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1 Introduction

There is a class of Composite Higgs Models (CHM) predicting the existence of an Axion-Like
Particle (ALP) a with a mass below the Electro-Weak (EW) scale. These are models based on
underlying four-dimensional gauge theories with hyperfermions, where the Higgs boson arises
as a pseudo-Nambu-Goldstone boson (pNGB) as in [1], and top partners arise as fermionic
composite states as in Partial Compositeness (PC) [2].

Models of this type have been proposed and classified in [3, 4].1 The presence of an
ALP is easily understood by noticing that these models employ two sets of hyperfermions
ψ and χ, transforming under a different representation of the hypercolor gauge group. One
linear combination of their two U(1) axial symmetries is thus free of ABJ anomalies with
the hypercolor group. Its breaking gives rise to a light pseudoscalar whose mass is generated
by explicit symmetry breaking terms such as hyperquark masses or couplings with the
Standard Model (SM) fields.

The most realistic scenario is one where the ALP a is the only BSM particle left below
the EW scale. A simplified Lagrangian was used for phenomenological studies in [6–9]
where the couplings to the SM fermions were taken to be diagonal in the mass basis and
degenerate except for the top quark. This assumptions needs to be revisited in the light
of the extensive study on ALP Lagrangians done in [10–12], building on the Lagrangian
in [13], and this is the goal of this note.

We present a more general version of the ALP Lagrangian in CHM that takes into
account the Renormalization Group (RG) evolution of the couplings. Crucially, unavoidable
Flavor Violating (FV) couplings arise from the evolution from the UV scale. We present the
relevant formulas and confront them with the experimental limits for this specific incarnation
of the ALP.

In its full generality the effective Lagrangian depends on five dimensionless couplings
to the quarks (six minus an overall shift), one dimensionless coupling to the leptons (two
minus an overall shift) and three dimensionless couplings to the SM vector bosons. The

1The classification in [4] included both conformal and confining models. A streamlined presentation is
given in [5].
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dimensionfull parameters are the ALP mass ma, and its decay constant f that can always
be set to 1 TeV by a rescaling of the dimensionless constants.

The paper is organized as follows. In section 2 we motivate the structure of the Lagrangian
by discussing the peculiarities of the ALP couplings to the quarks specific of CHMs. In
section 3 we present the full Lagrangian, in its two equivalent forms, valid at the UV scale.
In section 4 we discuss the running of the coupling to the EW scale and below. Finally, in
section 5 we discuss the phenomenology arising from this Lagrangian, confront the bounds
from rare B decay, and discuss the applicability of the simplified Lagrangian previously
used for collider studies.

2 Motivating the Lagrangian

The purpose of this section is to motivate the general form of the Lagrangian to be presented
in section 3. The main difference from other ALP Lagrangians arises in the coupling to
the quarks. Hence, in this section, we focus on the quark sector and we ignore the leptons,
(where no FV occurs), and the gauge bosons, (whose couplings to the ALP are affected
by the anomaly in a known way).

A generic dim = 5 interaction is of the type

Lgen. = −a
f

(
Q̄LỸuΦ̃uR + Q̄LỸdΦdR

)
+ h.c. (2.1)

where Φ is the Higgs doublet, QL, uR, dR are the left/right handed SU(2)L doublets/singlets
with three generations, and Ỹu, Ỹd are 3×3 complex matrices, for a total of 36 real parameters.
For generic Ỹu, Ỹd in (2.1) the Lagrangian is not shift invariant and does not describe an
ALP. In order to be able to implement shift invariance, the Ỹu, Ỹd must be related to the
SM Yukawa couplings Yu, Yd by the relations

Ỹu = i(YuCu − CQYu), Ỹd = i(YdCd − CQYd), (2.2)

with Cu, Cd, CQ 3 × 3 hermitian matrices,2 for a total of 27 real parameters.
A way to show (2.2) is to note that, if we take the part of the SM Lagrangian containing

the quark fields

LqSM = Q̄Li̸DQL + ūRi̸DuR + d̄Ri̸DdR −
(
Q̄LYuΦ̃uR + Q̄LYdΦdR + h.c.

