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Abstract

We present James Webb Space Telescope (JWST)/NIRSpec PRISM spectroscopic characterization of GHZ9 at
z= 10.145 ± 0.010, currently the most distant source detected by the Chandra X-ray Observatory. The spectrum
reveals several UV high-ionization lines, including C II, Si IV, N IV], C IV, He II, O III], N III], and C III]. The
prominent rest-frame equivalent widths (EW(C IV) ≃ 65Å, EW(O III]) ≃ 28Å, and EW(C III]) ≃ 48Å) show the
presence of a hard active galactic nucleus (AGN) radiation field, while line ratio diagnostics are consistent with
either AGN or star formation as the dominant ionizing source. GHZ9 is nitrogen-enriched (6–9.5 (N/O)⊙),
carbon-poor (0.2–0.65 (C/O)⊙), metal-poor (Z= 0.01–0.1 Z⊙), and compact (<106 pc), similarly to GN-z11,
GHZ2, and recently discovered N-enhanced high redshift objects. We exploited the newly available JWST/
NIRSpec and NIRCam data set to perform an independent analysis of the Chandra data confirming that GHZ9 is
the most likely JWST source associated with X-ray emission at 0.5–7 keV. Assuming a spectral index Γ = 2.3
(1.8), we estimate a black hole (BH) mass of 1.60± 0.31 (0.48± 0.09)× 108M⊙, which is consistent either with
Eddington-accretion onto heavy (�106M⊙) BH seeds formed at z= 18 or super-Eddington accretion onto a light
seed of ∼102–104M⊙at z= 25. The corresponding BH-to-stellar mass ratio MBH/Mstar = 0.33 ± 0.22
(0.10± 0.07), with a stringent limit >0.02, implies an accelerated growth of the BH mass with respect to the
stellar mass. GHZ9 is the ideal target to constrain the early phases of AGN–galaxy coevolution with future
multifrequency observations.

Unified Astronomy Thesaurus concepts: High-redshift galaxies (734); Primordial galaxies (1293); Active galactic
nuclei (16); X-ray active galactic nuclei (2035)

1. Introduction

The James Webb Space Telescope (JWST) is revolutioniz-
ing our understanding of both galaxies and active galactic
nuclei (AGN) in the high-redshift Universe. Several surveys
have found a density of bright galaxies at z > 9, which is
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significantly larger than previously predicted (e.g., M. Castellano
et al. 2022, 2023; I. Chemerynska et al. 2024; S. L. Finkelstein
et al. 2024; D. J. McLeod et al. 2024). In addition, JWST
NIRSpec (P. Jakobsen et al. 2022) observations have detected a
higher-than-expected number of both broad-line AGN (BLAGN,
e.g., Y. Harikane et al. 2023; R. Maiolino et al. 2024a; J. Matthee
et al. 2024) and narrow-line AGN (NLAGN, e.g., J. Chisholm
et al. 2024; M. Curti et al. 2025) at high redshift, exceeding the
predictions from extrapolated quasar (e.g., M. Niida et al. 2020;
X. Shen et al. 2020) and AGN (e.g., S. L. Finkelstein &
M. B. Bagley 2022) luminosity functions, and from deep X-ray
surveys (e.g., E. Giallongo et al. 2015, 2019). In particular, both
J. Scholtz et al. (2025) and G. Mazzolari et al. (2024a) showed
that NLAGN may represent up to 20% of the spectroscopically
identified galaxy population between 4< z< 9, based on data
from the JADES and CEERS surveys, respectively.
A comprehensive census of the AGN population at high

redshifts is crucial for understanding the origin of the
correlation between the physical properties of supermassive
black holes (SMBHs) and their host galaxies, as found in the
local Universe (e.g., J. Kormendy & L. C. Ho 2013;
J. E. Greene et al. 2020). In addition, a deeper understanding
of the demographics and properties of distant AGN is
necessary to assess their role in the reionization process
(e.g., E. Giallongo et al. 2015; P. Dayal et al. 2025; P. Madau
et al. 2024) and evaluate whether they contribute significantly
to the ionizing UV emission from the bright galaxy population
at z≳ 9, as suggested by recent studies (e.g., M. Castellano
et al. 2024; S. Hegde et al. 2024; R. Maiolino et al. 2024a;
Y. Harikane et al. 2025). However, identifying the AGN
population at high redshifts remains challenging. The demar-
cation lines between star-forming galaxies (SFGs) and AGN in
the classic diagnostic diagrams (J. A. Baldwin et al. 1981;
S. Veilleux & D. E. Osterbrock 1987; G. Kauffmann et al.
2003) are less effective at high redshifts, with the two
populations overlapping in the same regions (D. D. Kocevski
et al. 2023; J. Scholtz et al. 2025; H. Übler et al. 2023;
R. Maiolino et al. 2024a). New diagnostic diagrams have been
calibrated (e.g., A. Calabrò et al. 2023; M. Hirschmann et al.
2023; G. Mazzolari et al. 2024b) and tested on a few z> 10
AGN candidates identified by JWST, such as GN-z11
(R. Maiolino et al. 2024b) and GHZ2 (M. Castellano
et al. 2024).
The discovery of AGN candidates beyond z= 10, when the

Universe was less than 450Myr old, is pushing our exploration
closer to the black hole (BH) seeding epoch, offering a unique
opportunity to constrain the origin of SMBHs (P. Natarajan
et al. 2024; A. Trinca et al. 2024b; S. T. Gordon et al. 2025;
H. Hu et al. 2025; J. Jeon et al. 2025). As recently highlighted
by A. J. Taylor et al. (2025), this remote epoch represents a
unique window to probe BH seeds, since by z∼ 6 the BH mass
function has largely lost memory of its initial seeding phase (see
also, R. Valiante et al. 2018). The SMBH masses associated
with the Chandra X-ray detections of the z≳ 10 objects UHZ1
(A. D. Goulding et al. 2023; Á. Bogdán et al. 2024) and GHZ9
(O. E. Kovács et al. 2024) have prompted discussions on
alternative BH seeding scenarios pathways beyond the standard
light and heavy seed scenarios (K. Inayoshi et al. 2020),
including models invoking accretion onto cosmological pri-
mordial BH seeds (P. Dayal 2024; A. Matteri et al. 2025;
S. Zhang et al. 2025; F. Ziparo et al. 2025).

