in thenormal state
using Landau’s Fermi liquid theory, which describes the non-equilibrium
dynamics using a kinetic equation for the fermionic quasiparticles:

∂t þ
1
ℏ
∇pϵp � ∇r þ

1
ℏ

F � ∇rϵp

� �
� ∇p

� �
nðpÞ ¼ I nðpÞ� �

: ð5Þ

Here, n(p) = n(t, x, p) is the local distribution function of quasiparticles at
time t and position r with momentum p (we omit the space-time
dependence in the following). The quasiparticle dispersion in Eq. (5) is

ϵp ¼ ℏ2p2

2m� þ
Z

dp0

ð2πÞ2 f p;p0δnðp
0Þ; ð6Þ

which depends on the single-particle dispersion with atomic massm* and a
term that describes themutual interaction energy fromother quasiparticles.
The interactions between quasiparticles in this term are parameterized by

f p;p0 and depend on δn(p), the deviation of the quasiparticle distribution
function away from global equilibrium. For a circular 2D Fermi surface, we
expand the interaction in angular harmonics and rescale to a dimensionless
form as Fp;p0 ¼ νf p;p0 ¼

P1
m¼�1 Fme

imðθp�θp0 Þ, with ν = m*/(πℏ2) the
density of states at the Fermi surface, θp the polar angle of the vector p in
momentum space, and Fm the dimensionless interaction strength of them-
th harmonic. To determine the shear viscosity, we also include an external
force F in Eq. (5) induced by a gradient of a transverse velocity field,

F i ¼ m�vp
j∇i

rV
j; ð7Þ

where i, j = x, y are space indices, vp =∇pϵp is the quasiparticle velocity, and
V is a velocity field with ∇r ⋅ V = 0. We impose a harmonic form of the
velocity field with momentum q and frequency ω, i.e., V = V0e

−iωt+iq⋅r with
V0 a constant vector satisfying q ⋅ V0 = 0.

The right-hand side of Eq. (5) is the collision integral, which describes
quasiparticle relaxation due to elastic two-particle collisions,

I ½np� ¼
1
ℏ

Z
dq

ð2πÞ2
dp0

ð2πÞ2
dq0

ð2πÞ2 ∣hp
0; q0jTjp; qi∣2

× ð2πÞ2δðpþ q� p0 � q0Þ2πδ ϵp þ ϵq � ϵp0 � ϵq0
� �

× 1� nðpÞð Þ 1� nðqÞð Þnðp0Þnðq0Þ�
�ðfp; qg ! fp0; q0gÞ�;

ð8Þ

where hp0; q0jTjp; qi is the scattering T-matrix between states p, q and
p0; q0. The linearized collision integral is then L½ψðpÞ� ¼
I ½np�=½nFDðpÞð1� nFDðpÞÞ� with the parameterization of Eq. (2). Within
Fermi liquid theory, theT-matrix is linked to the Landau parametersFm

7: In
terms of the dominant Landau parameter F0 and at low temperatures, it is a
function of the scaling variable x ¼ ω=ðvF jq� p0jÞ,

hp0; q0jTjp; qi ¼ 1
ν

F0

1þ F0ΩðxÞ ; ð9Þ

with the in-medium dressing function

ΩðxÞ � 1� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ iδÞ2 � 1

p
" #

θðμÞ: ð10Þ

This function parametrizes repeated particle-hole scattering and is
equivalent to the Lindhard function in 2D. Equation (10) holds for a well-
defined Fermi surface with μ > 0. In the opposite limit μ < 0 (i.e., the BEC or
the high-temperature limit), other processes like particle-particle scattering
will be more relevant than the ones captured by Fermi liquid theory. For
good measure, Supplementary Note I compares and contrasts other forms
of the scattering T-matrix, which give quantitatively similar results. The
dominant Landau parameter F0 is connected to the inverse compressibility
as κ�1 ¼ ð1þ F0Þκ�1

0 with κ�1
0 the inverse compressibility of a non-

interacting Fermi gas. This compressibility has been previously measured
experimentally over the entire BCS-BEC crossover36,37,54, which gives the
Landau parameter F0 in terms of the interaction parameter lnðkFa2Þ. The fit
is discussed in the Supplementary Note III.

We solve the kinetic equation by expanding the quasiparticle dis-
tribution function to first order in the deviation from local equilibrium,
δn(p), as well as the slowly varying velocity field V. By employing a
temperature-dependent eigenfunction expansion developed in20,21, we
obtain the full spectrum of eigenmodes of the collision integral 1=τm

	 

,

which describe the relaxation rates of different harmonic modes. In addi-
tion, this procedure allows for an exact solution of the linearized Boltzmann
equation δn(p) in response to the shear flow V. The solution of δn(p) then
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gives the linear response of the off-diagonal elements of the stress tensor,

Πxy ¼
Z

dp

ð2πÞ2 m
�vpx vpyδnðpÞ � iηðω; qÞqxV0

y ; ð11Þ

from which we compute the shear viscosity spectral function η(ω, q).

Data availability
The raw data for the figures are available upon request, addressed to any of
the authors.

Code availability
Requests should be addressed to any of the authors.
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