)
, (2.3)

and couple the ALP by adding a (manifestly shift invariant) derivative interaction

L∂a =
∂µa

f

(
Q̄LCQγ

µQL + ūRCuγ
µuR + d̄RCdγ

µdR
)
, (2.4)

the interaction can be “unwound” by performing an ALP dependent flavor rotation

QL → e
iCQ

a
fQL, uR → e

iCu
a
f uR, dR → e

iCd
a
f dR. (2.5)

Leading to

LqSM + L∂a → (2.6)

Q̄Li̸DQL + ūRi̸DuR + d̄Ri̸DdR −
(
Q̄Le

−iCQ a
f YuΦ̃eiCu

a
f uR + Q̄Le

−iCQ a
f YdΦeiCd

a
f dR + h.c.

)
.

To first order in 1/f , the Lagrangian (2.6) reduces to (2.3) plus (2.1), with the choice (2.2).
2We denote the various ALP flavor matrices by capital C... and their elements by lower c....
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It is the Lagrangian (2.6) that is in the typical form one gets when doing a spurion
analysis of a BSM theory. One assigns various charges to the Yukava couplings and writes
down the formally invariant terms. However, in CHM, the spurion Lagrangian is not quite of
the form (2.6). Instead, a generic situation is where the interaction Lagrangian takes the form

LCHM = −
(
e
iq

(1)
u

a
f Q̄LY

(1)
u Φ̃uR + e

iq
(2)
u

a
f Q̄LY

(2)
u Φ̃uR

+ e
iq

(1)
d

a
f Q̄LY

(1)
d ΦdR + e

iq
(2)
d

a
f Q̄LY

(2)
d ΦdR + h.c.

)
, (2.7)

i.e. it is the sum of two terms with formal U(1) charges q(i) for each sector, one coming from
the bilinear sector, à la Technicolor, and one from the PC linear sector.

The origin of this structure of the couplings, limited to the top quark, is discussed in [14].
The general case can be exemplified as follows. Recall from the Introduction that these
models are based on a gauge theory with two sets of hyperfermions ψ and χ. We assign to
them (U(1)ψ,U(1)χ) axial charges (1, 0), and (0, 1) respectively.

We can formally maintain these symmetries by assigning various charges to the couplings
to the SM fields thought of as spurions. For example, a bilinear Yukawa coupling y of the
type3 yQLψψu

c
R will carry charges ny = (−2, 0), while PC pre-Yukawa couplings of the type,

say, gQLχψχ and g′ucRχ
†ψ†χ will carry charges ng = (−1,−2) and ng′ = (1, 0), leading to

a Yukawa coupling gg′ of charges ngg′ = ng + ng′ = (0,−2). There are a discrete number
of possibilities for these charge assignments [14].

Eq. (2.7) denotes the general expression one obtains when two different combinations
of couplings are involved. The U(1) charges q(i) are the projections of the above Yukawa
charges ni along the hypercolor anomaly-free4 direction qa = (qψ, qχ) associated to the ALP:
q(i) ∝ qa · ni, for each sector u and d. The proportionality constant can be absorbed in the
definition of f . The physics only depends on the ratio qχ/qψ.

Let us now define

qu=
q

(1)
u +q(2)

u

2 , ∆qu=
q

(1)
u −q(2)

u

2 , Yu=Y (1)
u +Y (2)

u , ∆Yu=Y (1)
u −Y (2)

u , (2.8)

and similarly for the d-sector.5 Condition (2.2) becomes

quYu +∆qu∆Yu = YuCu − CQYu

qdYd +∆qd∆Yd = YdCd − CQYd. (2.9)

Again, this condition has no solutions generically.6
However, specific models of PC, where the third quark family is treated differently, lead

to regions of parameter space where (2.9) is satisfied or very close to be satisfied. To show an
3We briefly revert to Weyl notation in this paragraph.
4The condition on qψ, qχ for the absence of ABJ anomalies with the hypercolor group is qψNψIψ+qχNχIχ =

0, where Nψ, Nχ is the number of Weyl fermions and Iψ, Iχ the index of their hypercolor representation.
5Yu and Yd are the true SM Yukawa couplings.
6It gives 36 linear equations with inhomogeneous terms ∆Yu,∆Yd for the set of 27 unknown variables