In this paper, we present a detailed analysis of the physical
properties of GHZ9, based on the JWST/NIRSpec PRISM
data presented in L. Napolitano et al. (2025), which confirmed
the object at z= 10.145. We examine the contribution of AGN
and star formation to the spectrum of this source through rest-
frame UV and optical diagnostic diagrams. We also take
advantage of the newly available NIRSpec and NIRCam
information on the sources in its vicinity to perform an
independent analysis of the association with the Chandra X-ray
emission, first presented by O. E. Kovács et al. (2024). GHZ9
provides a unique opportunity to test our understanding of
AGN at high redshifts, since it is the most distant X-ray
detected AGN known to date and benefits from several rest-
frame optical and UV line detections thanks to JWST/
NIRSpec. In this study, we adopt the ΛCDM concordance
cosmological model (H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and
ΩΛ = 0.7), report all magnitudes in the AB system (J. B. Oke
& J. E. Gunn 1983), and present equivalent widths (EW) in
rest-frame values.

2. NIRSpec Observations and Data Analysis

GHZ9 (R.A.= 3.478756, decl.= −30.345520) was identi-
fied as a high-redshift candidate in the GLASS-JWST
NIRCam field (T. Treu et al. 2022) by M. Castellano et al.
(2023). It was observed using NIRSpec in the PRISM-CLEAR
configuration as part of the Cycle 2 program GO-3073 (PI:
Marco Castellano). The observation utilized three-shutter slits
with a three-point nodding pattern for optimal background
subtraction, with a total exposure time of 19,701 s over three
separate visits.
The detailed data reduction, as well as the GHZ9

spectrum and analysis (including redshift determination
and line fitting), are presented in L. Napolitano et al.
(2025). Briefly, data were processed using the standard
calibration pipeline provided by STScI (version 1.13.4)
and the Calibration Reference Data System mapping 1197,
following the methodology of P. Arrabal Haro et al.
(2023), which produces both 2D and 1D flux-calibrated
spectra. To correct for potential slit-losses, the NIRSpec
spectrum was calibrated against the most recent NIRCam
broadband photometry (E. Merlin et al. 2024) by matching
the continuum level. Additionally, since the source is
magnified by the foreground A2744 cluster, rest-frame
quantities for GHZ9 were corrected for magnification
(μ = 1.36, P. Bergamini et al. 2023).
The stellar masses of GHZ9 and of the two foreground

interlopers ID = 29686 and ID = 29852 (see Figure 1) were
estimated using ZPHOT (A. Fontana et al. 2000) as described
by P. Santini et al. (2023), by fitting the observed Hubble Space
Telescope (HST) and JWST photometry26 with G. Bruzual &
S. Charlot (2003) templates, assuming delayed star formation
histories (SFHs). The contribution from nebular continuum
and line emission was included following D. Schaerer &
S. de Barros (2009) and M. Castellano et al. (2014). We
measured the half-light radius (re = 0.028) in the rest-frame
UV using the same procedure adopted by S. Mascia et al.
(2024),

26 The photometry of GHZ9 (ID = 29722) and of the two foreground sources
is publicly available in the ASTRODEEP catalog (E. Merlin et al. 2024)
https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/691/A240.
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with the Python software GALIGHT27 (X. Ding et al. 2020).
Assuming a Sérsic profile, with an axial ratio q between 0.1
and 1, and a Sérsic index of n= 1, the fit was performed on the
F150W NIRCam image. We visually inspected the result,
finding no significant residuals in the luminosity profile.
The spectroscopic redshift (zspec = 10.145± 0.010) was

determined from a weighted average of emission line centroids
with signal-to-noise ratio (S/N) > 5, calculated via direct
integration. We measured the UV slope (β = −1.10± 0.12) by
fitting a power-law model ( fλ ∝ λ β) to the continuum flux at
1400–2600Å rest-frame, after masking any potential emission
features within the considered wavelength range. We
employed EMCEE (D. Foreman-Mackey et al. 2013) for
Markov Chain Monte Carlo (MCMC) analysis.
For emission lines with S/N > 3, a Gaussian fit was applied

to the continuum-subtracted flux using the SPECUTILS package
from ASTROPY (Astropy Collaboration et al. 2013) combined
with EMCEE. Unresolved doublets and multiplets were
modeled as single Gaussian profiles, while partially blended
lines were fitted with double-Gaussian profiles (see Figure A.1
from L. Napolitano et al. 2025 for visualization).
EW and their uncertainties were calculated based on the

integrated flux, continuum flux at the line position, and the
spectroscopic redshift. Table 1 lists the integrated fluxes and
EW of the detected emission lines, along with 3σ upper limits
through direct integration for undetected features. We report
observed line fluxes, the intrinsic values can be obtained by
dividing by μ = 1.36. We note that neither the photometric nor
magnification corrections affect the EW or line ratios.

3. Chandra X-Ray Observations

We analyzed all 101 publicly available Chandra X-ray
observations of A2744 (U. Chadayammuri et al. 2024),
excluding ObsId = 2212 because it was taken with a different
CCD (ACIS-S instead of ACIS-I). We reprocessed all of the
observations in the whole 0.5–7 keV band where Chandra is
sensitive using standard CIAO tools and created a mosaic, with
the deepest part having an exposure of 2.14Ms. To ensure
accurate astrometry, we matched sources detected in the

0.5–7 keV band to the Gaia DR2 catalog and found that a small
translation of 0.27 was required, consistent with O. E. Kovács
et al. (2024). GHZ9 has an average off-axis angle of ∼6.6 from
the deepest part of the X-ray field; the aperture radius
including 90% of the encircled energy fraction (EEF) at
1.5 keV is ∼6″. The net exposure time, accounting for
vignetting, is ∼1.76Ms. Given the presence of a nearby (∼4″)
bright X-ray star, we carefully accounted for its contamination.
We extracted GHZ9 source counts from a circular region of

1″ radius centered on the JWST position in the 0.5–7 keV band
image, where a peak of emission is visible in X-rays (see
Figure 1). This region includes only 13% of the total source
counts due to the EEF. To compute the total number of counts,
we considered both the nearby star contamination at the location
of GHZ9 and the background contribution, evaluated from a
nearby source-free circular region of ∼100 arcsec2. We also
verified that the background is stable over a much larger region.
In particular, we found that the background at the position of
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Figure 1. Left: observed 2D (top panel) and 1D spectrum of GHZ9 (bottom panel). The horizontal green and cyan lines enclose the customized extraction regions
where we extract the 1D spectra for GHZ9 and ID = 29686, respectively. The pipeline error spectrum is reported in gray. Emission lines with an integrated
S/N > 3 are marked in blue, while the positions of lines where we have a 3σ upper limit are marked in red. The Lyα-break feature is shown in blue. Upper right:
25 × 25 arcsec2 Chandra image in the 0.5–7 keV band centered on GHZ9, Gaussian smoothed with a 1″ FWHM. The source extraction region (radius of 1″) is
shown in red. Lower right: 2 × 2 arcsec2 zoom-in F200W image showing the NIRSpec/Prism MSA shutter positions for GHZ9, ID = 29686 (zspec = 1.117), and
ID = 29852 (zphot = 0.575), as obtained from the APT tool. The first two visits are shown in blue, and the third visit in red.

Table 1
Observed Flux and Rest-frame EW of Detected Emission Lines for GHZ9

Line Flux EW
(10−19 erg s−1 cm−2) (Å)

C II λλ1335,6 8.2 ± 2.3 29 ± 8
Si IV λλ1394,1403 11.4 ± 2.6 41 ± 9
N IV] λ1486 12.5 ± 2.0 47 ± 8
C IV λλ1548,51 17.3 ± 1.9 65 ± 7
He II λ1640 4.5 ± 2.0 18 ± 8
O III] λλ1661,66 6.9 ± 1.9 28 ± 8
N III] λλ1747,49 7.9 ± 1.2 33 ± 5
C III] λ1908 11.0 ± 1.2 48 ± 5
[Ne IV] λ2424 <1.4 <7.8
[Ne V] λ3426 <0.78 <7.2
[O II] λλ3727,29 1.99 ± 0.39 21.2 ± 4.3
[Ne III] λ3869 4.11 ± 0.41 47.4 ± 4.8
[Ne III] λ3967 + Hε <1.1 <14
Hδ 1.41 ± 0.27 18.9 ± 3.7
Hγ 3.79 ± 0.49 61 ± 8
[O III] λ4363 2.9 ± 0.5 46 ± 9

Note. Upper limits are provided at the 3σ level. Intrinsic fluxes can be
obtained by dividing by the magnification μ = 1.36.

27 https://github.com/dartoon/galight
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GHZ9 is consistent with the average background measured at
the position of other X-ray sources detected outside the region
affected by the diffuse emission from the cluster, whose peak
(outskirts) is at ∼5.5 (2.8) arcmin from GHZ9. We measured
35.9± 6.9 counts in the 0.5–7 keV band for GHZ9.
We performed additional checks on the X-ray detection. As

a first test, we ran the Chandra detection tool for point-like
sources WAVDETECT in a 100× 100 arcsec2 region centered
on GHZ9, after removing the star contamination. GHZ9 is
detected with 23.2± 7.6 counts in the observed-frame
0.5–7 keV band (3.3σ significance). The flux and luminosity
values discussed in the following would be scaled down by
∼35%. As a second check, we evaluated whether the shape of
the X-ray continuum of GHZ9 differs from that of the nearby
star by computing the ratio between the counts in the soft
(S= 0.5–2 keV) and hard (H= 2–7 keV) bands for both
objects. We found this test to be inconclusive due to the large
uncertainties resulting in S/H= 2.0+

0.8
1.3 for GHZ9 and

1.2± 0.2 for the star. As a final check, we divided the
Chandra data set into two subsets with comparable exposure
times. Unsurprisingly, the source is formally undetected in
each individual subset. However, the counts measured within a
1″ radius circular region in both subsets are consistent with
each other and with the expected signal given the reduced
exposure time, thus excluding the possibility that the detection
is due to a spurious fluctuation in the counts.
The 0.5–7 keV counts for GHZ9 were then converted into

flux and luminosity (both de-magnified) assuming a power-law
model with two possible spectral indexes Γ = 1.8 (E. Piconcelli
et al. 2005) and Γ = 2.3 (as in O. E. Kovács et al. 2024), which
is comparable to the values measured in luminous quasars at
z∼ 6–7.5 (L. Zappacosta et al. 2023). The assumption of the
power law, related to the main AGN emission process in X-rays
(inverse Compton emission of accretion disk photons with
energetic electrons in the corona), is required to transform the
source count rate, which is a detector-dependent measure, into
physical quantities, such as flux and luminosity. In the
conversion process, we have considered the Chandra effective
area corresponding to Cycle 24, during which most of the
A2744 observations were carried out. The observed-frame
2–10 keV flux is ∼1.3× 10−16 erg cm−2 s−1 if Γ = 2.3
(∼2.0× 10−16 erg cm−2 s−1 if Γ = 1.8). The corresponding
rest-frame 2–10 keV luminosity is ∼3.8× 1044 erg s−1

(∼1.8× 1044 erg s−1). For the observed-frame 0.5–3 keV band,
the flux measured, ∼2.2× 10−16 erg cm−2 s−1, is consistent
with the value reported by O. E. Kovács et al. (2024), assuming
the same photon index and magnification factor.