CQ, Cu, Cd. The rank of the homogeneous system is actually 26 since one can shift Cu → Cu+k1, Cd → Cd+k1,
and CQ → CQ + k1.
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example, let us preliminarily notice that one can always, without breaking SU(2)L or losing
generality, chose a chiral basis where Yu = ∆u and Yd = VCKM∆d, with ∆u = diag(yu, yc, yt),
∆d = diag(yd, ys, yb) diagonal matrices of the physical Yukawa couplings and VCKM the CKM
matrix [15, 16]. From now on we will always work in this basis for definitiveness.7

With the above choice of Yukawa couplings, in the Cabibbo approximation for the
CKM matrix

VC =

 cos θC sin θC 0
− sin θC cos θC 0

0 0 1

 , (2.10)

the following matrices, aligned along the third generation

∆Yu =

0 0 0
0 0 0
0 0 ∆yt

 , ∆Yd ≡ VC∆Yd =

0 0 0
0 0 0
0 0 ∆yb

 , (2.11)

admit the exact diagonal solution8

CQ =

cuL 0 0
0 cuL 0
0 0 ctL

 , Cu =

cuR 0 0
0 cuR 0
0 0 ctR

 , Cd =

cdR 0 0
0 cdR 0
0 0 cbR

 , (2.12)

with the conditions

qu = cuR − cuL ,

qd = cdR − cuL ,

quyt +∆qu∆yt = yt(ctR − ctL),
qdyb +∆qd∆yb = yb(cbR − ctL). (2.13)

We have gone from an over-determined system (2.9) to an under-determined one (2.13).
In fact, (2.13) admits a two-dimensional space of solutions spanned by cuL and ctL . In
particular, there is one subspace where cuL = ctL , which corresponds to absence of FV at that
scale, but this condition is not preserved by the RG evolution, as we will discuss in section 4.

We thus make the crucial assumption that the couplings of the ALP to the quarks in
CHM are characterized by (2.12). Working backwards from eq. (2.9) this tells us what kind
of terms ∆Yu and ∆Yd we are allowing in a general CHM. The parameterization (2.12) stand
out as the minimal deformation of the flavor preserving case that is also closed under the RG
evolution if one ignores the contributions of the Yukawas of the first two generations [11, 12].

The amount of FV is built into the difference cuL − ctL , since this is what controls
[CQ, VCKM] (see section 3). We will see in section 4 that the choice (2.12) is preserved by
RG. It is only the stronger conditions CQ ∝ 1, Cu ∝ 1, Cd ∝ 1 that are not maintained.

7The reason why one prefers to have Yu diagonal, and not Yd, is that one wants eventually to integrate out
the top quark.

8Note that the first and second diagonal entries are the same, e.g. cuR = ccR , and we use the first flavor to
label both. For CQ, we use the u-type quark names, since we are using the chiral basis where Yu is diagonal.
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In fact, if one were only to retain the top Yukawa yt contribution to the RG evolution, one
could also set cbR = cdR , i.e. Cd ∝ 1. Not doing so allows one to consider the next-to-leading
situation where also yb ̸= 0 and the CKM matrix is approximated by (2.10).

In previous phenomenological work [6–9] we coupled the CHM ALP to the SM as

Lsimp. = −i a
f

∑
ψ ̸=t

cmψψ̄γ
5ψ − i

a

f
ctmtt̄γ

5t+ a

4πf
∑
V

cV αV Vµν Ṽ
µν , (2.14)

where ψ are all SM fermions other than the top quark t, and V are the SM gauge bosons
with their “fine structure constants” αV . We will see that (2.14) can be reproduced by the
highly non-generic assumption that CQ ∝ 1 at the EW scale. Even with this optimistic
assumption, some small amount of Flavor Violation will be introduced by matching, after
integrating out the t,H, Z,W . We do not dwell upon it now because we are going to analyze
the more general case in section 4.

3 The ALP Lagrangian

We now reintroduce all SM fields ignored in section 2 and present the starting form of the
ALP interaction Lagrangian,

Lalp = ∂µa

f

(
Q̄LCQγ

µQL + ūRCuγ
µuR + d̄RCdγ

µdR + L̄LCLγ
µLL + ēRCeγ

µeR
)

+ a

4πf
(
cGGαsG

a
µνG̃

aµν + cWWαwW
i
µνW̃

iµν + cBBαYBµνB̃
µν
)
. (3.1)

We use standard notation for the SM fields and couplings. We always set the redundant
ALP-Higgs operator i(∂µa/f)Φ†DµΦ to zero by the usual ALP dependent field redefinition
proportional to the hypercharge [13].