4. Physical and Morphological Properties

The detection of several rest-frame emission lines (Table 1)
in GHZ9 provides an opportunity to assess its metallicity (Z),
electron temperature (Te), nebular reddening (E(B− V )),
nitrogen-to-oxygen (N/O), and carbon-to-oxygen (C/O)
abundance ratios. Moreover, from the photometry, we assess
its morphology and stellar masses.
Metallicity estimates are derived from the Ne3O2 ratio-

based calibrations (F. Shi et al. 2007; R. Maiolino et al. 2008;
T. Jones et al. 2015; F. Bian et al. 2018; M. Mingozzi et al.
2022; M. Curti et al. 2023), yielding Z ∈ [0.01, 0.1] Z⊙. This
result aligns with recent studies of high-redshift galaxies
(e.g., A. D. Goulding et al. 2023; M. Castellano et al. 2024;
T. Y.-Y. Hsiao et al. 2024; R. Maiolino et al. 2024b;

S. Schouws et al. 2024; S. Carniani et al. 2025), which show
metal enrichment already at z> 10. The ionization parameter
is constrained using the C IV/C III] and the C IV EW relations
(M. Mingozzi et al. 2022) and the Ne3O2 relation (J. Witstok
et al. 2021), yielding logU= [−1.90, −1.65].
We perform an AGN+SFG SED fit using the DALE2014

module (D. A. Dale et al. 2014) from CIGALE (M. Boquien
et al. 2019) and considering the available HST and JWST
photometry (Figure 2). We adopt a flexible SFH with two
parametric components to take in consideration the presence of
both old and young stellar populations. Namely, we include a
“delayed” component of age �200Myr and allow for a recent
exponential burst with timescale 1� τ � 50Myr and age
between 5 and 100Myr. We assume a G. Chabrier (2003)
initial-mass function (IMF), a D. Calzetti et al. (2000) extinction
law and we restrict metallicity and ionization parameter to the
ranges estimated from the NIRSpec spectrum. Namely, the gas
metallicity can be 2%, 5%, and 10% the solar value, while the
stellar metallicity is fixed to 2% solar, and logU can vary in the
range [−1.90, −1.60] with 0.1 steps. The AGN component is
parameterized by the AGN fraction ( fAGN), defined as the ratio
of the AGN luminosity to the total AGN and dust luminosities.
We initially performed the fit with the AGN fraction set as a
free parameter and obtained a best-fit likelihood-weighted value
of fAGN = 0.30 (68% confidence region 0.01–0.6), resulting in a
lens-corrected stellar mass of 4.9+

3.2
3.6 × 108 M⊙. To better

understand the impact of the AGN on the stellar-mass estimate,
we repeated the fit fixing fAGN at discrete values within the
0–0.6 range. The lens-corrected stellar mass was found to vary
between 3.3+

2.3
2.4 and 7.2+

3.8
3.0 × 108 M⊙, for the maximum and

null AGN contribution, respectively. The best-fit nebular
reddening is E(B− V ) = 0.32± 0.18.
The relatively red UV slope we observe (β = −1.10 ± 0.12)

is consistent with either a scenario of significant dust
obscuration, corresponding to a nebular E(B− V ) = 0.315 ±
0.047 (M. Castellano et al. 2014) or the AGN nature of the
source (〈β〉AGN = −1.5 ± 0.7, J. E. Greene et al. 2024). To

Figure 2. Spectral energy distribution of the host galaxy stellar and nebular
component (dashed), the AGN component (dotted–dashed), and the combined
host and AGN fit (solid). Fits are color-coded by increasing AGN fraction used
in the modeling. The combined fits are overplotted due to their degeneracy, as
discussed in the main text. Photometric measurements (circles) and 2σ upper
limits (triangles) are shown from left to right for the following bands: F435W,
F606W, F814W, F090W, F105W, F115W, F125W, F150W, F160W, F200W,
F277W, F356W, and F444W, as reported in the ASTRODEEP catalog from
E. Merlin et al. (2024).
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investigate nebular reddening from emission lines, we
examined the Balmer decrement from the observed ratio
between Hγ and Hδ. Using the intrinsic Hγ/Hδ ratio of 1.81
from D. E. Osterbrock & G. J. Ferland (2006), assuming case
B recombination at a density of ne = 100 cm−3 and a
temperature of Te = 104 K, and the reddening curve from
D. Calzetti et al. (2000), we derived E(B− V ) = 1.6± 1.0.
This value is consistent with a scenario of significant dust
obscuration and compatible with the reddening found from the
SED fit.
We measured the electron temperature from the flux ratio

between O III] λλ1661,66 and [O III] λ4363 lines, correcting
for dust attenuation using the D. Calzetti et al. (2000) law and
the E(B−V ) value derived from the SED fitting. Assuming an
electron density of 103 cm−3, we used PyNeb to compute a
conservative 2σ (1σ) lower limit based on the corresponding
lower bounds of the flux ratio. This yields Te= 2 × 104 K
(4 × 104 K), in good agreement with recent results for high-
redshift AGN (e.g., R. Tripodi et al. 2024; see their Figure 4).
The large uncertainty in E(B− V ), combined with the limited
spectral resolution that prevents decomposition of the O III]
λλ1661,66 components, limits a more precise determination of
Te.
In GHZ9, the high observed EW of N III] (33 ± 5 Å) and

N IV] (47 ± 8 Å) suggest a nitrogen-enriched nature, with
values exceeding those reported for N-enriched galaxies in
recent studies (e.g., A. J. Bunker et al. 2023; M. Castellano
et al. 2024; X. Ji et al. 2024; D. Schaerer et al. 2024;
M. W. Topping et al. 2024; M. J. Hayes et al. 2025). We
therefore further investigated the N-enriched nature of GHZ9,
by computing the nitrogen-to-oxygen (N/O) abundance ratio,
approximating it as (N2+ + N3+)/O2+ using PyNeb (V. Lur-
idiana et al. 2012, 2015). We use the measured line ratios N IV]
λ1488/O III] λ1663 and N III] λ1750/O III] λ1663 and
consider a range of electron densities ([103, 5 × 103, 104, 5 ×
104, 105, and 5 × 105] cm−3) and temperatures ([1.5, 2, 2.5,
3]× 104 K). We performed a Monte Carlo analysis by
perturbing the observed fluxes by their corresponding
uncertainties 1000 times. The resulting N/O values range
from -0.08 (for ne= 5× 105cm−3 and Te = 15,000 K) to 0.12
(for ne = 103 cm−3 and Te = 30,000 K), which are ∼6–9.5
times higher than the solar N/O value (log(N/O)⊙ = −0.86;
M. Asplund et al. 2009).
We also estimate the C/O abundance using the C2+/O2+