We take CQ, Cu, Cd diagonal, as in (2.12), but not proportional to the identity, while
CL = ceL1 and Ce = ceR1, since we do not introduce PC for the leptons. The mass of the
ALP is generated by masses for the hyperquarks and possible additional shift symmetry
breaking terms in the UV.

We fix f = 1 TeV and consider the couplings cuR , ctR , cdR , cbR , cuL , ctL , ceR , ceL , cGG,
cWW , cBB as “free” parameters of order one at the scale Λ = 4πf ≈ 13 TeV. They can be
estimated given a specific UV completion of the theory. A change in f can be absorbed into a
rescaling of the c.... One can also use baryon and total lepton symmetry to shift the couplings
to the quarks or those to the leptons by an overall constant. The total number of independent
parameters is thus nine c... (5 quarks, 1 lepton, and 3 gauge), as well as the ALP mass ma.

An alternative and equivalent version of the interaction Lagrangian to order 1/f is

Lalp =− a

f

(
Q̄LỸuΦ̃uR + Q̄LỸdΦdR + L̄LỸeΦeR + h.c.

)
+ a

4πf
(
c̃GGαsG

a
µνG̃

aµν + c̃WWαwW
i
µνW̃

iµν + c̃BBαyBµνB̃
µν
)
, (3.2)

with
Ỹu = i(YuCu − CQYu), Ỹd = i(YdCd − CQYd), Ỹe = i(YeCe − CLYe), (3.3)

– 5 –
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and, because of the anomaly

c̃GG = cGG + cuR + 1
2ctR + cdR + 1

2cbR − 2cuL − ctL ,

c̃WW = cWW − 3cuL − 3
2ctL − 3

2ceL ,

c̃BB = cBB + 8
3cuR + 4

3ctR + 2
3cdR + 1

3cbR − 1
3cuL − 1

6ctL + 3ceR − 3
2ceL . (3.4)

Given a UV model, the gauge couplings can be computed from the anomaly content
of the hyperfermions as shown in [14]. Notice that the anomaly of the hyperfermions is
computing directly c̃V V , not cV V . To build an intuition for this fact, recall the examples
of the KSVZ axion [17, 18] and the DFSZ axion [19, 20].

In the KSVZ case,9 the coupling of the axion to the gluon arises entirely from the BSM
sector, due to the anomalous U(1)PQ symmetry [22–24] of the heavy BSM fermions. No
derivative or Yukawa couplings to the SM fermions arise at this level. In this case the
difference between cGG and c̃GG is irrelevant.

The DFSZ case is, in a sense, the opposite. The BSM sector is purely bosonic and no
anomaly is present. The axion is a specific combination of the Higgs fields. Its coupling to
the SM fermions arises from the usual Higgs Yukawa couplings. So, at this stage one has a
Yukawa-type coupling of the SM fermions with the axion, and no gluon coupling (c̃GG = 0).
When rotating the SM fermions to remove the axion from the Yukawas one introduces the
axion-current derivative coupling and the axion-gluon coupling cGG ̸= 0.

The case of CHM contains both phenomena. There is a U(1)SU(3)2 anomaly present in
the BSM sector as in KSVZ. This leads to a direct contribution to the axion-gluon coupling
from the BSM sector. At the same time, the axion also has Yukawa couplings with the
fermions as in DFSZ, arising from the four fermi terms connecting the BSM and SM sectors.
So we have both a c̃GG ̸= 0, purely induced by the BSM sector, and an axion-Yukawa
coupling. We can then rotate the axion as in the DFSZ case, and work with cGG ̸= 0 and
derivative coupling, if we wish.

The fermionic couplings are more model dependent. They can also be estimated, given
some assumptions on the spurions [14], but it is better to think of these estimates as reasonable
“benchmarks” and not as hard predictions from the models.