ratio, with the same method and density and temperature
ranges as for the N/O. We apply the ionization correction
factor (ICF) from D. A. Berg et al. (2019), which depends on
gas metallicity (Z) and ionization parameter (logU). For the
measured ranges of Z and logU, the resulting ICF ranges from
1.10 to 1.32. Using these parameters, we derive log(C/O)
values ranging from −0.96 (for ne = 5 × 105 cm−3 and
Te = 15,000 K) to −0.45 (for ne = 103cm−3 and Te = 30,000
K), which are ∼0.2–0.65 times the solar C/O value
(log(C/O)⊙ = −0.26; M. Asplund et al. 2009). We note that
the exceptionally high C III] EW = (48 ± 5) Å in GHZ9 is
matched by only one other source in the literature,
UNCOVER-45924, a BLAGN at z= 4.5 (J. E. Greene et al.
2024; H. Treiber et al. 2025). UNCOVER-45924 is associated
with a secure [Ne V] detection, whereas GHZ9 lacks high-
ionization lines (>60 eV) such as [Ne IV] and [Ne V], for
which we provide a 3σ upper limit in Table 1. However, we
find significant (S/N> 3) detections of the C II and Si IV

multiplets. As discussed in R. Maiolino et al. (2024b) for GN-
z11, these lines are commonly observed in AGN spectra (e.g.,
Q. Wu & Y. Shen 2022). Higher resolution observations are
needed to better constrain the multiplets and determine if we
can detect a broad component from permitted lines.
In terms of morphology, GHZ9 is compact with a half-light

radius re= 0.028, corresponding to 99 pc after correcting for
the lensing effect. Given the instrument’s spatial resolution of
0.03, we adopt a conservative upper limit of 106 pc. We note
that GHZ9 would be classified among compact galaxies with
strong high-ionization lines (the “strong N IV and compact”
cloud of galaxies at z> 9, as defined in Y. Harikane et al.
2025), further indicating that potential AGN activity affects
the observed high density of bright galaxies at these high
redshifts (M. Castellano et al. 2023; L. Napolitano et al. 2025).

5. Evidence of AGN Emission from UV and Optical Line
Diagnostics

The detection of several rest-frame emission lines in GHZ9
(Table 1) provides an opportunity to assess whether its primary
ionizing source is an AGN or stellar populations. To achieve
this, we use a combination of UV emission line ratios and EW
diagnostics from the literature (A. Feltre et al. 2016; J. Gutkin
et al. 2016; K. Nakajima et al. 2018; M. Hirschmann et al.
2019). Specifically, we analyze the EW of key UV metal lines
(C IV λλ1548,51, O III] λλ1661,66, N III] λλ1747,49, and
C III] λ1908) and their ratios to the He II λ1640 recombination
line because they are sensitive indicators to the hardness of the
ionizing radiation.
We compare these measurements to the photoionization

models by K. Nakajima & R. Maiolino (2022, hereafter
NM22), constructed with the CLOUDY code (G. J. Ferland
et al. 2013). These models consider a variety of ionization
sources, including SFG, AGN, Population III stars, and direct
collapse black holes and span a broad range of physical
parameters, including gas metallicities, ionization parameters,
and gas densities (see also K. Nakajima et al. 2018). They also
incorporate BPASS stellar population synthesis models
(J. J. Eldridge et al. 2017). In our analysis, we restrict the
comparison to the NM22 AGN and SFG grids that are
consistent with the physical properties inferred for GHZ9. In
particular, we explore models with −2� logU� −1.5,
10−4 � Zgas � 2× 10−3, and nH = 103 cm−3. The models
account for varying C/O and N/O abundance ratios as a
function of metallicity (M. A. Dopita et al. 2006; K. Nakajima
et al. 2018).
We apply the same parameter constraints in logU and Zgas

when comparing GHZ9 to the photoionization models by
A. Feltre et al. (2016, hereafter F16) and J. Gutkin et al. (2016,
hereafter G16). In this case, the SFG models are further
restricted to 0.14� (C/O)/(C/O)⊙ � 0.72. The nitrogen
abundance follows the prescription of B. A. Groves et al.
(2004) in their grid. To aid interpretation, we include the UV
diagnostic demarcation lines from M. Hirschmann et al. (2019;
see also M. Hirschmann et al. 2023), which distinguish
between AGN-dominated, SFG-dominated, and composite
sources. These diagnostics were designed to maximize AGN
classification purity (approximately 90%) up to z= 8, which
corresponds to 180Myr of galaxy evolution from GHZ9.
Additionally, we employ the optical diagnostic diagram
introduced by G. Mazzolari et al. (2024b), based on [O III]
λ4363 / Hγ versus [Ne III] λ3869 / [O II] λλ3727,29. While
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[Ne III]/[O II] (Ne3O2) traces the ionization state of the
interstellar medium, [O III] λ4363 provides information about
the electron temperature, thereby offering insight into the
energy output of the ionizing source. We note that both the
M. Hirschmann et al. (2019) and G. Mazzolari et al. (2024b)
diagnostics were derived from a broader space than the one
strictly matching GHZ9’s properties (see Table 1 in M. Hirs-
chmann et al. 2017). Figure 3 shows the position of GHZ9 in
these diagnostic diagrams and compares it with other spectro-
scopically confirmed AGN candidates at z> 8.5, including
UNCOVER-20466 (z= 8.50; V. Kokorev et al. 2023),
CEERS-1019 (z= 8.68; R. L. Larson et al. 2023a), GS-z9-0
(z= 9.43; M. Curti et al. 2025), GN-z11 (z= 10.6;
A. J. Bunker et al. 2023; R. Maiolino et al. 2024b), and
GHZ2 (z= 12.34; M. Castellano et al. 2024). For comparison
we show the AGN and SFG photoionization models from
NM22 and F16 and G16.
As discussed by M. Castellano et al. (2024) and R. Maiolino

et al. (2024b), the interpretation of whether the observed high-
redshift AGN candidates, including GHZ9, are primarily
AGN- or SFG-dominated is strongly model-dependent. Here,
we detail our analysis based on the diagnostic diagrams
presented in Figure 3. In the C III]/He II versus C IV/C III] and
the C III]/He II versus O III]/He II diagnostics, GHZ9 lies in
the composite region, consistent within 1σ with both the
explored AGN and SFG model predictions. Therefore, these
diagnostics do not allow us to determine the dominant ionizing
source powering the observed emission lines.
In the optical [O III]/Hγ versus [Ne III]/[O II] diagram,