If one wants to use the ALP Lagrangian directly at the UV scale, one only needs to
rotate the fields into their mass eigenbasis. Switching now to the physical Fermi fields, we
obtain (dropping the coupling to the conserved currents)

Lalp = ∂µa

2f
∑
ψ

ξψψψ̄γ
µγ5ψ + ∂µa

f

(
ξdsd̄γ

µPLs+ ξdbd̄γ
µPLb+ ξsbs̄γ

µPLb+ h.c.
)

+ a

4πf

(
cGGαsG

a
µνG̃

aµν + cγγαFµνF̃
µν + cγZ

2α
swcw

FµνZ̃
µν

+cZZ
α

s2
wc

2
w

ZµνZ̃
µν + cWW

2α
s2
w

W+
µνW̃

−µν
)
, (3.5)

9The composite axion [21] is even closer in spirit to the CHM.
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where∑ψ is over all SM fermions,10 PL = (1−γ5)/2, cγγ = cWW+cBB , cγZ = c2
wcWW−s2

wcBB ,
cZZ = c4

wcWW + s4
wcBB, and sw, cw the sine and cosine of the Weinberg angle.

The fermionic couplings are

ξee = ξµµ = ξττ = ceR − ceL ,

ξuu = ξcc = cuR − cuL ,

ξdd = cdR − cuL + (cuL − ctL)|Vtd|2,
ξss = cdR − cuL + (cuL − ctL)|Vts|2,
ξbb = cbR − cuL + (cuL − ctL)|Vtb|2,
ξtt = ctR − ctL ,

ξds = ξ∗sd = (ctL − cuL)V ∗
tdVts,

ξdb = ξ∗bd = (ctL − cuL)V ∗
tdVtb,

ξsb = ξ∗bs = (ctL − cuL)V ∗
tsVtb, (3.6)

all evaluated at the UV scale Λ. For cuL ̸= ctL there is FV after rotating to the mass
eigenbasis, since in general [V,CQ] ̸= 0. However, the structure of CQ, having two coincident
diagonal elements, and the unitarity of the CKM matrix allow one to write the FV couplings
as ξij ∝ V ∗

tiVtj .
In its alternative form (3.5) reads,

Lalp = − i
a

f

∑
ψ

ξψψmψψ̄γ
5ψ

+ i
a

f

(
ξdsmsd̄PRs+ ξdbmbd̄PRb+ ξsbmbs̄PRb+ h.c.

)
− i

a

f

(
ξdsmdd̄PLs+ ξdbmdd̄PLb+ ξsbmss̄PLb+ h.c.

)
+ a

4πf

(
c̃GGαsG

a
µνG̃

aµν + c̃γγαFµνF̃
µν + c̃γZ

2α
swcw

FµνZ̃
µν

+c̃ZZ
α

s2
wc

2
w

ZµνZ̃
µν + c̃WW

2α
s2
w

W+
µνW̃

−µν
)
, (3.7)

where c̃γγ = c̃WW + c̃BB, and so on. As a consistency check, c̃GG = cGG + 1
2
∑
q ξqq yields

the same result as (3.4). Since mb ≫ ms ≫ md the FV right handed operators give
larger contributions.

4 The running of the ALP couplings

The couplings used in section 3 are intended at the UV scale Λ ≈ 13 TeV. As such, they are
not directly measurable. We need first to run them down to the EW scale, say, just above the
top mass mt. Furthermore, for ALPs much lighter than the EW scale, we may also need to
integrate out the four heavy SM fields t, h, Z,W , match, and run down to the ALP mass ma.
The relevant formulas have been collected in [11, 12]. We present a streamlined version of
their results, keeping only the leading corrections, and refer to the original papers for details.

10We can always ignore the neutrinos because of their small masses.
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Here however, we face a conceptual issue. One difference between the CHM case and
the majority of ALPs studies is that in CHM there is often a whole BSM sector just above
the EW scale, consisting of additional pNGBs. This precludes the possibility of studying
with the same precision, in a model independent way, the RG evolution from the UV scale
down to the EW scale. Studying the required modifications for each specific model is too
involved, given the lack of a clear candidate. However, the couplings between the ALP and
other pNGBs stems from the spurion potential that also gives mass to the latter [14]. For
the ALP to remain light, it should couple only weakly to such potential. In addition, the
effect of BSM states below Λ ≈ 13 TeV on SM higher dimensional operators is already highly
constrained. Hence, we assume that the effect of the pNGBs is negligible and estimate the
running from the known SM formulas.

Running from Λ to mt does not affect the couplings cGG, cWW , and cZZ , and the
couplings c̃... are affected indirectly by the running of the fermionic couplings. Because of
the arbitrariness in the remaining fermionic couplings c..., due to the possibility of shifting
them by an overall quantity proportional to baryon number or lepton number, it is better
to consider the manifestly invariant values ξ.... The leading corrections come from the top
quark and read [11, 12]

ξee(mt) = ξµµ(mt) = ξττ (mt) = ξee(Λ) + 0.116 ξtt(Λ),
ξuu(mt) = ξcc(mt) = ξuu(Λ)− 0.116 ξtt(Λ),
ξdd(mt) = ξdd(Λ) + 0.116 ξtt(Λ),
ξss(mt) = ξss(Λ) + 0.116 ξtt(Λ),
ξbb(mt) = ξbb(Λ) + 0.097 ξtt(Λ),
ξtt(mt) = 0.826 ξtt(Λ),
ξds(mt) = ξds(Λ) + 0.0193 ξtt(Λ)V ∗

tdVts,

ξdb(mt) = ξdb(Λ) + 0.0193 ξtt(Λ)V ∗
tdVtb,

ξsb(mt) = ξsb(Λ) + 0.0193 ξtt(Λ)V ∗
tsVtb, (4.1)

where ξ...(Λ) are those in (3.6).
Apart from the expected shifts in the diagonal couplings, we see that even if one starts

with a flavor preserving Lagrangian in the UV, (ctL = cuL), running by a couple of orders of
magnitude (Λ → mt) already introduces a significant amount of FV. However, notice that
the FV is always proportional to the same combination of CKM elements. For instance,

ξsb(mt) = (ctL − cuL + 0.0193 (ctR − ctL))V ∗
tsVtb. (4.2)

It is in principle possible that the UV coefficients ctL , cuL , and ctR conspire to make the
combination in (4.2) small. However this would be a highly fine-tuned assumption, devoid of
any theoretical justification. The only non-fine-tuned way to have (4.2) to vanish would be
to set ctL = cuL = ctR by some additional symmetry, but this runs against the whole CHM
ALP philosophy. Thus, we will see in section 5 that a CHM ALP of mass below that of the
B meson is highly disfavored, modulo the above caveats.

If the ALP is much lighter than the EW scale, and we are interested in its on-shell physics,
or in its contribution to low energy observables, we need to integrate out the four heavy SM
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fields and run the obtained coefficients further down to the ALM mass, which we assume to be
a few GeVs. We denote the new coefficients by η... and present their relation to the ξ... in (4.1),
i.e. those evaluated at the EW scale. The leptonic couplings ηℓℓ are essentially unaffected.
The diagonal quark couplings ηqq, (q ̸= t), receive a common shift from the running. The FV
quarks couplings receive an additional (small) contribution from the matching. All in all

ηℓℓ = ξℓℓ,

ηqq = ξqq + (3.0cGG + 1.5ξuu + 1.5ξcc + 1.5ξdd + 1.5ξss + 0.9ξbb)× 10−2,

ηds = ξds − V ∗
tdVts(6.8 ξtt + 2.8 c̃WW )× 10−5,

ηdb = ξdb − V ∗
tdVtb(6.8 ξtt + 2.8 c̃WW )× 10−5,

ηsb = ξsb − V ∗
tsVtb(6.8 ξtt + 2.8 c̃WW )× 10−5. (4.3)

Notice that the new FV contributions are also proportional to the same combination of CKM
matrix elements, i.e. ηij ∝ V ∗

tiVtj as well. The diagonal quark couplings are affected at the %
level. Their running in (4.3) required doing some reverse engineering on the computation
of [11, 12] since they use a higher scale as a starting point. (ξtt is also present, but it is
multiplied by the accidentally small coefficient 0.016.)

The remaining contributions are flavor diagonal and very small. We do not write
them, although they have been computed in [11, 12] and can be easily reinstated. To avoid
confusion, notice that the much larger top contribution, as well as the contribution ∝ cGG
quoted in [12], arise from the RG from the UV scale, and are thus not included in (4.3).
(The top contribution is explicitly indicated in (4.1).)