GHZ9 lies in the AGN-dominated region, though it is
consistent within 2σ with the composite region and with both
AGN and SFG predictions by F16 and G16. When using the
NM22 models, however, only the AGN scenario is compatible
with the observed emission lines and their uncertainties.
The AGN-dominated nature of GHZ9 is most strongly

supported by the EW based diagnostics of C IV, O III], and
C III], which are only provided by NM22. Although GHZ9 is
formally consistent within 1σ with both the AGN-dominated
and composite regions, within their uncertainty the high EW
observed are only reproduced by AGN models with physical
parameters comparable to those of GHZ9.
Finally, using the nitrogen-based diagnostics (C III]/He II

versus N III]/He II and EW N III] versus N III]/He II) the
position of GHZ9 is compatible with SFG-dominated and
composite regions. However, the observed EW of N III]
exceeds theoretical predictions by more than an order of
magnitude. None of the AGN or SFG models explored in our
analysis reproduces such extreme EW values. This suggests
that these diagrams primarily reflect the N-enriched nature of
GHZ9 rather than constraining its ionizing source. To our
knowledge, no existing models are designed to distinguish
AGN from star formation emission in N-enhanced sources.

6. Nature of the X-Ray Emission

We first assessed the reliability of the association between
the X-ray detection and GHZ9. As discussed in Section 3, the
Chandra X-ray counts have been measured within a circular
region of 1″ radius where two other NIRCam-detected objects
are found. The sources are ID= 29686 and ID= 29852 from
the catalog by E. Merlin et al. (2024), located ∼0.5 from
GHZ9. The spectrum of ID = 29686 was serendipitously
observed in the same slit as GHZ9. Based on the Hα emission,

the unresolved [O III]λλ4959, 5007, and [O II]λλ3727, 3729
doublets, we determine the spectroscopic redshift to be
zspec = 1.117 ± 0.006, with a corresponding magnification
μ = 1.23 from P. Bergamini et al. (2023). We further
characterized this source to investigate, using the log ([O III]
λ5007/Hβ) versus log (M/M⊙) diagnostic (MEx diagram,
S. Juneau et al. 2011), whether it could be compatible with an
AGN nature. From SED fitting analysis, we find its stellar
mass to be log (M/M⊙) = 7.65+

0.02
0.08 and a null E(B− V )

measurement. The [O III]λ5007 and Hβ fluxes were obtained
assuming no dust correction and case B recombination with a
density ne = 100 cm−3 and temperature Te= 10,000 K. The
results indicate a star-forming nature, with the AGN scenario
disfavored at a significance level of 4.5σ.
Instead, ID= 29852 is an ultrafaint source (mF200W = 29.7),

whose best-fit model corresponds to a low-mass (log (M/M⊙) =
6.3+

1.0
0.6) passive (sSFR< 10−11 yr−1) galaxy at zphot =

0.575. Assuming the X-ray emission to be associated with this
object, the resulting BH mass would be ∼2.6× 104 M⊙. In this
scenario, the galaxy would be hosting an intermediate-mass BH
(102–105 M⊙), a rare class of objects for which no direct
identification has been obtained beyond the local Universe (e.g.,
J. E. Greene et al. 2020; P. G. Boorman et al. 2024).
We finally assessed whether stellar processes in ID = 29686

and ID= 29852 could account for the observed X-ray
emission by using the SFR values derived from the SED
fitting and applying the X-ray luminosity relation for SFGs
from Equation (14) in B. D. Lehmer et al. (2016). We find that
the expected X-ray luminosities (1039 and 1037 erg s−1,
respectively) are more than three orders of magnitude lower
than the observed ones (1042 and 1041 erg s−1), effectively
ruling out a stellar origin for the X-ray emission in both cases.
Similarly, for GHZ9, we exclude the possibility that the X-ray
emission is due to stellar processes because the measured
X-ray luminosity (Section 3) for an object with its stellar mass
would require a SFR more than two orders of magnitude
higher than what is estimated for this source.
Therefore, we conclude that GHZ9, whose spectrum is

consistent with the presence of AGN activity, is the most likely
source associated with the X-ray Chandra detection.

6.1. The Supermassive Black Hole in GHZ9

The X-ray detection provides evidence that GHZ9 hosts an
accreting SMBH. We derive a bolometric luminosity of 2.0
(0.6)× 1046 erg s−1 for Γ = 2.3 (Γ = 1.8), assuming standard
bolometric corrections for quasars (F. Duras et al. 2020). This
bolometric luminosity is consistent with an alternative estimate
derived from the continuum at 4400 Å (F. Duras et al. 2020),
after correcting for the measured extinction value (see
Section 4), thus pointing to a significant AGN contribution
to the optical emission.
The bolometric luminosity derived implies that if the BH in

GHZ9 is radiating at its Eddington limit ( fEdd = 1), its mass
is 1.60 ± 0.31 (0.48± 0.09)× 108M⊙, consistent with he
value reported by O. E. Kovács et al. (2024). We note that
the reported uncertainty in the BH mass only includes the
0.5–7 keV error counts. Additional uncertainties, due to the
intrinsic scatter in the bolometric corrections, could be as high
as a factor of ∼2 (see Figure 2 in F. Duras et al. 2020).
Accretion at lower Eddington rates would imply higher

BH masses, even when accounting for smaller bolometric
corrections (E. Lusso et al. 2012). Instead, if GHZ9 is a
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Figure 3. Diagnostic diagrams based on flux ratios and EW. The top left panel shows the legend for each high-redshift AGN candidate included. AGN and SFG
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super-Eddington accretor with funnel-like geometry
(A. King 2024) and is seen along the funnel (face-on), the
same observed luminosity might be produced by a BH that
is 10–100 times smaller. However, it has also been
suggested that at high accretion rates, the hot X-ray emitting
plasma undergoes a large photon supply from the accretion
disk and the funnel walls. This would Compton-cool the
plasma down to ≈10 times lower values than in standard
AGN coronae, resulting in reduced X-ray emission
(P. Madau & F. Haardt 2024), consistent with the wide-
spread X-ray weakness of high-redshift AGN discovered by
JWST (T. T. Ananna et al. 2024; G. Mazzolari et al. 2024a;
R. Maiolino et al. 2025). In this scenario, the X-ray
bolometric corrections would be ≈10 times larger than in
standard quasars, leading to a bolometric luminosity for
GHZ9 that is so high that it would again require a BH mass
of ≈108M⊙ to power it.