We can now write down the Lagrangian at the ALP mass

Lalp = ∂µa

2f
∑
ψ ̸=t

ηψψψ̄γ
µγ5ψ + ∂µa

f

(
ηdsd̄γ

µPLs+ ηdbd̄γ
µPLb+ ηsbs̄γ

µPLb+ h.c.
)

+ a

4πf
(
cGGαsG

a
µνG̃

aµν + cγγαFµνF̃
µν
)
. (4.4)

At the cost of being pedantic, let us also write the alternative form, analogous to (3.7), since
this is the form of the Lagrangian most useful for phenomenological studies.

Lalp =− i
a

f

∑
ψ ̸=t

ηψψmψψ̄γ
5ψ

+ i
a

f

(
ηdsmsd̄PRs+ ηdbmbd̄PRb+ ηsbmbs̄PRb+ h.c.

)
− i

a

f

(
ηdsmdd̄PLs+ ηdbmdd̄PLb+ ηsbmss̄PLb+ h.c.

)
+ a

4πf
(
ĉGGαsG

a
µνG̃

aµν + ĉγγαFµνF̃
µν
)
, (4.5)

where the only point worth stressing is that now11

ĉGG = cGG + 1
2
∑
q ̸=t

ηqq ≈ c̃GG − 1
2(ctR − ctL),

ĉγγ = cγγ +
∑
ψ ̸=t

3δqψQ2
ψηψψ ≈ c̃γγ −

4
3(ctR − ctL), (4.6)

11Awesome notation: 3δqψ = 3 if ψ is a quark, and = 1 if it is not.
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the last equalities being satisfied at the % level12 and c̃GG, c̃γγ are computed by the anomaly
of the hyperquark sector.

One could also consider the coupling of very light ALPs to the QCD chiral Lagrangian.
This is amply discussed in the literature and does not introduce further issues so we will not
pursue it here. Our main interest is in ALPs with a larger mass anyway, since this allows
for more relaxed constraints from FV as needed for the generic case cuL ̸= ctL .

5 The CHM ALP phenomenology

One of the motivations for this work is to further the study [6–9] of an ALP with a mass
between the D+D− threshold and the EW scale. We thus distinguish two mass regions:

• A light13 ALP 2mD < ma < mB.

• A heavy ALP mB < ma < mW .

Let us begin in the small mass region. Recall the partial decay widths into leptons ℓ,
heavy quarks q, photons γ, and gluons g [25] (i.e. light hadrons)14

Γ(a→ ℓℓ) = mam
2
ℓ

8πf2 |ηℓℓ|2
√
1− 4m2

ℓ

m2
a

Γ(a→ qq) =
3mam

2
q

8πf2 |ηqq|2
√√√√1−

4m2
D,(B)
m2
a

Γ(a→ γγ) = α2m3
a

64π3f2 |ĉγγ |
2

Γ(a→ gg) = α2
sm

3
a

8π3f2 |ĉGG|
2
(
1 + 83

4
αs
π

)
(5.1)

For the smallest value of ma considered in this work (ma = 2mD = 3.74 GeV), and for ηℓℓ = 1,
f = 1 TeV, we obtain Γ(a→ ττ) = 1.5× 10−7 GeV. Γ(a→ cc̄) yields similar results, away
from threshold. Thus, generically, the ALP decay is always prompt.

Since in these models the coupling to leptons is “universal”, (i.e. ηee = ηµµ = ηττ ), we
can find an upper bound on the branching ratio of the ALP into electrons and muons by
assuming that the total width is dominated by a → ττ . In this way, all dependence on
the ALP couplings to leptons cancels. This is not a bad approximation, since the a → cc̄

channel is closed near threshold, and the di-boson channels are suppressed by numerical
factors and powers of the gauge couplings. We find the bounds BR(ee) ≤ 2.66× 10−7 and
BR(µµ) ≤ 0.0113, attained at threshold.

Let us see what these conservative bounds lead to. Table 1 of [12] collects the constraints
from rare meson decay. The ones relevant for this case are those involving B → πℓℓ and

12Eq. (4.3) can be used to get the exact form.
13Light in this context. Of course, in Dark Matter studies much lighter ALPs are considered.
14For our simple purpose, we oversimplify a bit the decay width into bosons by using ĉγγ and ĉGG instead

of the exact one loop result. The expressions below are numerically accurate for ma ≫ mb.
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Figure 1. Combination of ALP couplings allowed by Bd,s → µµ decay, vs. the ALP mass ma in
GeV. The blue line, labeled Bd,max shows the region where eq. (5.6) reaches the current experimental
bound, Similarly, Bs,min (green) and Bs,max (yellow) denote the two-sigma min. and max. values.
The allowed regions, denoted by a ∗, are in the two wedges between the green and yellow lines.

B → Kℓℓ, the strongest one being B → Kµµ, yielding15

ηsb
V ∗
tsVtb

√
BR(µµ) < 1.1× 10−6 f

TeV ⇒ ηsb
V ∗
tsVtb

< 1.0× 10−5 f

TeV . (5.2)

The corrections induced by integrating out the heavy SM fields (4.3) are of the same order
of magnitude, but the running (4.2) requires the highly fined tuned condition

ctL − cuL + 0.0193(ctR − ctL) ≲ 1.0× 10−5 f

TeV , (5.3)

disfavoring the existence of an ALP of this type with a mass ma < 4.6 GeV.
Adding more partial widths to the total width improves the bound, but only slightly,

unless ηℓℓ ≪ ηqq. As an illustration, if we simply take all couplings in (5.1) to be equal,
at threshold (5.2) is hardly changed — simply replace 1.0 with 1.1. At the other end of
the window (ma = 4.6 GeV) we must replace 1.0 → 1.4. Thus, we see that (5.2) is rather
stable against variations of the couplings.

The only radical deviation occurs for ηℓℓ ≪ ηqq. In this case, away from threshold, the
total decay width is dominated by a → cc̄ and (5.2) becomes, for ma = 4.6 GeV,

ηsb
V ∗
tsVtb

ηℓℓ
ηqq

< 1.3× 10−5 f

TeV . (5.4)

One should also check what is the leading production mode for this ALP. The two
contenders are gluon fusion and secondary production via B meson decay. In our previous
work [9], we estimated the gluon fusion production cross section for these models to be
within 60. and 600. nb. The total BB̄ production cross section at LHC is of the order

15Strictly speaking, this bound does not extend all the way to mB , since the available phase space closes at
ma ≈ 4.6 GeV.
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of 5. × 105 nb. In order to be competitive with gluon fusion, it requires a branching ratio
B → aX between 10−3 and 10−4.

We assume |ηsb| = |V ∗
tsVtb| × 10−5 which is the maximum amount allowed by FV for

f = 1 TeV. Using for simplicity the quark level formula

Γ(b→ as) = 1
32πf2 |ηsb|

2m3
b

(
1− m2

a

m2
B

)2

(5.5)

yields, at threshold (ma = 2mD), Γ(b→ as) = 4.5×10−20 GeV, corresponding to a branching
ratio of 1.1× 10−7, well below the required value. Thus, for the present models, gluon fusion
is the main production mode. It is only for ĉGG/f ≪ 1/TeV that the BB̄ production mode
becomes competitive as in e.g. [26].

Let us conclude by moving into the high mass region and study what regions of parameter
space are allowed by Bd,s → µµ decay via an off-shell ALP. The comparison between the
branching ratio induced by the ALP (including interference) and that of the SM is also given
in [12] (see also [27]) and reads, for the models at hand

BRa+SM = BRSM

∣∣∣∣∣1 + (ceR − ceL)(cuL − ctL)
4.2

π

α

v2

f2
1

1−m2
a/m

2
B

∣∣∣∣∣
2

. (5.6)

Taking the SM central values computed in [28] BRSM(Bd → µµ) = 1.03 × 10−10 and
BRSM(Bs → µµ) = 3.66 × 10−9, and the experimental values [29] BRexp(Bd → µµ) <
1.5 × 10−10 and BRexp(Bs → µµ) = (3.34 ± 0.27) × 10−9, allows to set bounds in the ma

vs. (ceR − ceL)(cuL − ctL) plane, shown in figure 1. We see that, for ma ≫ mB, FV terms
cuL − ctL ≈ 1 are in principle allowed in this mass range.
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