6.2. Accretion History and BH-mass-to-stellar-mass Ratio

If Eddington-limited, the BH mass estimated for GHZ9
would require an initial seed of ∼106 M⊙ at z= 18 (yellow
solid line from Figure 4, see R. Valiante et al. 2016). Allowing
for past super-Eddington accretion with fEdd = 1.5 ( fEdd = 2)
would alleviate the need to grow the BH in GHZ9 from a
106 M⊙ heavy seed already in place at z = 18, reducing the
required masses to lighter seeds of 104 M⊙ (102 M⊙) at z= 25
(R. Valiante et al. 2016), as shown by the pink dashed (blue
dotted–dashed) line in Figure 4. We note that P. Dayal (2024)
and H.-L. Huang et al. (2024) proposed a sub-Eddington
accretion scenario onto a supermassive primordial BH seed of
∼104 M⊙ for GHZ9.
The high BH mass points toward a high MBH/Mstar ratio

(Figure 4, right panel). When considering Mstar obtained with
the best-fit fAGN = 0.3, the MBH derived for Γ = 2.3 (Γ = 1.8)
implies an MBH/Mstar = 0.33± 0.22 (0.10± 0.07). Such a
high ratio is in agreement with the analysis in O. E. Kovács
et al. (2024), and consistent with typical values measured in

high-redshift AGN (e.g., L. J. Furtak et al. 2024; R. Maiolino
et al. 2024a).
We note that the MBH/Mstar ratio is affected by significant

systematic uncertainties due to the assumptions made in
deriving MBH, and to the wide range of Mstar values associated
with the observed photometry at varying AGN contributions
(Section 4). We first aim at deriving a stringent lower limit on
MBH/Mstar. The maximal estimate of the stellar mass is
obtained in the case fAGN = 0 (Mstar = 7.2+

3.8
3.0 × 108M⊙). We

stress that this scenario is conservative because both the SED
fitting and the 4400 Å continuum suggest a non-negligible
AGN contribution to the SED. We assessed that this value is
robust against additional systematics in the assumed IMF and
SFH. In fact, the adoption of a top-heavy IMF, which is
considered to be more appropriate for a low-metallicity object
as GHZ9 (e.g., S. Chon et al. 2022; A. Trinca et al. 2024a),
would decrease the stellar-mass estimate. Unsurprisingly, the
SFH is poorly constrained, but the fit obtained for GHZ9 does
not appear to be significantly affected by the “outshining”
effect, which may lead to an underestimate of Mstar (C. Gim-
énez-Arteaga et al. 2024). Indeed, it predicts >50% of the
mass to have formed in a 400Myr old burst, and the
uncertainty considers the case with a fraction as low as 10% of
Mstar forming in the ongoing burst. We then consider the most
conservative MBH estimate, which is obtained under the
assumptions of unabsorbed emission with fEdd = 1, Γ = 1.8
and including both the nominal uncertainty on the X-ray flux
and a factor of 2 uncertainty on the bolometric correction
(MBH = 4.8+

2.2
4.8× 107M⊙). We find the stringent lower limit on

MBH/Mstar is 0.07
+

0.05
0.1 . The lower boundMBH/Mstar > 2% (red

star in Figure 4) is significantly higher than expected from the
J. Kormendy & L. C. Ho (2013) relation, and in line with the
accelerated growth of BHs relative to stellar mass observed in
high-redshift AGN. Much higher ratios are obtained when
relaxing the aforementioned assumptions, i.e., a steep spectral
index Γ = 2.3 leads to an MBH/Mstar ratio consistently >0.22,
and as high as ≃0.48 when assuming the SED to be 60%
( fAGN = 0.6) contributed by AGN emission.
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Figure 3. (Continued.)
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7. Conclusions

The combined analysis of NIRSpec and Chandra data
clearly indicates that GHZ9 hosts an AGN at z= 10.145. A
robust association to a statistically significant point-like X-ray
emission in Chandra data demonstrates the presence of AGN
emission originating from an accreting SMBH. Under standard
assumptions, the X-ray luminosity corresponds to a BH mass
of ∼0.5–1.6× 108M⊙. We caution that additional uncertainties
as high as a factor of ∼2 could arise from the intrinsic scatter
in the bolometric corrections adopted. The new JWST
NIRSpec PRISM results that we present here are used to
inspect a number of emission line diagnostics. From the
resulting UV line ratios diagnostics, the dominant ionizing
source could be either AGN or star formation, while EW
diagnostics suggest that an AGN is the more likely scenario.
We find that GHZ9 is metal–poor (Z< 0.1 Z⊙), and
significantly N-enhanced (6–9.5 (N/O)⊙), while its C/O is
subsolar (0.2–0.65 (C/O)⊙). The measured spatial extension in
NIRCam images shows that the object is also very compact
(re < 106 pc).
The inferences obtained from the X-ray and SED analysis

suggest intriguing scenarios for the formation of SMBH and
the coevolution with their host galaxies. Our stringent limit of
MBH/Mstar > 0.02 indicates an accelerated evolution of the BH
mass compared to the stellar mass. However, without
constraints on the Eddington ratio, the scenarios regarding
the initial BH seed remain uncertain, as in the case for other
high-redshift AGN (R. L. Larson et al. 2023b; Á. Bogdán
et al. 2024; R. Maiolino et al. 2024a).
We also note that GHZ9 belongs to a well-defined,

homogeneous photometric sample selected based on pure

Lyman-Break color selection criteria (M. Castellano et al.
2022, 2023). As described in L. Napolitano et al. (2025),
program GO-3073 confirmed all the six objects from the
parent GLASS-JWST sample at z� 9.5, plus two additional
sources from alternative photometric selections. Out of these
objects, at least GHZ9 is a confirmed AGN. Despite the low–
number statistics, this is in line with the growing consensus
that about 10%–15% of bright, high-redshift galaxies host
AGNs (e.g., R. Maiolino et al. 2024b).
It is also tempting to place these findings in the context of

other high-redshift galaxy observations. The most obvious
analog is GHZ2, another bright object at z ≃ 12.3, which
displays strong UV emission lines (M. Castellano et al. 2024).
As shown in Figure 3, GHZ2 and GHZ9 are essentially
indistinguishable in terms of UV line ratios and EW—the only
notable difference being the He II line, with an EW≃ 18Å in
GHZ9 which is significantly higher than in GHZ2 (EW≃ 5Å).
In both cases, these objects are compact and N–enhanced, with
a C/O ratio in line with expectations for low-metallicity
galaxies at high redshift. Unfortunately, lacking an X-ray
analysis and high-resolution JWST spectra, it is not possible to
ascertain whether GHZ2 also hosts an AGN—future observa-
tions are clearly needed to investigate this.
GHZ9 also shares common properties with the bright object

GN-z11 at z= 10.6, which is compact and N-enhanced, albeit
with a less extreme UV spectrum (A. J. Bunker et al. 2023),
and has broad-line components and extreme gas densities,
indicating the presence of a BLAGN (R. Maiolino et al.
2024a).
Based on their UV line-emission properties alone, GHZ9

(and GHZ2) are similar to the class of strong C IV emitters at
lower redshifts (Y. I. Izotov et al. 2024; M. W. Topping et al.

Figure 4. Left: BH mass as a function of observed redshift. We report evolutionary models of BH mass that differ based on the initial-mass seed and accretion rate.
Yellow, pink, and blue colors represent 106 M⊙, 10

4 M⊙, and 10
2 M⊙, respectively. Solid, dashed, and dotted–dashed lines refer to the 1, 1.5, and 2.0 Eddington

accretion rates. We present the inferred BH mass of GHZ9 based on two different spectral indices, as discussed in the main text. Right: BH mass vs. stellar mass of
the host galaxy. We show the stellar mass of GHZ9 color-coded by increasing AGN fractions used in the SED fitting, while adopting the BH mass solution for a
steep spectral index Γ = 2.3. The error bars for GHZ9 show the statistical uncertainties for the extreme cases, where the stellar and BH masses are at their minimum
and maximum values. The red star shows our stringent lower limit MBH/Mstar = 0.02, as discussed in the main text. The MBH–Mbulge relation obtained by
J. Kormendy & L. C. Ho (2013) is indicated by the solid black line and gray shaded region. The gray symbols show estimates from observed JWST active galaxy at
z > 3.5 from the literature: A. C. Carnall et al. (2023), A. D. Goulding et al. (2023), Y. Harikane et al. (2023), D. D. Kocevski et al. (2023), V. Kokorev et al. (2023),
R. L. Larson et al. (2023a), R. Maiolino et al. (2024a), H. Übler et al. (2023), J. Chisholm et al. (2024), L. J. Furtak et al. (2024), J. E. Greene et al. (2024),
I. Juodžbalis et al. (2024), J. Matthee et al. (2024), A. J. Taylor et al. (2025), R. Tripodi et al. (2024), R. P. Naidu et al. (2025), and A. J. Taylor et al. (2025).
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2024, 2025). There is no evidence that these objects host an
AGN, and their line ratios seem to indicate that they
experience a dense starburst. This leaves open the possibility
that many, if not all, of these newly-discovered sources also
host AGN, but their active nuclei remain elusive due to X-ray
weakness, beamed, or absorbed emission (e.g., P. Madau et al.
2024; R. Maiolino et al. 2024b). A comprehensive scenario
connecting GHZ9, other strong C IV emitters such as GHZ2,
and the broader category of N-enhanced objects, including
GN-z11 and others (Y. Isobe et al. 2023; D. Schaerer et al.
2024; M. W. Topping et al. 2025) is currently missing.
However, a composite nature involving both AGN activity and
star formation in a low-metallicity, dense interstellar medium
(ISM) enriched by massive or supermassive stars appears
consistent with the available evidence (C. Charbonnel et al.
2023; F. D’Antona et al. 2023; P. G. Boorman et al. 2024;
A. Calabrò et al. 2024; R. Marques-Chaves et al. 2024;
J. A. Zavala et al. 2025).
These scenarios deserve an in-depth analysis with future

observations. In this context, GHZ9, which is the only z> 9
object showing both a highly-ionizing, N-enhanced spectrum
and X-ray emission, is the ideal target to improve constraints
on SMBH–host coevolution and SMBH seeding mechanisms.
Specifically, we can individuate two main directions for
progress: (1) constraining the physical properties of the host,
and the contribution of the AGN to the total UV/optical
emission; and (2) obtaining independent constraints on MBH,
and thus the Eddington ratio.
The physical conditions of the star-forming ISM (i.e.,

density, temperature, abundances) can be assessed through
high-resolution spectroscopy, to accurately constrain the origin
of the copious amounts of ionizing photons (e.g., X. Ji et al.
2024). Medium or high-resolution NIRSpec spectroscopy, as
well as MIRI Medium Resolution Spectroscopy, can search for
broad-line components in the permitted lines of GHZ9 and
other similar sources to assess the AGN fraction, currently the
main uncertainty in deriving MBH/Mstar. Most importantly,
estimatingMBH from broad lines would allow determination of
the Eddington ratio in combination with the X-ray luminosity
(e.g., E. Lusso et al. 2010), providing a direct constraint on the
seeding mechanisms of the SMBH in GHZ9. Finally, ALMA
can measure the dynamical mass using FIR lines, enabling
direct comparison between MBH/Mstar and MBH/Mdyn, which
would constrain the relative timescales of BH and stellar-mass
growth (e.g., A. Pensabene et al. 2020).
Significant progress in determining the X-ray properties of

GHZ9 and similar objects (e.g., UHZ1 A. D. Goulding et al.
2023) will have to await next-generation X-ray imaging
satellites with large collecting areas and ∼arcsec angular
resolution, such as the Advanced X-ray Imaging Satellite, a
probe-class mission currently under evaluation at NASA
(S. Marchesi et al. 2020; C. S. Reynolds et al. 2023). For
the time being, as in the case of GHZ9, a detailed analysis of
JWST-selected candidates discovered in fields with deep
Chandra imaging will be essential to further constrain different
scenarios on the early stages of galaxy–AGN coevolution.
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